Ciphertext-Policy Attribute-Based Encryption:
An Expressive, Efficient, and Provably Secure Realization

Brent Waters *
University of Texas at Austin
bwaters@cs.utexas.edu

Abstract

We present a new methodology for realizing Ciphertext-Policy Attribute Encryption (CP-
ABE) under concrete and noninteractive cryptographic assumptions in the standard model.
Our solutions allow any encryptor to specify access control in terms of any access formula over
the attributes in the system. In our most efficient system, ciphertext size, encryption, and
decryption time scales linearly with the complexity of the access formula. The only previous
work to achieve these parameters was limited to a proof in the generic group model.

We present three constructions within our framework. Our first system is proven selectively
secure under a assumption that we call the decisional Parallel Bilinear Diffie-Hellman Exponent
(PBDHE) assumption which can be viewed as a generalization of the BDHE assumption. Our
next two constructions provide performance tradeoffs to achieve provable security respectively
under the (weaker) decisional Bilinear-Diffie-Hellman Exponent and decisional Bilinear Diffie-
Hellman assumptions.

*Supported by NSF CNS-0716199, CNS-0915361, and CNS-0952692, Air Force Office of Scientific Research (AFO
SR) under the MURI award for “Collaborative policies and assured information sharing” (Project PRESIDIO),
Department of Homeland Security Grant 2006-CS-001-000001-02 (subaward 641), a Google Faculty Research award,
and the Alfred P. Sloan Foundation.

1 Introduction

Public-Key encryption is a powerful mechanism for protecting the confidentiality of stored and
transmitted information. Traditionally, encryption is viewed as a method for a user to share data
to a targeted user or device. While this is useful for applications where the data provider knows
specifically which user he wants to share with, in many applications the provider will want to share
data according to some policy based on the receiving user’s credentials.

Sahai and Waters [36] presented a new vision for encryption where the data provider can express
how he wants to share data in the encryption algorithm itself. The data provider will provide a
predicate f(-) describing how he wants to share the data and a user will be ascribed a secret
key associated with their credentials X; the user with credentials X can decrypt a ciphertext
encrypted with predicate f if f(X) = 1. Sahai and Waters [36] presented a particular formulation
of this problem that they called Attribute-Based Encryption (ABE), in which a user’s credentials is
represented by a set of string called “attributes” and the predicate is represented by a formula over
these attributes. Several techniques used by SW were inspired by prior work on Identity-Based
Encryption [37, 13, 24, 18, 10]. One drawback of the Sahai-Waters approach is that their initial
construction was limited to handling formulas consisting of one threshold gate.

In subsequent work, Goyal, Pandey, Sahai, and Waters [28] further clarified the concept of
Attribute-Based Encryption. In particular, they proposed two complementary forms of ABE. In
the first, Key-Policy ABE, attributes are used to annotate the ciphertexts and formulas over these
attributes are ascribed to users’ secret keys. The second type, Ciphertext-Policy ABE, is comple-
mentary in that attributes are used to describe the user’s credentials and the formulas over these
credentials are attached to the ciphertext by the encrypting party. In addition, Goyal et al. [28]
provided a construction for Key-Policy ABE that was very expressive in that it allowed the policies
(attached to keys) to be expressed by any monotonic formula over encrypted data. The system was
proved selectively secure under the Bilinear Diffie-Hellman assumption. However, they left creating
expressive Ciphertext Policy ABE schemes as an open problem.

The first work to explicitly address the problem of Ciphertext-Policy Attribute-Based Encryp-
tion was by Bethencourt, Sahai, and Waters [7]. They described an efficient system that was
expressive in that it allowed an encryptor to express an access predicate f in terms of any mono-
tonic formula over attributes. Their system achieved analogous expressiveness and efficiency to the
Goyal et al. construction, but in the Ciphertext-Policy ABE setting. While the BSW construction
is very expressive, the proof model used was less than ideal — the authors only showed the scheme
secure in the generic group model, an artificial model which assumes the attacker needs to access
an oracle in order to perform any group operations.!

Recently, ABE has been applied in building a variety of secure systems [35, 41, 9, 8]. These
systems motivate the need for ABE constructions that are both foundationally sound and practical.

Ciphertext Policy ABE in the Standard Model The lack of satisfaction with generic group
model proofs has motivated the problem of finding an expressive CP-ABE system under a more
solid model. There have been multiple approaches in this direction.

First, we can view the Sahai-Waters[36] construction most “naturally” as Key-Policy ABE for
a threshold gate. In their work, Sahai and Waters describe how to realize Ciphertext-Policy ABE

! Alternatively, we could derive a concrete, but interactive and complicated assumption directly from the scheme
itself and argue that the scheme is secure under this assumption. However, this view is also not very satisfactory.

for threshold gates by “grafting” so called “dummy attributes” over their basic system. Essentially,
they transformed a KP-ABE system into a CP-ABE one with the expressiveness of a single threshold
gate. 2 Cheung and Newport[23] provide a direct construction for constructing a policy with a
single AND gate under the Bilinear Diffie-Hellman assumption. Their approach has the drawbacks
that it only allows a fixed number of system attributes and is limited to an AND gate (does not
enable thresholds). In retrospect these two limitations actually make it less expressive than the
SW transformation, although this wasn’t necessarily immediately apparent.

Most recently, Goyal, Jain, Pandey, and Sahai [27] generalized the transformational approach
to show how to transform a KP-ABE system into a CP-ABE one using what they call a “universal
access tree”. In particular, they provided a mapping onto a “universal” (or complete) access tree
of up to depth d formulas consisting of threshold gates of input size m, where m and d are chosen
by the setup algorithm. They applied a similar ”dummy attribute” approach.

In order to accommodate a general access formula of size n, their scheme first translates this into
a balanced formula. Under standard techniques a formula of size n can be “balanced” such that any
formula (tree) of size n can be covered by a complete tree of size approximately O(n>#2). Their
work was the first feasibility result for expressive CP-ABE under a non-interactive assumption.
Unfortunately, the parameters of ciphertext and private key sizes add encryption and decryption
complexity blow up (in the worst case) by an n34? factor limiting its usefulness in practice. For
instance, in a system with U attributes defined and n nodes the ciphertext overhead will be approx-
imately a factor of U - n?42 greater than that of the BSW system. To give a concrete example, for
the modest parameters of universe size U = 100 attributes and a formula of 20 nodes the blowup
factor relative to BSW is approximately 140, 000.

Our Contribution We present a new methodology for realizing Ciphertext-Policy ABE systems
from a general set of access structures in the standard model under concrete and non-interactive
assumptions. Both the ciphertext overhead and encryption time scale with O(n) where n is the
size of the formula. In addition, decryption time scales with the number of nodes.

Our first system allows an encryption algorithm to specify an access formula in terms of any
access formula. In fact our techniques are slightly more general. We express access control by a
Linear Secret Sharing Scheme (LSSS) matrix M over the attributes in the system. Previously used
structures such as formulas (equivalently tree structures) can be expressed succinctly [6] in terms of
a LSSS. We do not lose any efficiency by using the more general LSSS representation as opposed to
the previously used tree access structure descriptions. Thus, we achieve the same performance and
functionality as the Bethencourt, Sahai, and Waters construction, but under the standard model.

In addition, we provide two other constructions that tradeoff some performance parameters
for provable security under the respective weaker assumptions of decisional-Bilinear Diffie-Hellman
Exponent (d-BDHE) and decisional-Bilinear Diffie-Hellman assumptions. In Table 1 we summarize
the comparisons between our schemes and the GJPS and BSW CP-ABE systems in terms of
ciphertext and key sizes and encryption and decryption times. Taken all together our first scheme
realizes the same efficiency parameters as the BSW encryption scheme, but under a concrete security
assumption. At the same time, our d-BDH construction is proved under the same assumption as
the GJPS system and achieves significantly better performance.

2The Sahai-Waters construction was given prior to the Key-Policy and Ciphertext-Policy distinction; our inter-
pretation is a retrospective one.

Our Techniques Our techniques provide a framework for directly realizing provably secure CP-
ABE systems. In our systems, the ciphertext distributes shares of a secret encryption exponent s
across different attributes according to the access control LSSS matrix M.

A user’s private key is associated with a set S of attributes and he will be able to decrypt
a ciphertext iff his attributes “satisfy” the access matrix associated with the ciphertext. As in
previous ABE systems, the primary challenge is to prevent users from realizing collusion attacks.
Our main tool to prevent this is to randomize each key with an freshly chosen exponent t. During
decryption, each share will be multiplied by a factor ¢ in the exponent. Intuitively, this factor
should “bind” the components of one user’s key together so that they cannot be combined with
another user’s key components. During decryption, the different shares (in the exponent) that the
algorithm combines are multiplied by a factor of ¢. Ultimately, these randomized shares are only
useful to that one particular key.

Our construction’s structures and high level intuition for security is similar to the BSW con-
struction. The main novelty in our paper is provide a method for proving security of such a
construction. The primary challenge one comes across is (in the selective model) how to create a
reduction that embeds a complex access structure in a short number of parameters. All prior ABE
schemes follow a “partitioning” strategy for proving security where the reduction algorithm sets
up the public parameters such that it knows all the private keys that it needs to give out, yet it
cannot give out private keys that can trivially decrypt the challenge ciphertext. In prior KP-ABE
schemes the challenge ciphertext was associated with a set S* of attributes. This structure could
fairly easily be embedded in a reduction as the public parameter for each attribute was simply
treated differently depending whether or not it was in S*. In CP-ABE, the situation is much
more complicated as ciphertexts are associated with a potentially large access structure M* that
includes attributes multiple times. In general, the size of M™* is much larger than the size of the
public parameters. 2 Consequently, there is not a simple “on or off” method of programming this
into the parameters. Arguably, it is this challenge that lead the BSW paper to apply the generic
group heuristic and GJPS paper to translate the problem back to KP-ABE.

In this paper, we create a method for directly embedding any LSSS structure M™* into the
public parameters in our reduction. In the proofs of our system a simulator can “program” the
LSSS matrix M* of the challenge ciphertext (in the selective model of security). Consider a LSSS
matrix M™ of size {* x n*. For each row ¢ of M* the simulator needs to program in ¢ pieces of
information (M;y,..., M],) into the parameters related to the attribute assigned to that row. In
our main system we progfam in M* using the d-Parallel BDHE assumption; however, in Sections
5 and 6 we show variations of our construction that are provably secure using similar ideas, but
under weaker assumptions.

Our methodology of creating a system and proof that directly addresses CP-ABE stands in
contrast to the approach of GJPS which essentially maps CP-ABE requirements onto a KP-ABE
scheme.

1.1 Related Work

Some of the roots of ABE can be traced back to Identity-Based Encryption [37, 13, 24, 18, 10, 42,
25, 14] (IBE). One can view IBE as a very special case of ABE.
Different authors [39, 33, 4, 17, 3, 5] have considered similar problems without considering

3Here we roughly mean size to be number of rows in the LSSS system or nodes in an access tree.

System | Ciphetext Size | Private Key Size Enc. Time | Dec. Time Assumption
BSW|7] O(n) O(A) O(n) o(T) Generic Group
GJPS[27] | O(U - niiil) O(A - niiid) OU - njia3) | O - nisd) d-BDH
Section 3 O(n) O(A) O(n) o(T) d-Parallel BDHE
Section 5 O(n) O(kmax - A) O(n) o(T) d-BDHE
Section 6 O(n?) O(kmax + A+ Nmax) O(n?) O(n-T) d-BDH

Table 1: Comparison of CP-ABE systems in terms of ciphertext size, private key size, encryption
and decryption times and assumptions. We let n be the size of an access formula , A be the number
of attributes in a user’s key, and T be (minimum needed) number of nodes satisfied of a formula
by a user’s attributes, and U be the number of attributes defined in the system. For our d-BDHE
construction of Section 5 the system defines a parameter kpyax, which is the maximum number
of times a single attribute will appear in a particular formula. In the GJPS construction and our
d-BDH one of Section 6 the systems define ny,x as a bound on the size any formula. The ciphertext
and private key sizes are given in terms of the number of group elements, encryption time in terms
of number of exponentiations, and decryption in terms of number of pairing operations.

collusion resistance. In these works a data provider specifies an access formula such that a group
of users can decrypt if the union of their credentials satisfies the formula. By only requiring the
union of the credentials one does not worry about collusion attacks. In these schemes a setup
authority simply assigns a separate public key to each credential and gives the corresponding secret
key to each user that possesses the credential. Encryption is done by splitting secrets and then
encrypting each share to the appropriate public key. Some of these schemes were inspired by earlier
work [22, 21].

Since the introduction of Attribute-Based Encryption by Sahai and Waters [36], there have
been several papers [28, 7, 20, 34, 27] that have proposed different varieties of ABE. Most of them
have been for monotonic access structures over attributes; one exception is the work of Ostrovsky,
Sahai, and Waters [34] that showed how to realize negation by integrating revocation schemes into
the GPSW ABE cryptosystem.

Most work on ABE is focused on complex access controls for hiding an encrypted payload of
data. A related line of work called predicate encryption or searching on encrypted data attempts
to evaluate predicates over the encrypted data itself [40, 12, 1, 16, 15, 38, 30]. These systems have
the advantages of hiding the associated access structures themselves and thus providing a level
of “anonymity”. The concept of predicate encryption is more general than the one we consider.
However, the predicate encryption systems realized thus far tend to be much less expressive than
access control systems that leave the access structures in the clear.

Other examples of encryption systems with more “structure” added include Hierarchical Identity-
Based Encryption [29, 26] and Wildcard IBE [2].

Finally, Lewko et. al. [32] recently leveraged the encoding technique from our work to build
an ABE system that achieves adaptive (non-selective) security. The system of Lewko et. al. is
based in composite order groups, which results in some loss of practical efficiency compared to our
most efficient system. In addition, our BDH system is based off of more standard assumptions than
those used in Lewko et. al.

2 Background

We first give formal definitions for access structures and relevant background on Linear Secret
Sharing Schemes (LSSS). Then we give the security definitions of ciphertext policy attribute based
encryption (CP-ABE). Finally, we give background information on bilinear maps.

2.1 Access Structures

Definition 1 (Access Structure [6]) Let {P,P,,...,P,} be a set of parties. A collection A C
oP1.PossPrt s monotone if VB,C : if B € A and B C C then C € A. An access structure
(respectively, monotone access structure) is a collection (respectively, monotone collection) A of
non-empty subsets of {P1, Py,..., Py}, i.e., A C 2P0 Pa\ LGV The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the attributes. Thus, the access structure
A will contain the authorized sets of attributes. We restrict our attention to monotone access
structures. However, it is also possible to (inefficiently) realize general access structures using our
techniques by having the not of an attribute as a separate attribute altogether. Thus, the number
of attributes in the system will be doubled. From now on, unless stated otherwise, by an access
structure we mean a monotone access structure.

2.2 Linear Secret Sharing Schemes

We will make essential use of linear secret-sharing schemes. We adapt our definitions from those
given in [6]:

Definition 2 (Linear Secret-Sharing Schemes (LSSS)) A secret-sharing scheme 11 over a
set of parties P is called linear (over Zy) if

1. The shares for each party form a vector over Zj.

2. There exists a matriz an M with £ rows and n columns called the share-generating matriz for
II. Foralli=1,... ¢, the i’th row of M we let the function p defined the party labeling row
i as p(i). When we consider the column vector v = (s,r2,...,ry), where s € Z, 1is the secret
to be shared, and ra,...,r, € Z, are randomly chosen, then Muv is the vector of ¢ shares of
the secret s according to I1. The share (Mwv); belongs to party p(i).

It is shown in [6] that every linear secret sharing-scheme according to the above definition also
enjoys the linear reconstruction property, defined as follows: Suppose that II is an LSSS for the
access structure A. Let S € A be any authorized set, and let I C {1,2,...,¢} be defined as
I ={i:p(i) € S}. Then, there exist constants {w; € Zj}icr such that, if {\;} are valid shares of
any secret s according to II, then), ;wiA; = s.

Furthermore, it is shown in [6] that these constants {w;} can be found in time polynomial in
the size of the share-generating matrix M.

Note on Convention We note that we use the convention that vector (1,0,0,...,0) is the
“target” vector for any linear secret sharing scheme. For any satisfying set of rows I in M, we will
have that the target vector is in the span of I.

For any unauthorized set of rows I the target vector is not in the span of the rows of the set I.
Moreover, there will exist a vector w such that w - (1,0,0...,0) = —1 and w- M; =0 for all ¢ € I.

Using Access Trees Prior works on ABE (e.g., [28]) typically described access formulas in terms
of binary trees. Using standard techniques [6] one can convert any monotonic boolean formula into
an LSSS representation. An access tree of £ nodes will result in an LSSS matrix of £ rows. We refer
the reader to the appendix of [31] for a discussion of how to perform this conversion.

2.3 Ciphertext-Policy ABE

A ciphertext-policy attribute based encryption scheme consists of four algorithms: Setup, Encrypt,
KeyGen, and Decrypt.

Setup(A,U). The setup algorithm takes security parameter and attribute universe description as
input. It outputs the public parameters PK and a master key MK.

Encrypt(PK, M, A). The encryption algorithm takes as input the public parameters PK, a mes-
sage M, and an access structure A over the universe of attributes. The algorithm will encrypt M
and produce a ciphertext CT such that only a user that possesses a set of attributes that satis-
fies the access structure will be able to decrypt the message. We will assume that the ciphertext
implicitly contains A.

Key Generation(MK, S). The key generation algorithm takes as input the master key MK and
a set of attributes S that describe the key. It outputs a private key SK.

Decrypt(PK, CT,SK). The decryption algorithm takes as input the public parameters PK, a
ciphertext CT, which contains an access policy A, and a private key SK, which is a private key for
a set S of attributes. If the set S of attributes satisfies the access structure A then the algorithm
will decrypt the ciphertext and return a message M.

We now describe a security model for ciphertext-policy ABE schemes. Like identity-based
encryption schemes [37, 13, 24] the security model allows the adversary to query for any private
keys that cannot be used to decrypt the challenge ciphertext. In CP-ABE the ciphertexts are
identified with access structures and the private keys with attributes. It follows that in our security
definition the adversary will choose to be challenged on an encryption to an access structure A*
and can ask for any private key S such that S does not satisfy A*. We now give the formal security
game.

Security Model for CP-ABE

Setup. The challenger runs the Setup algorithm and gives the public parameters, PK to the
adversary.

Phase 1. The adversary makes repeated private keys corresponding to sets of attributes Sy, ..., S, .

Challenge. The adversary submits two equal length messages My and M;. In addition the
adversary gives a challenge access structure A* such that none of the sets Si,...,5, from
Phase 1 satisfy the access structure. The challenger flips a random coin b, and encrypts M,
under A*. The ciphertext CT™ is given to the adversary.

Phase 2. Phase 1 is repeated with the restriction that none of sets of attributes Sy, 41,...,9;
satisfy the access structure corresponding to the challenge.

Guess. The adversary outputs a guess b’ of b.

The advantage of an adversary A in this game is defined as Pr[t/ = b] — % We note that the
model can easily be extended to handle chosen-ciphertext attacks by allowing for decryption queries
in Phase 1 and Phase 2.

Definition 3 A ciphertext-policy attribute-based encryption scheme is secure if all polynomial time
adversaries have at most a negligible advantage in the above game.

We say that a system is selectively secure if we add an Init stage before setup where the adversary
commits to the challenge access structure A*. All of our constructions will be proved secure in the
selective security model.

2.4 Bilinear Maps

We present a few facts related to groups with efficiently computable bilinear maps and then give
our number theoretic assumptions.

Let G and Gp be two multiplicative cyclic groups of prime order p. Let g be a generator of G
and e be a bilinear map, e : G x G — Gp. The bilinear map e has the following properties:

1. Bilinearity: for all u,v € G and a,b € Z,, we have e(u®, v?) = e(u, v)®.
2. Non-degeneracy: e(g,g) # 1.

We say that G is a bilinear group if the group operation in G and the bilinear map e : GXG — Gr
are both efficiently computable. Notice that the map e is symmetric since e(g%, ¢°) = e(g,9)* =

e(g’,9%).

2.4.1 Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption

We define the decisional g-parallel Bilinear Diffie-Hellman Exponent problem as follows. Choose a
group G of prime order p according to the security parameter. Let a, s, b1,...,b4 € Z;, be chosen at
random and g be a generator of G. If an adversary is given y=

+2 2
g?gs7ga7"’7g(aq)7 ’g(aq)7""g(a q)

v1<j<q gs.bj> ga/bja s 7g(aq/bj)7 7g(aq+2/bj)7 s 7g(a2q/bj)

a-5-by /b; (a%-s:by/bj)
S

Vi<jk<qk#j 9 9

it must remain hard to distinguish e(g, g)aq+1$ € Gr from a random element in Gr.
An algorithm B that outputs z € {0, 1} has advantage € in solving decisional g-parallel BDHE
in G if

‘Pr [B(g’,T = e(g,g)“q+ls) = O] —Pr [B(g’,T = R) = O] >e€

Definition 2.1 We say that the (decision) q parallel-BDHE assumption holds if no polytime algo-
rithm has a non-negligible advantage in solving the decisional q-parallel BDHE problem.

We give a proof that the assumption generically holds in Appendix C.

3 Owur Most Efficient Construction

We now give our main construction that both realizes expressive functionality and is efficient and
is provably secure under a concrete, non-interactive assumption.

In our construction the encryption algorithm will take as input a LSSS access matrix M and
distribute a random exponent s € Z, according to M. Private keys are randomized to avoid
collusion attack.

Setup(U) The setup algorithm takes as input the number of attributes in the system. It then

chooses a group G of prime order p, a generator g and U random group elements h1,...,hy € G
that are associated with the U attributes in the system. In addition, it chooses random exponents
o, a € L.

The public key is published as

PK = 9, e(gag)aa gav hl?"'ahU'

The authority sets MSK = ¢g“ as the master secret key.

Encrypt(PK, (M, p), M) The encryption algorithm takes as input the public parameters PK
and a message M to encrypt. In addition, it takes as input an LSSS access structure (M, p). The
function p associates rows of M to attributes.

Let M be an £ x n matrix. The algorithm first chooses a random vector ¥ = (s, Y2, ..., yn) € Zj,.
These values will be used to share the encryption exponent s. For ¢ = 1 to £, it calculates A\; = - M,
where M; is the vector corresponding to the ith row of M. In addition, the algorithm chooses
random 71, ...,7¢ € Zy.

The ciphertext is published as CT =

C = Me(g7g)as’ O = gs’ (Cl _ ga)qh;(%’ D, = gm)’.“’(cg _ ga)\ehp—&;’ D, = gre)

along with a description of (M, p).

KeyGen(MSK,S) The key generation algorithm takes as input the master secret key and a set
S of attributes. The algorithm first chooses a random t € Z,,. It creates the private key as

K=g%" L=g" VYoecSK,=h..

Decrypt(CT,SK) The decryption algorithm takes as input a ciphertext CT for access structure
(M, p) and a private key for a set S. Suppose that S satisfies the access structure and let I C
{1,2,...,¢} be defined as I = {i : p(i) € S}. Then, let {w; € Z,};cr be a set of constants such
that if {\;} are valid shares of any secret s according to M, then) . ; w;\; = s. (Note there could
potentially be different ways of choosing the w; values to satisfy this.)

The decryption algorithm first computes

G(C’,K)/ (Hie](e(C%L)e(DiaKp(i)))wi) =
e(g,9)*e(g,9)*"/ (ITics e(g, 9)'*%) = e(g, g)**

The decryption algorithm can then divide out this value from C' and obtain the message M.

3.1 Proof

An important step in proving our system secure will be for the reduction to “program” the challenge
ciphertext into the public parameters. One significant obstacle that we will encounter is that an
attribute may be associated with multiple rows in the challenge access matrix (i.e. the p function
is not injective). This is analogous to an attribute appearing in multiple leafs in an access tree.

For example, suppose that in our reduction we want to program our parameters such that for
hy based on the i-th row of M* if p*(i) = x. However, if there exist i # j such that x = p(i) = p(j)
then there is an issue since we must program both row ¢ and row j in the simulation. Intuitively,
there is a potential conflict in how to program the parameters.

In this reduction we resolve this by using different terms from the parallel BDHE assumption
to program multiple rows of M™* into one group element corresponding to an attribute. The extra
terms provided allow us to do so without ambiguity. * In Section 6 we show a tradeoff where our
reduction can program the information using just the decisional Bilinear Diffie-Hellman assumption,
but at some loss of efficiency.

We prove the following theorem.

Theorem 3.1 Suppose the decisional q-parallel BDHE assumption holds. Then no polytime ad-
versary can selectively break our system with a challenge matriz of size £* x n*, where £*,n* <gq.

Suppose we have an adversary A with non-negligible advantage ¢ = Adv 4 in the selective security
game against our construction. Moreover, suppose it chooses a challenge matrix M* where both
dimensions are at most q. We show how to build a simulator, B, that plays the decisional g-parallel
BDHE problem.

Init The simulator takes in a ¢-parallel BDHE challenge ¢/, T. The adversary gives the algorithm
the challenge access structure (M*, p*), where M* has n* columns.

Setup The simulator chooses random o' € Z, and implicitly sets a = o 4+ a9t by letting
e(g,9)* = e(9*, 9")e(g, 9)*-

4We note that certain assumptions have been leveraged to “program” a large amount of information into single
group elements in other contexts. Gentry’s reduction [25] embeds a degree ¢ polynomial into a single group element.

We describe how the simulator “programs” the group elements hi,...,hy. For each x for
1 <z < U begin by choosing a random value z,. Let X denote the set of indices i, such that
p*(i) = x. The simulator programs h, as:
hy = g H gaM;jl/bi) ga2M;2/bi - ,ga"*Mf,n*/bi‘
i€X
Note that if X = () then we have h; = g**. Also note that the parameters are distributed randomly
due to the g% value.

Phase I In this phase the simulator answers private key queries. Suppose the simulator is given
a private key query for a set S where S does not satisfy M*.

The simulator first chooses a random r € Z,. Then it finds a vector @ = (wy, ..., wy) € Zp"
such that w; = —1 and for all ¢ where p*(i) € S we have that @ - M} = 0. By the definition of a
LSSS such a vector must exist. Note that if such a vector did not exist then the vector (1,0,0,...,0)
would be in the span of S. See the discussion in Section 2.

The simulator begins by implicitly defining ¢ as

_ Mk
r+wia? + woa?t + - 4 wpra? ™

It performs this by setting L = ¢" leln (gaqﬂ_i)wi =g
We observe that by our definition of ¢, we have that g% contains a term of g_“q+1, which will

cancel out with the unknown term in g% when creating K. The simulator can compute K as:

K=g¢"g" [¢)

1=2,...,n*

Now we must calculate K, Vo € S. First, we consider z € S for which there is no 7 such that
p*(i) = x. For those we can simply let K, = L**.

The more difficult task is to create key components K, for attributes x € S, where x is used in
the access structure. For these keys we must make sure that there are no terms of the form g“qH/ bi
that we can’t simulate. However, we have that M - @ = 0; therefore, all of these terms cancel.

Again, let X be the set of all ¢ such that p*(i) = x. The simulator creates K, in this case as

follows.
M,

o= T T1 (s T

ieX j=1,....n* k=1,...,n*

Challenge Finally, we build the challenge ciphertext. The adversary gives two messages Mg, M1
to the simulator. The simulator flips a coin (. It creates C' = MgT - e(g®, ¢®) and C' = ¢°.

The tricky part is to simulate the C; values since this contains terms that we must cancel out.
However, the simulator can choose the secret splitting, such that these cancel out. Intuitively, the
simulator will choose random ¥}, ...,y . and the share the secret using the vector

¥ = (5,50 +yh,sa> + 44, ..., 8a" L +yl.) €L,

10

In addition, it chooses random values 77, ..., 7).

For i =1,...,n* we define R; as the set of all k # i such that p*(i) = p*(k). In other words,
the set of all other row indices that have the same attribute as row 7. The challenge ciphertext
components are then generated as

Di = gy

Cio =ty | T @™ | @y [TT TT o7=0rm)es

j=2,...,n* k€ER; j=1,...,n*
Phase II Same as phase 1.

Guess The adversary will eventually output a guess 3’ of 3. The simulator then outputs 0 to
guess that T = e(g,g)aqH‘9 if 3 = 3'; otherwise, it outputs 1 to indicate that it believes T is a
random group element in Gr.

When T is a tuple the simulator B gives a perfect simulation so we have that

1
Pr [B (gj’,T = e(g,g)“q+ls) = 0} =3 + Advy.
When T is a random group element the message Mg is completely hidden from the adversary and
we have Pr[B(y, T = R) = 0] = % Therefore, B can play the decisional ¢g-parallel BDHE game with
non-negligible advantage.

4 Constructions from Weaker Assumptions

Our first construction provided a very efficient system, but under a strong (but still non-interactive)
assumption. To bridge this gap we introduce two additional constructions that provide a tradeoff
of performance versus strength of assumptions. We effectively explore a spectrum between system
efficiency and strength of assumption. The final construction is proven secure under the simple
decisional-BDH assumption.

Overview The primary obstacle in achieving security from weaker assumptions is that we must
be able to reflect the challenge access structure M* in the parameters during the reduction. We
create two different constructions using the same framework.

In the next section we give a construction provably secure under the existing d-BDHE assump-
tion introduced by Boneh, Boyen and Goh [11]. To accommodate a weaker assumption we introduce
a parameter k. which is the maximum number of times any one attribute can appear in an access
formula. A private key in this system will be a factor of kpax larger than our main construction.

Then, in Section 6 we give a construction provably secure under the much more standard
decisional Bilinear Diffie-Hellman assumption. To realize security under this assumption our system
must additionally introduce a parameter ny.x, where performance parameters will be a factor of
Nmax larger than our most efficient construction.

11

5 Decisional BDHE Construction

We now give our construction that is provably secure under the Bilinear Diffie-Hellman Exponent
assumption. We do this in two main steps.

First we give a construction and prove it secure under the restriction that an attribute can only
be used in a most one row in the ciphertext access matrix M (the function p(-) is injective). This
can be thought of as an attribute appearing in at most one node in a formula. Our construction is
a small derivative of our main one. Since the p function is injective we will not require the extra
terms from the Parallel BDHE assumption in order to “program” in the challenge ciphertext.

Second, we address the limitation of letting one element appear at most once with a simple
encoding technique. We can simply assign a different string for each time an attribute is associated
with a row in an access structure. For example, the attribute “Professor” can be encoded as
“Professor:1”, “Professor:2”, etc. The downside of this transformation is that a users’ secret key
will grow as |S|- kmax, where kyax is the maximum number of times an attribute can be associated
with a row in a ciphertext.

For simplicity, we will provide the scheme and proof for when p() is an injective function, but
note that this simple transformation can allow for attributes to appear at most kpyayx times with a
blowup of a factor of kpax in the private key size. All other performance parameters are identical
to our main scheme.

Setup(U) The setup algorithm takes as input the maximum number of system attributes U.
Then it chooses a group G of prime order p and a generator g as well as random group elements
hi,...,hy € G. In addition, it chooses random exponents a,a € Zy,. The public key is published
as

PK= g, e(9,9)%, g% hi,...,hy.

The authority sets MSK = ¢g“ as the master secret key.

Encrypt(PK, (M, p), M) The encryption algorithm takes as input the public parameters PK
and a message M to encrypt. In addition, it takes as input an LSSS access structure (M, p). The
function p associates rows of M to attributes. In this construction we limit p to be an injective
function, that is an attribute is associated with at most one row of M.

Let M be an £ x n matrix. The algorithm first chooses a random vector ¥ = (s, Y2, ..., yn) € Zj,.
These values will be used to share the encryption exponent s. For, i = 1 to £ it calculates \; = - M,
where M; is the vector corresponding to the ith row of M.

The ciphertext is published as

CT = (C = Me(g,9)*%, C' = g¢°,

fori=1,...,0C; = g“’\ih;(‘z),)

along with a description of M, p(+).

KeyGen(MSK, S) The key generation algorithm takes as input the master secret key and a set
S of attributes. The algorithm first chooses a random t € Z,,. It creates the private key as

K=g%" L=g" VxS K,=hl.

12

Decrypt(CT,SK) The decryption algorithm takes as input a ciphertext CT for a linear access
structure (M, p) and a private key for a set S. Suppose that S satisfies the access structure and
let I C {1,2,...,4} be defined as I = {i : p(z) € S}. Then, let {w; € Z,}icr be a set of constants
such that if {\;} are valid shares of any secret s according to M, then } , ;w;A; = 5. We note
that there could potentially be several different ways of choosing the w; values to satisfy this. In
addition, we emphasize that the decryption algorithm only needs knowledge of M, I to determine
these constants.
The decryption algorithm first computes

e(C', K)/ (H(G(CuL)e(C'va(i)))“”>

i€l
= e(g,9)*e(g,9)™"/ (H e(g, g)“‘”““) = e(g,9)"".
i€l

The decryptor can then divide out this value from C and obtain the message M.

5.1 Decisional Bilinear Diffie-Hellman Exponent Assumption

We briefly review the decisional BDHE assumption.

We define the decisional g-Bilinear Diffie-Hellman Exponent problem as follows. Choose a group
G of prime order p according to the security parameter. Let a, s € Zj, be chosen at random and g be
a generator of G. Let g; denote g . The adversary when given ¥ = (g, g1, ... v 9g > 9q+25 - 92¢,9°)
must distinguish e(g, g)““ls € Gr from a random element in Gr.

An algorithm B that outputs z € {0, 1} has advantage € in solving decisional ¢-BDHE in G if

‘ Pr [B(yiT = e(g,9)"""") = 0} -
Pr[B(7,T = R) =0 ‘ > €

Definition 5.1 We say that the decisional g-BDHE assumption holds if no polytime algorithm has
a non-negligible advantage in solving the (decision) q-BDHE problem.

5.2 Proof

We prove the following theorem.

Theorem 5.2 Suppose the decisional g-BDHE assumption holds. Then no poly-time adversary
can selectively break our system with a challenge matrixz of size £* x n*, where n* < q.

Suppose we have an adversary A with non-negligible advantage ¢ = Adv 4 in the selective security
game against our construction. Moreover, suppose it chooses a challenge matrix M™* of dimension at
most ¢ columns. We show how to build a simulator, B, that plays the decisional ¢-BDHE problem.

Init The simulator takes in the BDHE challenge ¥ = (g,¢° , ¢%,... ,g“q,,g“ﬁ2 . ,g“Qq),T. The
adversary gives the algorithm the challenge access structure (M*,p*), where M* has n* < ¢
columns.

13

Setup The simulator chooses random o' € Z, and implicitly sets o = o' + a?t! by letting
e(g,9)* = e(g*, 9")elg, 9)* -

We describe how the simulator program the parameters hi,...,hy. For each x from 1 to U
choose a random value z, € Z,. If there exists an i such that p*(i) = x, then let

* 2 * n* *
aMZ.’1 a Mi,2 L. a M

he = g7 g™t - g g
Otherwise, let h; = g**.

We point out a couple of facts. First, the parameters are distributed randomly due to the g*
factor. Second, by our restriction that p* to be an injective function for any x there is at most one
i such that p*(i) = x; therefore, our assignment is unambiguous.

Intuitively, for each attribute x that is represented in the challenge ciphertext we are able to
program the parameter h, to reflect the corresponding row M™* from the simulator’s point of view.
We see that the ¢ > n* terms from the assumption enable us to represent this in just one group

element h, without ambiguity.

Phase I In this phase the simulator answers private key queries. Suppose the simulator is given
a private key query for a set S where S does not satisfy M*.

The simulator first chooses a random r € Z,. Then it finds a vector W = (wy,...,wp+) € Zp”*
such that w; = —1 and for all ¢ where p*(i) € S we have that @ - M = 0. By our the definition of
a LSSS such a vector must exist, since S does not satisfy M*.

The simulator begins by implicitly defining t as:

r 4+ wia? + wea®t 4 - A wpea? L
+1—1 .
a?)wl — gt.
We now observe that by our definition of ¢, we have that g% contains a term of g_aqﬂ, which
will cancel out with the unknown term in g®. The simulator can compute K as:

K=g%g" T[&™)

1=2,...,n*

It performs this by setting L = ¢" [[,_; (g

Now we must calculate K, Vax € S. First, we consider x € S for which there is no 7 such that
p*(i) = x. For those we can simply let K, = L**.

The more difficult task is to create keys for attributes x, where x is used in the access structure.
For these keys we must make sure that there are no terms of the form g‘ﬂ+1 that we cannot simulate.
Notice, that in calculating Al all terms of this form come (in the exponent) from M;:jaj w;ad T
for some j, where p*(i) = z. However, we have that M - @ = 0; therefore, everything with an
exponent of a?t! cancels when combined.

The simulator creates K, in this case as follows. Suppose p*(i) = x. Then

.
M

Ke=r% [o TI (" "y

14

Challenge Finally, we build the challenge ciphertext. The adversary gives two messages Mg, M1
to the simulator. The simulator flips a coin (. It creates C' = MgT - e(g®, ¢®) and " = ¢*.
The tricky part is to simulate the C; values since the term h;* (4) will contain terms of the form

g“js, that we do not know how to simulate. However, the simulator can choose the secret splitting,
such that these cancel out. Intuitively, the simulator will choose random v, ..., y,. € Z, and the
share the secret using the vector

7= (s,50 4 yh, sa®> +vh, ..., sa" "L+ yl.) € L,

This allows the important terms from h;(si) to cancel out with the important terms of g**. For

i =1,...,n" the challenge ciphertext components are then generated as

Ci= T @ (g% o.

j=1,..n*
Phase II Same as phase 1.

Guess The adversary will eventually output a guess 3’ of 3. The simulator then outputs 0 to
guesses that T = e(g,g)“qHS if B = [3; otherwise, it and outputs 1 to indicate that it believes T is
a random group element in Gr.

When T is a tuple the simulator B gives a perfect simulation so we have that

Pr [B (g,T - e(g,g)a"*ls) - 0} = % + Adv4.

When T is a random group element the message My is completely hidden from the adversary
and we have Pr[B(3,T = R) = 0] = 1. Therefore, B can play the decisional ¢-BDHE game with
non-negligible advantage.

6 Bilinear Diffie-Hellman Construction

While our unrestricted construction realizes a potentially ideal type of efficiency, we would like to
also show that secure CP-ABE systems can be realized from static assumptions. Here we show how
to realize our framework under the decisional Bilinear Diffie Hellman d-(BDH) assumption.

The primary challenge with realizing a construction provably secure under BDH is we need a way
for a reduction to embed the challenge matrix M* in the parameters. Since the BDH assumption
gives the reduction less components to embed this, there is no obvious path for reducing the
previous constructions to d-BDH. We surmount this obstacle by expanding our ciphertexts and
public parameter space. By doing this we enable our reduction to embed the challenge matrix.

Our construction is parametrized by a integer npax that specifies the maximum number of
columns in a ciphertext policy. The public parameters, keys and ciphertext size will all grow
linearly in this parameter. °

Like our first construction we restrict p() to be an injective functions, but can alleviate this
restriction by applying a similar transformation to allow an attribute to appear kmyax times for some
specified kpax. Our construction follows.

®One could achieve smaller ciphertexts by creating multiple systems with different nmax values and use the one
that fit the actual policy most tightly.

15

Setup(U, nmax) The setup algorithm takes as input, U, the number of attributes in the system

U and npyax the maximum number of columns in an LSSS matrix (or number of nodes in an access

formula). It then creates a group G of prime order p and a generator g and chooses random elements

(hi1s-- b1 0)s s (Ppmae,1 5 - - o>hnma,v) In addition, it chooses random exponents o, a € Z,,.
The public key is published as

PK = g, e(g,9)", ¢°,

(hi1se s h10)s ooy (P 15 -+ o5 P U)
The authority sets MSK = ¢g“ as the master secret key.

Encrypt(PK, (M, p), M) The encryption algorithm takes as input the public parameters PK
and a message M to encrypt. In addition, it takes as input an LSSS access structure (M, p). The
function p associates rows of M to attributes. In this construction we limit p to be an injective
function, that is an attribute is associated with at most one row of M.

Let M be an £ X nyax matrix. (If one needs to create a policy for n < npax, then one can simply
“pad out” the rightmost nyax — n columns with all zeros.) The algorithm first chooses a random
vector U= (8,42, - Ynpuax) € Zy,- These values will be used to share the encryption exponent s.

The ciphertext is published as

CT =C = Me(g,9)*, C"=9¢°,V =10 Cij= gaMi’jvjhij(i)

jzla“-vnmax

along with a description of M, p.

KeyGen(MSK,S) The key generation algorithm takes as input the master secret key and a set
S of attributes. The algorithm first chooses a random t1,...,t,,.. € Z,. It creates the private key
as
K =g%" Li=g",...,Ly =g
veeS K,= [[nY

]7x.
J:L---7nrnax

Decrypt(CT,SK) The decryption algorithm takes as input a ciphertext CT for access structure
(M, p) and a private key for a set S. Suppose that S satisfies the access structure and let I C
{1,2,...,¢} be defined as I = {i : p(i) € S}. Then, let {w; € Z,}icr be a set of constants such
that, if {\;} are valid shares of any secret s according to M, then >, ;w;\; = 5. (Note there could
potentially be different ways of choosing the w; values to satisfy this.)

The decryption algorithm first computes

oK)/ | TI ep Lo | e,

jzly-n;nmax el i€l

16

= o(C K)/([elgh,giereMiauen).

jilv - Mmax
sw w; s
e h Z H e(K*
(g p(2)’
el i€l

= O K)) [ey g Mt
Jj=1,. 7nmax

= (O) felgh, g Trer M
= e(g° g“g‘”l)/e(g,g)““s

= e(9,9)*

The decryptor can then divide out this value from C and obtain the message M.

6.1 Decisional Bilinear Diffie-Hellman Assumption

We briefly review the Decisional Bilinear Diffie-Hellman Assumption.

We define the decisional Bilinear Diffie-Hellman problem as follows. A challenger chooses a
group G of prime order p according to the security parameter. Let a, b, s € Z, be chosen at random
and g be a generator of G. The adversary when given (g, g%, ¢°, ¢°) must distinguish a valid tuple
e(g,9)™* € Gr from a random element R in Gr.

An algorithm B that outputs z € {0, 1} has advantage € in solving decisional BDH in G if

‘ Pr [B(g,g“,gb,gs,T = ¢(g.9)™) = 0] -
Pr|B(g.g%9" 9", T = R) = 0| ’ =

Definition 6.1 We say that the decisional BDH assumption holds if no polytime algorithm has a
non-negligible advantage in solving the decisional BDH problem.

6.2 Proof
We prove the following theorem.

Theorem 6.2 Suppose the decisional BDH assumption holds. Then no polytime adversary can
selectively break our system.

Suppose we have an adversary 4 with non-negligible advantage e = Adv 4 in the selective security
game against our construction. We show how to build a simulator, B, that plays the decisional
BDH problem.

Init The simulator takes in the BDH challenge g,¢% g%, ¢°, g% T. The adversary gives the al-
gorithm the challenge access structure (M*, p*), where M* has n* = nmax, where the attacker
specifies the maximum number of columns in the system.

17

Setup The simulator chooses random o' € Z, and implicitly sets a = ab+a’ by letting e(g, 9)* =
e(g,9")e(g, 9)*"

Next, we describe how the simulator programs the parameters (h1,1,...,h1.0), -+ (Pnpac1s - > Pngas,U)-

For each j,z pair where 1 < 2 < U and 1 < j < nyax it choose a random value z, ; € Z,. If
there exists an i such that p*(i) = z and i < n*, then let

hjw = g7 g* M

Otherwise, let h, = g*=i.

We point out a couple of facts. First, the public parameters distributed randomly due to the
g% value. Second, by our restriction for any z there is at most one i such that p*(i) = x, therefore
our assignment is unambiguous.

Phase I In this phase the simulator answers private key queries. Suppose the simulator is given
a private key query for a set S where S does not satisfy M*.
The simulator first chooses a random r1, ..., 7y, € Zy,. Then it finds a vector @ = (w1, ..., Wn,,.) €
Zy,"™> such that w; = —1 and for all ¢ where p*(i) € S we have that W M = 0. By the definition
of a LSSS such a vector must exist. Note we can simply let w; = 0 and consider M;"; = 0 for
n* < j < Npax.
The simulator begins by implicitly defining ¢; as

Tj-FWj‘b.

It can then calculate all L; as L; = g"i (g")%.
We now observe that by our definition of ¢;, we have that ¢* contains a term of g%°, which
will cancel out with the unknown term in g®. The simulator can compute K as:

K — go/gan)

Now we must calculate K, Vx € S. First, we consider z € S for which there is no 7 such that
p*(i) = x. For those we can simply let K, =[[;,_; L;I’j

The more difficult task is to create keys for attributes x, where x is used in the access structure.
For these keys we must make sure that there are no terms of the form ¢g® that we can’t simulate.
Notice, that in calculating [j hj o all terms of this form come from M;;a - w;b for some j, where
p*(i) = z. However, we have that M - & = 0; therefore, all of these terms cancel.

The simulator creates K, in this case as

Kac _ H gZI’jTj . gbzz,j . gaMi*,jTj_

j:17~~~7nmax

Challenge Finally, we build the challenge ciphertext. The adversary gives two messages Mg, My
to the simulator. The simulator flips a coin 5. It creates C' = /\/lﬁTe(gs,go‘/) and C' = ¢°.

The tricky part is to simulate the Cj; values since the term h;’f’p* () will contain terms of the
form ¢%°, that we do not know how to simulate. However, the simulator can choose the secret
splitting, such that these cancel out. Intuitively, the simulator will choose random v5; , ..., yl . (we
set ¥ = 0) and the share the secret using the vector

U= (8,84, 8+ sy r5+yhs) €L, .

18

For i =1,...,n the challenge ciphertext components are then generated as
Cij = (g")Mist (g°) 509,
Phase II Same as Phase 1.

Guess The adversary will eventually output a guess 3’ of 3. The simulator then outputs 0 to
guesses that T = e(g, g)™* if 3 = 3'; otherwise, it and outputs 1 to indicate that it believes T is a
random group element in Gr.

When T is a tuple the simulator B gives a perfect simulation so we have that

1
Pr [B (g’,T = e(g,g)ab5> = 0} =5 + Advy.
When T is a random group element the message Mg is completely hidden from the adversary
and we have Pr[B (7,7 = R) = 0] = . Therefore, B can play the decisional BDH game with
non-negligible advantage.

7 Extensions

Large Universe of Attributes One aspect of our main construction is that it defines the set
of attributes to be used in the parameters. One useful feature is to be able to dynamically use
any string as an attribute. In Appendix A we show how in the random oracle we can realize any
number of attributes with constant size parameters by simply hashing the attribute string. Then,
in Appendix B we also provide a large universe construction in the standard model.

Delegation and Chosen-Ciphertext Security We remark that delegation can be realized in
essentially the same manner as in the Bethencourt, Sahai, and Waters systems and give a brief
sketch. In CP-ABE delegation can be realized by deleting attributes from a key. For instance, if
a user has a key for the attribute set { “MANAGER”, “ACCOUNTING” } she might like to delegate
a key for just the attribute “ACCOUNTING”. In our system, to remove an attribute x from a key
one needs to transform the key by removing the key component K, and rerandomize the other key
components. To enable this an authority needs to also include g in the parameters. Notice that
this term was already available in the reduction, thus the security proof is essentially unaffected.

In addition, CCA-security can be realized in the standard model by using the techniques of
Canetti, Halevi, and Katz [19] by some simple alterations to the system that apply delegation. In
the random oracle model standard methods for realizing CCA-security can be applied.

8 Conclusions

We presented the first ciphertext-policy attribute-based encryption systems that are efficient, ex-
pressive, and provably secure under concrete assumptions. All of our constructions fall under a
common methodology of embedding an LLSSS challenge matrix directly into the public parameters.
Our constructions provide a tradeoff in terms of efficiency and the complexity of assumptions.

19

Acknowledgements

We thank Matt Green, Kazuki Yoneyama and anonymous reviewers for useful comments.

References

1]

[12]

[13]

[14]

Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz, Tadayoshi Kohno, Tanja Lange,
John Malone-Lee, Gregory Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: Consistency properties, relation to anonymous ibe, and extensions. In CRYPTO,
pages 205-222, 2005.

Michel Abdalla, Dario Catalano, Alexander W. Dent, John Malone-Lee, Gregory Neven, and
Nigel P. Smart. Identity-based encryption gone wild. In ICALP (2), pages 300-311, 2006.

Sattam S. Al-Riyami, John Malone-Lee, and Nigel P. Smart. Escrow-free encryption supporting
cryptographic workflow. Int. J. Inf. Sec., 5(4):217-229, 2006.

Walid Bagga, Refik Molva, and Stefano Crosta. Policy-based encryption schemes from bilinear
pairings. In ASIACCS, page 368, 2006.

Manuel Barbosa and Pooya Farshim. Secure cryptographic workflow in the standard model.
In INDOCRYPT, pages 379-393, 2006.

Amos Beimel. Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel
Institute of Technology, Technion, Haifa, Israel, 1996.

John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE Symposium on Security and Privacy, pages 321-334, 2007.

Randy Badenand Adam Benderand Neil Springand Bobby Bhattacharjee and Daniel Starin.
Persona: An online social network with user defined privacy. In ACM SIGCOMM, 2009.

Rakesh Bobba, Omid Fatemieh, Fariba Khan, Arindam Khanand Carl A. Gunter, Himanshu
Khurana, and Manoj Prabhakaran. Attribute-based messaging: Access control and confiden-
tiality. Manuscript 2009.

Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In EUROCRYPT, pages 223-238, 2004.

Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In FUROCRYPT, pages 440456, 2005.

Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key
encryption with keyword search. In FUROCRYPT, pages 506522, 2004.

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In
CRYPTO, pages 213-229, 2001.

Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption
without pairings. In FOCS, pages 647-657, 2007.

20

[15]

[16]

[17]

18]

[19]

[20]
[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
TCC, pages 535554, 2007.

Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without
random oracles). In CRYPTO, pages 290-307, 2006.

Robert W. Bradshaw, Jason E. Holt, and Kent E. Seamons. Concealing complex policies with
hidden credentials. In ACM Conference on Computer and Communications Security, pages
146-157, 2004.

Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In FUROCRYPT, pages 255-271, 2003.

Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In EUROCRYPT, pages 207-222, 2004.

Melissa Chase. Multi-authority attribute based encryption. In TCC, pages 515-534, 2007.

L. Chen, Keith Harrison, Andrew Moss, David Soldera, and Nigel P. Smart. Certification of
public keys within an identity based system. In ISC, pages 322-333, 2002.

L. Chen, Keith Harrison, David Soldera, and Nigel P. Smart. Applications of multiple trust
authorities in pairing based cryptosystems. In InfraSec, pages 260-275, 2002.

Ling Cheung and Calvin C. Newport. Provably secure ciphertext policy abe. In ACM Con-
ference on Computer and Communications Security, pages 456465, 2007.

Clifford Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int.
Conf., pages 360-363, 2001.

Craig Gentry. Practical identity-based encryption without random oracles. In FEUROCRYPT,
pages 445-464, 2006.

Craig Gentry and Alice Silverberg. Hierarchical id-based cryptography. In ASIACRYPT, pages
548-566, 2002.

Vipul Goyal, Abishek Jain, Omkant Pandey, and Amit Sahai. Bounded ciphertext policy
attribute-based encryption. In ICALP, 2008.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In ACM Conference on Computer and Commu-
nications Security, pages 89-98, 2006.

Jeremy Horwitz and Ben Lynn. Toward hierarchical identity-based encryption. In FURO-
CRYPT, pages 466—481, 2002.

Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In FEUROCRYPT, pages 146-162, 2008.

Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. Cryptology ePrint
Archive, Report 2010/351, 2010. http://eprint.iacr.org/.

21

32]

[33]

[34]

[39]

[40]

[41]

[42]

A

Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters.
Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner prod-
uct encryption. In FUROCRYPT, pages 62-91, 2010.

Gerome Miklau and Dan Suciu. Controlling access to published data using cryptography. In
VLDB, pages 898-909, 2003.

Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In ACM Conference on Computer and Communications Security,
pages 195-203, 2007.

Matthew Pirretti, Patrick Traynor, Patrick McDaniel, and Brent Waters. Secure attribute-
based systems. In ACM Conference on Computer and Communications Security, pages 99-112,
2006.

Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457-473, 2005.

Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 4753,
1984.

Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and Adrian Perrig.
Multi-dimensional range query over encrypted data. In IFEE Symposium on Security and
Privacy, pages 350-364, 2007.

Nigel P. Smart. Access control using pairing based cryptography. In CT-RSA, pages 111-121,
2003.

Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on
encrypted data. In IEEE Symposium on Security and Privacy, pages 44-55, 2000.

Patrick Traynor, Kevin R. B. Butler, William Enck, and Patrick McDaniel. Realizing massive-
scale conditional access systems through attribute-based cryptosystems. In NDSS, 2008.

Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT,
pages 114-127, 2005.

Large Universe Construction

Our main construction was limited to the “small-universe” case where the set of attributes U is
defined at system setup and the size of the public parameters grows with [U/|. In this section,
we show a variation of the scheme where the number of attributes is unlimited and the public
parameter size is constant. The construction is a simple adaptation of the main where an attribute
parameter can be dynamically derived by hashing the attribute with a function H : {0,1}* — G
that we model as a random oracle.

22

Setup() The setup algorithm chooses a group G of prime order p and a generator g. In addition,
it chooses random exponents «,a € Z,. In addition, we will use a hash function H : {0,1}* — G
that we will model as a random oracle. The public key is published as

PK = g, e(g,9)", g°

The authority sets MSK = ¢g“ as the master secret key.

Encrypt(PK, (M, p), M) The encryption algorithm takes as input the public parameters PK
and a message M to encrypt. In addition, it takes as input an LSSS access structure (M, p). The
function p associates rows of M to attributes. In this construction we limit p to be an injective
function, that is an attribute is associated with at most one row of M.

Let M be an £ x n matrix. The algorithm first chooses a random vector ¥ = (s, Y2, ..., yn) € Zj,.
These values will be used to share the encryption exponent s. For ¢ = 1 to £, it calculates A\; = - M,
where M; is the vector corresponding to the ith row of M. In addition, the algorithm chooses
random 71, ...,7¢ € Zy.

The ciphertext is published as CT =

C= Me(g’g)as7 Cl = 957 (Cl = ga)\l‘H(p(l))iTla Dy = gh)v sy (CTL = ga)\nH(p(n))*Tn7 Dn = ng)

along with a description of (M, p).

KeyGen(MSK,S) The key generation algorithm takes as input the master secret key and a set
S of attributes. The algorithm first chooses a random ¢ € Z,,. It creates the private key as

K=g¢%" L=g" VorecSK,=H(z).

We remark that key generation is actually the same as in our previous construction.
Decrypt(CT,SK) The decryption algorithm takes as input a ciphertext CT for access structure
(M, p) and a private key for a set S. Suppose that S satisfies the access structure and let I C
{1,2,...,¢} be defined as I = {i : p(i) € S}. Then, let {w € Zp}icr be a set of constants such
that if {\;} are valid shares of any secret s according to M, then), ; w;\; = s. (Note there could

potentially be different ways of choosing the w; values to satisfy this.)
The decryption algorithm first computes

6(CI7K)/ (Hie](e(civL)e(DiaKp(i)))Wi)
= e(g,9)*%e(9,9)""/ ([Lies (9, 9)"™*) = e(g,9)**

The decryption algorithm can then divide out this value from C' and obtain the message M.

A.1 Proof

We prove the following theorem.

Theorem A.1 Suppose the decisional q-parallel BDHE assumption holds. Then no polytime ad-
versary can selectively break our system with a challenge matriz of size £* x n*, where £*,n* <gq.

23

Suppose we have an adversary 4 with non-negligible advantage e = Adv 4 in the selective security
game against our construction. Moreover, suppose it chooses a challenge matrix M* where both
dimensions are at most q. We show how to build a simulator, B, that plays the decisional ¢-BDHE
problem.

Init The simulator takes in a ¢-parallel BDHE challenge 4/, T. The adversary gives the algorithm
the challenge access structure (M*, p*), where M* has n* columns.

Setup The simulator chooses random o' € Z, and implicitly sets a = o + a9t by letting
e(g9,9)" = e(g, 9")e(g, 9)" .

We describe how the simulator programs the random oracle H by building a table. Consider
a call to H(z). If H(z) was already defined in the table, then simply return the same answer as
before.

Otherwise, begin by choosing a random value z,. Let X denote the set of indices i, such that
p*(i) = x. The simulator programs the oracle as

H(z) = g™ H gOMia /b _ga2Mz2/bi o @ Min
i€X
Note that if X = @ then we have H(x) = g**. Also note that the responses from the oracle are
distributed randomly due to the g** value.

Phase I In this phase the simulator answers private key queries. Suppose the simulator is given
a private key query for a set S where S does not satisfy M*.

The simulator first chooses a random r € Z,. Then it finds a vector W = (w1, ..., wpx) € Zp"
such that wy = —1 and for all ¢ where p*(i) € S we have that w- M} = 0. By the definition of a
LSSS such a vector must exist.

The simulator begins by implicitly defining ¢ as

r+wia? + wea? !+ - wpeal

aq""l_i)wi —

g°.
We observe that by our definition of ¢, we have that g* contains a term of g_“qH7 which will
cancel out with the unknown term in ¢g® when creating K. The simulator can compute K as:

’ +2—1 .
K = ga gar H <gaq)wl_

1=2,...,n*

. Tt performs this by setting L = g" [[,_; (g

Now we must calculate K, Vx € S. First, we consider z € S for which there is no 7 such that
p*(i) = x. For those we can simply let K, = L**.

The more difficult task is to create key components K, for attributes x € S, where x is used in
the access structure. For these keys we must make sure that there are no terms of the form g“q+1/ bs
that we can’t simulate. However, we have that M - @ = 0; therefore, all of these terms cancel.

Again, let X be the set of all i such that p*(i) = x. The simulator creates K, in this case as

follows.

M
I /b +1+ji—k /p.
Ko [T IT [amr T e
1€X j=1,...,n* k=1,...,n*
k#j

24

Challenge Finally, we build the challenge ciphertext. The adversary gives two messages Mg, M1
to the simulator. The simulator flips a coin (. It creates C' = MgT - e(g®, ¢®) and " = ¢*.

The tricky part is to simulate the C; values since this contains terms that we must cancel out.
However, the simulator can choose the secret splitting, such that these cancel out. Intuitively, the

simulator will choose random v, ...,y and the share the secret using the vector
¥ = (5,50 + yh,sa*> + o, ..., sa" " +yl.) €L,
In addition, it chooses random values 77, ..., 7).

For i =1,...,n* we define R; as the set of all k # i such that p*(i) = p*(k). In other words,
the set of all other row indices that have the same attribute as row ¢. The challenge ciphertext
components are then generated as

D, = g g
G o= HE @) | T @)%)@= o [[T TI g =®m)M

j=2,...,n* keR; j=1,...,n*
Phase IT Same as phase I.

Guess The adversary will eventually output a guess 3’ of 3. The simulator then outputs 0 to
guesses that T' = e(g, g)aqHS if B = [3'; otherwise, it and outputs 1 to indicate that it believes T is
a random group element in Gr.

When T is a tuple the simulator B gives a perfect simulation so we have that

1
Pr [B (gj’,T = e(g,g)“q+ls) = 0} =3 + Advy.
When T is a random group element the message Mg is completely hidden from the adversary and
we have Pr[B(y,T = R) =0] = % Therefore, B can play the decisional g-parallel BDHE game
with non-negligible advantage.

B Removing the Random Oracle for Large Universes of Attributes

In this section we describe how to realize a large universe construction in the standard model. In
Appendix A the reduction applied the random oracle to “program” in the challenge ciphertext.
the hash function. In the standard model we can achieve a similar type of programming by simply
using a hash function that has enough degrees of randomness to plug in the same information.
The tradeoff is that the system must define at setup, Attrmax, the maximum number of attributes
any one key may have and the public paramters grow linearly with Attrp.x. We emphasize that
Attrpax does not limit the number of attributes that may be used in the system.

We realize our standard model construction actually by adapting the construction from Ap-
pendix 5. We then prove it secure under the decisional BDHE assumption in the standard model.
We remark that similar techniques can be used to a realize large universe variant of our main
constructions in the standard model, although we do not provide the details here.

25

Setup(Attrmaxsfmax) The setup algorithm takes as inputs the maximum number of attributes
a user’s key may have and the maximum number of columns in a ciphertext access matrix. The
setup algorithm chooses a group G of prime order p and a generator g. For ease of exposition, we
will assume attributes can be represented in Z,. In practice, one would simply apply a collision
resistant hash function from

The algorithm it chooses random exponents a,a € Z,. In addition, we will define a hash
function U : Z, — G. It does this by implicitly choosing a polynomial p(z) € Z, of degree
m = Attrmax + fmax — 1. Next it computes ug = gp(o), e Uy = gp(m). These m + 1 values when
published will allow anyone (by interpolation) to compute gp(m) for any x € Z,. The public key is
published as

PK= g, e(9,9)% ¢ uo,...,Un.

The authority sets MSK = ¢g“ as the master secret key.

Encrypt(PK, (M, p), M) The encryption algorithm takes as input the public parameters PK
and a message M to encrypt. In addition, it takes as input an LSSS access structure (M, p). The
function p associates rows of M to attributes. In this construction we limit p to be an injective
function, that is an attribute is associated with at most one row of M. That any attribute is
associated with at most one row.

Let M be an ¢ x n matrix. The algorithm first chooses a random vector 7 = (s,y2, ..., yn) € Ly
These values will be used to share the encryption exponent s. For, i = 1 to £ it calculates A\; = ¥~ M;,
where M; is the vector corresponding to the ith row of M.

The ciphertext is published as

CT = (C = Me(g,9)**, C'=g¢° C = ga’\lU(p(l))*s, o, Cp= ga)“U(p(é))fs)

along with a description of M, p(-).

KeyGen(MSK,S) The key generation algorithm takes as input the master secret key and a set
S of attributes. The algorithm first chooses a random ¢ € Z,,. It creates the private key as

K=g¢g%" L=g¢" VreS K,=U(z).

Decrypt(CT,SK) The decryption algorithm takes as input a ciphertext CT for a linear access
structure (M, p) and a private key for a set S. Suppose that S satisfies the access structure and let
I'c{1,2,...,4} be defined as I = {i: p(i) € S}. Then, let {w € Zp}icr be a set of constants such
that if {)\;} are valid shares of any secret s according to M, then), ;w;\; = s. (Note that there
could potentially be several different ways of choosing the w; values to satisfy this.)

The decryption algorithm first computes

e(C',K)/ (H(e(@,L)e(CCKp(i)))“’i)
el

= e(g,9)*e(g,9)*"/ (H e(g, g)“‘”“) = e(g,9)".

il

The decryptor can then divide out this value from C and obtain the message M.

26

B.1 Proof

We prove the following theorem.

Theorem B.1 Suppose the decisional g-BDHE assumption holds. Then no poly-time adversary
can selectively break our system with a challenge matriz of size £* x n* and maximum number of
attributes per key of Attrmax where n* + Attrpae < q.

Suppose we have an adversary A with non-negligible advantage ¢ = Adv 4 in the selective security
game against our construction. Moreover, suppose it chooses a challenge matrix M™* of dimension at
most g columns. We show how to build a simulator, B, that plays the decisional ¢-BDHE problem.

Init The simulator takes in the BDHE challenge 7 = (g, 9%, ¢% ..., 9", ,gaq+2 . 7gazq),T. The
adversary gives the algorithm the challenge access structure (M*, p*), where M* has n* columns
and n* + Attrpa.x < q.

Setup The simulator chooses random o' € Z, and implicitly sets a = o + a9t by letting

e(g,9)* = e(g®, g*")e(g, 9)*".
We describe how the simulator programs the function U = p(x). It chooses n* + Attryax + 1

polynomials po,p1, ..., Pn*+Attre., €ach of degree Attryax + ¢*. Polynomial pg is chosen randomly.
It lets polynomials ppxi1, ..., P tAttr,.,. P€ set to 0 for the ¢* values of x where we there exists
an ¢ such that p*(i) = = and random elsewhere. The polynomials py,...,p,+ are set such that for

each z such that there exists an i where z = p*(i) we set p;(z) = M; for j € [1,n"].
We then conceptually will set

p(z) = > pile)-ol.

Jje [O,H* “I’Attrmax]

Using interpolation and the powers g%’ from the assumption we can compute g, . . . , UAttr, oy - -
We point out a couple of facts. First, the parameters are distributed randomly due to the pg
component of the polynomial. Second, by our restriction that p* to be an injective function for any
x there is at most one i such that p*(i) = x; therefore, our assignment is well defined.
Intuitively, for each attribute x that is represented in the challenge ciphertext we are able to
program the function U(z) to reflect the corresponding row M* from the simulator’s point of view.

Phase I In this phase the simulator answers private key queries. Suppose the simulator is given
a private key query for a set S where S does not satisfy M*.

The simulator first chooses a random r € Z,. Next, define the vector by such that bej = pj(x).
Then it finds a vector @ = (w1, .., Wn 4 Attro.) € Zp”* such that w; = —1 and for all z € S
we have b, - @ = 0. By our the definition of a LSSS such a vector must exist, since S does not
satisfy M*. The first components wi, ..., wy~ are chosen as before to satisfy all € S where x is
an attribute in the challenge set. The other vector components wy*41 + Wp* 4 Attr,,., CaN be chosen
to satisfy the orthogonality condition for all other x with high probability. Note this is possible
since the polynomials are of degree Attryax + n*.

The simulator begins by implicitly defining t as:

-1 —n*+Att 1
T+w1aq+w2aq +”'+w(n*+AttrmaX) .aq n*+ Tmax+ .

27

It performs this by setting L = ¢" [(a”l*i)wi =g’

i=1,...,n*
We now observe that by our definition of ¢, we have that g% contains a term of g_“qﬂ, which
will cancel out with the unknown term in g®. The simulator can compute K as:

K = g% g™ 11 (g).
i:27-.-,(n*+Att7’max)

Now we must calculate K, Vx € S. For these key components we must make sure that there
are no terms of the form ¢g*"" that we cannot simulate. Notice, that in calculating H (z)! all terms
of this form come (in the exponent) from M; ja’ - w;a?™ =7 for some j, where p*(i) = z. However,
we have that M; - @ = 0; therefore, everything with an exponent of a9t! cancels when combined.

The simulator creates K in this case as follows. Suppose p*(i) = . Then

p;j(z)

K, = Lpo(z) H gr H (gaq+1+j—k)wk

7=1,...,n*+Attrmax k=1,...n*+Attrmax
ki

Challenge Finally, we build the challenge ciphertext. The adversary gives two messages Mg, M1
to the simulator. The simulator flips a coin 3. It creates C' = Mg - T - e(g°, ga/) and C' = ¢°.

The tricky part is to simulate the C; values since the term H(p*(i))® will contain terms of the
form ¢g*’#, that we do not know how to simulate. However, the simulator can choose the secret
splitting, such that these cancel out. Intuitively, the simulator will choose random v, ..., y,. € Z,
and the share the secret using the vector

U= (5,50 + yh,sa> + b, ..., sa" "L+ yl.) € T,

This allows the important terms from H(p(i))™ to cancel out with the important terms of g,

For i =1,...,n* the challenge ciphertext components are then generated as
C; = H (ga)Mi,jy} (g°)PolP™ (@)
j:17"'7n*

Phase II Same as phase 1.

Guess The adversary will eventually output a guess 3’ of 3. The simulator then outputs 0 to
guesses that T' = e(g, g)aqHs if B = [3; otherwise, it and outputs 1 to indicate that it believes T is
a random group element in Gr.

When T is a tuple the simulator B gives a perfect simulation so we have that

1
Pr [B (gj’,T = e(g,g)“q+ls) = 0} =3 + Advy.
When T is a random group element the message My is completely hidden from the adversary

and we have Pr[B (7,7 = R) = 0] = 1. Therefore, B can play the decisional n*-BDHE game with
non-negligible advantage.

28

C Generic Security of Parallel BDHE

We briefly show that the decisional parallel-BDHE assumption is generically secure. We use the
generic proof template of Boneh, Boyen, and Goh [11].

Using the terminology from BBG we need to show that f = a?t!s in independent of the
polynomials P and). Since all given terms are in the bilinear group we have that @ = {1} and
we have that

P = {1,5, Vicqoq jkellgiztar1 sk @5 a'/bj, s-bj, a’-s-by/bj}

By a simple renaming of terms we can see this is equivalent to an assumption where we use a
generator v and let g = gHiG[M] b, Applying this substitution we get a a set of polynomials where
maximum degree of any polynomial in the set P is 3q + 1.

We need to also check that f is symbolically independent of the of any two polynomials in P, Q.
To realize f from P,Q we would need to have a term of the form a™*'s. We note that no such
terms can be realized from the product of two polynomials p,p’ € P. To form such a term it would
need to have a single factor of s. However, if we use the polynomial s as p then no other potential
p’ has a™ + 1. If we use a’s - br/b; as p, then no matter what p’ is used there will be a factor of b,
left. It follows from the BBG framework that this is generically secure.

29

