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Abstract We present a birthday attack against DES. It is entirely based on the relationship

Li+1 = Ri and the simple key schedule in DES. It requires about 216 ciphertexts of the same

R16, encrypted by the same key K. We conjecture it has a computational complexity of 248.

Since the requirement for the birthday attack is more accessible than that for Differential

cryptanalysis, Linear cryptanalysis or Davies’ attack, it is of more practical significance.
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1 Introduction

The Data Encryption Standard (DES) is a cipher selected as an official Federal Information Pro-

cessing Standard for the United States in 1976 and which has subsequently enjoyed widespread

use internationally [1, 3]. DES consequently came under intense academic scrutiny which mo-

tivated the modern understanding of block ciphers and their cryptanalysis. There are some

analytical results which demonstrate theoretical weaknesses in the cipher, although they are in-

feasible to mount in practice. In recent years, the cipher has been superseded by the Advanced

Encryption Standard (AES).

Although more information has been published on the cryptanalysis of DES than any other

block cipher, the most practical attack to date is still a brute force approach. Various minor

cryptanalytic properties are known, and three theoretical attacks are possible which, while

having a theoretical complexity less than a brute force attack, require an unrealistic amount of

known or chosen plaintext to carry out [4-16].

• Differential cryptanalysis was published in the late 1980s by E.Biham and A.Shamir. To

break the full 16 rounds, differential cryptanalysis requires 247 chosen plaintexts.

• Linear cryptanalysis was discovered by M.Matsui, and needs 243 known plaintexts. Mul-

tiple linear cryptanalysis was suggested in 1994 (Kaliski and Robshaw), and was further

refined by Biryukov et al (2004). It needs 241 known plaintexts.
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• Davies’ attack is a specialised technique for DES, first suggested by D.Davies in the eighties,

and improved by Biham and Biryukov (1997). The most powerful form of the attack

requires 250 known plaintexts, has a computational complexity of 250, and has a 51%

success rate.

A birthday attack is a type of cryptographic attack [2]. Specifically, given a function f , the

goal of the attack is to find two inputs x1, x2 such that f(x1) = f(x2). Such a pair x1, x2 is

called a collision. The method used to find a collision is to simply evaluate the function f for

different input values that may be chosen randomly or pseudorandomly until the same result is

found more than once. Because of the birthday paradox, this method can be rather efficient.

Specifically, if a function f(x) yields any of H different outputs with equal probability and

H is sufficiently large, then we expect to obtain a pair of different arguments x1 and x2 with

f(x1) = f(x2) after evaluating the function for about 1.25
√

H different arguments on average.

Up to the present, nobody shows that how to apply a birthday attack to DES. In this paper,

we present such an attack against DES. The attack is entirely based on the simple key schedule

and the relationship Li+1 = Ri in DES. It requires about 216 ciphertexts of the same R16,

encrypted by the same key K. We conjecture it has a computational complexity of 248. Since

the requirement for the birthday attack, namely enough special ciphertexts, is more accessible

than that for Differential cryptanalysis, Linear cryptanalysis or Davies’ attack, it is of more

practical significance.

2 Description of DES

In this section we give a description of DES and some figures for the inner function f , compu-

tation path, S-box and key schedule.

DES processes plaintext blocks of n = 64 bits, producing 64-bit ciphertext blocks. The

effective size of the secret key is K = 56 bits; more precisely, the input key K is specified as a

64-bit key, 8 bits of which (bits 8, 16, · · · , 64) may be used as parity bits. The 256 keys implement

(at most) 256 of the 264! possible bijections on 64-bit blocks. Function f operates on two blocks

of data: Rn−1 and Kn. It produces 32-bit long block of data. Process of calculating f function

consists of 4 steps:

1. E permutation
2. XOR with a subkey
3. S box transformation
4. P permutation



Each of the eight S-boxes replaces its six input bits with four output bits according to a

non-linear transformation, provided in the form of a lookup table. The idea of transformation

is straightforward: the first and the last bit of the first group of six bits form a binary number

in the decimal range 0 to 3. This is the number of a row in the S1 table. The middle four

bits of the group of six bits form a binary number in the decimal range 0 to 15. This is

the number of a column in the S1 table. Those two coordinates indicates a decimal number,

which as a 4-bit long binary number is the output. We repeat this operation for each of

eight groups of six bits and as a result we obtain eight groups of 4 bits. The S-boxes provide

the core of the security of DES. Without them, the cipher would be linear and trivially breakable.

DES inner function f and computation path 



S[1]-box 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

1 0 F 7 4 E 2 D 1 A 6 C B 9 5 3 8

2 4 1 E 8 D 6 2 B F C 9 7 3 A 5 0

3 F C 8 2 4 9 1 7 5 B 3 E A 0 6 D
... . . .

S[8]-box 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 D 2 8 4 6 F B 1 A 9 3 14 5 0 C 7

1 1 F D 8 A 3 7 4 C 5 6 B 0 E 9 2

2 7 B 4 1 9 C E 2 0 6 A D F 3 5 8

3 2 1 E 7 4 A 8 D F C 9 0 3 5 6 B

S-box for DES



3 Basic idea

We first point out that it’s easy to compute the R16 and L16 for a known ciphertext c (of 64-bit

length). Refer to the above figure, which shows the inner function f and computation path of

DES.

By the last round in DES, we have

R16 = L15 ⊕ f(R15,K16), L16 = R15

Hence

f(L16,K16) = R16 ⊕ L15

Note that both L15 and K16 are not accessible.

Collision-assumption Suppose that there is a pair of ciphertexts (c, c′) generated by the

same key K16 and satisfying

R′
16 = R16, L′16 6= L16, L′15 = L15

By the collision-assumption, we have

f(L′16,K16) = f(L16,K16) (1)

Denote E(L16) by EL16 where E is the expansion transformation in function f . Express

EL16,K16 as

EL16 = EL16[1] ||EL16[2] ||EL16[3] ||EL16[4] ||EL16[5] ||EL16[6] ||EL16[7] ||EL16[8]

K16 = K16[1] ||K16[2] ||K16[3] ||K16[4] ||K16[5] ||K16[6] ||K16[7] ||K16[8]

where each EL16[j],K16[j], j = 1, · · · , 8, is of length 6-bit, α||β denotes the concatenation of the

two strings α, β. Thus for each S-box S[j], j = 1, · · · , 8, the input of S[j] is

EL16[j]⊕K16[j]

By the structure of f and Eq.(1), we have

S[j](EL16[j]⊕K16[j]) = S[j](EL′16[j]⊕K16[j]) (2)

This can be depicted as follows.



S[j] S[j]

? ?

~ =

the same output

EL16[j]⊕K16[j] EL′16[j] ⊕K16[j]

Collision for S[j]-box

Claim-1 There are about 22 possible values for K16[j] satisfying Eq.(2) if EL16[j] 6= EL′16[j],

and 26 values for K16[j] if EL16[j] = EL′16[j].

In fact, the pair (EL16[j]⊕K16[j], EL′16[j]⊕K16[j]) is just a collision of the nonlinear function

S[j]. Roughly speaking, S[j] can be viewed as a random or pseudorandom function. To find a

collision of it for the given EL16[j], EL′16[j], about 24 different arguments should be evaluated.

Thus, there are 22 possible values for K16[j] if EL16[j] 6= EL′16[j]. Yet, all 6-bit values for K16[j]

do satisfy Eq.(2) if EL16[j] = EL′16[j].

For each box S[j], j = 1, · · · , 8, integrate each string a of 6-bit with EL16[j], EL′16[j]. Check

Eq.(2) to determine all candidates for K16[j]. Thus the corresponding candidates for K16 are

achieved.

Remark 1 This claim depends on the randomness of each S-box. We here give a rough

estimate. It can be further refined by experiments on each S-box.

4 Description of the birthday attack against DES

Now we give a full description of the birthday attack against DES.

1 Collecting proper ciphertexts. Choose ciphertexts (64-bit) generated by the same key K.

For each ciphertext c, compute its corresponding L16, R16. Collect the ciphertexts with

the same R16 and denote the set by CR16,K . Denote E(L16) by EL16, where E is the

expansion transformation in function f . Express EL16 as

EL16 = EL16[1] ||EL16[2] ||EL16[3] ||EL16[4] ||EL16[5] ||EL16[6] ||EL16[7] ||EL16[8]



2 Computing the candidates for each K16[j], j = 1, · · · , 8. Randomly pick two ciphertexts

c, c′ ∈ CR16,K . Integrate each string a of 6-bit with EL16[j], EL′16[j]. Determine the

candidates for K16[j] by checking

S[j](EL16[j]⊕ a) ?= S[j](EL′16[j]⊕ a)

3 Local checking. If there does not exist any candidate for some K16[i], i ∈ {1, · · · , 8}, then

goto step 2.

4 Determining the candidates for K16. Derive the candidates for K16 from the candidates

for K16[1], · · · ,K16[8].

5 Determining the candidates for K. Derive the candidates for K from K16 by the key

schedule of DES.

6 Distinguishing K from the candidates. Given a plaintext and its corresponding ciphertext,

the key (or its equivalent) can be distinguished from its candidates by evaluations.

7 Outputting K. If the key cannot be derived from the pair (c, c′), goto step 2. Otherwise,

output the key.

Remark 2 In the above attack, we aim at finding a collision (L15, L
′
15), which is achieved

by evaluating possible values for K16[j], j = 1, · · · , 8. This is the reason for calling it a birthday

attack.

5 Complexity

5.1 On the complexity of evaluations

Clearly, the most complexity of evaluations results from deriving the candidates for K16[j], j =

1, · · · , 8. To derive the candidates for K16[j], j = 1, · · · , 8, we should evaluate all 6-bit values,

which are integrated with EL16[j], EL′16[j] separately. But all 8× 26 evaluations can be run in

parallel and be separately restricted in eight boxes. In this case, the time for one evaluation is

less than that for an evaluation using one round in DES. Thus the complexity of evaluations is

very small.



5.2 On the amount of rounds

The birthday attack against DES does not relate to the amount of rounds. It is entirely based

on the inner function f and the key schedule in DES. This is a peculiar property of the birthday

attack.

5.3 On the amount of ciphertexts

By L15 = R16 ⊕ f(L16,K16) and the definition of CR16,K , we define

PR16,K16 : L16 7→ L15

It’s reasonable to assume that PR16,K16 is random or pseudorandom. To find a collision for

it, i.e.,

PR16,K16(L16) = L15 = L′15 = PR16,K16(L
′
16)

about 216 arguments should be evaluated. Practically speaking, it is not difficult to construct

such a set CR16,K satisfying D ≥ 216 where D is the cardinal number of CR16,K , because each

ciphertext is of only 64-bit.

5.4 On the amount of candidates for K in each iteration

Define the block-distance between c, c′ ∈ CR16,K as

d = #{λ : EL16[λ] 6= EL′16[λ] }

By the claim-1 and the definition of block-distance, we know the amount of candidates for

K16 mainly depends on the block-distance of the pair (EL16, EL′16). In the best case, i.e., the

block-distance is the maximum, 8, the amount of candidates for K16 is about 216. In the worst

case, i.e., the block-distance is 1, the amount is 244.

Obviously, we are concerned about the average amount of candidates for K in each iteration.

On average, a K16 leads to 7
6 candidates for K. We conjecture the amount of candidates for K

in each iteration is 218. We refer to the previous figure of the key schedule in DES.

5.5 On the amount of iterations

In the worst case, the amount of iterations is D(D−1)
2 , namely we should try all ciphertext pairs

of CR16,K . We conjecture the average amount of iterations is 230. Hence, the birthday attack

should evaluate 248 candidates for K. Thus, the attack has a computational complexity of 248.



5.6 On the amount of plaintexts

In the proposed attack, we need a plaintext and the corresponding ciphertext to distinguish the

key (or its equivalents) from its candidates. Note that the resulting amount of the key or its

equivalents will be sharply decreased as the increase of plaintexts.

6 Conclusion

At present, we do not have any experiment to test the attack because of a lack of resources. But

we believe the simple derivation of candidates for K from K16 and the relationship Li+1 = Ri

can be a serious problem in DES. Possibly, it is due to historical considerations instead of a

contrived process.

References

[1] http://en.wikipedia.org/wiki/Data_Encryption_Standard

[2] http://en.wikipedia.org/wiki/Birthday_attack

[3] http://dhost.info/pasjagor/des/start.php?id=0

[4] E.Biham, A.Biryukov. An Improvement of Davies’ Attack on DES, Journal of Cryptology. 1997,
10(3), 195-206

[5] E.Biham, O.Dunkelman, N.Keller. Enhancing Differential-Linear Cryptanalysis. Advances in
Cryptology-ASIACRYPT’2002. LNCS 2501, Springer-Verlag, 1990, 254-266

[6] E.Biham, A.Shamir. Differential Cryptanalysis of DES-like Cryptosystems, Advances in Cryptology-
CRYPTO’1990. LNCS 537, Springer-Verlag, 1990. 2-21

[7] A.Biryukov, C.Canniere, M.Quisquater. On Multiple Linear Approximations, Advances in
Cryptology-CRYPTO’2004. LNCS 3152, Springer-Verlag, 2004. 1-22

[8] S.Burton, J.Kaliski, R.Matthew. Linear Cryptanalysis Using Multiple Approximations, Advances in
Cryptology-CRYPTO’1994. LNCS 839, Springer-Verlag, 1994, 26-39

[9] D.Coppersmith. The data encryption standard (DES) and its strength against attacks. IBM Journal
of Research and Development. 1994, 38 (3), 243-250

[10] K.Campbell, M.Wiener. DES is not a Group. Advances in Cryptology-CRYPTO’1992. LNCS 740,
Springer-Verlag, 1992, 512-520

[11] W.Diffie, M.Hellman. Exhaustive Cryptanalysis of the NBS Data Encryption Standard, IEEE Com-
puter 10(6), June 1977, 74C84

[12] J.Gilmore. Cracking DES: Secrets of Encryption Research, Wiretap Politics and Chip Design.
O’Reilly, 1998



[13] P.Junod. On the Complexity of Matsui’s Attack. Selected Areas in Cryptography’2001, LNCS 2259,
Springer-Verlag, 2001, 199C211.

[14] L.Knudsen, J.Mathiassen. A Chosen-Plaintext Linear Attack on DES, Fast Software Encryption-
FSE’2000. LNCS 1978, Springer-Verlag, 2000, 262-272

[15] M.Matsui. Linear Cryptanalysis Method for DES Cipher, Advances in Cryptology-
EUROCRYPT’1993. LNCS 765, Springer-Verlag, 1993, 386-397

[16] M.Matsui. The First Experimental Cryptanalysis of the Data Encryption Standard, Advances in
Cryptology-CRYPTO’1994. LNCS 839, Springer-Verlag, 1994, 1-11


