Survival in the Wild:

Robust Group Key Agreement in Wide-Area Networks

Jihye Kim* and Gene Tsudik
University of California, Irvine

{jihyek,gts @ics.uci.edu

May 7, 2008

Abstract

Group key agreement (GKA) allows a setphyersto establish a shared secret and thus bootstrap secure
group communication. GKA is very useful in many types of pgeyup scenarios and applications. Since all
GKA protocols involve multiple rounds, robustness to plafgdures is important and desirable. rBbustgroup
key agreement (RGKA) protocol runs to completion even if sqguiayers fail during protocol execution.

Previous work yielded constant-round RGKA protocols dlédor the LAN setting, assuming players are ho-
mogeneous, failure probability is uniform and player fedksiare independent. However, in a more general wide-
area network (WAN) environment, heterogeneous hardwafte/are and communication facilities can cause wide
variations in failure probability among players. Moreguamgestion and communication equipment failures can
result in correlated failures among subsets of GKA players.

In this paper, we construct the first RGKA protocol that supgpplayers with different failure probabilities,
spread across any LAN/WAN combination, while also allowiagcorrelated failures among subgroups of play-
ers. The proposed protocol is efficient (2 rounds) and prig\wszure. We evaluate its robustness and performance

both analytically and via simulations.

Keywords: Group Key Agreement, Fault Tolerance, Robustness, WidsAletworks, Heterogeneous Players
Submission Type:Regular Paper

*Contact Author.

1 Introduction

The last decade has witnessed a sharp spike in the popubdrityllaborative applications, such as multi-media
conferencing, distributed simulations, multi-user gaana$replicated servers. Such application often operatesacr
the insecure and unstable “wilderness” of the global Irderiio be effective, collaborative applications need rbbus
and secure communication. However, basic security sergch as confidentiality, integrity and authentication)
require key management as the foundation.

A number of group key management techniques have been mapdsey generally fall into three categories:
1) centralized, 2) distributed and 3) contributory.

Centralizedgroup key management involves a single entity that gerseeate distributes keys to group members
via a pair-wise secure channel established with each gramlbrar. This is generally inappropriate for secure peer
group communication, since a central key server must betjrcmusly available and present in every possible
subset of a group in order to support continued operatioherevent of arbitrary network partitions. Continuous
availability can be addressed by using fault-toleranceraptication techniques. Unfortunately, the omni-pregenc
issue is difficult to solve in a scalable and efficient mariner.

Distributed group key management is more suitable to peer group comuioncover unreliable networks. It
involves dynamically selecting a group member that actskay aistribution server. Although robust, this approach
has a notable drawback in that it requires a key server totaiailong-term pairwise secure channels with all current
group members in order to distribute group keys. Some schémke advantage of data structures to minimize the
number of encryption operations and messages generatewwdrahe group key changes. When a new key server
is selected all these data structures need to be constructed

In contrast,contributory group key agreement requires every group member to cotdréouequal share to the
common group secret, computed as a function of all membergtibutions. This is particularly appropriate for
dynamic peer groups since it avoids the problems with thgleipoint(s) of trust and failure. Moreover, some
contributory methods do not require establishing pairnsseet channels among group members. Also, unlike most
group key distribution protocols, they offer strong key mgament security properties such as key independence
and perfect forward secrecy (PFS) [11]. More detailed disitun can be found in [10].

In the rest of this paper we focus eontributorygroup key agreement and refer to it as GKA from here on.

IHowever, that the centralized approach works well in onetmy multicast scenarios since a trusted third party (Tpl#ed at, or very
near, the source of communication, can support continuedatipn within an arbitrary partition as long as it includles source.

1.1 Prior Work on Robust GKA

Most early work in GKA focused on security and efficiency. Amter of basic protocols were proposed , notably:
STR[10, 14], BD [4], GDH [15] and TGDH [9]. All of these protots are provably secure with respect to passive
adversaries (eavesdroppers). Each protocol is efficieits imwn way, while none is efficient in all respects (e.qg.,
number of messages, rounds and cryptographic operatidisprotect against active adversariasithenticated
versions of the above protocols were later constructed, [2,¢8, 8].

All current GKA protocols involve multiple communicatiomunds. Since no one-round GKA has ever been
proposed, the issue of robustness applies to all current @idrocols; in fact, none of them is inherently robust.
In this context, robustness means the ability to complegeptbtocol despite player and/or communication failures
during protocol execution.

The robustness issue has been identified several yearse@f@01, Amir, et al. [1] proposed the first robust GKA
(RGKA) technique based on a (non-robust) group key agreepretocol (called GDH) by Steiner, et al. [15], and
a view-based group communication system (GCS) which pesvitle abstraction of consistent group membership.
Since the GCS can detect crashes among players during tbetiexeof GKA, the protocol can react accordingly.
However, its round complexity i©(n) and it requires)(n?) broadcasts where is the number of players.

Subsequently, Cachin and Strobl (CS) proposed a very diffaronstant-round RGKA technique operating over
asynchronous networks [5]. It tolerates both player arkifialures. The exact communication and infrastructure
assumptions of the CS protocol depend on the choice of theeosns sub-protocol which the CS protocol invokes.
However, assuming a reliable broadcast channel, the C8quidikes 2 rounds, each player broadcéxts)-sized
messages and perforrasn) public key operations.

More recently, Jarecki, et al. [7] proposed a 2-round RGKdtqrol (called JKT) which operates over a reliable
broadcast channel, and tolerates upt@’) player failures usin@(7')-sized messages, for afiy< n. It achieves
a natural trade-off between message size and desired kaeiibtolerance. However, JKT assumes that: (1) every

player has the same fault probability, and (2) all fault @taibities are random and independent.

1.2 Starting Point

The JKT protocol is well-suited for a local area network (LABhvironment. This is because the assumption

of independent and random faults is valid in a typical LAN,enda group of players communicate directly via

2Assuming reliable broadcast, the CS protocol works asvalidrirst every player broadcasts its public encryption Réyen every player
picks its contribution to the shared key, encrypts it undehebroadcasted public key, and broadcasts a messagenaogtiie resulting:
ciphertexts. The shared key is computed by each player authef all broadcasted contributions.

broadcast and are not directly bothered by failures of qtkerers. Furthermore, JKT is geared for a homogeneous
environment where each player runs on the same hardwavedsefplatform. These two assumptions limit its scope.
Specifically, JKT is a poor match for settings where playéth heterogeneous hardware/software are spread across
a wide-area network (WAN).

By allowing each player to piggyback its individual faulopability onto its first broadcast message, JKT can
be used in a heterogeneous environment by trivially reptptie fault probability of every player by the highest
fault probability. Such a protocol would be safe in termsatfustness, but it would cause larger messages, incurring
higher costs than necessary for a specified level of robsstridoreover, if there is a player with a very high fault
probability, the protocol will always produce a maximuraesi messages for full robustness.

Also, a router failure in the WAN (e.g., due to a misconfigimnator congestion) increases the probability of
network partitioning [12], which in turn increases the tiaél probability of the GKA protocol. Specifically, router
failure results in the communication failure of all play&rsich use that router as a gateway. Assuming the router’s
fault probabilities are given (e.g., from historical stitis), one naive solution might be to determine a player’s
overall fault probability by combining player failure anoliter failure probabilities and then computing the sugabl
message size according to the result. However, it is untlearto combine these two different types of probabil-
ities: individual player’s faults are independent, whilaygr faults stemming from router crashes are correlated.
Moreover, performance is not only determined by fault philiges, but also by the order of the players. For ex-
ample, there is a higher chance of partition for the samedsimessage if players are randomly ordered, as in [7].
This prompts the question of how to order players and howetat ttwo different failures in order to obtain good

performance.

1.3 Scope

We consider applications where a peer group of players tghiised over any combination of LANs and WANSs.
The group is a long-term entity and a group-wide secret keyeided to bootstrap secure communication. We
assume that router failure probability can be computed t@torical statistics. Examples of the kind of groups we

focus on are as follows:

e Replicated File Systems. File servers acting as data sharing and storage stationeriioal in modern
network environments. To mitigate potential failures dfaeks on, and overload of, a single file server, it

is necessary to distribute replicated data.

e Reservation systemsAirline and hotel reservation systems must support disteith bookings even if some of
the system components fail or are interrupted. Sophisticegservation systems have been developed (using
heuristics) based only on local data, that aim to maximieentnmber of tickets and rooms that can be sold

while minimizing the risk of overbooking.

e Collaborative workspace systemA collaborative workspace is an distributed environmeriterin partici-
pants in disparate locations can access each other’s dafataract just as they would inside a single entity.
However, participants should be able to continue funatignising local data even if some peer participants

are malfunctioning or are suspended.

1.4 Contributions

First, we investigate how to efficiently use prior work in &isg with heterogeneous players and construct a protocol
that supports more flexible control parameters. We locdlizanessage size parameter for each player and allow a
player to compute its message size adaptively dependingliability level of its neighbors.

Second, we address the challenge of combining two diffeéygrets of fault probabilities (individual player and
sub-group of players) by treating each type at a differeygraBasically, we plug two types of control parameters
into our protocol: one (computed from a player fault probsbiincreases player connectivity within a clustered
subgroup, and the other (computed from a router fault priiyglbincreases connectivity among subgroups.

Third, since player ordering affects performance in a logfeneous setting, we determine — through step-by-step
simulations — which ordering is preferable in order to mazerefficiency. Simulation results show that random
player ordering in the same subgroup outperforms non-randaler, e.g., topological order or fault probability
increasing order. In addition, keeping the topologicaleoraf a player among subgroups outperforms random order
of players beyond its subgroup range.

Finally, we construct the first RGKA protocol that supportayers with different failure probabilities, spread
across any LAN/WAN combination, while also allowing for oelated failures among subgroups of players. The
proposed protocol is efficient (2 rounds) and provably secie evaluate its robustness and performance both

analytically and via simulations.

1.5 Organization

The rest of this paper is organized as follows: Section 2gmissour terminology, notation, communication and ad-

versarial models, as well as necessary security definidadscryptographic assumptions. Next, Section 3 describes

the new RGKA protocol. Section 4 evaluates its performamees&ction 5 concludes the paper.

2 Preliminaries

2.1

Terminology and Notation

We now summarize our notation and terminology.

Players. Participating set o players are denoted?, ..., P, where the ordering is determined by the protocol

itself.
Sub-group. A subset of players who can communicate directly, i.e.,d¢lmsthe same LAN.

(Border) Router. A device that forwards data between sub-groups. It mightdayer. Router failure causes

the entire sub-group to fail (become disconnected) fronp#repective of other players.

Failures/Faults. Any player and any router can crash. A player crash resulta frardware/software failure.
A router crash results from network misconfiguration orficatongestion and causes the communication

failure of all players that use that router as a gateway toekeof the world.

Multicast Communication. We assume that all communication takes place os#able and authenticated
multicast channels [6, 13] where all non-faulty playersentne same view of the broadcasted message (which
can be null if the sender is faulty). We assume weak synchiiaay players have synchronized clocks and
execute the protocol in synchronized rounds. Messagesriomfaulty players must arrive within some fixed
time window, which we assume is large enough to accommodiat& skews and reasonable communication

delays.

Adversary. We assume an honest-but-curious outside adversary whicleaimpose arbitrary stop faults on

the (otherwise honest) players. (We note, however, thagusiandard zero-knowledge proofs our protocols
can easily be strengthened to tolerate malicious insidehearice of a small constant increase in communi-
cation and computation.) Also, although the adversary cakeneach player stop at any time during protocol
execution, such player failure can not violate the contimgiosed by the reliable multicast assumption. The

goal of the adversary is to learn the group key(s).

Gadget X|;; : The value multicast in the second round of the protocol witicitesponds to the path of

length two connecting node;, P;, andP;,. (Refer to section 3.1).

6

The following notation is used from here on:

number of players

player fault probability

subgroup fault probability

failure probability of a single execution of the protocol

number of gadgets applicable to both right- and left-sidghi®rs per player
EXP(R) | expected number of rounds

EXP(MS) | expected message size per player

N<T T 3

2.2 System Model

Subgroup
/ Node Router

Figure 1: System Model

Figure 1 illustrates our system model. Our security modalstandard model for GKA protocols executed over
authenticated links Since players in our setting do not use long-term secregsjefine GKA security (following
[4,7,8]), as semantic security of the session key createdsingle instance of the GKA protocol executed among
honest parties. Specifically, the adversary can not digitihgbetween the key and a random value (with probability

negligibly over1/2). The formal definition is as follows:

Definition 1. (GKA Security) Consider an adversarial algorithrd which observes an execution of the GKA
protocol betweem honest players, and, depending on &iis given the session key computed by this protocol (if
b = 1) or a random value chosen from the same domain as the sessjq(if k = 0). The adversary4 outputs a

single bit’. We define adversary’s advantage:

AdvGA = | Prt = b] — 1/2]

3Note that there are standard and inexpensive “compilatiecliniques which convert any GKA protocol into aathenticatedGKA
protocol [8].

where the probability goes over the random execution of theopol, the adversaryd, and the random choice of
bit b.

We call a GKA protocosecurdf, for all adversariesA, Adv§<* is negligible.

2.3 Cryptographic Setting

We now describe our cryptographic assumptions. This sediancluded for the sake of completeness and can be
skipped without any loss of continuity.

Let G be a cyclic group of prime ordet and letg be its generator. We assume that both Decision Diffie-Hellma
(DDH) and Square-DDH problems are hardGn For exampleG could be a subgroup of orderin the group of
modular residue&; s.t.p — 1 dividesg, |p| = 1024 and|q| = 160, or it can be a group of points on an elliptic curve

with ordergq for |g| = 160.

Definition 2. The DDH problem is hard ift, if, for every algorithmA, we have:| Pr{z,y «— Z, : A(g, 9", 9",9"Y) =

1] —Priz,y,z — Zq: A(g,9%,9Y,9°) = 1]| < eande is negligible.

Definition 3. The Square-DDH problem is hard i@ if for every A we have: |Pr[z — Z, : Alg, g%, g%) =

1] = Prlz,z « Zy: A(g,9%,9°) = 1]| < eandeis negligible.

3 Robust Group Key Agreement Protocol in a WAN

In this section, we show the construction of a WAN-orient€allA protocol. As mentioned earlier, our work builds

on [7]. We thus begin by describing the JKT protocol in mor&aie

3.1 Overview of JKT protocol

JKT is basically a robust version of the 2-round GKA protoeplBurmester and Desmedt (BD) [4]. (We describe
the BD protocol in appendix A.) BD succeeds only if the seemmthd message values callgddgetsform a
circular path through the graph of all “live” players. Thes&behind adding robustness is simple: In the second
round, players send oadditional gadget values, such that, even if some players fail in thadwast stage, gadgets
broadcasted by the live players can be ordered to still focircalar path through those live players. In the following,
we briefly describe &-robust GKA protocol and then a fully robust GKA protocol whirepeats thd-robust

protocol until it succeeds.

T-robust GKA Protocol. As in [7], this protocol operates in two rounds assumirgayers are orderetyclically
andrandomly P,...,P,. In practice, the order can be determined by the hash of gteréiund message: each player
P; broadcasts a public versian = g% of its (secret) contribution; to the group key. (We assume, for simplicity
and without loss of generality, that all players survive fingt round of the protocol.) In the second round, e&th
broadcasts gadgets;, ; i = (zx/z:)" for |k —i| < T. (Note that gadget& ; ; for [k —i| < T'and|j —i| < T
can be also constructed sin&e;. ; jj = X,/ X[j,i,1-)

A gadgetX(; ; ; corresponds to the path of length two connecting play&rsr;, and ;. Two gadgets are
connectableif there exists a overlapping path. For example, for evegadgetsX(q, , 4;.a:,1) @M X(4; 0,4 1,040
are connectable because the pattPgfand P, ,, overlaps. Using graph terminology, the gadgets sent byitke |
players form a partially connected graph instead of a fuligrected graph, as described in [7].

Each player ends up computing the same group key if the sequergadgets sent by all live players forms a
circular path through the graph of all live players. If alldiplayers form gath a cycle can be also constructed

by visiting every player twice as described in [7]. L1t , ..., P,,, denote the players who survive after the second

broadcast round and form a circular path. Ea;hcomputes session key as:

ska, = (Zai_l)m't“i .ngq 1 i X — sk = gloatapFtagtag+Famtey

i1 a;—2

whereX,, = X[aFl’ai’ai,]/X[ay]- The actual protocol — as viewed by a single player — is showkigure 2.

Ai+1,A5,
[Round 1J:
1.1EachP; picks a randont; € Z, and broadcasts; = g*:.
[Round 2]:

2.1Let ActiveList be the list of indices of all players who complete Round 1.

2.2EachP; broadcast gadgets\(; ; ;1 = (z:/2,)" for T nearest neighbors to the right afithearest neighbors to th
left, among playerg € ActiveList. Define Xy; i/ 1 as(X[,CN-/])‘l.

[©)

[Key Computation]:
3.1Let ActivelList be the list of indices of all players who complete Round 2.
3.2 Every P; sortsActivelist in the same order and connects each pair of connectabletgaddes session key can he

computed only ifP; can construct a cycle either from a true Hamiltonian cyclff@n a Hamiltonian path taken twice;

wlog, we assume that the path is formed &%, , ..., P.,, }, where for some, j we havea; = a; andm < n.
3.3EachP,, computesk,, = (za, ,)™ " - X, - X2 Xa; o WhereXo, = Xia, ;| a;,a,]* X{ag,a,.a

i+l i1l

(NOte thatskai — gtu,l tagttagtagt-.-ttam,tay)

Figure 2: The robust GKA Protocol with homogeneous playeis LAN

Fully Robust GKA with Homogeneous and Random Faults. A fully robust (butnot constant-round) GKA pro-
tocol simply repeats th&-robust protocol above, with some parameétemwhich we fix from the player fault prob-
ability and the expected number of rounds, until fieobust protocol succeeds. Repeating the protocol ineseas
the number of rounds and the protocol communication conityleie., EXP(R}= 1 + 1/(1 — f), EXP(MS)=
1 +2T/(1 — f), respectively*. Assuming that player faults arandom and independentthe protocol failure
probability f is upper-bounded byf < n?/2 % 12T,

Therefore, givem, v, and f, we can compute a minimal gadget siz&— with which the protocol fails with
probability at mostf. As a result, the protocol will have at mast 1/(1— f) rounds. This is described in Algorithm
1.

Algorithm 1 : Optimal T Selection in random fault model
Input: (n,v, f)
Output: T
for (T" < 1ton/2) do
11 fe=n?/2x 0T
1.2 if f < fthen
L break
2 MinMS — 1+ 27" /(1 — f')
for (I" — T' + 1ton/2) do
31 fe=n?/2x 27
32 | MS—1+27"/(1—f
33 if MinMS > MS then
L MinMS — MS

re_turnT

The JKT protocol can upper-bound protocol failure probgbif and compute optimal message siZausing
approximation techniques, assuming homogeneous plalfensever, it is not clear how to compujgeand in a
heterogenous player model. Moreover, while individuayptdaults are independent, subgroup faults are correlated

Even if we could compute optimal message size, it would warly dor a particular order of participating
players. In other words, for each message size, the orddaydns changes the performance of the protocol. Recall
that the JKT protocol computes gadgetsfonearest neighbors hoping that at least one of them surviMesotocol
steps. If a given player is surrounded by other players wih Fault probabilities and gadgets connects only those
players, the said player will very likely end up disconnecte

In the following two sections, we explore how to order playand how to compute the message size heuristically.

“Note that the protocol restarts only the second round smeenessages from the first round are safely reusable.

10

3.2 Random or Non-random Order?

Heterogeneous Players on &AN. Basically, there are two extreme cases: ordering playetbdiy fault prob-
abilities and ordering them randonflyFor the same number of gadgétsto see which way of ordering provides
better performance, we simulate the protocol for each casepute the expected number of rounds and the expected
message size, and then compare them.

We use a simple scenario with two subgroups of 25 playersamitv and a high fault probability, respectively.
In this scenario step, we assume that every player is on the AN and thus do not consider router failures. The

summary of this scenario is in Table 1.

GroupID| A B
n 25 | 25
v 0.01| 0.3
I 0 0

Table 1: Two subgroups of players with different mdependentault probabilities.

Ordering Topological Order Random Order

T 2 3 4 2 3 4
EXP(R) | 2.913| 2.052| 2.005| 2.266 | 2.010| 2.000
EXP(MS) | 8.652| 7.312| 9.040| 6.064 | 7.060| 9.000

Table 2: Expected number of rounds and expected messageitizbree differentl” values on two different player
orders.

We simulate the above scenario with three different valdes 2, 3, and 4) in topological and random orders,
respectively. The results are summarized in Table 2. Faryelle random order outperforms topological order.
We believe that this is because random order uniformly idigies players with low fault rate and increases the
probability for every player to have non-faulty players amgats T nearest neighbors. Thus, random order can be a

practical solution for players with different, but indeplent, fault probabilities.

Heterogeneous Players in &VAN. To see how correlated failures affect performance, we sitaudnother sce-
nario with two subgroups of 25 players. Each subgroup cdsrtecthe WAN via a router. We assume that one
router has low, and the other — high, failure probabilityac® we now focus on correlated failures, we also assume
that an individual player never fails, but only its commuation can fail due to the failure of the router connecting

its subgroup to the WAN. This scenario is summarized in T&8ble

50Of course, other ordering criteria are possible, e.g., betwbr rates of player interfaces. However, there is carsioly less intuitive
justification for considering these criteria.

11

GroupID | A B
n 25 | 25
v 0 0
o 0.01| 0.3

Table 3: Two subgroups of players are given with differeritdmrelatedfault probabilities.

Ordering Topological Order Random Order

T 2 3 4 2 3 4
EXP(R) | 2.000| 2.000| 2.000| 2.427 | 2.427| 2.007
EXP(MS) | 5.000| 7.000| 9.000| 6.708 | 9.562 | 9.056

Table 4: Expected number of rounds and expected messageittizhree differentl” values, with two player orders.

Again, we simulate the scenario with three differéhtalues (2, 3 and 4) and summarize results in Table 4. In-
terestingly, unlike the first scenario, performance is moetter when players are ordered topologically. The results
show that, when players are topologically ordered, thegoaltnever fails because of a router failure, regardless of
T. This is because there is no partition when only one subgfailgo (For an inter-group partition to occur, there
should be at least four subgroups.) The situation is veferint with random order: if some scattered players fail

at the same time, a partition is very likely.

Heterogeneous Players in a LAN/WAN. As shown above, random player order improves performanteins
dependent player faults, while topological order achidvetser performance with correlated subgroup faults. The
natural next step is to consider the casbathindependent and correlated faults, e.g., in a mixed LAN/Vg&MNing.

To this end, we simulate a scenario with 4 subgroups, eaclpased of 15 players. Each player has an independent
fault probability (among players) and each subgroup alsoamaindependent fault probability (among subgroups).
A player thus fails either alone or as part of its subgroujufai In the latter case, the disconnected subgroup
(containing a given player) might still complete the pratipdhowever, from the perspective of outside players, all

players in the failed subgroup are gone. This scenario isvs®numed in Table 5.

GroupID| A B C D
n 15 15 | 15| 15
v 0.2 | 001|01]0.3
I 001 01 03|01

Table 5: 4 subgroups of 15 players each with different fardbpbilities.

Simulation results in Table 6 show that topological ordes teaver expected rounds and lower expected message
size. We conclude that, to obtain better performance, pagkould be ordered topologically by subgroups and

randomly within a subgroup.

12

Ordering Topological Order Random Order

T 2 3 4 2 3 4
EXP(R) | 3.371 | 2.165| 2.045| 3.701 | 2.404 | 2.165
EXP(MS) | 10.484| 7.99 | 9.360| 11.804| 9.424| 10.32

Table 6: Expected number of rounds and message size WitlieBues, with two different player orders.

3.3 Player-Specific Message Size

In this section, we describe how to compute optimal messiage r different players. We assume that players are
grouped into subgroups topologically and randomly withibgroups. We determine message size in terms of both

player-to-player and subgroup-to-subgroup communinatiespectively.

Player-to-Player. Our approach is to localiz€ depending on the reliability of neighboring players. Speally,

a player has a larger’ with less reliable neighbors, and a lowErwith more reliable neighbors. If player fault
probabilities are evenly distributed, we can obtain thd pesformance by simply letting each player compute the
same number of gadgetsusing algorithm 1. Whereas, more realistically, if playaulf probabilities are unevenly
spaced, to make every point equally reliable, each playetdadaptively compute the number of gadgets depending
on the robustness of its neighbors. (Recall that a playest®dnected if alll” nearest neighbors fail.)

We introduce three new variables:

e OT;: optimal number of gadgets, applicable to both right- arfiddiele neighbors of?;, assuminghat each

player has the same fault probability s
e RT; andLT;: localized numbers of gadgets applicablePs right and left side neighbors, respectively.

We estimateP;’s robustness from it§)T; value. For example, a player withT = 1 is most robust, while a
player withOT = n/2 is least robust (where is the number of players in a subgroup. In our algorithm, velren
a player computes a gadget which makes a connection to orne ¢ighbors, the robustness level of the player
increases in inverse proportion to its neighba?§". P; computesRT; and LT; according to its right and left
neighbor'sOT values OT;_1,OT;+1), respectively, until its robustness level reaches a fpddevel, which isl in
our algorithm. A more precise description is shown in Algon 2.

Note that a gadget that a player computes for one neighbonatane used if the neighbor does not compute a
reciprocal gadget. (Recall that gadgets are connectakierné exists a overlapping path.) In fact, in Algorithm 2,

for a given pair of players, either both compute a gadgetdcheather or neither does.

13

Algorithm 2: T Localization on player-to-player basis
Input: (n,v1,-+ ,vn, f)
Requirement 1: P, - - - , P, are randomly ordered within subgroups and topologicallpsse subgroups.
Requirement 2: n is the number of players and indices cycle modulé.e. P,,+1 = P;
Requirement 3: P;’s fault probability isv;
Ensure: for eachP;, computeRT; and LT;
for (: — 1ton) do
| Compute optimaOT; using Algorithm 1 on inputn, v, f)
for (: — 1ton)do
reliability «— 0
RT; — 0
for (j « i + 1; reliability > 1orj —i >n/2; j «— j+ 1) do
RT; — RT; + 1 (Add P; to the list of P;’s right neighbors)
reliability «— reliability + 1/0T}
reliability «— 0
for (j « i — 1; reliability > 1ori —j > n/2; j — j — 1) do
LT; — LT; +1 (Add P; to the list of P;'s left neighbors)
L reliability «— reliability + 1/0T}

Proposition 1. In Algorithm 2, if a player computes a gadget for a neighlbwert the neighbor computes a reciprocal

gadget.

Proof. Since RT and LT are symmetric, we focus only aR7". Assume that’; computeskT; = k. SinceP;
is added as one of its right-side neighbors, the summatiorelé@ibility from P, to P,;_1 is less than one,
i.e., Z;i’j;ll OLT], < 1. Therefore,P;;; computesLT;,, > k including P; as one of its left neighbors, since

i+k—1 1
ditit or, <1 O

Subgroup-to-Subgroup. In the proposed algorithm, we logically treat each subgrasip kind of asuper-player
Specifically, in each subgroup, a player with the lowestfardbability becomes a representative and sends out extra
gadgets for other representatives. A representative iplaga@mes faulty if either the player itself or its subgroup
fails. Thus, given player failure rateand subgroup failure rage, the failure probability’ of a representative player

is: v + u — vu. The algorithm is described in Algorithm 3.

Proposition 2. In Algorithm 3, if a representative player computes a gadgdtie for a representative neighbor

then the representative neighbor also computes a gadge¢ ¥at the representative player.

Proof. Identical to the proof of Proposition 1. O

6At the player-to-player level, a player also fails from eitits own or its subgroup fault. However, since players epelogically ordered
and gadgets connect only nearest neighbors, the subgroljisfaot considered in the player-to-player level robass

14

Algorithm 3 T Localization in subgroup-to-subgroup level
Input: (m,v1, - Um, 1, foms f)
Requirement 1: P, - - - , P, are a set of representative players
Requirement 2: m is the number of subgroups and indices cycle mad.e. P41 = Py
Requirement 3: P;’s fault probability and subgroup fault probability areandu;, respectively
Ensure: for eachP;, computeRT; and LT;

for (i — 1tom)do
| Compute optimaOT; using Algorithm 1 on inputm, (p: + vi — ps - vs), f)
for (¢ — 1tom) do
reliability «— 0
RT; — 0
for (j « i + 1; reliability > 1orj —i > m/2; j «— j+ 1) do
RT; — RT; + 1 (Add P; to the list of P;’s right neighbors)
reliability «— reliability + 1/0T}
reliability «— 0
for (j <« ¢ — 1; reliability > 1ori —j > m/2; j «— j — 1) do
LT; — LT; +1 (Add P; to the list of P;'s left neighbors)
L reliability «— reliability + 1/0T}

3.4 RGKA in a LAN/WAN Setting

Based on Algorithms 2 and 3, we propos&VaRGKAprotocol for heterogeneous playerd/-RGKAallows each
player to adaptively compute its message size dependinigeoreliability level of its neighbors/V-RGKAautomat-
ically defaults to the JKT protocol [7] in a setting with hogemeous players. Note that the homogeneous player
setting is a special case of Algorithm 2, where every plagenmutes the sam@7T = RT = LT. In other words,
we succeed in extending the JKT protocol without losing i8roality in a homogeneous setting.

We also relax the way the key is computed such #mgtcircular path that connects all live players can be used
for key computation. The resulting graph that gadgets dratwo levels is more complex than the one (calledh
power of a circle) shown in the JKT protocol which builds eitla Hamiltonian cycle or a Hamiltonian path on all
live players. To enable stronger robustness, we relax tlyeofvinding a circular path, so that the key is associated
not necessarily with a Hamiltonian cycle or a Hamiltoniathpaut any circular path where a player can be visited
more than once. If there is no partition, there is a alwaysauldr path. The resulting/-RGKAprotocol is shown

in Figure 3.

Theorem 1. Assuming that the DDH problem and Square-DDH problem arel hprotocolW-RGKA is a secure

Group Key Agreement.

The security of theN-RGKAprotocol which broadcast®T and LT sized messages is implied by the secu-
rity argument for the RGKA protocol in [7] which broadcastaximum sized messages, thus revealing maximum

amount of information. The only difference is that the réagl key in W-RGKAmight contain each contribution

15

[Round 1]:
1.1Same as in Figure 2 except that edéhalso broadcasts its fault probability.
[Round 2]: same as in Figure 2 except:

2.2Each player; computeskT; and LT; using Algorithm 2 and broadcast gadgalg, ; ;. = (2:/2x)" for RT; nearest
neighbors to the right anfT; nearest neighbors to the left among players ActiveList.

*2.3 Each representative; computesRT; and LT; using Algorithm 3 and broadcast gadgefs; ; ,,; = (2:/2x)" for
RT; nearest neighbors to the right ahd’; nearest neighbors to the left among representative pléyeréctiveList.

[Key Computation]: Same as in Figure 2 except:

3.2The session key can be computed if there exists a circulangiagre every player is visited at least more than once.
WIlog, we assume that the path is formed&%,, - - - , P.,, }, where for some, j we can have,; = a;.

* Executed only by representative players

Figure 3:W-RGKAprotocol with heterogeneous players in a LAN/WAN setting

of the formt,,, t,,,, more than once. However, the resulting key equation islstéarly independent from the
equations generated from gadgets. Thus, the key valuegpémdient from gadgets values and the adversary cannot

learn anything about the key from the messages it obsereeslefails, refer to Sectiof 2 in [7].

4 Performance Evaluation

We first summarize the relevant aspects of protocol effigienc
e Round Complexity: number of protocol rounds.
e Communication Complexity: (expected) total bit-length of all messages sent in theopot
e Computational Complexity: computation that must be performed by each player.

REMARK:In the specific GKA protocols we compare, computational dexify increases in proportion to commu-
nication complexity. Generally, one message unit incuesexponentiation (which dominates computational cost).
Thus we do not separate computational complexity from comaation complexity in the following comparison.
We comparé/N-RGKAwith the fully robust JKT protocol [7], as described in senti3.1. To makeN-RGKA
fully robust we repeat it until it succeeds; this is the samppraach used to obtain a fully robust version of JKT
in [7]. We denote our fully robust version 8$-RGKA and the fully robust JKT version bRGKA:. However, since
RGKA works in a homogeneous setting, we simulR@KA: by taking the average of all player fault probabilities.
We analyze how player heterogeneity and correlated fati#stgperformance. We evaluate the protocols in a
setting of 5 subgroups with 10 players for each. In the finstusation, we generate subgroup fault probabilities

such that the average subgroup fault probability is arouhdwWith a standard deviation less than 0.1) and generate

16

10 players for each group with random fault probability,tstitat the standard deviation varies between 0 and 0.4.
Note that the standard deviation of player fault probapitstribution indirectly shows the heterogeneity of the se
of players. In the second simulation, we generate playedoraly but with a small deviation (less than 0.1) and

change subgroup fault probabilities such that the averagges from 0 to 0.4.

3 T T T T

W-RGKA* ' x " W-RGKA* x
RGKA* o 12 + RGKA* o B
25 E o
L o o o i
o ° %@ g o o o 10 o % %g&% 28 o
9@§3 o Q @O(@ [0}
2 W@QW@QWEXW »g%?%xxxx% ><§ - T % o
- N 8 | 8 o <l .
5 @ RePpooenP %o@%%@ 8§O %P o
g g ><><>(§X><><>< X X X
€ 15 b @ XK X % X
5 X0 % X
o O 6 0 X0 5% XXX B
n 2 x EXT B o s Xk X Ky
u a XX X Bk EXx o x ¥
X X X X% X
1r . L X
4+ i
05 . oL i
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
STD of Node Fault Rate STD of Node Fault Rate
(a) expected number of rounds (b) expected message size

Figure 4:W-RGKA vs. RGKA for different standard deviations of player fault ratetdisution. Results are based
on simulating over 100 runs.

Figure 4 shows the expected number of rounds (a) and expeasshge size (b) for each protocol with different
standard deviations. Overaly-RGKA outperformsRGKA in both round and communication complexity. The
number of rounds iIW-RGKA tops out at2.01, compared with2.2 in RGKA:. This might seem insignificant,
however, considering that the underlying non-robust BQtqual always take® rounds, the difference becomes
more substantial. We also observe that the communicatish afoN-RGKA is far lower than that ofRGKA,
particularly, with higher standard deviation in playerlfaates.

Figure 5 shows the expected number of rounds (a) and expeassige size (b) for both protocols, taking into
account subgroup fault rates. Once ag&itRGKA exhibits better performance on both counts. The number of
rounds inW-RGKA still lies below 2.01. Whereas, foRGKA, the number of rounds increases proportionally
to averaged correlated fault rates, and thus quickly shgot® 2.5. Also, communication complexity dRGKA*
increases as the average of correlated fault rates grovisislinainly becausBGKA: does not consider correlated

faults in its design.

17

3 T T T T T T T T T T T T T
W-RGKA* X W-RGKA* X
RGKA* o 12 + RGKA* o B
25 o E
©o 10 .
o o o Oo
2 Xx E — ©) %ch ° % o
3 8 008 Oéo © 8 g
= (/_7 i o e % (o]]
§ g flee) C%c%z!i@ ?DO@O x
<] I X x
g 15} 1 2 ¥ %XXX&»%X&XXXXX
= B o X Q Sx X B X X i
& s 6 i %X%%;X%%g §>><< Xy x> .
] bt X7 M
i
1r 7 4 F —
05 - oL i
0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Average of Subgroup Fault Rate Average of Subgroup Fault Rate
(a) expected number of rounds (b) expected message size

Figure 5:W-RGKA vs. RGKA: for different average subgroup fault rates. Results ase@n simulating over 100
runs.

5 Conclusions

This paper started off with the state-of-the-art in robustAGoprotocols. Having identified certain limitations of
prior work, i.e., assumptions about independent failuresfeomogeneous players, we demonstrated a step-by-step
construction of a new protocaV-RGKAsuitable for a mixed LAN/WAN setting. While the proposed tocol
inherits the attractive features of its predecessor (JKB)so heuristically determines per-player optimal mgssa
sizes and handles heterogeneous fault probabilities dsas/iebrrelated failures. Simulations help determine the
preferred player order for different scenarios.

One obvious item for future work is to conduct a more extenset of experiments and simulations. Another
issue is that the current protocol does not take into acdatertsubgroup delay. Itis natural to consider this vddab

(assuming it is known ahead of time) in determining the optisubgroup order.

References

[1] Y. Amir, C. Nita-Rotaru, J. Schultz, J. Stanton, Y. KimdG. Tsudik. Exploring robustness in group key
agreement. IMCDCS pages 399-408, 2001.

18

[2] E. Bresson, O. Chevassut, and D. Pointcheval. Provalilyeaticated group Diffie-Hellman key exchange —

the dynamic case. IAsiacrypt 2001Dec 2001.

[3] E. Bresson, O. Chevassut, D. Pointcheval, and J. Quieguarovably authenticated group Diffie-Hellman key
exchange. IIACM CCS Nov 2001.

[4] M. Burmester and Y. Desmedt. A secure and efficient canfee key distribution system. BUROCRYPT
pages 275-286, 1994.

[5] C. Cachin and R. Strobl. Asynchronous group key exchavigiefailures. InPODC, pages 357-366, 2004.

[6] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang.ekable multicast framework for light-weight
sessions and application level framingEE/ACM ToN 5(6):784—-803, 1997.

[7] S. Jarecki, J. Kim, and G. Tsudik. Robust group key ager@mising short broadcasts. ACM CCS pages
411-420, 2007.

[8] J. Katz and M. Yung. Scalable protocols for authentidatgoup key exchange.Journal of Cryptology
20(1):85-113, 2007.

[9] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-toletekey agreement for dynamic collaborative groups.

In ACM Conference on Computer and Communications Secpatyes 235-244, 2000.
[10] Y. Kim, A. Perrig, and G. Tsudik. Group key agreementaidint in communicationlEEE ToG 33(7), 2004.
[11] A. Menezes, P. van Oorschot, and S. Vanstaf@dbook of Applied CryptographfCRC Press, 1996.

[12] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Eettded virtual synchrony. IICDCS pages 56-65,
1994.

[13] S. Paul, K. Sabnani, J. Lin, and S. Bhattacharya. Rigiatulticast transport protocol (rmtp)EEE JSAC
15(3):407-421, 1997.

[14] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A see audio teleconference systeBRYPTO’83Aug
1990.

[15] M. Steiner, G. Tsudik, and M. Waidner. Key agreementyinaimic peer groupdEEE TPDS 11(8):769-780,
2000.

19

A Burmester-Desmedt GKA

The BD GKA protocol proceeds in two rounds (see Figure 6)stléach playel; broadcasts a public counterpart
z; = g" of its contributiont; to the key. In the second round eaEhbroadcasts gadgef|;_; ; ;1 = g""+ "%
(Which it can compute a&(;_; ; ;1) = (2i11/2)). Given the set of gadget values,, 1 o, X(1,2,3) s Xjn—1,n,1]

each player”; can use its contributioty to locally compute the common session key= gf1tztt2ts . +ints

[Round 1]:

Each playerP; picks a randont; € Z, and broadcasts; = g".
[Round Z:

EachP; broadcasts its gadget valug; _; ; ;41 = (zi+1/zi—1)", where the indices are taken in a cycle|
[Key Computation]:

EachP; computes the key ak; = (zi—1)"" - X" - X' 7% -+ X;_o, whereX; = X[;_1,,i41)-

(Note that for alli we havesk; = gt1t2tt2tat--+int1)

Figure 6: Burmester-Desmedt’'s Group Key Agreement Prot@id GKA)

As we explain in section 3.1, a sequence of gadfmtss a path through the grapifi each two consecutive
gadgets in the sequence are connectable. By inspectingtimelt for deriving the secret key in the BD GKA
protocol we can observe that each player derives the samieddayise the set of gadgets broadcasted in the second

round of the protocol forms a Hamiltonian cycle (i.e. a clacypath) through the graph of all players.

20

