
Survival in the Wild:

Robust Group Key Agreement in Wide-Area Networks

Jihye Kim∗ and Gene Tsudik

University of California, Irvine

{jihyek,gts}@ics.uci.edu

May 7, 2008

Abstract

Group key agreement (GKA) allows a set ofplayersto establish a shared secret and thus bootstrap secure

group communication. GKA is very useful in many types of peergroup scenarios and applications. Since all

GKA protocols involve multiple rounds, robustness to player failures is important and desirable. Arobustgroup

key agreement (RGKA) protocol runs to completion even if some players fail during protocol execution.

Previous work yielded constant-round RGKA protocols suitable for the LAN setting, assuming players are ho-

mogeneous, failure probability is uniform and player failures are independent. However, in a more general wide-

area network (WAN) environment, heterogeneous hardware/software and communication facilities can cause wide

variations in failure probability among players. Moreover, congestion and communication equipment failures can

result in correlated failures among subsets of GKA players.

In this paper, we construct the first RGKA protocol that supports players with different failure probabilities,

spread across any LAN/WAN combination, while also allowingfor correlated failures among subgroups of play-

ers. The proposed protocol is efficient (2 rounds) and provably secure. We evaluate its robustness and performance

both analytically and via simulations.

Keywords: Group Key Agreement, Fault Tolerance, Robustness, Wide-Area Networks, Heterogeneous Players

Submission Type:Regular Paper

∗Contact Author.

1

1 Introduction

The last decade has witnessed a sharp spike in the popularityof collaborative applications, such as multi-media

conferencing, distributed simulations, multi-user gamesand replicated servers. Such application often operate across

the insecure and unstable “wilderness” of the global Internet. To be effective, collaborative applications need robust

and secure communication. However, basic security services (such as confidentiality, integrity and authentication)

require key management as the foundation.

A number of group key management techniques have been proposed. They generally fall into three categories:

1) centralized, 2) distributed and 3) contributory.

Centralizedgroup key management involves a single entity that generates and distributes keys to group members

via a pair-wise secure channel established with each group member. This is generally inappropriate for secure peer

group communication, since a central key server must be, continuously available and present in every possible

subset of a group in order to support continued operation in the event of arbitrary network partitions. Continuous

availability can be addressed by using fault-tolerance andreplication techniques. Unfortunately, the omni-presence

issue is difficult to solve in a scalable and efficient manner.1

Distributedgroup key management is more suitable to peer group communication over unreliable networks. It

involves dynamically selecting a group member that acts as akey distribution server. Although robust, this approach

has a notable drawback in that it requires a key server to maintain long-term pairwise secure channels with all current

group members in order to distribute group keys. Some schemes take advantage of data structures to minimize the

number of encryption operations and messages generated whenever the group key changes. When a new key server

is selected all these data structures need to be constructed.

In contrast,contributorygroup key agreement requires every group member to contribute an equal share to the

common group secret, computed as a function of all members’ contributions. This is particularly appropriate for

dynamic peer groups since it avoids the problems with the single point(s) of trust and failure. Moreover, some

contributory methods do not require establishing pairwisesecret channels among group members. Also, unlike most

group key distribution protocols, they offer strong key management security properties such as key independence

and perfect forward secrecy (PFS) [11]. More detailed discussion can be found in [10].

In the rest of this paper we focus oncontributorygroup key agreement and refer to it as GKA from here on.

1However, that the centralized approach works well in one-to-many multicast scenarios since a trusted third party (TTP)placed at, or very
near, the source of communication, can support continued operation within an arbitrary partition as long as it includesthe source.

2

1.1 Prior Work on Robust GKA

Most early work in GKA focused on security and efficiency. A number of basic protocols were proposed , notably:

STR [10, 14], BD [4], GDH [15] and TGDH [9]. All of these protocols are provably secure with respect to passive

adversaries (eavesdroppers). Each protocol is efficient inits own way, while none is efficient in all respects (e.g.,

number of messages, rounds and cryptographic operations).To protect against active adversaries,authenticated

versions of the above protocols were later constructed, e.g., [2,3,8].

All current GKA protocols involve multiple communication rounds. Since no one-round GKA has ever been

proposed, the issue of robustness applies to all current GKAprotocols; in fact, none of them is inherently robust.

In this context, robustness means the ability to complete the protocol despite player and/or communication failures

during protocol execution.

The robustness issue has been identified several years ago. In 2001, Amir, et al. [1] proposed the first robust GKA

(RGKA) technique based on a (non-robust) group key agreement protocol (called GDH) by Steiner, et al. [15], and

a view-based group communication system (GCS) which provides the abstraction of consistent group membership.

Since the GCS can detect crashes among players during the execution of GKA, the protocol can react accordingly.

However, its round complexity isO(n) and it requiresO(n2) broadcasts wheren is the number of players.

Subsequently, Cachin and Strobl (CS) proposed a very different constant-round RGKA technique operating over

asynchronous networks [5]. It tolerates both player and link failures. The exact communication and infrastructure

assumptions of the CS protocol depend on the choice of the consensus sub-protocol which the CS protocol invokes.

However, assuming a reliable broadcast channel, the CS protocol takes 2 rounds, each player broadcastsO(n)-sized

messages and performsO(n) public key operations.2

More recently, Jarecki, et al. [7] proposed a 2-round RGKA protocol (called JKT) which operates over a reliable

broadcast channel, and tolerates up toO(T) player failures usingO(T)-sized messages, for anyT < n. It achieves

a natural trade-off between message size and desired level of fault-tolerance. However, JKT assumes that: (1) every

player has the same fault probability, and (2) all fault probabilities are random and independent.

1.2 Starting Point

The JKT protocol is well-suited for a local area network (LAN) environment. This is because the assumption

of independent and random faults is valid in a typical LAN, where a group of players communicate directly via

2Assuming reliable broadcast, the CS protocol works as follows: First every player broadcasts its public encryption key. Then every player
picks its contribution to the shared key, encrypts it under each broadcasted public key, and broadcasts a message containing the resultingn
ciphertexts. The shared key is computed by each player as thesum of all broadcasted contributions.

3

broadcast and are not directly bothered by failures of otherplayers. Furthermore, JKT is geared for a homogeneous

environment where each player runs on the same hardware/software platform. These two assumptions limit its scope.

Specifically, JKT is a poor match for settings where players with heterogeneous hardware/software are spread across

a wide-area network (WAN).

By allowing each player to piggyback its individual fault probability onto its first broadcast message, JKT can

be used in a heterogeneous environment by trivially replacing the fault probability of every player by the highest

fault probability. Such a protocol would be safe in terms of robustness, but it would cause larger messages, incurring

higher costs than necessary for a specified level of robustness. Moreover, if there is a player with a very high fault

probability, the protocol will always produce a maximum-sized messages for full robustness.

Also, a router failure in the WAN (e.g., due to a misconfiguration or congestion) increases the probability of

network partitioning [12], which in turn increases the failure probability of the GKA protocol. Specifically, router

failure results in the communication failure of all playerswhich use that router as a gateway. Assuming the router’s

fault probabilities are given (e.g., from historical statistics), one naive solution might be to determine a player’s

overall fault probability by combining player failure and router failure probabilities and then computing the suitable

message size according to the result. However, it is unclearhow to combine these two different types of probabil-

ities: individual player’s faults are independent, while player faults stemming from router crashes are correlated.

Moreover, performance is not only determined by fault probabilities, but also by the order of the players. For ex-

ample, there is a higher chance of partition for the same-sized message if players are randomly ordered, as in [7].

This prompts the question of how to order players and how to treat two different failures in order to obtain good

performance.

1.3 Scope

We consider applications where a peer group of players is distributed over any combination of LANs and WANs.

The group is a long-term entity and a group-wide secret key isneeded to bootstrap secure communication. We

assume that router failure probability can be computed fromhistorical statistics. Examples of the kind of groups we

focus on are as follows:

• Replicated File Systems. File servers acting as data sharing and storage stations arecritical in modern

network environments. To mitigate potential failures of, attacks on, and overload of, a single file server, it

is necessary to distribute replicated data.

4

• Reservation systems.Airline and hotel reservation systems must support distributed bookings even if some of

the system components fail or are interrupted. Sophisticated reservation systems have been developed (using

heuristics) based only on local data, that aim to maximize the number of tickets and rooms that can be sold

while minimizing the risk of overbooking.

• Collaborative workspace system.A collaborative workspace is an distributed environment, wherein partici-

pants in disparate locations can access each other’s data and interact just as they would inside a single entity.

However, participants should be able to continue functioning using local data even if some peer participants

are malfunctioning or are suspended.

1.4 Contributions

First, we investigate how to efficiently use prior work in a setting with heterogeneous players and construct a protocol

that supports more flexible control parameters. We localizethe message size parameter for each player and allow a

player to compute its message size adaptively depending on reliability level of its neighbors.

Second, we address the challenge of combining two differenttypes of fault probabilities (individual player and

sub-group of players) by treating each type at a different layer. Basically, we plug two types of control parameters

into our protocol: one (computed from a player fault probability) increases player connectivity within a clustered

subgroup, and the other (computed from a router fault probability) increases connectivity among subgroups.

Third, since player ordering affects performance in a heterogeneous setting, we determine – through step-by-step

simulations – which ordering is preferable in order to maximize efficiency. Simulation results show that random

player ordering in the same subgroup outperforms non-random order, e.g., topological order or fault probability

increasing order. In addition, keeping the topological order of a player among subgroups outperforms random order

of players beyond its subgroup range.

Finally, we construct the first RGKA protocol that supports players with different failure probabilities, spread

across any LAN/WAN combination, while also allowing for correlated failures among subgroups of players. The

proposed protocol is efficient (2 rounds) and provably secure. We evaluate its robustness and performance both

analytically and via simulations.

1.5 Organization

The rest of this paper is organized as follows: Section 2 presents our terminology, notation, communication and ad-

versarial models, as well as necessary security definitionsand cryptographic assumptions. Next, Section 3 describes

5

the new RGKA protocol. Section 4 evaluates its performance and section 5 concludes the paper.

2 Preliminaries

2.1 Terminology and Notation

We now summarize our notation and terminology.

• Players.Participating set ofn players are denoted:P1, ...,Pn where the ordering is determined by the protocol

itself.

• Sub-group. A subset of players who can communicate directly, i.e., those on the same LAN.

• (Border) Router. A device that forwards data between sub-groups. It might be aplayer. Router failure causes

the entire sub-group to fail (become disconnected) from theperspective of other players.

• Failures/Faults. Any player and any router can crash. A player crash results from hardware/software failure.

A router crash results from network misconfiguration or traffic congestion and causes the communication

failure of all players that use that router as a gateway to therest of the world.

• Multicast Communication. We assume that all communication takes place overreliable and authenticated

multicast channels [6,13] where all non-faulty players have the same view of the broadcasted message (which

can be null if the sender is faulty). We assume weak synchrony, i.e., players have synchronized clocks and

execute the protocol in synchronized rounds. Messages fromnon-faulty players must arrive within some fixed

time window, which we assume is large enough to accommodate clock skews and reasonable communication

delays.

• Adversary. We assume an honest-but-curious outside adversary which can also impose arbitrary stop faults on

the (otherwise honest) players. (We note, however, that using standard zero-knowledge proofs our protocols

can easily be strengthened to tolerate malicious insiders at the price of a small constant increase in communi-

cation and computation.) Also, although the adversary can make each player stop at any time during protocol

execution, such player failure can not violate the contractimposed by the reliable multicast assumption. The

goal of the adversary is to learn the group key(s).

• Gadget X[j,i,k]: The value multicast in the second round of the protocol whichcorresponds to the path of

length two connecting nodesPj , Pi, andPk. (Refer to section 3.1).

6

The following notation is used from here on:

n number of players
ν player fault probability
µ subgroup fault probability
f failure probability of a single execution of the protocol
T number of gadgets applicable to both right- and left-side neighbors per player

EXP(R) expected number of rounds
EXP(MS) expected message size per player

2.2 System Model

Subgroup

Internet

Node Router

Figure 1: System Model

Figure 1 illustrates our system model. Our security model isa standard model for GKA protocols executed over

authenticated links3. Since players in our setting do not use long-term secrets, we define GKA security (following

[4, 7, 8]), as semantic security of the session key created ina single instance of the GKA protocol executed among

honest parties. Specifically, the adversary can not distinguish between the key and a random value (with probability

negligibly over1/2). The formal definition is as follows:

Definition 1. (GKA Security) Consider an adversarial algorithmA which observes an execution of the GKA

protocol betweenn honest players, and, depending on bitb, is given the session key computed by this protocol (if

b = 1) or a random value chosen from the same domain as the session key (if b = 0). The adversaryA outputs a

single bitb′. We define adversary’s advantage:

Adv
GKA
A = |Pr[b′ = b]− 1/2 |

3Note that there are standard and inexpensive “compilation”techniques which convert any GKA protocol into anauthenticatedGKA
protocol [8].

7

where the probability goes over the random execution of the protocol, the adversaryA, and the random choice of

bit b.

We call a GKA protocolsecureif, for all adversariesA, Adv
GKA
A is negligible.

2.3 Cryptographic Setting

We now describe our cryptographic assumptions. This section is included for the sake of completeness and can be

skipped without any loss of continuity.

Let G be a cyclic group of prime orderq, and letg be its generator. We assume that both Decision Diffie-Hellman

(DDH) and Square-DDH problems are hard inG. For example,G could be a subgroup of orderq in the group of

modular residuesZ∗
p s.t.p− 1 dividesq, |p| = 1024 and|q| = 160, or it can be a group of points on an elliptic curve

with orderq for |q| = 160.

Definition 2. The DDH problem is hard inG, if, for every algorithmA, we have:|Pr[x, y ← Zq : A(g, gx, gy, gxy) =

1] − Pr[x, y, z ← Zq : A(g, gx, gy, gz) = 1]| ≤ ǫ andǫ is negligible.

Definition 3. The Square-DDH problem is hard inG if for every A we have: |Pr[x ← Zq : A(g, gx, gx2
) =

1] − Pr[x, z ← Zq : A(g, gx, gz) = 1]| ≤ ǫ andǫ is negligible.

3 Robust Group Key Agreement Protocol in a WAN

In this section, we show the construction of a WAN-oriented RGKA protocol. As mentioned earlier, our work builds

on [7]. We thus begin by describing the JKT protocol in more detail.

3.1 Overview of JKT protocol

JKT is basically a robust version of the 2-round GKA protocolby Burmester and Desmedt (BD) [4]. (We describe

the BD protocol in appendix A.) BD succeeds only if the second-round message values calledgadgetsform a

circular path through the graph of all “live” players. The idea behind adding robustness is simple: In the second

round, players send outadditionalgadget values, such that, even if some players fail in the broadcast stage, gadgets

broadcasted by the live players can be ordered to still form acircular path through those live players. In the following,

we briefly describe aT -robust GKA protocol and then a fully robust GKA protocol which repeats theT -robust

protocol until it succeeds.

8

T-robust GKA Protocol. As in [7], this protocol operates in two rounds assumingn players are orderedcyclically

andrandomly: P1,...,Pn. In practice, the order can be determined by the hash of the first-round message: each player

Pi broadcasts a public versionzi = gti of its (secret) contributionti to the group key. (We assume, for simplicity

and without loss of generality, that all players survive thefirst round of the protocol.) In the second round, eachPi

broadcasts gadgets:X[k,i,i′] = (zk/zi)
ti for |k − i| ≤ T . (Note that gadgetsX[k,i,j] for |k − i| ≤ T and|j − i| ≤ T

can be also constructed sinceX[k,i,j] = X[k,i,i′]/X[j,i,i′].)

A gadgetX[k,i,j] corresponds to the path of length two connecting playersPk, Pi, andPj . Two gadgets are

connectableif there exists a overlapping path. For example, for everyi, gadgetsX[ai−1,ai,ai+1] andX[ai,ai+1,ai+2]

are connectable because the path ofPai
andPai+1 overlaps. Using graph terminology, the gadgets sent by the live

players form a partially connected graph instead of a fully connected graph, as described in [7].

Each player ends up computing the same group key if the sequence of gadgets sent by all live players forms a

circular path through the graph of all live players. If all live players form apath, a cycle can be also constructed

by visiting every player twice as described in [7]. LetPa1 , ..., Pam denote the players who survive after the second

broadcast round and form a circular path. EachPai
computes session key as:

skai
= (zai−1)

m·tai ·Xm−1
ai

·Xm−2
ai+1

· · · · ·Xai−2 = sk = gta1 ta2+ta2 ta3+...+tamta1

whereXai
= X[ai−1,ai,ai′]

/X[ai+1,ai,ai′]
. The actual protocol – as viewed by a single player – is shown in Figure 2.

[Round 1]:

1.1EachPi picks a randomti ∈ Zq and broadcastszi = gti .

[Round 2]:

2.1Let ActiveList be the list of indices of all players who complete Round 1.

2.2EachPi broadcast gadgets:X[k,i,i′] = (zi/zk)ti for T nearest neighbors to the right andT nearest neighbors to the
left, among playersk ∈ ActiveList. DefineX[i,i′,k] as(X[k,i,i′])

−1.

[Key Computation]:

3.1Let ActiveList be the list of indices of all players who complete Round 2.

3.2 EveryPi sortsActiveList in the same order and connects each pair of connectable gadgets. The session key can be
computed only ifPi can construct a cycle either from a true Hamiltonian cycle orfrom a Hamiltonian path taken twice;
wlog, we assume that the path is formed as{Pa1

, ..., Pam
}, where for somei, j we haveai = aj andm ≤ n.

3.3EachPai
computesskai

= (zai−1
)m·tai ·Xm−1

ai
·Xm−2

ai+1
· · · · ·Xai−2

whereXai
= X[ai−1,ai,a

i′
] ·X[ai,a

i′
,ai+1].

(Note thatskai
= gta1

ta2
+ta2

ta3
+...+tam

ta1 .)

Figure 2: The robust GKA Protocol with homogeneous players in a LAN

9

Fully Robust GKA with Homogeneous and Random Faults. A fully robust (butnot constant-round) GKA pro-

tocol simply repeats theT -robust protocol above, with some parameterT , which we fix from the player fault prob-

ability and the expected number of rounds, until theT -robust protocol succeeds. Repeating the protocol increases

the number of rounds and the protocol communication complexity, i.e., EXP(R)= 1 + 1/(1 − f), EXP(MS)=

1 + 2T/(1 − f), respectively4. Assuming that player faults arerandomand independent, the protocol failure

probabilityf is upper-bounded by:f ≤ n2/2 ∗ ν2T .

Therefore, givenn, v, andf , we can compute a minimal gadget size –T – with which the protocol fails with

probability at mostf . As a result, the protocol will have at most1+1/(1−f) rounds. This is described in Algorithm

1.

Algorithm 1 : OptimalT Selection in random fault model

Input: (n, ν, f)
Output: T
for (T ′ ← 1 to n/2) do

1.1 f ′ ← n2/2 ∗ ν2T

1.2 if f ′ < f then
break

2 MinMS ← 1 + 2T ′/(1− f ′)
for (T ′ ← T ′ + 1 to n/2) do

3.1 f ′ ← n2/2 ∗ ν2T

3.2 MS ← 1 + 2T ′/(1− f ′)′

3.3 if MinMS > MS then
MinMS ←MS

returnT

The JKT protocol can upper-bound protocol failure probability f and compute optimal message sizeT using

approximation techniques, assuming homogeneous players.However, it is not clear how to computef andT in a

heterogenous player model. Moreover, while individual player faults are independent, subgroup faults are correlated.

Even if we could compute optimal message size, it would work only for a particular order of participating

players. In other words, for each message size, the order of players changes the performance of the protocol. Recall

that the JKT protocol computes gadgets forT nearest neighbors hoping that at least one of them survives all protocol

steps. If a given player is surrounded by other players with high fault probabilities and gadgets connects only those

players, the said player will very likely end up disconnected.

In the following two sections, we explore how to order players and how to compute the message size heuristically.

4Note that the protocol restarts only the second round since the messages from the first round are safely reusable.

10

3.2 Random or Non-random Order?

Heterogeneous Players on aLAN. Basically, there are two extreme cases: ordering players bytheir fault prob-

abilities and ordering them randomly.5 For the same number of gadgetsT , to see which way of ordering provides

better performance, we simulate the protocol for each case,compute the expected number of rounds and the expected

message size, and then compare them.

We use a simple scenario with two subgroups of 25 players witha low and a high fault probability, respectively.

In this scenario step, we assume that every player is on the same LAN and thus do not consider router failures. The

summary of this scenario is in Table 1.

Group ID A B
n 25 25
ν 0.01 0.3
µ 0 0

Table 1: Two subgroups of players with different butindependentfault probabilities.

Ordering Topological Order Random Order
T 2 3 4 2 3 4

EXP(R) 2.913 2.052 2.005 2.266 2.010 2.000
EXP(MS) 8.652 7.312 9.040 6.064 7.060 9.000

Table 2: Expected number of rounds and expected message sizewith three differentT values on two different player
orders.

We simulate the above scenario with three different values of T (2, 3, and 4) in topological and random orders,

respectively. The results are summarized in Table 2. For every T , random order outperforms topological order.

We believe that this is because random order uniformly distributes players with low fault rate and increases the

probability for every player to have non-faulty players among itsT nearest neighbors. Thus, random order can be a

practical solution for players with different, but independent, fault probabilities.

Heterogeneous Players in aWAN. To see how correlated failures affect performance, we simulate another sce-

nario with two subgroups of 25 players. Each subgroup connects to the WAN via a router. We assume that one

router has low, and the other – high, failure probability. Since we now focus on correlated failures, we also assume

that an individual player never fails, but only its communication can fail due to the failure of the router connecting

its subgroup to the WAN. This scenario is summarized in Table3.

5Of course, other ordering criteria are possible, e.g., by bit error rates of player interfaces. However, there is considerably less intuitive
justification for considering these criteria.

11

Group ID A B
n 25 25
ν 0 0
µ 0.01 0.3

Table 3: Two subgroups of players are given with different but correlatedfault probabilities.

Ordering Topological Order Random Order
T 2 3 4 2 3 4

EXP(R) 2.000 2.000 2.000 2.427 2.427 2.007
EXP(MS) 5.000 7.000 9.000 6.708 9.562 9.056

Table 4: Expected number of rounds and expected message sizewith three differentT values, with two player orders.

Again, we simulate the scenario with three differentT values (2, 3 and 4) and summarize results in Table 4. In-

terestingly, unlike the first scenario, performance is muchbetter when players are ordered topologically. The results

show that, when players are topologically ordered, the protocol never fails because of a router failure, regardless of

T . This is because there is no partition when only one subgroupfails. (For an inter-group partition to occur, there

should be at least four subgroups.) The situation is very different with random order: if some scattered players fail

at the same time, a partition is very likely.

Heterogeneous Players in a LAN/WAN. As shown above, random player order improves performance with in-

dependent player faults, while topological order achievesbetter performance with correlated subgroup faults. The

natural next step is to consider the case ofbothindependent and correlated faults, e.g., in a mixed LAN/WANsetting.

To this end, we simulate a scenario with 4 subgroups, each composed of 15 players. Each player has an independent

fault probability (among players) and each subgroup also has an independent fault probability (among subgroups).

A player thus fails either alone or as part of its subgroup failure. In the latter case, the disconnected subgroup

(containing a given player) might still complete the protocol; however, from the perspective of outside players, all

players in the failed subgroup are gone. This scenario is summarized in Table 5.

Group ID A B C D
n 15 15 15 15
ν 0.2 0.01 0.1 0.3
µ 0.01 0.1 0.3 0.1

Table 5: 4 subgroups of 15 players each with different fault probabilities.

Simulation results in Table 6 show that topological order has fewer expected rounds and lower expected message

size. We conclude that, to obtain better performance, players should be ordered topologically by subgroups and

randomly within a subgroup.

12

Ordering Topological Order Random Order
T 2 3 4 2 3 4

EXP(R) 3.371 2.165 2.045 3.701 2.404 2.165
EXP(MS) 10.484 7.99 9.360 11.804 9.424 10.32

Table 6: Expected number of rounds and message size with 3T values, with two different player orders.

3.3 Player-Specific Message Size

In this section, we describe how to compute optimal message sizes for different players. We assume that players are

grouped into subgroups topologically and randomly within subgroups. We determine message size in terms of both

player-to-player and subgroup-to-subgroup communication, respectively.

Player-to-Player. Our approach is to localizeT depending on the reliability of neighboring players. Specifically,

a player has a largerT with less reliable neighbors, and a lowerT with more reliable neighbors. If player fault

probabilities are evenly distributed, we can obtain the best performance by simply letting each player compute the

same number of gadgetsT using algorithm 1. Whereas, more realistically, if player fault probabilities are unevenly

spaced, to make every point equally reliable, each player has to adaptively compute the number of gadgets depending

on the robustness of its neighbors. (Recall that a player is disconnected if allT nearest neighbors fail.)

We introduce three new variables:

• OTi: optimal number of gadgets, applicable to both right- and left-side neighbors ofPi, assumingthat each

player has the same fault probability asPi.

• RTi andLTi: localized numbers of gadgets applicable toPi’s right and left side neighbors, respectively.

We estimatePi’s robustness from itsOTi value. For example, a player withOT = 1 is most robust, while a

player withOT = n/2 is least robust (wheren is the number of players in a subgroup. In our algorithm, whenever

a player computes a gadget which makes a connection to one of its neighbors, the robustness level of the player

increases in inverse proportion to its neighbor’sOT . Pi computesRTi and LTi according to its right and left

neighbor’sOT values (OTi−1, OTi+1), respectively, until its robustness level reaches a specified level, which is1 in

our algorithm. A more precise description is shown in Algorithm 2.

Note that a gadget that a player computes for one neighbor cannot be used if the neighbor does not compute a

reciprocal gadget. (Recall that gadgets are connectable ifthere exists a overlapping path.) In fact, in Algorithm 2,

for a given pair of players, either both compute a gadget for each other or neither does.

13

Algorithm 2 : T Localization on player-to-player basis

Input: (n, ν1, · · · , νn, f)
Requirement 1: P1, · · · , Pn are randomly ordered within subgroups and topologically across subgroups.
Requirement 2: n is the number of players and indices cycle modulon, i.e. Pn+1 = P1

Requirement 3: Pi’s fault probability isνi

Ensure: for eachPi, computeRTi andLTi

for (i← 1 to n) do
Compute optimalOTi using Algorithm 1 on input(n, νi, f)

for (i← 1 to n) do
reliability ← 0
RTi ← 0
for (j ← i + 1; reliability ≥ 1 or j − i ≥ n/2; j ← j + 1) do

RTi ← RTi + 1 (Add Pj to the list ofPi’s right neighbors)
reliability ← reliability + 1/OTj

reliability ← 0
LTi ← 0
for (j ← i− 1; reliability ≥ 1 or i− j ≥ n/2; j ← j − 1) do

LTi ← LTi + 1 (Add Pj to the list ofPi’s left neighbors)
reliability ← reliability + 1/OTj

Proposition 1. In Algorithm 2, if a player computes a gadget for a neighbor, then the neighbor computes a reciprocal

gadget.

Proof. SinceRT andLT are symmetric, we focus only onRT . Assume thatPi computesRTi = k. SincePi+k

is added as one of its right-side neighbors, the summation ofreliability from Pi+1 to Pi+k−1 is less than one,

i.e., ,
∑i+k−1

j=i+1
1

OTj
< 1. Therefore,Pi+k computesLTi+k ≥ k including Pi as one of its left neighbors, since

∑i+k−1
j=i+1

1
OTj

< 1.

Subgroup-to-Subgroup. In the proposed algorithm, we logically treat each subgroupas a kind of asuper-player.

Specifically, in each subgroup, a player with the lowest fault probability becomes a representative and sends out extra

gadgets for other representatives. A representative player becomes faulty if either the player itself or its subgroup

fails. Thus, given player failure rateν and subgroup failure rateµ, the failure probability6 of a representative player

is: ν + µ− νµ. The algorithm is described in Algorithm 3.

Proposition 2. In Algorithm 3, if a representative player computes a gadgetvalue for a representative neighbor

then the representative neighbor also computes a gadget value for the representative player.

Proof. Identical to the proof of Proposition 1.

6At the player-to-player level, a player also fails from either its own or its subgroup fault. However, since players are topologically ordered
and gadgets connect only nearest neighbors, the subgroup fault is not considered in the player-to-player level robustness.

14

Algorithm 3 : T Localization in subgroup-to-subgroup level

Input: (m,ν1, · · · , νm, µ1, · · · , µm, f)
Requirement 1: P1, · · · , Pm are a set of representative players
Requirement 2: m is the number of subgroups and indices cycle modm, i.e. Pm+1 = P1

Requirement 3: Pi’s fault probability and subgroup fault probability areνi andµi, respectively
Ensure: for eachPi, computeRTi andLTi

for (i← 1 to m) do
Compute optimalOTi using Algorithm 1 on input(m, (µi + νi − µi · νi), f)

for (i← 1 to m) do
reliability ← 0
RTi ← 0
for (j ← i + 1; reliability ≥ 1 or j − i ≥ m/2; j ← j + 1) do

RTi ← RTi + 1 (Add Pj to the list ofPi’s right neighbors)
reliability ← reliability + 1/OTj

reliability ← 0
LTi ← 0
for (j ← i− 1; reliability ≥ 1 or i− j ≥ m/2; j ← j − 1) do

LTi ← LTi + 1 (Add Pj to the list ofPi’s left neighbors)
reliability ← reliability + 1/OTj

3.4 RGKA in a LAN/WAN Setting

Based on Algorithms 2 and 3, we propose aW-RGKAprotocol for heterogeneous players.W-RGKAallows each

player to adaptively compute its message size depending on the reliability level of its neighbors.W-RGKAautomat-

ically defaults to the JKT protocol [7] in a setting with homogeneous players. Note that the homogeneous player

setting is a special case of Algorithm 2, where every player computes the sameOT = RT = LT . In other words,

we succeed in extending the JKT protocol without losing its optimality in a homogeneous setting.

We also relax the way the key is computed such thatanycircular path that connects all live players can be used

for key computation. The resulting graph that gadgets draw in two levels is more complex than the one (calledT -th

power of a circle) shown in the JKT protocol which builds either a Hamiltonian cycle or a Hamiltonian path on all

live players. To enable stronger robustness, we relax the way of finding a circular path, so that the key is associated

not necessarily with a Hamiltonian cycle or a Hamiltonian path, but any circular path where a player can be visited

more than once. If there is no partition, there is a always a circular path. The resultingW-RGKAprotocol is shown

in Figure 3.

Theorem 1. Assuming that the DDH problem and Square-DDH problem are hard, protocolW-RGKA is a secure

Group Key Agreement.

The security of theW-RGKAprotocol which broadcastsRT andLT sized messages is implied by the secu-

rity argument for the RGKA protocol in [7] which broadcasts maximum sized messages, thus revealing maximum

amount of information. The only difference is that the resulting key in W-RGKAmight contain each contribution

15

[Round 1]:

1.1Same as in Figure 2 except that eachPi also broadcasts its fault probabilityνi.

[Round 2]: same as in Figure 2 except:

2.2Each playerPi computesRTi andLTi using Algorithm 2 and broadcast gadgetsX[k,i,i′] = (zi/zk)ti for RTi nearest
neighbors to the right andLTi nearest neighbors to the left among playersk ∈ ActiveList.

*2.3 Each representativePi computesRTi andLTi using Algorithm 3 and broadcast gadgetsX[k,i,i′] = (zi/zk)ti for
RTi nearest neighbors to the right andLTi nearest neighbors to the left among representative playersk ∈ ActiveList.

[Key Computation]: Same as in Figure 2 except:

3.2The session key can be computed if there exists a circular path where every player is visited at least more than once.
Wlog, we assume that the path is formed as{Pa1

, · · · , Pam
}, where for somei, j we can haveai = aj .

* Executed only by representative players

Figure 3:W-RGKAprotocol with heterogeneous players in a LAN/WAN setting

of the form tai
, tai+1 more than once. However, the resulting key equation is stilllinearly independent from the

equations generated from gadgets. Thus, the key value is independent from gadgets values and the adversary cannot

learn anything about the key from the messages it observes. For details, refer to Section6.2 in [7].

4 Performance Evaluation

We first summarize the relevant aspects of protocol efficiency.

• Round Complexity: number of protocol rounds.

• Communication Complexity: (expected) total bit-length of all messages sent in the protocol.

• Computational Complexity: computation that must be performed by each player.

REMARK:In the specific GKA protocols we compare, computational complexity increases in proportion to commu-

nication complexity. Generally, one message unit incurs one exponentiation (which dominates computational cost).

Thus we do not separate computational complexity from communication complexity in the following comparison.

We compareW-RGKAwith the fully robust JKT protocol [7], as described in section 3.1. To makeW-RGKA

fully robust we repeat it until it succeeds; this is the same approach used to obtain a fully robust version of JKT

in [7]. We denote our fully robust version asW-RGKA* and the fully robust JKT version byRGKA*. However, since

RGKA* works in a homogeneous setting, we simulateRGKA* by taking the average of all player fault probabilities.

We analyze how player heterogeneity and correlated faults affect performance. We evaluate the protocols in a

setting of 5 subgroups with 10 players for each. In the first simulation, we generate subgroup fault probabilities

such that the average subgroup fault probability is around 0.1 (with a standard deviation less than 0.1) and generate

16

10 players for each group with random fault probability, such that the standard deviation varies between 0 and 0.4.

Note that the standard deviation of player fault probability distribution indirectly shows the heterogeneity of the set

of players. In the second simulation, we generate players randomly but with a small deviation (less than 0.1) and

change subgroup fault probabilities such that the average ranges from 0 to 0.4.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
X

P
(R

o
u
n
d
)

STD of Node Fault Rate

W-RGKA*
RGKA*

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
X

P
(M

e
ss

a
g
e
 S

iz
e
)

STD of Node Fault Rate

W-RGKA*
RGKA*

(a) expected number of rounds (b) expected message size

Figure 4:W-RGKA* vs. RGKA* for different standard deviations of player fault rate distribution. Results are based
on simulating over 100 runs.

Figure 4 shows the expected number of rounds (a) and expectedmessage size (b) for each protocol with different

standard deviations. Overall,W-RGKA* outperformsRGKA* in both round and communication complexity. The

number of rounds inW-RGKA* tops out at2.01, compared with2.2 in RGKA*. This might seem insignificant,

however, considering that the underlying non-robust BD protocol always takes2 rounds, the difference becomes

more substantial. We also observe that the communication cost of W-RGKA* is far lower than that ofRGKA*,

particularly, with higher standard deviation in player fault rates.

Figure 5 shows the expected number of rounds (a) and expectedmessage size (b) for both protocols, taking into

account subgroup fault rates. Once again,W-RGKA* exhibits better performance on both counts. The number of

rounds inW-RGKA* still lies below 2.01. Whereas, forRGKA*, the number of rounds increases proportionally

to averaged correlated fault rates, and thus quickly shootsup to2.5. Also, communication complexity ofRGKA*

increases as the average of correlated fault rates grows. This is mainly becauseRGKA* does not consider correlated

faults in its design.

17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
X

P
(R

o
u
n
d
)

Average of Subgroup Fault Rate

W-RGKA*
RGKA*

 0

 2

 4

 6

 8

 10

 12

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
X

P
(M

e
ss

a
g
e
 S

iz
e
)

Average of Subgroup Fault Rate

W-RGKA*
RGKA*

(a) expected number of rounds (b) expected message size

Figure 5:W-RGKA* vs. RGKA* for different average subgroup fault rates. Results are based on simulating over 100
runs.

5 Conclusions

This paper started off with the state-of-the-art in robust GKA protocols. Having identified certain limitations of

prior work, i.e., assumptions about independent failures and homogeneous players, we demonstrated a step-by-step

construction of a new protocolW-RGKAsuitable for a mixed LAN/WAN setting. While the proposed protocol

inherits the attractive features of its predecessor (JKT),it also heuristically determines per-player optimal message

sizes and handles heterogeneous fault probabilities as well as correlated failures. Simulations help determine the

preferred player order for different scenarios.

One obvious item for future work is to conduct a more extensive set of experiments and simulations. Another

issue is that the current protocol does not take into accountinter-subgroup delay. It is natural to consider this variable

(assuming it is known ahead of time) in determining the optimal subgroup order.

References

[1] Y. Amir, C. Nita-Rotaru, J. Schultz, J. Stanton, Y. Kim, and G. Tsudik. Exploring robustness in group key

agreement. InICDCS, pages 399–408, 2001.

18

[2] E. Bresson, O. Chevassut, and D. Pointcheval. Provably authenticated group Diffie-Hellman key exchange —

the dynamic case. InAsiacrypt 2001, Dec 2001.

[3] E. Bresson, O. Chevassut, D. Pointcheval, and J. Quisquater. Provably authenticated group Diffie-Hellman key

exchange. InACM CCS, Nov 2001.

[4] M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system. InEUROCRYPT,

pages 275–286, 1994.

[5] C. Cachin and R. Strobl. Asynchronous group key exchangewith failures. InPODC, pages 357–366, 2004.

[6] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. A reliable multicast framework for light-weight

sessions and application level framing.IEEE/ACM ToN, 5(6):784–803, 1997.

[7] S. Jarecki, J. Kim, and G. Tsudik. Robust group key agreement using short broadcasts. InACM CCS, pages

411–420, 2007.

[8] J. Katz and M. Yung. Scalable protocols for authenticated group key exchange.Journal of Cryptology,

20(1):85–113, 2007.

[9] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key agreement for dynamic collaborative groups.

In ACM Conference on Computer and Communications Security, pages 235–244, 2000.

[10] Y. Kim, A. Perrig, and G. Tsudik. Group key agreement efficient in communication.IEEE ToC, 33(7), 2004.

[11] A. Menezes, P. van Oorschot, and S. Vanstone.Handbook of Applied Cryptography. CRC Press, 1996.

[12] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended virtual synchrony. InICDCS, pages 56–65,

1994.

[13] S. Paul, K. Sabnani, J. Lin, and S. Bhattacharya. Reliable multicast transport protocol (rmtp).IEEE JSAC,

15(3):407–421, 1997.

[14] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A secure audio teleconference system.CRYPTO’88, Aug

1990.

[15] M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups.IEEE TPDS, 11(8):769–780,

2000.

19

A Burmester-Desmedt GKA

The BD GKA protocol proceeds in two rounds (see Figure 6): First each playerPi broadcasts a public counterpart

zi = gti of its contributionti to the key. In the second round eachPi broadcasts gadgetX[i−1,i,i+1] = gtiti+1−ti−1ti

(which it can compute asX[i−1,i,i+1] = (zi+1/zi)
ti). Given the set of gadget valuesX[n,1,2],X[1,2,3], ...,X[n−1,n,1],

each playerPi can use its contributionti to locally compute the common session keysk = gt1t2+t2t3+...+tnt1 .

[Round 1]:

Each playerPi picks a randomti ∈ Zq and broadcastszi = gti .

[Round 2]:

EachPi broadcasts its gadget valueX[i−1,i,i+1] = (zi+1/zi−1)
ti , where the indices are taken in a cycle.

[Key Computation]:

EachPi computes the key asski = (zi−1)
nti ·Xn−1

i ·Xn−2
i+1 · · ·Xi−2, whereXi = X[i−1,i,i+1].

(Note that for alli we haveski = gt1t2+t2t3+...+tnt1 .)

Figure 6: Burmester-Desmedt’s Group Key Agreement Protocol (BD GKA)

As we explain in section 3.1, a sequence of gadgetsforms a path through the graphif each two consecutive

gadgets in the sequence are connectable. By inspecting the formula for deriving the secret key in the BD GKA

protocol we can observe that each player derives the same keybecause the set of gadgets broadcasted in the second

round of the protocol forms a Hamiltonian cycle (i.e. a circular path) through the graph of all players.

20

