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Abstract. Erasing old data and keys is an important capability of honest parties in cryptographic
protocols. It is useful in many settings, including proactive security in the presence of a mobile adversary,
adaptive security in the presence of an adaptive adversary, forward security, and intrusion resilience.
Some of these settings, such as achieving proactive security, is provably impossible without some form
of erasures. Other settings, such as designing protocols that are secure against adaptive adversaries, are
much simpler to achieve when erasures are allowed. Protocols for all these contexts typically assume the
ability to perfectly erase information. Unfortunately, as amply demonstrated in the systems literature,
perfect erasures are hard to implement in practice.

We propose a model of imperfect or partial erasures where erasure instructions are only partially
effective and leave almost all the data erased intact, thus giving the honest parties only a limited
capability to dispose old data. Nonetheless, we show how to design protocols for all of the above
settings (including proactive security, adaptive security, forward security, and intrusion resilience) for
which this weak form of erasures suffices.

We show how to automatically modify protocols relying on perfect erasures to ones for which partial
erasures suffices. Stated most generally, we provide a general compiler that transforms any protocol
using perfect erasures into one that maintains the same security properties even when only partial
erasures are available. The key idea is a new redundant representation of secret data which can still
be computed on, and yet is rendered useless when partially erased. We prove that any such compiler
must incur a cost in additional storage, and that our compiler is near optimal in terms of its storage
overhead.

We also give computationally more efficient compilers for a number of special cases: (1) when all
the computations on secrets can be done in constant parallel time (NC0); (2) for a class of proactive
secret sharing protocols where we leave the protocol intact except for changing the representation of
the shares of the secret and the instructions that modify the shares (to correspondingly modify the new
representation instead).

Key words: mobile adversary, proactive security, adaptive security, forward security, intrusion re-
silience, universal hashing, partial erasures, secure multiparty computation, randomness extractors

1 Introduction

As anyone who has ever tried to erase an old white board knows, it is often easier to erase a large amount
of information imperfectly, than to erase a small amount of information perfectly.

In cryptographic protocol design, perfect erasures, namely the complete disposal of old, sensitive data
and keys, is an important ability of honest parties in fighting future break-ins, as this leaves no trace of
sensitive data for the adversary to recover.

Examples where perfect erasures have been used extensively include:
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– Proactive Security: One example where some form of erasures is provably necessary is in the setting of
proactive security [61]. Here time is split into fixed size intervals, or time periods, and a mobile adversary is
considered. A mobile adversary can corrupt different parties in different time periods, subject to an upper
bound on the total number of corrupted parties per time period. Namely, the identity of the corrupted
parties may change from one time period to the next. Ostrovsky and Yung [61] studied the question
of achieving general secure computation and presented an information theoretic solution robust against
mobile adversaries. At the heart of their solution (as in all subsequent papers on proactive security, for
instance [32,30,39,13,52]) is a secret sharing method in which at the end of every time period, the old
shares held by parties are first replaced by new shares and then erased. It is easy to see that secret
sharing would be impossible to achieve without some form of erasures: otherwise a mobile adversary
which is able to corrupt every single party in some time period or another, can eventually recover all old
shares for some single time period and recover the secret.

– Forward Security: Erasures are essential to even define (as well as solve) forward security [35,21].
Forward security is an approach taken to tackle the key exposure problem, so that exposure of long-term
secret information does not compromise the security of previous sessions. This notion was first proposed
in the context of key-exchange protocols by Günther [35], Diffie, Van-Oorschot, and Weiner [21], and by
Anderson [2] for the challenging setting of non-interactive public-key encryption. Again, the lifetime of
the system is divided into N intervals (or time periods). The receiver initially stores the secret key SK0

and this secret key “evolves” with time: at the beginning of time period i (or, one can think of it as the
end of time period i − 1), the receiver applies some function to the previous key SKi−1 to derive the
current key SKi; the key SKi−1 is then erased and SKi is used for all secret cryptographic operations
during period i. To make such a scheme viable, the public (encryption) key remains fixed throughout the
lifetime of the scheme. A forward-secure encryption scheme guarantees that even if an adversary learns
SKi (for some i), messages encrypted during all time periods prior to i remain secret. Obviously, this is
provably impossible to do without some form of erasures.

– Intrusion-Resilience: Intrusion resilience is a strengthening of forward security [45] which can be
viewed as combination of forward and backward security, i.e. an adversary that attacks the system and
gets the current key at time t cannot compromise the security of sessions either before t (forward security)
or after (backward security). Again as in the case of forward security it is straight forward to see that it
is impossible to do without some form of erasures.

– Adaptive Security: An example of a different flavor of the utility of erasures is in adaptive security,
which guards against adversaries that can choose which future parties to corrupt as the protocol pro-
ceeds, based on information already gathered. Erasures are useful in this context since they limit the
information the adversary sees upon corrupting a party. Indeed, although protocols have been designed
which remain secure even without erasures, these tend to be much more complex than those that rely
on data erasures [46,12,8,63].

Unfortunately, perfect erasures of data are hard to achieve in practice and thus it is problematic to
assume that they are available, as pointed out by Jarecki and Lysyanskaya [46] in their study of adaptive
adversaries versus static adversaries in the context of threshold secret sharing.

Some of the difficulties in implementing perfect erasures are illustrated in the works of Hughes and
Coughlin, Garfinkel, and Vaarala [41,42,31,67]. The root cause of the difficulties is that systems are actually
designed to preserve data, rather than to erase them. Erasures present difficulties at both the hardware level
(e.g. due to physical properties of the storage media) and at the software level (e.g. due to the complications
with respect to system bookkeeping and backups). At the hardware level, e.g. for hard drives, the Department
of Defense recommends overwriting with various bit patterns [60]. This takes the order of days to complete
per 100GB, and is not fully effective because modern hard drives use block replacement and usually employ
some form of error correction. For main memory, due to “ion migration”, there is the memory remanence
effect – previous states of memory can be determined even after power off. At the software/operating systems
level, many operating systems detect and remap bad sectors of the hard drive on the fly. Such a remapping
is stored in the drive’s file system, thus providing a software layer of hard disk defect management. Original
data can remain in the bad sectors and be recoverable to a certain extent, even if these sectors are labeled
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“bad” and are not considered part of the storage anymore. Erasures also complicates the management of
the virtual memory system: sensitive data in memory might be paged onto the hard drive. In fact the entire
memory contents will be saved onto the hard drive when a system hibernates.

1.1 This Paper

In light of the above difficulties, we propose to study protocols that can guarantee security even when only
imperfect or partial erasures are available.

The first question to be addressed is how to model erasures that are only partially effective. One option is
to simply assume that each erasure operation succeeds with some probability. However, such a modeling does
not capture all the difficulties described above. In particular, it allows obtaining essentially perfect erasures
by applying the erasure operation several times on a memory location; therefore such a model is unlikely
to yield interesting or effective algorithms. In addition, such modeling does not take into account potential
dependencies among information in neighboring locations.

The model of Partial Erasures We thus take a much more conservative approach. Specifically, we model
partial erasures by a length-shrinking function h : {0, 1}m 7→ {0, 1}bφmc, that shrinks stored information by
a given fraction 0 ≤ φ ≤ 1. We call φ the leakage fraction and h the partial-erasing function. When φ = 0
then we get the perfect erasures case; when φ = 1 nothing is ever erased. For the rest of this work we think
of φ being a value close to 1 (namely, the size of what remains after data is partially erased is close to the
original size). Note that we do not require φ to be a constant – for instance, for reasonable settings of the
parameters, it may be 1

poly(α) -close to 1, where α is a security parameter of the protocol in question.

The shrinking function may be chosen adversarially. In particular, it is not limited to outputting exact
bits, and any length-shrinking function (efficiently computable or not) on the inputs is allowed. This modeling
captures the fact that the remaining information may be a function of multiple neighboring bits rather than
on a single bit. It also captures the fact that repeated erasures may not be more effective than a single one.

The function h is assumed to be a function only of the storage contents to be erased. Furthermore, for
simplicity we assume that h is fixed in advance – our schemes remain secure without any modification even if
the adversary chooses a new hi prior to each new erasure. This choice seems to adequately capture erasures
that are only partially successful due to the physical properties of the storage media1. However, this may not
adequately capture situations where the failure to erase comes from interactions with an operating system,
for instance memory swapping, and caching. In order to capture this sort of erasure failures, one might want
to let h to be a function of some information other than the contents to be erased, or alternatively to be
determined adaptively as the computation evolves.

We treat m, the input or block length of h, as a system parameter. (For instance, m might be determined
by the physical properties of the storage media in use.) One can generalize the current model to consider
the cases where h is applied to variable-length blocks, and where the block locations are variable.

Our Memory Model. We envision that processors participating in protocols can store data (secret and
otherwise) in the CPU registers, as well as in the cache, main memory (RAM), and hard drives. We assume
all types of storage are only partially erasable with the exception of a constant number of constant size
CPU registers, which are assumed to be perfectly erasable. We emphasize that having a constant number
of constant size registers being perfectly erasable just means that we have perfect erasures only for some
constant space. This limitation ensures that we cannot use the registers to (effectively) perfectly erase all
other types of storage and thus circumvent the lack of perfect erasures for them, since at no time can the
registers hold any non-negligible part of the secret. We call this the register model.

We remark that it seems very reasonable to assume that a constant number of constant size CPU registers
can be effectively erased, whereas main memory, hard drives, etc. cannot.

1 Indeed, physical properties of the storage are mostly fixed at the factory; from then on the behavior of the hardware
only depends on what is written.
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We shall use these registers to perform intermediate local computations during our protocols. This will
allow us to ignore the traces of these computations, which would otherwise be very messy to analyze.

Since we only (need to) focus on the part of the storage that needs to be erased, so not everything that
is normally done in the CPU registers is going to be included in the constant-size registers in our model –
the addressing of main memory being an example (otherwise, in order to be able to access polynomial sized
storage, the registers need to be of logarithmic size).

Results and Techniques. Our main result is a compiler that on input any protocol that relies on perfect
erasures for its security (proofs), outputs a protocol with the same functionality that remains secure even
if the erasures are only partial. We assume that the original protocol uses two types of storage – one that
is (perfectly) erasable, and one that is persistent (never going to be erased). Of course, this persistent part
need not be changed, so in the sequel we will ignore this part of the storage, and our transformation applies
only to the erasable part. (In particular, in the case of a single secret, the erasable part is a single secret.)
Consequently, when we focus on the erasable part of the storage and analyze the storage and computation
costs of our transformation, we will be overstating the costs: in reality, a large part of the storage is persistent,
and there is no storage or computation blow up for this part.

The idea is to write secrets in an encoded form so that, on the one hand, the secret can be explicitly
extracted from its encoded form, and on the other hand loss of even a small part of the encoded form results
in loss of the secret.

Perhaps surprisingly, our encoding results in expanding the secret so that the encoded information is longer
than the original. We will prove that expanding the secret is essential in this model (see more discussion
below). This expansion of secrets seems a bit strange at first, since now there is more data to be erased
(although only partially). However, we argue that it is often easier to erase a large amount of data imperfectly
than to erase even one bit perfectly.

We describe the compiler in two steps. First we describe a special case where there is only a single secret
to be erased. Next we describe the complete compiler.

Our technique for the case of a single secret is inspired by results in the bounded storage model, introduced
by Maurer [54,55]. Work by Lu [50] casted results in the bounded storage model in terms of extractors [59],
which are functions that when given a source with some randomness, “purifies” and outputs an almost
random string.

At a high level, in order to make an n-bit secret s partially erasable, we choose random strings R, X
and store (R, X, Ext(R, X)⊕ s), where Ext is a strong extractor that takes R as seed and X as input, and
generates an n-bit output such that (R, Ext(R, X)) is statistically close to uniform as long as the input X has
sufficient min-entropy. To erase s, we apply the imperfect erasure operation on X . Both R and Ext(R, X)⊕s
are left intact.

For the sake of analysis, assume that |X | = m, where m is the input length for the partial erasure
function h. Recall that erasing X amounts to replacing X with a string h(X) whose length is φm bits. Then,
with high probability (except with probability at most 2−(1−φ)m/2), X would have about (1 − φ)m/2 min-
entropy left given h(X). This means that, as long as (1− φ)m/2 > n, the output of the extractor is roughly
2−(1−φ)|X|/2-close to uniform even given the seed R and the partially erased source, h(X). Consequently, s
is effectively erased.

There is however a snag in the above description: in order to employ this scheme, one has to evaluate
the extractor Ext without leaving any trace of the intermediate storage used during the evaluation. Recall
that in our model the size of the perfectly erasable memory is constant independently of n, the length of the
secret. This means that Ext should be computable with constant amount of space, even when the output
length tends to infinity. We identify several such extractors, including ε-almost universal hashing, strong
extractors in NC0, and Toeplitz Hashing [53]. It would seem superficially that locally computable strong
extractors [68] can be used, but unfortunately they cannot, as we show in theorem 3.3 on page 23.

Now let us move on to describe the general compiler. Suppose we want to compute some function g
(represented as a circuit) on some secret s, only now, s is replaced by a representation that is partially
erasable, and we would like to make sure that we can still compute g(s). We are going to evaluate the
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circuit in a gate-by-gate manner where the gate inputs are in expanded form. The inputs are reconstructed
in the registers, and the gate is evaluated to get an output, which is in turn expanded and stored in main
memory (see Figure 1). Even though some small (negligible) amount of information is leaked at each partial
erasure, we show that as long as the number of erasure operations is sub-exponential, the overall amount of
information gathered by the adversary on the erased data is negligible.

Original Computation

X(si, sj)X(si, sj)

gate Xgate X

sisi
sjsj

New Computation

“Contraction”

“Expansion”

PE(s)

in the registers

PE
(

X(si, sj)
)

Fig. 1. Computations Involving Secret s = s1, ..., sn; PE(◦) is the partially erasable form of its argument

For maximum generality we formulate our results in the Universally Composable (UC) framework. In
particular we use the notion of UC-emulation [10], which is a very tight notion of correspondence between
the emulated and emulating protocols. Our analysis applies to essentially any type of corruption – adaptive,
proactive, passive, active, etc. That is, we show:
Theorem (informal): For any protocol Πorg that requires perfect erasures (for security), the protocol
Πnew := Compiler(Πorg) UC-emulates Πorg, and tolerates (maintains security even with) imperfect/partial
erasures in the register model. For leakage fraction of φ, if Πorg uses n bits of storage then Πnew uses about

2
1−φn bits of storage.
Optimality of the Scheme. One of the main cost parameters of such compilers is the expansion factor,
the amount by which they increase the (erasable part of the) storage. That is, a compiler has expansion
factor Ψ if whenever Πorg uses n bits of storage, Πnew uses at most Ψn bits of storage. It can be seen that
our compiler has expansion factor Ψ ≤ 2

1−φ + ν(n) where ν is a negligible function. In addition, we show

that if ε-almost universal hashing is used and φ > 1/4, then our compiler would have an expansion factor of
about c

1−φ , where c = 7
3 − 4

3φ. For 1/4 ≤ φ < 1, we have that 2 ≥ c > 1.
We show that our construction is at most twice the optimal in this respect. That is, we show that any

such compiler would necessarily have an expansion of roughly Ψ ≥ 1
1−φ . This bound holds even for the
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simplest case of compiling even a single secret into one that is partially erasable. Roughly speaking, the
argument is as follows. If we do not want to leak any information on a secret of n bits the function h must
shrink the expanded version of s by at least n bits. In our model, h shrinks by (1− φ)Ψn bits and therefore,
(1− φ)Ψn ≥ n⇒ Ψ ≥ 1

1−φ .
Some Specific Solutions. In addition to the general compiler, in Sections 5 and 6 we describe some
special-tailored solutions to two specific cases. One case is where the function to be evaluated is computable
by NC0 circuits. The second case is the case for all known proactive secret sharing schemes. These solutions
are computationally more efficient since they do not require running the compiler on a gate-by-gate basis. In
particular, in the first case, since each output bit can be computed with only a constant number of input bits,
we can afford to keep all the input bits required in the registers and compute each output bit in “one-shot”.
In the second case of proactive secret sharing, we can apply our expanded representation directly to the
secret and its shares, and correspondingly modify the instructions that operate on the shares, leaving the
rest of the protocol intact. In both cases we avoid partially erasable computation at the gate level, and thus
the resulting protocols are more efficient computation wise than via the general compiler. Note that this
greater efficiency also translates into tighter security – for instance if the original protocol assumed some
timing guarantees, then the new protocol need not assume a timing that is much looser than the original.

Remark 1 (Everlasting Security). Note that because we prove statistical security, our schemes are “everlast-
ingly secure” in the sense that even if the adversary stores all the partially erased information, whatever
happens in the future will not help him, e.g. even if it turns out that P = NP .

1.2 Related Work

Side Channel Attacks. We can view partial erasures as a special case in the more general framework of
side channel attacks which takes into account the physical nature of computation, as opposed to an idealized,
abstract computation model like Turing Machines (which can, among other things, overwrite data). See [56]
for a nice model of computation which explicitly captures physical attacks, and for schemes that are provably
secure against all physically observable attacks. We stress that in this work we focus only on partial erasures.
In particular, the adversary is not allowed physical access to the parties before corruption, and so is not
allowed to measure say the time or power taken to do some computation, or to monitor the electromagnetic
radiation. If these side channel attacks are a concern, then they have to be dealt with in other ways – for
instance using provably secure schemes given in [56], or using heuristic countermeasures like shielding the
hardware to reduce radiation, power filtering and balancing, and injecting noise to the side channel.

On the other hand, we note that even though we can view partial erasures as a special case of side channel
attacks, the “practical implications” go beyond just partial erasures. In particular, as we elaborate at the
end of Section 4, a side benefit of using our constructions is that it can be resistant to a practical class of
physical attacks [36] that involves freezing RAM and recovering secrets from it.

The Bounded Storage Model (BSM) Much of modern cryptography assumes that the adversary is
computationally bounded. The Bounded Storage Model (BSM) proposed by Maurer [54,55], makes in contrast
assumptions on the storage capabilities of the adversary. These assumptions enables novel approaches to the
secure communication problem as follows.

As usual communicating parties A and B begin with a short initial secret key k. They use this key k and
access to a very long public random string R in order to derive a longer key X , which will enable them to
communicate privately over the public channel by simply using X as a one-time pad. The key (or one-time
pad) derivation protocol takes place in two phases.

Phase I: During this phase all parties (A, B, and the adversary) have access to the long random string R.
A and B (non-interactively) apply a public key-deriving function f to (k, R) to derive the long key X that
they can use as a one-time pad. The adversary which has access to R is space bounded, and cannot store
all of R. This is formalized by modeling the adversary’s storage with a length-shrinking storage function hφ,

i.e. a function hφ : {0, 1}∗ → {0, 1}∗ s.t. ∀x,
|hφ(x)|
|x| ≤ φ, where φ is a constant 0 ≤ φ < 1 which is called the
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storage fraction of the adversary (or of function hφ). The best the adversary can do at this phase is to store
hφ(R).

Phase II: The common random string disappears. In this phase, the honest parties use their derived key
X to encrypt their communication. The question is, how much information can the adversary find about X?
A sequence of works including [55,7,26] culminated in showing that, for φ arbitrarily close to 1, there exists
an explicit key-deriving function f such that, X = f(k, R) is ε-close to uniform given k, hφ(R). Namely, even
if the adversary is given the initial secret key k at this point (in phase II), on top of hφ(R) that it stored in
phase I, it still cannot distinguish X apart from random with probability more than ε.

The ideas emerging from the BSM research inspire a way to capture some weak form of erasures. In
particular, the information about R (the long common random string) stored by the bounded-space adversary
in the BSM model was captured by computing an arbitrary length-shrinking function applied to R. In the
partial erasures setting we will use the same kind of length-shrinking function to capture the act of partially
erasing old shares of a secret.

However, the settings of the BSM and partial erasures are fundamentally different. In the BSM possibility
is proved by putting limitations on the adversary (storage), whereas in our work possibility is achieved in
spite of putting limitations on the honest parties (erasing capability). Thus, although some of techniques are
similar the underlying setup is entirely different.

From a technical point of view there are two differences we emphasize as well.
Firstly, the extractors that we use must be computable with the constant number of constant size registers,

whereas in the BSM the extractors are not necessarily computable with constant size memory.
Secondly, in the BSM, it is assumed that the adversary’s storage bound remains the same as time goes by,

namely a constant fraction φ of r, the length of Ri. Whenever the adversary gets access to new information
(e.g. Ri+1), it has to update the information Qi kept in its storage (e.g. by applying some update function
g : {0, 1}r × {0, 1}φr 7→ {0, 1}φr, on (Ri+1, Qi) to get Qi+1). The same assumption holds for results in
the bounded retrieval model [20,18,24,25,27]. For instance [27] constructs intrusion resilient secret sharing
schemes by making the secret shares large and assuming that the adversary will never be able to retrieve
any piece completely. On the other hand, for partial erasures this bound on the storage is unreasonable, and
we allow the adversary’s storage to grow with time, namely he gets φ fraction of some Ri for each erasure
operation.

Exposure Resilient Functions (ERF) Exposure-resilient functions, or ERFs, were introduced by Canetti
et al. [11,22]. An `-ERF is a threshold function with a random input, which if the adversary learns all
but ` bits of the input, cannot distinguish the output of the function from random. Formally, a function

f : {0, 1}m → {0, 1}n is `-ERF if for any choice of m − ` bits and for x
$← {0, 1}m and u

$← {0, 1}n, given
the m− ` bits of x, f(x) and u are indistinguishable, either perfectly, statistically or computationally.

The ERF objectives seem very similar to partial erasures. However, the settings are different. It turns out
that in partial erasures we would think about our inputs as consisting of two parts, so to aid comparison,
below we use the same notation, (R, k), to denote the input.
In ERFs:

(a) There is a fixed known function f .
(b) The adversary chooses up to m− ` bits of (R, k).
(c) The adversary sees his choice of the bits of (R, k).
(d) The adversary attempts to guess f(R, k), using his knowledge of (R, k).

In partial erasures:

(a) There is a fixed known function f .
(b) The adversary chooses a shrinking function h(·) to apply on k, leaving up to m− ` bits.
(c) The adversary sees the result of function h(·) applied on k, and also sees independently chosen new data

R.
(d) The adversary attempts to guess f(R, k), using his knowledge of h(k) and R.
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Notice that in (b) for ERFs, it is crucial that the adversary only gets to choose exact bits of (R, k) to see,
otherwise he can just compute f(R, k) and store (parts of) it.

On the other hand, in (b) for partial erasures, the adversary can get to store h(k), which represents
arbitrary m − ` bits of information about k. This is because R will only be seen by the adversary later (in
(c)), and will thus be independent of h(◦) and k regardless of whether h(◦) outputs only exact bits of its
input or not.

Therefore, due to the difference in settings, ERFs can only tolerate adversaries knowing m− ` exact bits,
whereas partial erasures can tolerate leakage of m− ` arbitrary bits of information.

Encryption as Erasures. One straightforward way of achieving secure erasures is to keep the data in
encrypted form and the key on some secure part of the storage that is assumed to be perfectly erasable.
When the data is to be erased, erasing the key suffices. Without the key, the encrypted data is useless, and
so in this sense the data has been erased.

In more detail, as Di Crescenzo et al. [17] noted, one simple but inefficient way to implement erasable
memory can be obtained by using the crypto-paging concept of Yee [69]. Assume that we have a linear amount
of perfectly erasable memory Perfect, and we want to make the other part of the memory Persistent (poly
sized) into an erasable one, despite the fact that what is stored in Persistent remains there forever. The
preprocessing stage consists of choosing a secret key k1 for an encryption scheme (Gen, Enc, Dec), storing
it in Perfect, and using it to encrypt the contents (say C1, C2) to be stored in Persistent. When C1 is to
be erased, Persistent = Enck1(C1, C2) is decrypted and a new key k2 is chosen (replacing k1) and used
to encrypt C2, which is then stored back to Persistent. If the adversary breaks in at this time, he gets
Enck1(C1, C2), Enck2(C2), and k2, so he recovers C2. However, without k1, C1 is effectively erased. Di
Crescenzo et al. improve on the efficiency of this scheme.

To achieve statistical security, Shannon’s classic result [66] implies that this secure part of the storage
has to be of size at least as large as the other part, so such a solution is not too interesting. On the other
hand if only computational security is desired, then this secure part of the storage only needs to be linear in
the security parameter, and the other part of the storage can be polynomial.

In contrast, using our compiler, we achieve statistical security only assuming that constant sized registers
are perfectly erasable. Even without using our general compiler, we can directly apply our ideas to the
“encrypted erasures” described above, to get computationally secure erasures. The advantage of using our
ideas here is that the assumption is weakened (from having perfect erasures for a linear storage to having
perfect erasures for a constant sized storage).

2 The Model of Partial Erasures

As sketched in the introduction, we model partial erasures by an arbitrary length-shrinking function h :
{0, 1}m → {0, 1}bφmc, where 0 ≤ φ ≤ 1 is called the leakage fraction. By partially erasing some information
x, we mean the operation of applying such an h to x, leaving h(X). If |X | > m, then we consider a predefined
partition of x into blocks of size m, and h is then applied separately to each block. We stress that the protocol
has no access whatsoever to (partially) erased data, and the partial leakage is only made available to the
adversary.

More precisely, we need a suitable model of computation for Turing Machines that partially erase.

Definition 1 (Partial Erasing Function, Leakage Fraction, Block Length). A partial-erasing func-
tion h is a length-shrinking function h : {0, 1}m 7→ {0, 1}bφmc, with a positive integer m as its block length
and a real number φ s.t. 0 ≤ φ ≤ 1 as its leakage fraction.

Definition 2 (Partially Erasable (PE) Tape). Let h be a partial-erasing function with m as its block
length and φ as its leakage fraction. A tape of a Turing Machine is said to be partially erasable (PE) if:
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– It has two sides:
– a primary side pre-partitioned into m-bit blocks, and
– a secondary, “shadow” side, pre-partitioned into m-bit blocks.

– The primary side:
– may be read multiple times, i.e. the corresponding read head is free to move both forward and backward,
– may be written once, i.e. the corresponding write head always moves forward, and
– has an “erase” write head that is free to move both forward and backward, but can only write ⊥, the
empty or blank symbol, to replace a block by ⊥m 2.

– The secondary, “shadow” side:
– cannot be read, and
– has a write head with a separate control logic (state transition function) which computes the function
h. This write head is used to implement the partial erasure operation.

– It supports the partial erasure operation: on input a block number i, let x ∈ {0, 1}m be the contents
of the i-th m-bit block on the primary side, and the Turing Machine:
– computes h(x) and writes it on the i-th block on the shadow side 3, and
– overwrites the i-th block of the primary tape, currently containing x, with ⊥m (so the Turing Machine
no longer gets any access to the data).

Remark 2 (The Computation of h is Unbounded). In the above definition we specifically introduced a separate
control logic for computing h to address the fact that whereas the complexity of the Turing Machine may be
restricted, e.g. to polynomial time, the complexity of h is not. Alternatively, one may view the computation
as an oracle call.

Definition 3 (Externally Writable (EW) Tape). A tape of a Turing Machine is said to be externally
writable (EW) if it may be written to by other partially erasable interactive Turing Machines. We assume
that all EW tapes are write once, so the write head only moves forward.

The only differences between our model of computation and the interactive Turing Machine of [10] are
that:

1. The work tape, input tape, and subroutine output tape are PE instead of EW.
2. The random tape is read once, i.e. the read head always moves forward.

The first point addresses the fact that overwriting is not allowed (it is a form of perfect erasures), only
partial erasures is.

The second point addresses the fact that if the Turing Machine wants to use the random bits, it has to
copy them to the computation tape (or rather, encode them in some way and keep the encoded version on
the computation tape), and thus they can only be partially erased. Upon corruption of a party, we assume
that the adversary does not gain access to the random tape, but sees all the rest of the tapes. See remark 3.

In order to have a concrete model, here is the full description of our model of computation, by incorpo-
rating the change described above into the model of interactive Turing Machines (ITMs) given by [10]:

Definition 4 (Partially Erasable Interactive Turing Machine (PEITM)). Let h be a partial-erasing
function with m as its block length and φ as its leakage fraction. A partially erasable interactive Turing
Machine (PEITM) is a Turing Machine with the following tapes:

– An EW identity tape (here the identity of the party is written).

2 The reason we have two different write heads is that overwriting old data is a form of erasures, and we want to
make it clear whenever erasures occur. Forcing the ordinary write head to always move forward means it cannot
overwrite or erase, which is left to the special head.

3 More precisely it passes control to the control logic computing h, which writes h(x) of size φm < m to the
corresponding block on the hidden side in some canonical way, for instance by always starting from the beginning
of the block.
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– An EW security parameter tape.

– A PE input tape.

– A PE work tape.

– An EW incoming communication tape.

– A read once random tape.

– An output tape.

– A PE subroutine output tape (this and the next tape are used in the UC framework).

– A read and write one-bit activation tape.

Definition 5 (Adversary View). When the adversary corrupts a party, it gains access to all the tapes of
the party’s TM, including the shadow sides of all the PE tapes (and thus gains access to the partially erased
data), with the exception of the random tape.

Remark 3 (Randomness). We think of the randomness as coin tosses rather than as a tape of random bits
prepared in advance. Essentially, this just boils down to assuming that we have a random (one) bit generator
in the CPU that is perfectly erasable. The reason for thinking about randomness this way is the following.
The encoding of the secret has to be randomized, and anyone with access to all of the randomness can always
decode and get the secret back. Therefore if upon corruption the adversary gets to see all the randomness,
then effectively this is the same as having no erasures. On the other hand, to prevent the Turing Machine from
using the random tape to trivially implement erasures, we require that the random tape be un-writable and
read once. In particular, if the Turing Machine wants to use the random bits, it has to encode them somehow
and keep the encoded version on the computation work tape, which (upon corruption) the adversary will be
allowed to see anyways.

Remark 4 (When does the adversary choose h). We note that our schemes remain secure without any modi-
fication even if the adversary is allowed to choose a new hi whenever an erasure is to be done; in particular,
no independence is assumed on the different erasures done on different memory locations. However, this
choice must be done independently of the current data to be erased, i.e. the choice of hi is fixed before the
data to be erased by hi is written in memory. This certainly suffices for modeling the imperfect erasures due
to physical limitations.

Remark 5 (How to model ITMs). We refer the reader to [10] for the definitions of a system of ITMs and
probabilistic polynomial time ITMs, which can be extended straightforwardly to deal with PEITMs instead.
We stress again that to the advantage of the adversary, in bounding the resources of the ITMs, the time
taken to partially erase (i.e. compute h) should be ignored.

Alternatively, instead of the ITM model of the UC framework [10], one could apply the modifications
(of changing some tapes to PE instead of EW, and making the random tape read once and hidden from the
adversary) to the ITM model of [34]. We choose to use the ITM model of the UC framework [10] since our
results are later stated in the UC framework.

Remark 6 (Boolean circuits versus Turing machines). Furthermore, we will actually be using boolean circuits
as our model of computation instead of Turing Machines. The reason is that boolean circuits already operate
at the bit level, allowing us to explicitly talk about leveraging the constant number of constant size registers
so that the computations would not leak too much information. For instance, for a computation on a secret,
the input bits to the gates at the first level of the corresponding circuit are actually bits of the secret, and
the output bits of gates represent various stages of the output; these input and output bits need to be kept
secret, which is where the perfectly erasable registers come in. Therefore, instead of using Turing Machines,
we will be using circuits and the register model. This is without loss of generality since for any TM running
in time T (n), there exists a family of circuits {Cn} of size |Cn| = T (n)× polylog(T (n)) computing the same
function [62]. The same holds for any PEITM.
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2.1 The Memory Model

We envision that processors participating in protocols can store data (secret and otherwise) in the CPU
registers, as well as in the cache, main memory (RAM), and hard drives. We assume all types of storage are
only partially erasable with the exception of a constant number of constant size CPU registers, which are
assumed to be perfectly erasable. We call this memory model the register model. We remark that it seems a
very reasonable assumption that a constant number of constant size CPU registers can be effectively erased,
whereas the main memory, hard drives, etc. cannot.

We emphasize that the constant size of the registers ensures that we do not use this to effectively perfectly
erase main memory and thus circumvent the lack of perfect erasures in main memory, since at no time can
the registers hold any non-negligible part of the secret.

We shall use these registers to perform intermediate local computations during our protocols. This will
allow us to ignore the traces of these computations, which would otherwise be very messy to analyze.

Actually, these perfectly erasable registers can in principle be encoded in the finite control state of the
Turing Machine, and need not be written on any tape at all. In particular, the model need not explicitly
allow for perfectly erasable storage at all.

Remark 7 (The Registers). As we mentioned in the beginning of Section 1.1, we only deal with storage that
would need to be erased, so not everything that is normally done in the CPU registers is going to be included
in the registers of our model – the addressing of main memory being an example (otherwise, in order to be
able to access polynomial sized storage, the registers need to be of logarithmic size).

2.2 Discussion on the Partial Erasures Model

The partial erasures model represents several sources of information leakage on data that is intended to be
erased – let us discuss a few. One difficulty with implementing perfect erasures is that it is highly dependent
on the physical characteristics of the devices in use. For instance, as described in the introduction, for main
memory, due to ion migration there is a cumulative remanence effect – the longer a bit pattern sits in the
RAM, the more “burnt-in” it becomes and the longer it takes to erase. Furthermore, even different RAM
batches exhibit different physical characteristics, much less different memory technology. Security proofs that
assume perfect erasures fail as long as even one bit of information remains; to ensure security, one would have
to somehow find out the “maximum” time it takes for the RAM to be erased. In contrast, partial erasures
also provides security even when the adversary breaks into the parties when they are only “half-way” done
in erasing their secrets., no matter how the adversary chooses the timing of the corruptions (as long as some
information has been erased).

2.3 Alternative Models of Partial Erasures

The function h we consider is a deterministic length-shrinking function, that can be different each time
erasures is to be done, but this choice has to be done independent of the data to be erased. It is assumed to
be a function only of the storage contents to be erased. In Section 1.1 and above we argued that this suffices
for capturing imperfect erasures due to physical limitations. We discuss alternative models in the conclusion.

3 How to Make Secrets Partially Erasable

To change a protocol using perfect erasures to one that uses only partial erasures, the first step is to store
secrets in a partially erasable way, which is what this section focuses on. The second step is to make sure
computations can still be done on the secrets without leaking too much information, and will be discussed
in the next section.

The high level idea is that instead of having a piece of secret s ∈ {0, 1}n directly in the system, we let the
parties store it in expanded form. At the cost of more storage and a small computation overhead, this gives
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the ability to effectively erase a secret even when only partial erasures are available. In the end, the number
of bits that have to be partially erased might be more than the number of bits that have to be perfectly
erased. This is still reasonable because it is often much easier to partially erase a large number of bits than
to perfectly erase a small number. Furthermore, we show in Section 3.4 that such expansion is inherent in
the model.

We write UX to denote an r.v. uniformly random on some set X .

Definition 6 (Statistical Distance). Suppose that A and B are two distributions over the same finite set

Σ. The statistical distance between A and B is defined as ∆(A; B) := 1
2

∑

σ∈Σ

∣

∣

∣PrA[σ]− PrB[σ]
∣

∣

∣.

Definition 7 (Statistical Distance from Uniform). Let d(A) := ∆(A; UA). Also define d(A|B) :=
∑

b d(A|B = b) · PrB[b] =
∑

b PrB[b] 12
∑

a |PrA|B=b[a]− 1
|A| |. We say that a random variable A is ε-close to

uniform given B to mean that d(A|B) ≤ ε.

Definition 8 (Partially Erasable (or Expanded) Form of a Secret). Let Exp(◦, ◦) be the “expansion”
function taking the secret s to be expanded as the first input and randomness as the second, and Con be the
“contraction” function taking the output of Exp as the input. Let hs

i := h(Exp(s, $i)), where $i are independent
randomness. We say that (Exp, Con) is an (`, α, φ)-partially erasable form if ∀s ∈ {0, 1}n, for any h with
leakage fraction φ,

1. (Correctness) Con (Exp(s, r)) = s for all r ∈ {0, 1}poly(n).
2. (Secrecy) ∀s′ ∈ {0, 1}n, ∆

(

hs
1, ..., h

s
` ; h

s′

1 , ..., hs′

`

)

≤ 2−α.
3. (Computable in the Registers) Both Exp, Con are computable with constant memory.

In correctness, we require that the expansion function be non-trivial and not lose information about the
secret. It does not mean that whenever we need bits of the secret s, we would actually compute the whole
s from the expanded form in one shot, since once the “bare” secret appears outside of the registers, there
is nothing much that can be done: bits of the secret would be leaked even after partially erasing (see the
elaboration in the paragraph following the next).

In secrecy, we require the indistinguishability for many (` above) erasures to account for the fact that
many computations may be done during the execution of the protocol (directly or indirectly) on the secret,
from which the adversary might gain more information. Generally, an adversary may have many partially
erased forms of the same secret (i.e. the adversary can see h(Exp(s, $i)) s.t for each i, it knows a 1-1 and
onto correspondence qi(◦) from Exp(s, $i) to s).

We also require partially erasable forms to be computable with constant memory (i.e. in the register
model), bit-by-bit, so that no bit of the secret will be leaked in expanding and contracting to and from the
secret (or more precisely, the functions work on some constant number of bits of the secret at a time). This will
be discussed in more detail in the next chapter. For (Exp, Con) a partially erasable form, we introduce further
notation. let Expi(s, $) denote the algorithm for expanding the i-th bit of the secret, and Coni(Expi(s, $))
denote the algorithm for contracting the i-th bit of the secret. We overload the notation so that for instance,
Coni(◦) takes as input both Exp(s, $), the expanded form of the whole secret, and Expi(s, $), the expanded
form of just the i-th bit of the secret.

Note that Expi(s, $) is not necessarily independent from Expj(s, $) (i.e. the coins used are not necessarily
independent), and in fact for space efficiency purposes we would like them to be dependent– but of course
there is a tradeoff between efficiency and security. For completeness, on page 19 immediately before corol-
lary 1, we briefly describe this dependency (for partially erasable forms based on Toeplitz hashing). As we
will see in the next section, the storage costs can be amortized so that it no longer grows with m. Regarding
computational efficiency, since our general compiler works at the gate level, there is a computational over-
head incurred to do the contraction and expansion before and after each gate computation, respectively. In
Sections 5 and 6 we give special compilers that decrease this blow up in computational cost.

Whenever it is clear from the context we write “the partially erasable (or expanded) form of s” to mean
Exp(s, $) instead of (Exp, Con), especially since the Con functions we consider are all straightforward given
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Exp. An example of an expanded form of a secret which can be partially erased and satisfies correctness and
secrecy (in the above definition) would be to use a universal hash function family {HR} as follows: expand s
to (v, R, k) s.t. s = HR(k)⊕v. By using the leftover hash lemma [43], for any constant φ such that 0 < φ < 1,
for any arbitrary partial erasure function h with leakage fraction φ, for any universal hash function family
{HR}, HR(k) can be made negligibly close to uniform given R and h(k) (so HR(k) is as good as a one-time
pad).

3.1 Using Universal Hashing

Let us first focus on bounding d(HR(k)|R, h(k)). We need the leftover hash lemma:

Lemma 1 (The Leftover Hash Lemma [38]). Let H be a universal family of hash functions from X to
Y. Let H denote a random variable with the uniform distribution on H, and let X denote a random variable
taking values in X , with H, X independent. Then (H, H(X)) is δ-uniform on H× Y, where

δ ≤
√

|Y|max
x

P(X)/2.

Theorem 1 (Security for a Single Erasure using Universal Hash). Let {HR} be a universal family
of hash functions. Let (R, h(k)) be a tuple such that R ∈ {0, 1}n×m, k ∈ {0, 1}m, and h(k) ∈ {0, 1}φm, where
R picks out a random function out of {HR}, and k is random. Then 4,

d(HR(k)|R, h(k)) ≤ 3

22/3
· 2− 1

3 (1−φ)m+ n
3 . (1)

Proof. The big picture is that, since h(◦) is a length-shrinking function, with good probability k should still
have high min-entropy given h(k). This implies that if we apply a strong extractor (in particular, here we
use universal hashing) on k, the result should still be close to random when given the hash function and
h(k).

First, let us show that with high probability, k still has high min-entropy given h(k). Intuitively, rare
events give more information to the adversary. Accordingly, let λ be a real number such that 0 < λ < 1−φ,
and define B, the “bad” set, to be the set of realizations y of h(k) such that Pk(h(k) = y) ≤ 2−(1−λ)m.

So, for y0 /∈ B,

P(k = k0|h(k) = y0) =
P(k = k0 ∩ h(k) = y0)

P(h(k) = y0)

≤ P(k = k0)

P(h(k) = y0)

≤ 2−m · 2(1−λ)m

= 2−λm.

Therefore, for h(k) /∈ B, we have that H∞ (k|h(k)) ≥ λm, and by the leftover hash lemma, for h(k) /∈ B,

we have that d(HR(k)|R, h(k)) ≤
√

2n · 2−λm, and we can bound the statistical distance of HR(k) from
uniform:

4 Yevgeniy Dodis pointed out to us that by using their generalized leftover hash lemma in [23], we can save a root,

to get d(HR(k)|R, h(k)) ≤ 3

22/3 · 2
− 1

2
(1−φ)m+ n

2 .
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d(HR(k)|R, h(k)) =
∑

r,y

P(R = r ∩ h(k) = y)d(HR(k)|R = r, h(k) = y)

=
∑

r

P(R = r)
(

∑

y∈B

P(h(k) = y)d(HR(k)|R = r, h(k) = y)

+
∑

y/∈B

P(h(k) = y)d(HR(k)|R = r, h(k) = y)
)

≤
∑

r

P(R = r)
(

∑

y∈B

P(h(k) = y) · 1

+
∑

y/∈B

P(h(k) = y)d(HR(k)|R = r, h(k) = y)
)

≤
∑

r

P(R = r)



|h(k)| · 2−(1−λ)m +
∑

y/∈B

P(h(k) = y)
√

2n · 2−λm





≤
∑

r

P(R = r)
(

2φm · 2−(1−λ)m +
√

2n · 2−λm
)

= 2−((1−φ)−λ)m + 2−λm/2+n/2.

We could minimize the right hand side over 0 < λ < 1 − φ by differentiating wrt λ and setting to zero.
After some simplification we get the result. ut

Dealing with Relations Between Secrets What happens when the secrets are used to compute some
new secrets? How would the adversary’s information add up as he sees more partially erased information?
Consider the following scenario. In the original protocol (before making the secrets partially erasable), for
some secrets sj and some functions gj, say that si = gi(si−1) and later si is used to do some cryptography.
Now, if we made the secrets partially erasable (not worrying about how we would compute the gis for the
moment), how random is si, given partially erased sj , j < i? In the following, we consider a generalization
of the above scenario where for secret si, the adversary knows a 1-1 and onto function qi(◦) which relates it
to s1. Or rather, for each tuple

(

Ri, h(ki), Hi(ki) ⊕ si

)

, the adversary knows 1-1 and onto functions which
relate HRi(ki) and HR1(k1).

There are two things that this 1-1 and onto function is trying to capture (see Figure 2). First, consider the
case in which the secret s remains the same, and multiple, say two, partial erasures were done on the expanded
form. In this case, let us look at how the view of the adversary allows him to add up his information. The
first partial erasure gives him

(

R1, h(k1), HR1(k1) ⊕ s
)

, and the second gives him
(

R2, h(k2), HR2(k2) ⊕ s
)

.
This means he gets HR1(k1) ⊕ HR2(k2), and therefore any information he gains on HR1(k1) is as good as
information on HR2(k2) (and vice versa). So the 1-1 and onto function relating HRi(ki) and HR1(k1) is just
the XOR operator.



How to Protect Yourself Without Perfect Shredding 15

R1, k1, R2, k2,HR1(k1)⊕ s1 HR2(k2)⊕ s2

partiallypartially

eraseerase

≈ Theorem 1≈ Theorem 1

R1, h(k1), HR1(k1)⊕ s1

R1, h(k1), Un ⊕ s1

related through q2(◦), which is 1-1 and onto; any info gained on HR2(k2)⇔ info on HR1(k1)

related through g2(◦)

(e.g. refreshing phase for

proactive secret sharing)

Evolution

R2, h(k2), HR2(k2)⊕ s2

R2, h(k2), Un ⊕ s2

the information adds up as given by theorem 2

Fig. 2. Secrecy for Multiple Erasures

Second, consider the case in which the secret s evolves over time: at time 1 it is s1 and at time 2, it
evolves to s2 = g2(s1). The first partial erasure gives him R1, h(k1), HR1(k1)⊕ s1, and the second gives him
R2, h(k2), HR2(k2) ⊕ s2. This means he gets HR1(k1) ⊕HR2(k2) ⊕ s1 ⊕ s2. If in addition, he knows any of
HR1(k1), HR2(k2), s1, or s2, then (through g2(◦) which we can, to the advantage of the adversary, assume is
public, 1-1 and onto), he knows all of them. For instance, say that he gets HR1(k1). Then he can recover s1

through HR1(k1)⊕ s1, compute s2 = g2(s1), and then recover HR2(k2) through HR2(k2)⊕ s2. So in this case
the 1-1 and onto function relating the one-time pads HR1(k1) and HR2(k2), also takes the evolution of the
secrets into account.

To prove security for multiple erasures, we need the following two lemmas (refer to [16] for the definition
of mutual information, I):

Lemma 2 (Difference in Unconditional and Conditional Mutual Information is Symmetric).
For random variables X, Y , and Z,

I(X ; Y )− I(X ; Y |Z) = I(X ; Z)− I(X ; Z|Y ) = I(Y ; Z)− I(Y ; Z|X). (2)

Proof.

I(X ; Y )− I(X ; Y |Z) = (H(X)−H(X |Y ))− (H(X |Z)−H(X |Y, Z))

= (H(X)−H(X |Z))− (H(X |Y )−H(X |Y, Z))

= I(X ; Z)− I(X ; Z|Y ).

The symmetric equality, reversing the roles of X and Y , can be obtained by noting that the proof above
does not use anything particular about X, Y , or Z. ut



16 Ran Canetti, Dror Eiger, Shafi Goldwasser and Dah-Yoh Lim

Lemma 3 (Statistical Distance and Entropy). If X is a random variable taking values in X := {0, 1}n,
and d(X) ≤ 1/4, then:

n−H(X) ≤ 2d(X) log
2n

2d(X)
, (3)

and

2

ln 2
d(X)2 ≤ n−H(X). (4)

Proof. This lemma is a special case of theorem 16.3.2 and lemma 16.3.1 of [16]. ut

The following theorem proves that for secrets that possibly evolve over time, the adversary cannot gain
too much information even after seeing multiple erasures.

Theorem 2 (Security for Multiple Erasures using Universal Hash). Let {HR} be a family of uni-
versal hash functions. Let (R1, h(k1)), ..., (R`, h(k`)) be ` tuples such that Ri ∈ {0, 1}n×m, ki ∈ {0, 1}m, and
h(ki) ∈ {0, 1}φm, where Ri picks out a random function out of {HR}, ki is random, and qi(◦) are public 1-1
and onto functions such that s = qi(HRi(ki)). Then, for any β > 0, m poly in n, and sufficiently large n,

d(HRi(ki)|R1, h(k1), ..., R`, h(k`)) ≤
√

ln 2

2
`2−

1
3 (1−φ)m+ (β+1)n

3 − 1
3 .

Proof. Since the family of universal hash functions that we consider, {HR}, is always of the form HR(k) =
R · k, we will just write R · k below, to prevent confusion from H(◦), the entropy function.

I
(

Ri · ki; (Ri, h(ki))
)

= H(Ri · ki)−H(Ri · ki|Ri, h(ki))

≤ n−H(Ri · ki|Ri, h(ki))

(3)

≤ 2d(Ri · ki|Ri, h(ki)) log
2n

2d(Ri · ki|Ri, h(ki))

(1)

≤ 3 · 2− 1
3 (1−φ)m+ n

3 + 1
3 log

(

2n 1

3
· 2 1

3 (1−φ)m−n
3−

1
3

)

= 3 · 2− 1
3 (1−φ)m+ n

3 + 1
3

(

log
(

2
1
3 (1−φ)m+ 2n

3 −
1
3

)

+ log
1

3

)

≤ 3 · 2− 1
3 (1−φ)m+ n

3 + 1
3

(

1

3
(1 − φ)m +

2n

3
− 1

3

)

= 2−
1
3 (1−φ)m+ n

3 + 1
3 ((1− φ)m + 2n− 1)

≤ 2−
1
3 (1−φ)m+

(β+1)n
3 + 1

3 . (5)

The second inequality also requires the fact that for δ and ε such that 0 ≤ δ ≤ ε ≤ 2−
1

ln 2 (which the right
hand side of equation (1) satisfies for sufficiently large m), we have that −δ log δ ≤ −ε log ε 5. The last
inequality follows because, given φ and n, for any 0 < β and m poly in n, for sufficiently large n,

((1− φ)m + 2n− 1) ≤ 2
β
3 n. (6)

5 This is because the function f(x) := −x log x is concave and positive, and has its maximum at −x · 1
x ln 2

− log x =

0 ⇔ x = 2− 1
ln 2 , and so before this maximum, for 0 ≤ δ ≤ ε ≤ 2− 1

ln 2 , the function −x log x is monotonically
increasing.
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By chain rule for mutual information,

I
(

Ri · ki; (R1, h(k1)), ..., (R`, h(k`))
)

=
∑̀

i=1

I
(

Ri · ki; (Ri, h(ki))
∣

∣(R1, h(k1)), ..., (Ri−1, h(ki−1))
)

(7)

Also, because the difference in unconditional and conditional mutual information is symmetric in the
random variables, (theorem 2 on page 15)

I(Y ; X)− I(Y ; X |Z) = I(X ; Z)− I(X ; Z|Y ).

Setting Y = Ri · ki, X = (Ri, h(ki)) and Z = (R1, h(k1)), ..., (Ri−1, h(ki−1)), we have

I
(

Ri · ki; (Ri, h(ki))
)

− I
(

Ri · ki; (Ri, h(ki))
∣

∣(R1, h(k1)), ..., (Ri−1, h(ki−1))
)

= I
(

(Ri, h(ki)); (R1, h(k1)), ..., (Ri−1, h(ki−1))
)

−I
(

(Ri, h(ki)); (R1, h(k1)), ..., (Ri−1, h(ki−1))
∣

∣Ri · ki

)

= I
(

(Ri, h(ki)); (R1, h(k1)), ..., (Ri−1, h(ki−1))
)

≥ 0,

where the last equality uses the fact that qi(◦)s are public, 1-1 and onto functions of the Ri · kis to one
another.

Therefore, I
(

Ri · ki; (Ri, h(ki))
∣

∣(R1, h(k1)), ..., (Ri−1, h(ki−1))
)

≤ I
(

Ri · ki; (Ri, h(ki))
)

.

Substituting into equation 7, we get

I
(

Ri · ki; (R1, h(k1)), ..., (R`, h(k`))
)

≤
∑̀

i=1

I
(

Ri · ki; (Ri, h(ki))
)

(5)
= `2−

1
3 (1−φ)m+ (β+1)n

3 + 1
3 . (8)

Also,

n−H(Ri · ki)
(3)

≤ 2d(Ri · ki) log
2n

2d(Ri · ki)

⇔ H(Ri · ki) ≥ n− 2d(Ri · ki) log
2n

2d(Ri · ki)

⇔ H(Ri · ki) ≥ n− 2d(Ri · ki)n− 2d(Ri · ki) log
1

2d(Ri · ki)

⇒ H(Ri · ki) ≥ n− 2d(Ri · ki|Ri, h(ki))n− 2d(Ri · ki|Ri, h(ki)) log
1

2d(Ri · ki|Ri, h(ki))

⇒ H(Ri · ki)
(1)

≥ n− 2
3

22/3
· 2− 1

3 (1−φ)m+ n
3 n− 2

3

22/3
· 2− 1

3 (1−φ)m+ n
3 log

1

2 3
22/3 · 2−

1
3 (1−φ)m+n

3

⇔ H(Ri · ki) ≥ n− 2−θ(n + θ)

⇔ n ≤ H(Ri · ki) + 2−θ(n + θ), (9)

where θ := 1
3 (1− φ)m− n

3 − 1
3 − log2(3).
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Putting it all together,

d
(

Ri · ki

∣

∣(R1, h(k1)), ..., (R`, h(k`))
)

(4)

≤
√

ln 2

2

(

n−H
(

Ri · ki

∣

∣(R1, h(k1)), ..., (R`, h(k`))
)

)

(9)

≤
√

ln 2

2

(

H(Ri · ki) + 2−θ(n + θ)−H
(

Ri · ki

∣

∣(R1, h(k1)), ..., (R`, h(k`))
)

)

=

√

ln 2

2

(

I
(

Ri · ki; (R1, h(k1)), ..., (R`, h(k`))
)

)

+ 2−θ(n + θ)

(8)

≤
√

ln 2

2
`2−

1
3 (1−φ)m+

(β+1)n
3 + 1

3 + 2−θ(n + θ)

(6)

≤
√

ln 2

2
`2−θ+βn

3 −log2(3) + 2−θ+βn
3

≤
√

(ln 2)`2−
1
3 (1−φ)m+ (β+1)n

3 + 1
3 ,

where the last inequality holds for large n and m. ut

Note that to get 2−(α+1) security when the adversary gets ` partially erased tuples, we need:

√

ln 2

2
`2−

1
3 (1−φ)m+ (β+1)n

3 − 1
3 ≤ 2−(α+1)

⇔ ` ≤ 2
4
3−2(α+1)− 1

3 (1+β)n+ 1
3m(1−φ)

ln 2
(10)

⇔ m ≥ 3 log ((ln 2)`)− 4 + 6(α + 1) + (1 + β)n

(1− φ)
(11)

Let us make a few observations. Inequality 10 shows that if h has leakage fraction φ, how many times can you
partially erase a secret (or computations on the secret) without leaking too much information. Rearranging,
and fixing the other parameters, we can also see that the fraction that needs to be erased, (1 − φ), has to
be at least logarithmic in `. Inequality 11 on the other hand lower bounds m, which as we will see shortly,
translates into a statement about the space efficiency of using universal hashing to get partially erasable
forms.

Note that in the case where the secret s we are dealing with is a random one, we can just use Exp(s, $) :=
(R, k) where R and k are random s.t. R · k = s 6. This can be done easily for a random R or even a
random Toeplitz R. The theorem applies even to this case, i.e. regardless of how the secrets are chosen to be
dependent on one another, any secret itself is still close to random. Note that we give the adversary 1-1 and
onto functions that link one secret to another, and thus all the pairs (Ri, ki) are dependent (which in turn
implies that the pairs (Ri, h(ki)) are dependent too), and in particular we cannot just do a union bound.

Let us now consider two partially erasable forms based on universal hashing which satisfy correctness,
secrecy and moreover can be computed with constant size memory. The expansions we consider can be
thought of as having two parts, R, k, each serving different purposes. Furthermore, only one part, k, needs
to be partially erased7.

The first expanded form of s is a pair: a random matrix R ∈ {0, 1}n×m and vector k ∈ {0, 1}m subject
to the constraint that R · k = s. Only the vector k needs to be erased. However, this simple construction is
highly randomness inefficient, which translates into space inefficiency (since the parties have to store them).

6 In fact this type of expansion is what we are going to use later in Section 5 when we give a special compiler for all
known proactive secret sharing schemes.

7 which makes our results stronger than required by the definition
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Our preferred partial erasable form will be to use Toeplitz hashing instead (whose universality is proven
in [53]). A random Toeplitz matrix R ∈ {0, 1}n×m which selects a random hash function out of the Toeplitz
family {HR}, where HR : {0, 1}m 7→ {0, 1}n. In order to store an n-bit secret s in a partially erasable manner,
we choose a random Toeplitz matrix R ∈ {0, 1}n×m, k ∈ {0, 1}m (where R is fully specified by a random
string of n + m− 1 bits), and store R, k, R · k ⊕ s instead (so this triplet is the expanded form of s). Again,
only the k part needs to be erased. In this case Exp(s, r) uses r to form a random Toeplitz R and a random
k, and outputs R, k, R · k ⊕ s, and Con(R, k, x) recovers s by computing R · k ⊕ x.

Let us describe how the expansion and contraction (using Toeplitz hashing) can be done in the register
model. The goal is to come up with R, k, x such that R · k ⊕ x = s, in a bit-by-bit fashion. In other words
the goal is to come up with R row by row and x bit-by-bit, such that Ri · k⊕ xi = si (where Ri denotes the
i-th row of R). As we remarked after definition 8 and above, for efficiency purposes the expansions have to
be dependent. Here we need to “reuse” k, and make sure that the rows Ri are generated one by one s.t. the
final matrix R is a Toeplitz matrix. This is straightforward to do:. first k is chosen at random in {0, 1}m.
For i = 1, Ri is just random, in {0, 1}m. For i > 1, Ri is just one extra random bit concatenated with the
first n− 1 bits of Ri−1 (this makes sure R is Toeplitz). For each i, xi can be calculated from Ri, k, and si,
in the registers and then perfectly erased.

We have just described how to implement (Exp, Con) based on Toeplitz hashing in the register model.
Furthermore, from the triangle inequality, for all s, s′ ∈ {0, 1}n,

∆
(

HR(k)⊕ s, R, h(k); HR(k)⊕ s′, R, h(k)
)

≤ 2d(HR(k)|R, h(k)). (12)

Combining these with theorem 2 proves that:

Corollary 1 (Toeplitz Hashing gives a Partially Erasable Form). Toeplitz hashing yields a partially
erasable form of a secret.

3.2 Using 1

2n
+ ε-almost Universal Hash

As we will see in Section 3.4, the randomness efficiency of the hash translates into the space efficiency of our
expanded form. The Toeplitz universal hash uses n + m − 1 bits of randomness, whereas almost universal
hash can use just r < n + m− 1 bits. In this section we examine expanded forms based on almost universal
hashing.

An 1
2n + ε-almost universal hash is one in which the collision probability is upper bounded by 1

2n + ε:

Definition 9 ( 1
2n + ε-almost Universal Hash Functions). We say that H is a 1

2n + ε-almost universal
family of hash functions from X to Y if for all x, x′ ∈ X such that x 6= x′, and H uniform from H, we have
that

PH (H(x) = H(x′)) ≤ 1

2n
+ ε.

Lemma 4 (Leftover Hash Lemma for 1
2n +ε-almost Universal Hash Functions). Let H be an 1

2n +ε-
almost universal family of hash functions from X to Y. Let H denote a random variable with the uniform
distribution on H, and let X denote a random variable taking values in X , with H, X independent. Then
(H, H(X)) is δ-uniform on H× Y, where

δ ≤
√

|Y|κ(X) + |Y|( 1

2n
+ ε)− 1/2.

Proof. The proof is analogous to that of theorem 1. ut

Definition 10 (ε-biased Distributions [58]). Let X be a distribution on {0, 1}q. Let 〈x, y〉 denote the
inner product mod 2 of x ∈ {0, 1}q and y ∈ {0, 1}q. Then,

1. X is said to pass the linear test y with bias ε if |Px←X(〈x, y〉) = 1)− 1
2 | ≤ ε.
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2. X is said to be an ε-biased distribution if it passes all linear tests a 6= 0 with bias ε.

The following theorem, implied by theorem 14 of [48], proves that if the Toeplitz matrix is generated not
from n + m − 1 random bits but just r random bits which give a ε-biased distribution, where ε = n+m−1

2r/2 ,

then the resulting hash function family is 1
2n + ε-almost universal.

Theorem 3 (ε-biased Generation of Toeplitz Matrices of Dimension n×m gives 1
2n + ε-almost

Universal Hash Functions [48]). Consider any construction that would generate ε = n+m−1
2r/2 -biased

distributions on sequences of length n + m − 1, using r initial random bits [1]. The Toeplitz matrix that
corresponds to these n+m−1 bits gives rise to an 1

2n + ε-almost universal hash function family from {0, 1}m
to {0, 1}n.

Theorem 4 (Secrecy for Single Erasures using 1
2n + ε-almost Universal Hash). Let (R, h(k)) be a

partially erased tuple such that R ∈ {0, 1}n×m, k ∈ {0, 1}m, and h(k) ∈ {0, 1}φm, where R is an ε = n+m−1
2r/2 -

biased generated Toeplitz matrix (using r initial random bits). Then,

d(R · k|R, h(k)) ≤ 3

22/3
· 2− 1

3 (1−φ)m+ n
3 +
√

n + m− 1 2
1
2 (n−r/2). (13)

Proof. The proof idea is similar to the one using universal hash; differences will be pointed out below.

First, let us show that with high probability, k still has high min-entropy given h(k). Intuitively, rare
events give more information to the adversary. Accordingly, let λ be a real number such that 0 < λ < 1−φ,
and define B, the “bad” set, to be the set of realizations y of h(k) such that Pk(h(k) = y) ≤ 2−(1−λ)m.

So, for y0 /∈ B,

P(k = k0|h(k) = y0) =
P(k = k0 ∩ h(k) = y0)

P(h(k) = y0)

≤ P(k = k0)

P(h(k) = y0)

≤ 2−m · 2(1−λ)m

= 2−λm.

Therefore, for h(k) /∈ B, H∞ (k|h(k)) ≥ λm, and by theorem 4 (instead of lemma 1), for h(k) /∈ B,

d(R · k|R, h(k)) ≤
√

2n · 2−λm + 2n · ( 1
2n + n+m−1

2r/2 )− 1, and we can bound the statistical distance of R · k
from uniform:

d(R · k|R, h(k)) =
∑

r,y

P(R = r ∩ h(k) = y)d(R · k|R = r, h(k) = y)

=
∑

r

P(R = r)
(

∑

y∈B

P(h(k) = y)d(R · k|R = r, h(k) = y)

+
∑

y/∈B

P(h(k) = y)d(R · k|R = r, h(k) = y)
)
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≤
∑

r

P(R = r)
(

∑

y∈B

P(h(k) = y) · 1

+
∑

y/∈B

P(h(k) = y)d(R · k|R = r, h(k) = y)
)

≤
∑

r

P(R = r)
(

|h(k)| · 2−(1−λ)m

+
∑

y/∈B

P(h(k) = y)

√

2n · 2−λm + 2n · n + m− 1

2r/2

)

≤
∑

r

P(R = r)

(

2φm · 2−(1−λ)m +

√

2n · 2−λm + 2n · n + m− 1

2r/2

)

= 2−((1−λ)−φ)m +

√

2n · 2−λm + 2n · n + m− 1

2r/2
.

Minimizing the right hand side over 0 < λ < 1− φ by differentiating wrt λ and setting to zero, involves
solving a quartic polynomial, resulting in a formula that can barely fit in two pages. So for simplicity we are
going to cut some slack before optimizing:

d(R · k|R, h(k)) ≤ 2φm · 2−(1−λ)m +

√

2n · 2−λm + 2n · n + m− 1

2r/2

≤ 2−((1−λ)−φ)m +
√

2n · 2−λm +

√

2n · n + m− 1

2r/2

= 2−((1−λ)−φ)m + 2
1
2 (n−λm) +

√
n + m− 1 2

1
2 (n−r/2).

The second inequality holds since
√

a + b ≤ √a +
√

b for a, b ≥ 0.
Minimizing the right hand side over 0 < λ < 1−φ by differentiating wrt λ and setting to zero we get the

same λ∗ as in theorem 1, because the extra term does not involve λ∗. So we get:

λ∗ =
2

3
(1 − φ) +

n

3m
− 2

3m
.

Therefore,

d(R · k|R, h(k)) ≤ 3

22/3
· 2− 1

3 (1−φ)m+ n
3 +
√

n + m− 1 2
1
2 (n−r/2).

ut

The second term,
√

n + m− 1 2
1
2 (n−r/2), can be seen as an overhead to using an ε = 1

2n + n+m−1
2r/2 -almost

universal hash instead of a universal one. This extra term will make it difficult to upper-bound the multi-
period statistical distance, so let us simplify it first.

This second term can be upper-bounded by

2
1
2 ((1+β)n−r/2),

for any β > 0 and n sufficiently large.
Intuitively, the value of r that would minimize the righthand side of equation 13 is one where the two

terms are roughly equal. If we equate 3
22/3 · 2−

1
3 (1−φ)m+n

3 and 2
1
2 ((1+β)n−r/2), we get that

r = 2(
1

3
+ β)n +

4

3
(1− φ)m− 4 log(

3

22/3
). (14)
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Since r is the number of bits used to generate a Toeplitz of dimension n×m, we know that r ≤ n+m−1.

Therefore,

2(
1

3
+ β)n +

4

3
(1− φ)m− 4

(

log(
3

22/3
)

)

≤ n + m− 1

⇔ 2(−1

3
+ β)n +

1

3
(1− 4φ)m− 4

(

log(
3

22/3
)− 3

4

)

≤ 0,

which, for n and m growing (and β small), can only hold if φ > 1
4 . In this case, we get the simplified bound

of

d(R · k|R, h(k)) ≤ 3 · 2− 1
3 (1−φ)m+ n

3 + 1
3 . (15)

When compared to the case when universal hash functions are used, this represents a factor of 2 loss in
security; or to put it differently, m has to be larger to achieve the same level of security.

Theorem 5 (Secrecy for Multiple Erasures using 1
2n + ε-almost Universal Hash).

Let (R1, h(k1)), ..., (R`, h(k`)) be ` tuples such that Ri ∈ {0, 1}n×m, ki ∈ {0, 1}m, and h(ki) ∈ {0, 1}φm, where
each Ri is an ε = n+m−1

2r/2 -biased generated Toeplitz matrix (using r initial random bits). Let qi(◦) be public
1-1 and onto functions such that R1 ·k1 = qi(Ri ·ki). Then, for any β > 0, m poly in n, and sufficiently large
n,

d(Ri · ki|R1, h(k1), ..., R`, h(k`)) ≤
√

(ln 2)`2−
1
3 (1−φ)m+ (β+1)n

3 + 4
3 . (16)

Proof. The proof is analogous to that of theorem 2. ut

Therefore, to get 2−(α+1) security when the adversary gets ` partially erased tuples, it is sufficient that

√

(ln 2)`2−
1
3 (1−φ)m+ (β+1)n

3 + 4
3 ≤ 2−(α+1)

⇔ ` ≤ 2−
4
3−2(α+1)− 1

3 (1+β)n+ 1
3m(1−φ)

ln 2
(17)

⇔ m ≥ 3 log ((ln 2)`)− 2 + 6(α + 1) + (1 + β)n

(1− φ)
. (18)

Calling the bounds on ` and m in the case of using universal hash functions `′ and m′ respectively, we see
that

` ≤ 2`′ (19)

⇔ m ≥ m′ +
3

(1 − φ)
. (20)

Corollary 2 ( 1
2n +ε-almost Universal Hashing gives a Partially Erasable Form). Consider a 1

2n +ε-
almost universal family of hash functions {HR}. Consider Exp(s, $) :=

(

R, k, HR(k)⊕s
)

and Con(R, k, x) :=
HR(k)⊕x, where R ∈ {0, 1}n×m, k ∈ {0, 1}m, and s ∈ {0, 1}n. Then (Exp, Con) is a partially erasable form.
More precisely, given 0 ≤ φ < 1, any α > 0, any β > 0, any ` > 0, and any m that satisfies inequality 18,
(Exp, Con) is an (`, α, φ)-partially erasable form.

Proof. The proof is analogous to the proof of corollary 1. ut
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3.3 Using Strong Extractors

At this point, one might think that any strong extractor would suffice, and therefore we might be able to use
optimal strong extractors and correspondingly, get the most space-efficient construction of partially erasable
forms. Unfortunately, as we will see in this section, even though any expanded form based on any strong
extractor would satisfy the secrecy requirement, the constant memory requirement is not easy to satisfy.

Let us first review the some definitions. Extractors were introduced by Nisan and Zuckerman [59], and
have played a unifying role in the theory of pseudo-randomness.

Definition 11 (Extractors). A function Ext : {0, 1}n × {0, 1}d 7→ {0, 1}m is a (k, ε)-extractor if for any
k-source X over {0, 1}n, the distribution Ext(X, Ud) (the extractor’s output on an element sampled from X
and a uniformly chosen d-bit string) is ε-close to Um.

Definition 12 (Strong Extractors). A (k, ε)-extractor is strong if for any k-source X over {0, 1}n, the
distribution (Ext(X, Ud) ◦Ud) (obtained by concatenating the seed to the output of the extractor) is ε-close to
Um+d.

The following theorems from [51] give extractors that are simultaneously optimal (up to constant factors)
in both seed length and output length.

Theorem 6 (Optimal Extractors for Constant ε [51]). For any constants α, ε > 0, every n and
every k ≤ n, there is an explicit (k, ε)-extractor Ext : {0, 1}n × {0, 1}d 7→ {0, 1}m, with d = O(log n) and
m = (1− α)k.

Theorem 7 (Optimal Extractors for ε > exp(−k/2O(log∗ k)) [51]). For any constant α ∈ (0, 1), c ∈ N,
for every k, and every ε ∈ (0, 1) where ε > exp(−k/2O(log∗ k)), there are explicit (k, δ)-extractors Ext :
{0, 1}n × {0, 1}d 7→ {0, 1}m, with each one of the following parameters:

– d = O(log n), m = (1− α)k, and δ = (1/n)1/ log(c) n.
– d = O((log∗ n)2 log n + log(1/δ)), m = (1− α)k, and δ = ε.

– d = O(log(n/δ)), m = Ω(k/ log(c) n), and δ = ε.

The following theorem from [64] shows that every non-strong extractor can be transformed into one that
is strong with essentially the same parameters.

Theorem 8 (Strong Extractors from Extractors [64]). Any explicit (k, ε)-extractor Ext : {0, 1}n ×
{0, 1}d 7→ {0, 1}m can be transformed into an explicit strong (k, O(

√
ε))-extractor Ext′ : {0, 1}n×{0, 1}O(d) 7→

{0, 1}m−d−∆−1, where ∆ = 2 log(1/ε) + O(1).

Combining theorem 8 with theorems 6 and 7, we get the following.

Theorem 9 (Near Optimal Strong Extractors for Constant ε). For any constants α, ε > 0, every
n and every k ≤ n, there is an explicit strong (k, O(

√
ε))-extractor Ext : {0, 1}n × {0, 1}d 7→ {0, 1}m, with

d = O(log n) and m = (1− α)k − d− O(1).

Theorem 10 (Near Optimal Strong Extractors for ε > exp(−k/2O(log∗ k))). For any constant α ∈
(0, 1), c ∈ N, for every k, and every ε ∈ (0, 1) where ε > exp(−k/2O(log∗ k)), there are explicit strong (k, δ)-
extractors Ext : {0, 1}n × {0, 1}d 7→ {0, 1}m, with each one of the following parameters:

– d = O(log n), m = (1− α)k − d− k
2O(log∗ k) −O(1), and δ = (1/n)1/ log(c) n.

– d = O((log∗ n)2 log n + log(1/δ)), m = (1− α)k − d− k
2O(log∗ k) −O(1), and δ = ε.

– d = O(log(n/δ)), m = Ω(k/ log(c) n)− d− k
2O(log∗ k) −O(1), and δ = ε.

Now let us look at the secrecy part of a candidate partially erasable form based on strong extractors.
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Theorem 11 (Secrecy for a Single Erasure Using Strong Extractors). Let (R, h(k)) be a partially
erased tuple such that R ∈ {0, 1}D, k ∈ {0, 1}N , and h(k) ∈ {0, 1}φN , where R is the seed of a (K, δ) strong
extractor Ext : {0, 1}N × {0, 1}D 7→ {0, 1}M, 0 < K < (1 − φ)N . Then,

d(R · k|R, h(k)) ≤ 2−((1−φ)N−K) + δ. (21)

Proof. The proof is analogous to that of theorem 1 on page 13. ut

Theorem 12 (Secrecy for Multiple Erasures using Strong Extractors). Let (R1, h(k1)), ..., (R`, h(k`))
be ` tuples such that Ri ∈ {0, 1}D, ki ∈ {0, 1}N , and h(ki) ∈ {0, 1}φN , where Ri is the seed of a (K, δ) strong
extractor Ext : {0, 1}N × {0, 1}D 7→ {0, 1}M, 0 < K < (1 − φ)N . Let qi(◦) be public 1-1 and onto functions
such that Ext(R1, k1) = qi(Ext(Ri, ki)). Then, for any β > 0, m poly in n, and sufficiently large n,

d(Ext(Ri, ki)|R1, h(k1)), ..., (R`, h(k`)) ≤
√

(ln 2)`2βn+1−log 32−((1−φ)N−K) + δ. (22)

Proof. The proof is analogous to that of theorem 2 on page 16. ut

Locally computable extractors is a class of strong extractors used to construct private-key cryptosystems
in the bounded storage model [50,68]. These extractors can be computed by reading only “a few” bits from
the random source. We show in the following theorem that being locally computable is not sufficient for our
purposes – in particular “a few” bits, while small, would need to be non-constant.

Theorem 13 (Locally Computable Strong Extractors do not give Partially Erasable Forms).
Consider a (K, δ)-strong extractor Ext : {0, 1}D × {0, 1}m 7→ {0, 1}n that is t local. Consider Exp(s, $) :=
(R, k, Ext(R, k) ⊕ s) and Con(R, k, x) := Ext(R, k) ⊕ x, as a candidate partially erasable form of any secret
s ∈ {0, 1}n, using the t local strong extractor Ext. This is not a partially erasable form because both Exp and
Con) are not computable with constant memory; in particular, for our setting, t has to be non-constant.

Proof. Consider Ext, a t-local strong (K, δ)-extractor, and say the adversary chooses h to be equally dis-
tributed – for example, it chooses to keep only the first φm bits of k. Clearly, in that case H∞ (k | h (k)) =
(1− φ) ·m. Thus, we need Ext to be a strong ((1− φ) ·m, δ)-extractor. According to corollary 9.2 of [68],
if Ext is a t-local strong (εm, δ)-extractor, then t ≥ (1− δ − 2−n) · (1/ε) · n. In our case, ε = 1 − φ, so it is
required that t ≥ (1− δ − 2−n) · (1/ (1− φ)) ·n. Even if φ were a constant, t would still be greater than some
constant c times n, contrary to our demand of a fixed, constant length t. ut

3.4 Space Efficiency

Lower Bound. Say that an expansion function Exp is Ψ -expanding if for any r we have |Exp(s, r)| ≤ Ψ |s|.
One parameter we would like to minimize is Ψ , the storage overhead, whose lower bound is given below:

Theorem 14 (Lower Bound on the Storage Expansion Ψ). For any Ψ -expanding, (`, α, φ)-partially
erasable expansion function Exp that is applied to inputs of length n we have: Ψ ≥ 1

1−φ

(

1− n+α−1
n`2α−1

)

.

Proof. In our model, to compile a scheme using perfect erasures to one with partial erasures, we replace
each secret of n bits by the expanded form of it, of Ψn bits. This is partially erased to give φΨn bits, i.e.
(1− φ)Ψn bits of information are erased.

If no information is to be gained by the adversary, the number of bits of information erased has to be at
least n, so Ψ ≥ 1

(1−φ) .

On the other hand if we allow the adversary to gain some information, then the analysis is a bit more
complex. We need the following from [16]: for a random variable X taking values in {0, 1}n, and d(X) ≤ 1/4
we have:

n−H(X) ≤ −2d(X) log
2d(X)

2n
(23)
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Since the function −y log y is concave and positive for 0 ≤ y ≤ 1, and attains its maximum at y = 2−
1

ln 2 ,
we know that before this maximum, −y log y is monotonically increasing. Therefore, as long as 2d(X) ≤
2−α+1 ≤ 2−

1
ln 2 (or equivalently that α ≥ 1 + 1

ln 2 ), a necessary condition for d(X) ≤ 2−α is that:

n−H(X) ≤ −2d(X) log 2d(X) + 2d(X)n

≤ −2−α+1(−α + 1) + 2−α+1n

= (n + α− 1)2−α+1,

or,

H(X) ≥ n(1− 2−α+1)− (α− 1)2−α+1

In other words, to achieve 2−α security when the adversary is given ` partially erased tuples, we need:

`(1− φ)Ψn ≥ n(`− 2−α+1)− (α− 1)2−α+1

⇔ Ψ ≥ 1

1− φ

(

1− n + α− 1

n`2α−1

)

.

ut
For typical settings of the parameters, where both α and ` are polynomial in n, we get that Ψ ≥

1
1−φ (1− neg(α)) .

Efficiency. Let us see how tight our construction is to the lower bound.

Random R If a completely random R is used and HR := R · k (whose universality is proven in [15]), then
the expansion factor Ψ of the storage would be (size of R + size of k) · 1

n , which is (n + 1)m · 1
n = (1 + 1

n )m.
Plugging this into inequality 11, we see that this bound is a (growing) factor of n away from the optimal.

Random Toeplitz R If a Toeplitz matrix R is used instead, then the corresponding expanded form will be
R ∈ {0, 1}n×m, k ∈ {0, 1}m and x ∈ {0, 1}n such that R ·k⊕x = s. In this case, R requires n+m− 1 bits to
specify (since it is Toeplitz), and k requires m bits and x requires n bits respectively. So in this case, n bits
get expanded into 2m + 2n− 1 bits, and Ψ is 2m

n + 2− 1
n . Plugging this into inequality 11, we see that for

α = O(n) and ` = 2O(n), then this bound is a constant factor away from the optimal given in theorem 14.
If ` is subexponential in n and α is sublinear in n, then the bound we get is about Ψ ≥ 2

1−φ + 2, so it is
essentially a factor of 2 away from the optimal bound.

ε-biased Toeplitz R If an 1
2n + ε universal hash is used, the total number of bits required to store an n-bit

secret in a partially erasable manner is r + m + n, which is:

r + m + n
(14)
= 2(

1

3
+ β)n +

4

3
(1− φ)m− 4 log(

3

22/3
) + m + n

= (
5

3
+ 2β)n + (

7

3
− 4

3
φ)m− 4 log

3

22/3
.

Therefore, if ` is subexponential in n and α sublinear in n, then the bound we get on the expansion factor
is:

Ψ = (
5

3
+ 2β) + (

7

3
− 4

3
φ)

m

n
− 4

n
log

3

22/3

≈ (
7

3
− 4

3
φ)

m

n
(18)

≥ (
7

3
− 4

3
φ)

1

1− φ
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However, if 1 > φ > 1/4, we have that 1 < (7
3 − 4

3φ) < 2. Therefore the bound we obtain here is about
Ψ ≥ c

1−φ , where c < 2, compared to Ψ ≥ 2
1−φ for universal hashing. If φ is very close to 1, then c is close to

1 to and the storage expansion is thus very close to optimal.
For the other case, φ ≤ 1

4 , to achieve the same level of security while minimizing d(R ·k|R, h(k)), the best
we can do is to set r = n + m − 1. In this case we do not gain anything in terms of the storage efficiency.
Therefore, if φ ≤ 1

4 , the only reason to use the ε-biased construction instead of the universal one is to have
the flexibility to tradeoff security with the space efficiency.

Near Optimal Strong Extractors in NC0 Plugging the near optimal extractor given in theorem 10 on 23 and
working through the algebra, we get that the expansion factor using strong extractors is about (n + m +
log m) 1

n , which is about 1
1−φ , modulo the log m

n term, so this essentially achieves the optimum. Unfortunately,

we do not know of any optimal strong extractors that are in NC0, nor do we know of any optimal strong
extractors that can be implemented directly in the register model.

4 A General Construction

Now that we know how to store secrets in a partially erasable way, the second step is to make sure compu-
tations can still be done on the secrets without leaking too much information.

In this section we present a general compiler that on input a protocol that relies on perfect erasures for its
security (proofs), outputs a protocol with the same functionality that remains secure even if the erasures are
only partial. The input protocol could be one that is adaptively secure, forward secure, intrusion resilient,
proactively secure, etc.

We assume that all protocol computations are given to us as boolean circuits consisting of gates with
fan-in 2 and fan-out 1. We remark that any TM running in time T (n) can be converted to a circuit of size
T (n)× polylog(T (n)) computing the same function [62].

We apply the technique described in the previous section at the gate level in Section 4.1 (so that com-
putations on the secrets are partially erasable too), and (based on this) present our general compiler in
Section 4.2.

In the next section two sections following this we give special-tailored compilers that are more efficient
than the general one.

4.1 Computing on Partially Erasable Secrets at the Gate Level

Let s ∈ {0, 1}n be the secret involved, and let (Exp, Con) be a partially erasable form. Consider any efficient
computation g on s, which can be modeled as a poly(n)-sized circuit. Without loss of generality and to
establish notation, we consider:

– g to be length preserving (outputs n bits),
– each output bit gi separately as being computed by polynomial-sized circuits Cgi ,
– each circuit Cgi to be of depth Θ = Θ(n) for some polynomial Θ, with the highest level being the single

gate that outputs gi,
– each level θ of each circuit Cgi to consist of gates Xθ

ij with fan-in of two and fan-out of one, and

– each gate Xθ
ij (the j-th gate at the θ-th level of the circuit computing the i-th bit of g) to have sθ−1

i,2j−1

and sθ−1
i,2j as its inputs and sθ

ij as its output, so the output bits from the previous level are always read

in order – in particular, the first level of each of the circuits Cgi uses bits of the original secret s0
ij := sj

in order.

Now let us describe how we can do the computation g on s (or rather, on Exp(s, $)), without leaking too
much information.

To evaluate a gate Xθ
ij , the two corresponding input bits sθ−1

i,2j−1 and sθ−1
i,2j are reconstructed from their

expanded forms in the registers (using Con2j−1 and Con2j). The gate is evaluated, resulting in an output bit
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sθ
ij in the registers. This output bit is expanded into the partially erasable form and output to main memory8,

by using Expj . The comparison of the original versus the new gate level computation is summarized in the
Figure 3, which is a more detailed version of Figure 1 in the introduction.

Note that if we just store the values of the wires näıvely, i.e. by individually expanding the 1-bit value
of each wire to a Ψn size secret, then the overhead of our scheme will not even be constant. So we must
amortize the cost: “group” the output wires of each level of each circuit into groups of size up to n (i.e., there
are up to n wires in each group), and expand these outputs bits into a single Ψn-bit string. More precisely,
by “group” we mean that the output bits should be individually expanded by Expi dependently. This will
make sure that the overhead of the general compiler will be as claimed. For simplicity of presentation, this
amortization will not be shown explicitly.

Original Computation

sθ
ij := Xθ

ij

(

sθ−1
i,2j−1, s

θ−1
i,2j

)

sθ
ij := Xθ

ij

(

sθ−1
i,2j−1, s

θ−1
i,2j

)

gate Xθ
ijgate Xθ

ij

sθ−1
i,2j−1sθ−1

i,2j−1
sθ−1

i,2jsθ−1
i,2j

New Computation

Con2j−1, Con2j

Expj

Exp(sθ−1, $)

in the registers

Expj(s
θ
ij , $)

Fig. 3. Original versus New Computation of a Gate

The above is an informal description of Compute-in-register
(

g, (Exp, Con), Exp(s, $)
)

, which computes
g(s) by going gate-by-gate, expanding and contracting as needed. In other words the computation of g(s) is
done without leaking the secret or the intermediate computations. See Figures 4 and 5.

8 Note that even if in practice, storage locations holding expanded forms of the intermediate computations may
be overwritten, for analyzing security we can think of all the expanded forms as being written in a new memory
location. Put another way, overwriting is just one form of the imperfect erasures we are capturing.
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...Gate X1
1,1

s0
1,1 s0

1,2

1st bit of output, g1

s1
1,1

Circuit Cg1

Gate X1
n1

s0
n,1 s0

n,2

nth bit of output, gn

s1
n,1

Circuit Cgn

Fig. 4. Original circuit for computing a function g(s)

...

Exp(s0, $)Exp(s0, $)

g1 expanded gn expanded

Circuit C′
g1

Circuit C′
gn

s0
1,1 s0

1,2 s0
n,1 s0

n,2

Gate X1
11 Gate X1

n1

in the registers in the registers

Exp1 Exp1

Con Con

s1
1,1 s1

n,1

Exp(s1
1,1, $) Exp(s1

n,1, $)

Fig. 5. New Circuit for computing a function g(s) (amortization not shown)
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Let EraseReg be the operation that perfectly erases all the registers, and Reg[i] denote the i-th bit of
the registers.

Compute-in-register(g, (Exp, Con), Exp(s, $))

1 � For some efficiently computable function g, computes g(s) by proceeding gate-by-gate.
2 for i← 1, ..., n � For each bit of the output (or each circuit Cgi)
3 do
4 for j ← 1, ..., n
5 do
6 s0

ij ← sj � Initialize the “zero-th” level outputs to be the secret...
7 e0

ij ← Expj(s
0
ij , $) � ...in the expanded form.

8
9 for θ ← 1, ..., Θ � For each level of the circuit

10 do
11 for Xθ

ij ← each gate in level θ of Cgi

12 do

13 Reg[1]← Con2j−1

(

eθ−1
i,2j−1

)

� Compute the required two bits of input.

14 Reg[2]← Con2j

(

eθ−1
i,2j

)

15 Reg[3]← Xθ
ij

(

Reg[1], Reg[2]
)

16 Output to main memory eθ
ij ← Expj(Reg[3], $) � Amortization implicit.

17 EraseReg
18 return

Note that this algorithm Compute-in-register(g, (Exp, Con), Exp(s, $)) can be easily modified into one
that handles multiple inputs and/or outputs. To handle multiple inputs, just compute the bits needed from
either of the inputs; to handle multiple outputs, if g(s) outputs {yi}i, Compute-in-register outputs
{Exp(yi, $)}i). It can also be easily modified if (some parts of) the input or output is not required (and thus
not modified) to be partially erasable (for such an input, just compute on it as usual; for such an output,
just skip the expansion and directly output to main memory).

4.2 The Overall Compiler

Before giving the compiler, we need to describe how a secret is generated in the first place. Gen-Partial-

Erasable-Secret generates a uniform secret in a partially erasable way. For secrets to be generated
non-uniformly (by computing some function gen(◦) in input uniform coins), we can just do the computation
in a partially erasable way, by using Compute-in-register on the output of Gen-Partial-Erasable-

Secret.

Gen-Partial-Erasable-Secret((Exp, Con), n)

1 � Generates a random secret of length n bit-by-bit in a partial erasable way,
2 � ... using the partially erasable form (Exp, Con).

3 k
$← {0, 1}m

4 for i← 1, ...n
5 do

6 Reg[1]
$← {0, 1}

7 (Ri, x[i])← Expi(Reg[1], $)
8 EraseReg
9 return (R, k, x) � Output to main memory and return.
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In the compiler below, let S be the set of secrets in the original protocol that has to be perfectly erased,
and PartialErase be the command for partially erasing the cache, memory, and hard drives.

Compiler((Exp, Con), Πorg)

1 � Compile Πorg requiring perfect erasures for security...
2 � ... into Πnew that tolerates partial erasures, using (Exp, Con) as the expanded form.
3 for all s ∈ S of length n that are to be generated using some algorithm gen(◦) on input a random string,
4 do
5 replace by the following code:
6 “e←Gen-Partial-Erasable-Secret((Exp, Con), n)”
7 “s←Compute-in-register(gen, (Exp, Con), e)”
8 for all computations of primitives g involving s ∈ S (or rather, Exp(s, $) s.t. s ∈ S)
9 do

10 replace by the following code:
11 “Compute-in-register(g, (Exp, Con), Exp(s, $))”
12 for all instructions “Perfectly Erase”
13 do
14 replace by the following code:
15 “PartialErase”
16 return modified protocol Πnew

We will need the notion of UC-emulation:

Definition 13 (UC Emulation [10]). Protocol Πnew UC-emulates protocol Πorg if for any adversary A,
there exists an adversary S (of complexity polynomial in that of A) such that, for any environment Z and
on any input, the probability that Z outputs 1 after the following interactions differ by at most a negligible
amount:
(1) interacting with A and parties running Πnew, and
(2) interacting with S and parties running Πorg.

If A and Z are both limited to probabilistic polynomial time, then the emulation captures computa-
tional security. If they are unbounded then the emulation captures statistical security. If in addition, the
distinguishing probability of Z is 0, then the emulation captures perfect security.

Note that a protocol Πnew UC-emulating another protocol Πorg, means that Πnew preserves the security
properties of the original protocol Πorg, and does not require that Πorg be UC-secure. This notion of
emulation is the strongest notion of its kind. In particular, our result applies to static/adaptive adversaries,
byzantine/honest-but-curious adversaries, 2 party or multi-party protocols, etc. In particular, this does not
require that the original protocol Πorg be “UC-secure”.

In our case, in the models of protocol execution, instead of having perfect erasures (so on corruption,
the adversary expects to see only the current information), we have partial erasures, where the adversary
chooses a length-shrinking h and on corruption, expects to see the current information plus the partially
erased past (using h).

In modeling the corruptions, in order to capture repeated adaptive corruptions as in for instance proactive
security, the adversary can write a “recover” message on the incoming communication tape of any previously
corrupted party, after which it relinquishes control of the party. The adversary is allowed to corrupt parties
over and over again, with a sequence of “corrupt, recover, corrupt...” commands.

Now we are ready to present our main theorem.

Theorem 15. Let (Exp, Con) be an (`, α, φ)-partially erasable form. For any protocol Πorg that requires
perfect erasures (for security), the protocol Πnew = Compiler((Exp, Con), Πorg) UC-emulates Πorg, and
tolerates (maintains security even with) imperfect/partial erasures in the register model.
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Proof. We wish to prove that for any adversary AΠnew there exists an adversary AΠorg (with running time
poly related to AΠnew) such that no environment Z can tell with non-negligible advantage whether it is
interacting with AΠnew and Πnew , or with AΠorg and Πorg.

We construct the adversaryAΠorg as follows. Whenever it is supposed to show some partially erased secret
h
(

Exp(s, $)
)

to AΠnew , AΠorg sets s′ = 0 and then partially erases s′ to get h
(

Exp(s′, $)
)

. The adversary
AΠorg does the same thing for the intermediate computations.

It follows from definition 8 that, if Exp is an (`, α, φ)-partially erasable form, then as long as the total
number of erasures is less than `, then:

∆
(

h(Exp(s, $1)), ..., h(Exp(s, $`)); h(Exp(s′, $′1)), ..., h(Exp(s′, $′`))
)

≤ 2−α.

Therefore, as long as at most ` erasures are made, the environment views of the two interactions are statis-
tically close to each other. ut

This means that when designing protocols, perfect erasures can be assumed and used freely to simplify
protocol design and proof, and then later weakened into partial erasures by simply invoking our compiler.
In particular, if the original protocol is adaptively secure, forward secure, intrusion resilient, or proactively
secure, then the resulting protocol is as well. The price that we pay for this is a blow up in space by Ψ , and
a blow up in computational cost proportional to the time required for two (bit) contractions and one (bit)
expansion (done before and after each gate computation).

If the original protocol assumes secure channels (which the adversary cannot eavesdrop on), then it is
possible that some secrets are exchanged through these channels. Only in cases like this will the compiled
protocol actually change the communication complexity.

A Practical Note Throughout, we describe the construction as a general compiler, but it could be imple-
mented as a transparent layer between the existing code and the CPU hardware. This transparent layer
could for instance be implemented in hardware, to get a commodity processor that automatically makes all
the secrets partially erasable.

A Side Benefit Also, as a side benefit of using our compiler, attacks like the “cold reboot” attacks employed
by [36] could effectively be ruled out. Their attack is a recent example of exploiting the remanence effect on
DRAM to break popular disk encryption schemes.

First, they experimentally characterize the extent and predictability of memory remanence and report
that remanence times can be increased dramatically with simple techniques. They observed that at room
temperature, the time until complete data loss (in various memory technology they tested) varies between
approximately 2.5 and 35 seconds. By discharging inverted cans of “canned air” duster spray directly onto
the chips, they obtained surface temperatures of approximately -50◦C. At these temperatures, it was found
that about 0.1% of bits decayed after 60 seconds and fewer than 1% of bits decayed even after 10 minutes
without power. However, this decay rate increases dramatically with time: even if the RAM modules were
submerged in liquid nitrogen (ca. -196 ◦C), roughly 0.17% would have decayed after 60 minutes out of the
computer.

Second, they offer new algorithms for finding cryptographic keys in memory images and for correcting
errors caused by bit decay.

Third, combining their first two techniques of increasing remanence time and key extraction, they show
that their attack is practical by mounting attacks on popular disk encryption systems – BitLocker, FileVault,
dm-crypt, and TrueCrypt – using no special devices or materials. They exploited the remanence effect to
attack these systems by recovering the key (permanently residing on a “secure”, inaccessible part of the disk)
that was loaded into main memory (while the user was using the disk).

Fourth, they conclude that the memory remanence effect severely limits the ability of an operating system
to protect cryptographic key material from an attacker with physical access, and discuss several strategies
for partially mitigating these risks, noting that there is no simple remedy that would eliminate them.
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If our techniques are used to store the key in a partially erasable way, the system would be “resistant”
to the freezing attacks in the following sense. Decide how long you are willing to wait around your computer
after power off – say 10 seconds, to prevent the adversary from physically accessing it before 10 seconds have
elapsed. Experimentally characterize (or look up data) what the decay rate r for your memory technology
is after 10 seconds. (We stress that [36] observed that newer memory technology exhibits higher decay rates
and those that they tested completely decayed after 2.5 to 35 seconds.) Then, choosing the parameters for
the expanded form such that (1 − φ) ≤ r would effectively rule out the attack. In other words, once 10
seconds have passed, the partial erasures that occurred “naturally” (due to the physical characteristics of
RAM), would in effect be as good as perfect erasures.

Notice one subtle point here: that this does not require the honest parties to explicitly issue an “erase”
command on the RAM. This is certainly good for security since otherwise, the component issuing the “erase”
command would then itself be susceptible to attack/circumvention. For instance, if the BIOS is coded so that
it zeros out the RAM before the system boots, then the attacker can just code a modified BIOS which does
not perform zeroization and move the RAM chips to that system; if the OS scrubs memory before shutting
down, then the attacker can briefly cut power to the machine, then restore the power and boot a custom
kernel.

5 Our Direct Solution to the PSS with Partial Erasures

In this section and the next we look at more efficient constructions for two cases. The first (in this section)
is the case of all known proactive secret sharing schemes, and the second (in the next section) is the case
where all computations on the secrets to be erased are computable in NC0.

For simplicity, in this section we will only focus on the following simple expanded form of s: (R, k) where
R ∈ {0, 1}n×m, k ∈ {0, 1}m such that both R and k are randomly selected subject to the constraint R ·k = s.

In proactive (c, p)-threshold secret sharing, the goal is to proactively share the secret, against an adversary
that is mobile and can corrupt up to c− 1 parties in each time period. To maintain correctness and privacy,
in between time periods the parties enter a refreshing phase. At the end they get new shares. If the adversary
breaks into a party for the first time at time t, then we want to say that whatever information the adversary
can see will not allow it to infer the old shares, those that the party holds between time 1 to t− 1. Perfect
erasures is one way to guarantee that. As we will show, partial erasures are also good enough.

We refer the reader to [61,40] for the definition of a mobile adversary and the definition of a proactive
secret sharing scheme. Here we give a modified definition of proactive (c, p)-threshold secret sharing scheme
with partial erasures.

Definition 14 (View of the Adversary). Let V IEWT denote the view of the adversary E up to time
period T , i.e. the concatenation of V IEWT−1 and all the public information that E sees as well as the
information seen when breaking into at most c− 1 parties in time T . V IEW 0 is defined to be the empty set.

Definition 15 (Privacy of a proactive (c, p)-threshold secret sharing scheme with partial era-
sures). We say that a proactive (c, p)-threshold secret sharing scheme with partial erasures, Π =

(

S, (S1, . . . ,

Sp), R, D
)

is (τ, α, φ)-secure, if for all time periods T ≤ τ , for all adversaries E that breaks into at
most c − 1 parties per time period, for all partial-erasing functions h with leakage fraction φ, and for all
secret ∈ S, d(secret|V IEWT ) is at most 2−α.

Definition 16 (Robustness of a proactive (c, p)-threshold secret sharing scheme with partial
erasures). Like the perfect erasure scheme, we say a proactive (c, p)-threshold secret sharing scheme with
partial erasures Π = (S, (S1, . . . , Sp), R, D) is robust, if privacy and correctness are maintained in the
presence of less than c malicious parties.

In Section 5.1 we present a method to modify any existing proactive secret sharing scheme (satisfying
some general conditions) that uses perfect erasures, into a new scheme that preserves the functionality and
uses only partial erasures.

The conditions are:
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1. The scheme consists of 3 phases:

(a) Dealing – when the parties receive their shares.

(b) Refreshing – when the parties negotiate to create new shares, at the end of every time period.

(c) Reconstruction – when some group of parties reconstruct the secret.

2. The shares and refresh data are uniformly distributed over GF (2n).

3. The refresh data can be computed sequentially, for one party at a time.

4. All the computations can be done directly under our register model.

The proactive secret sharing schemes of [14,40] satisfy these conditions (under some minor and straight-
forward modifications to the schemes).

For concreteness, in Section 5.2 we present a particular proactive (p, p)-threshold secret sharing scheme,
against honest-but-curious mobile adversaries.

In Section 5.3 we present a proactive (c, p)-threshold secret sharing scheme, for c < 1
3p, robust against

malicious mobile adversaries.

5.1 More Efficient Compiler for Proactive Secret Sharing

The high level idea of the more efficient compiler is the following. We start with Π , a proactive (c, p)-
threshold secret sharing scheme which requires perfect erasures, that meets all the conditions stated above
(in particular, the shares are uniformly chosen from GF (2n), where n is the security parameter). Let:

1. Π call refresh

(

i, j,
{

st
ij′

}

1≤j′<j

)

to generate the refresh data (refresh accepts as arguments the

source party i, the target party j, and the refresh data sequentially generated to the other parties so
far).

2. Π call update

(

st
i,
{

st
ji

}

1≤j≤p

)

to update the shares using the refresh data received (update accepts

as arguments the old share, and all the refresh data party i received).

The compiled proactive secret sharing scheme PESS (Π) will use altered versions of these two algorithms,
refresh′ and update′. The differences are:

1. refresh
′ and update

′ take as input partially erasable forms of the shares instead of the shares them-
selves, but essentially do the same computation.

2. Our altered algorithms will do their computation bit-by-bit (that is, by using only the constant number
of constant size registers to store valuable data). In other words, for any bit number α ∈ {1 . . .m},
refresh′α will compute the αth bit of the refresh data to be sent by party i to party j, according to Π ,
and likewise for update′α. By conditions 3 and 4, this is possible.

We use auxiliary algorithms named gen1
Π(), gen2

Π() and gen3
Π() in order to generate the share parts.

These algorithms are called in the dealing and refreshing phases. Detailed code for gen1
Π(), gen2

Π() and
gen

3
Π(), and some supporting algorithms follow.

Notation The following algorithms will follow this notation:

1. Reg is the variable corresponding to the constant number of constant size registers. All other variables
are in the main memory (and in particular might be paged onto the hard drive).

2. V ar[α] in the code signify the αth bit of the variable V ar. For instance, Reg[0] is the first cell of the
register. For a matrix R such two parameters are used, for instance R[α, β].

3. [V al]α in the comments signify the αth coordinate (bit) of the computable value V al. A different notation
is used, since we are not computing the whole value but only the specified bit.
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Random-Split(funcα, arg)

1 � for each α← 1, . . . , n,
2 � split funcα(arg) into random R[α, :] ∈ {0, 1}m (row vector) and k ∈ {0, 1}m (col vector) s.t.

3 � R[α, :] · k = funcα(arg) (here, R[α, :] denotes the αth row of the matrix R)
4 � As the main text explains, we use funcα because the output is sensitive info
5 � and we want to compute it bit-by-bit in the perfectly erasable registers.
6 � The error probability is (1− 1

2n ) 1
2m , when for some α ∈ [1, n], funcα(arg) 6= 0, and k = 0m.

7 k
$
← {0, 1}m

8 for α← 1, . . . , n � for each row of R...
9 do

10 Reg[0]← 0
11 for β ← 1, . . . , m � for each column of R...
12 do

13 if k[β] = 1 and ∀l ∈ {β + 1, . . . , m}, k[l] = 0 � if β is the last column that matters.
14 then

15 Reg[0]← Reg[0]⊕ funcα(arg)
16 R[α, β]← Reg[0]
17 else

18 R[α, β]
$
← {0, 1}

19 if k[β] = 1 and R[α, β] = 1 � R[α, β] matters to the product.
20 then

21 Reg[0]← Reg[0]⊕R[α, β]
22 return (R,k)

Idα(s)

1 � Identity function, to wrap constant vectors s.t. we can use random-split to split them.
2 return s[α]

gen
1
Π

(

s1
i

)

1 � Dealer’s randomly splitting of the initial share for party Pi at time 1.
2 R1

i , k1
i ← random-split

(

Idα, s1
i

)

3 return (R1
i , k

1
i )

gen
2
Π ()

1 � Party Pi’s refreshing data computation at time t.

2 � Generate p refreshing pseudo-shares, one for Pj , that correspond to refresh

(

i, j,
{

st
ij′

}

1≤j′<j

)

3 for j ← 1, . . . , p
4 do

5
(

ρt
ij , κ

t
ij

)

← random-split

(

refresh
′
α,
(

i, j,
{

ρt
ij′ , κ

t
ij′

}

1≤j′<j

))

6 return
{

ρt
ij , κ

t
ij

}

1≤j≤p

gen
3
Π

(

(Rt
i, k

t
i),
{(

ρt
ji, κ

t
ji

)}

1≤j≤p

)

1 � Party Pi’s share updating computation.

2 Rt+1
i , kt+1

i ← random-split

(

update
′
α,
{(

ρt
ji, κ

t
ji

)}

1≤j≤p

)

3 return (Rt+1
i , kt+1

i )

Note 1. All the parameters (e.g. n, m, c, p) are assumed global.

Note 2. In the context of calling these algorithms, i should be defined to indicate Pi, which is the main party
involved. The current time t should also be defined.

Note 3. These algorithms do not handle communication between parties.

We are finally ready to describe the more efficient compiler.
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The Compiler PESS (Π) For simplicity, we will only state and prove the compiler for protocols secure against
honest-but-curious adversaries, but it can be extended to one against malicious adversaries. In particular,
we will show the transformation for malicious adversaries for the specific scheme of [40] in Section 5.3.

Dealing In original scheme Π , the dealer privately sends each party i its share s1
i . In the modified scheme

PESS (Π), for every share s1
i ∈ {0, 1}n, the dealer will generate random k1

i ∈ {0, 1}m and R1
i ∈

{0, 1}n×m, such that s1
i = R1

i · k1
i using gen1

Π

(

s1
i

)

.

She will then privately send
(

R1
i , k

1
i

)

to the party instead. To prevent confusion we will call
(

R1
i , k

1
i

)

a
pseudo-share.

Refreshing In Π , at the end of every time period t, in order to refresh their shares, party i sends party j
refresh data, st

ij .
In PESS (Π), the sending party i will instead generate a random matrix ρt

ij and a random vector κt
ij ,

such that st
ij = ρt

ij · κt
ij , using gen2

Π(). This algorithm calls the scheme-specific refresh′α.

Say party i accepts the refresh data from all the other parties. Then it generates random (Rt
i, k

t
i) s.t. Rt+1

i ·
kt+1

i = g(ρt
ji, κ

t
ji, R

t
i, k

t
i), for some 1-1 and onto function g, using gen3

Π

(

(Rt
i, k

t
i) ,
{(

ρt
ji, κ

t
ji

)}

1≤j≤p

)

.

This algorithm calls the scheme-specific update′α.
Finally, party i partially erase all the kt

i and κt
ij , resulting in h (kt

i) and h
(

κt
ij

)

respectively.
Reconstruction Any group of parties which could reconstruct the secret in the original scheme, may in

the modified scheme compute Rt
i · kt

i , and use it to compute the secret.

Remark 8 (Computation of New Shares). The computation of the new shares is done, as mentioned above,
bit-by-bit using the perfectly erasable registers, without storing any full length intermediate values. Even
though it might not be the most efficient way to compute new shares, the adversary learns no data from the
computation itself.

Remark 9 (Robustness). If robustness against a malicious dealer or malicious parties is required, a VSS
scheme may be applied to the pseudo-shares sent by the dealer, and to the refresh data sent by each of the
parties at the beginning of each time period. Indeed, a VSS scheme was used to achieve robustness in [40]
in this precise way. In our context, one must ensure that computations done in the VSS be implementable
in the register model. It is unclear whether the VSS scheme used by [40] can be directly implemented in the
register model (we can of course always do so indirectly by using Compute-in-registers as in the general
compiler, going gate-by-gate). Instead, we show how to do this direct implementation for the scheme defined
by [9], or rather its simplified version, defined by [29]. We will elaborate on this in Section 5.3.

Remark 10 (h is Adversarially Chosen). We assume that the function h (to be used by party i) is adversary
chosen in the worst case manner, and may change from time period to time period. More precisely, an
adversary may choose h in an arbitrary manner, differently for every participating party, and anew before
each time period (i.e. prior to refreshing).

Theorem 16. Let φ be the leakage fraction of the partial erasure function h. Let (Exp, Con) be an
(

`, α, φ
)

-
partially erasable form, where Exp(s, $) := (R, k) and Con(R, k) := R · k. Then PESS(Π) described above is

a
(

`
ρ , α, φ

)

-secure proactive (c, p)-threshold secret sharing scheme with partial erasures as per definition 15,

where ρ := 2(c− 1)p + p− c + 1.

Proof. Again, for simplicity, we will only prove the case of robustness against malicious adversaries for a
specific protocol in Section 5.3, where the robustness is added explicitly by the use of a VSS scheme. Here
we prove the compiler for protocols secure against honest-but-curious adversaries.

Correctness is easy to see, since by construction, the product of any pair (Rt
i, k

t
i) is the share under Π ,

and similarly the product of any pair (ρt
i, κ

t
i) is the refresh share.

The mobile adversary may corrupt at most c− 1 parties at any time period. Without loss of generality,
consider the case where the adversary corrupts exactly c− 1 parties in each time period, since by corrupting
less she can only gain less information.
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There are two types of information, perfectly erased in the perfect erasure model, and only partially
erased here: old pseudo-shares and refresh data.
Old pseudo-shares:
At any time period t, the adversary misses p − c + 1 pseudo-shares, which are then partially erased. The
pseudo-shares generated by gen

1
Π() and gen

3
Π() are random up to the product of the pseudo-share parts,

which in itself is also random. Moreover, since the adversary knows c− 1 of the pseudo-shares of time period
t, she knows 1-1 and onto functions between each of the other pseudo-shares and s. Thus, in each time period
t she learns p− c + 1 partially erased tuples related to s.
Refresh data:
Between any pair of adjacent time periods t and t + 1, the adversary may switch between parties. We will
define the following subgroups of the p parties:

– SR is the group of parties that she remains in.
– SL is the group of parties that she leaves (i.e. relinquishes control at the end of time period t, and does

not corrupt again in time period t + 1).
– SA is the group of parties that she arrives at (i.e. newly corrupts at the beginning of time period t + 1).

Clearly, |SA| = |SL|.
– SI is the group of parties that she ignores (i.e. these parties are not corrupted in either of the two time

periods).

For instance, if the adversary remains in the same c− 1 parties, then |SR| = c− 1 and SL = SA = ∅. If
the adversary corrupts disjoint parties across the time periods, then SR = ∅ and |SA| = |SL| = c− 1.
Let us look at the refresh data in each subgroup:

– SR: The adversary knows the refresh data generated between the two time periods, so the partial erasure
of them does not add any new information.

– SI : For each party Pi ∈ SI , the adversary knows some 1-1 and onto functions f and g such that s =
f (Rt

i · kt
i) and s = g

(

Rt+1
i · kt+1

i

)

. Therefore, Rt+1
i ·kt+1

i = g−1 (f (Rt
i · kt

i)), so the valuable information
in the refresh data is all known, and the partial erasure of them does not add any new information.

– SL, SA: For any party Pi in one of these two sets, the adversary can potentially gain information from
the refresh data which was received from any party Pj that is not in SR (since the refresh data sent by
them is already known). Each of the useful refresh tuples is generated by gen2

Π() as random up to the
product of the tuple parts, which in itself is also random. For simplicity, let us assume the adversary
can learn information about the secret s from each tuple independently. That is, the adversary knows a
1-1 and onto function between each tuple and s. Clearly such a function exists, though the adversary’s
knowledge of it is over estimated, since she actually knows only the relation between all the tuples used
to refresh Pi’s pseudo-share and s, and the relation between all the tuples sent by each party. Therefore,
between each two adjacent time periods t and t + 1 she learns at most 2(c− 1)p partially erased tuples
related to s.

Therefore, over τ time periods, all the adversary may learn is at most τ(2(c−1)p+p− c+1) partially erased
tuples related to s. Since the partially erasable form we are using is

(

`, α, φ
)

-partially erasable, as long as:

τ(2(c− 1)p + p− c + 1) ≤ `⇔ τ ≤ `

(2(c− 1)p + p− c + 1)
=

`

ρ
,

then we have that d(s|V IEW `) ≤ 2−α, and so PESS(Π) is a
(

`
ρ , α, φ

)

-secure proactive (c, p)-threshold

secret sharing scheme with partial erasures as per definition 15. ut

5.2 Proactive (p, p)-Threshold Secret Sharing with Partial Erasures

Now, let us apply the compiler PESS discussed in the previous section to the trivial (p, p)-threshold secret
sharing scheme secure against honest-but-curious adversaries.

The following algorithms will be used.
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add (δ, R, k)

1 � Add [R · k]δ to Reg[1].
2 � Result is returned in Reg[1].
3 for β ← 1, ..., m
4 do

5 if R[δ, β] = 1 and k[β] = 1
6 then Reg[1] = Reg[1]⊕ 1
7 return

refresh
′
α

(

i, j,
{

ρt
ij′ , k

t
ij′

}

1≤j′<j

)

1 � Compute the αth bit of the refreshing pseudo-share from Pi to Pj for refreshing time t to t + 1.
2 Reg[1]← 0
3 if j 6= p

4 then Reg[1]
$
← {0, 1}

5 else

6 for j′ ← 1, ..., p− 1
7 do

8 add
(

α, ρt
ij′ , κ

t
ij′

)

� Add
[

ρt
ij′ · κ

t
ij′

]

α
to Reg[1].

9 return Reg[1]

update
′
α

(

(Rt
i, k

t
i),
{(

ρt
ji, κ

t
ji

)}

1≤j≤p

)

1 � Compute the αth bit of the new, time t + 1 pseudo-share of Pi.
2 Reg[1]← 0
3 add(α, Rt

i, K
t
i ) � Calculate

[

Rt
i · k

t
i

]

α
into Reg[1].

4 for j ← 1, ..., p
5 do

6 add
(

α, ρt
ji, κ

t
ji

)

� Add
[

ρt
ji · κ

t
ji

]

α
to Reg[1].

7 return Reg[1]

Dealing On input (s, r) where s is the secret of length n and r random string of length poly(n, p):
1. Generate from r random

(

k1
1 , ..., k

1
p

)

∈ {0, 1}m and
(

R1
1, ..., R

1
p

)

∈ {0, 1}n×m
, such that

⊕p
i=1 R1

i ·k1
i =

s, using gen1
Π .

2. Send
(

R1
i , k

1
i

)

to Pi privately.
Note: in the original scheme, the shares si are uniform, and therefore so are the pseudo-shares (R1

i , k
1
i ).

Refreshing In between each adjacent time periods t and t + 1, each party Pi does the following, to refresh
its old pseudo-share (Rt

i, k
t
i) into a new one

(

Rt+1
i , kt+1

i

)

.

1. Generate random
(

κt
i1, ..., κ

t
ip

)

∈ {0, 1}m and
(

ρt
i1, ..., ρ

t
ip

)

∈ {0, 1}n×m, such that
⊕p

i=1 ρt
ij · κt

ij = 0,

using gen2
Π .

2. Privately send
(

ρt
ij , κ

t
ij

)

to party Pj , for all j ∈ [1, p].

3. Privately receive
(

ρt
ji, κ

t
ji

)

from party Pj , for all j ∈ [1, p].

4. Generate random kt+1
i and Rt+1

i , such that Rt+1
i · kt+1

i = Rt
i · kt

i ⊕
⊕p

j=1 ρt
ji · κt

ji, using gen3
Π .

5. Partially erase all the kt
i and κt

ij , resulting in h (kt
i) and h

(

κt
ij

)

, respectively.

Remark 11 (gen2
Π and gen3

Π are Protocol Specific). Note that in gen2
Π and gen3

Π we call refresh′α

and update′α, respectively, which are protocol specific.

Reconstruction All Parties pull together their current pseudo-share (Rt
i, k

t
i), and compute the secret s =

⊕p
i=1 Rt

i · kt
i .

Theorem 17. Let φ be the leakage fraction of the partial erasure function h. Let (Exp, Con) be an
(

`, α, φ
)

-
partially erasable form, where Exp(s, $) := (R, k) and Con(R, k) := R · k. Then the proactive (p, p)-threshold

secret sharing scheme described above is a
(

`
ρ , α, φ

)

-secure proactive (c, p)-threshold secret sharing scheme

with partial erasures as per definition 15, where ρ := 2(c− 1)p + p− c + 1.
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Proof. This is a direct application of the compiler PESS, so this theorem derives directly from theorem 16.
ut

5.3 Proactive (c, p)-Threshold Secret Sharing with Partial Erasures

Next, we will modify the efficient (c, p)-threshold proactive secret sharing protocol, secure against malicious
adversaries as defined in [40], to one which uses only partial erasures. According to their protocol, which
enhances Shamir’s secret sharing [65], each party holds the value of a random c degree polynomial in Zq

at the party’s id, and the polynomial’s value at 0 is the secret s. The shares are refreshed, by each party
sending its neighbors their value of a random polynomial whose value at 0 is 0. Each party adds the received
values to its current secret and perfectly erases the old one, as well as the update values.

Their scheme [40] is robust against malicious adversaries (that control up to c− 1 < p/2 parties), under
the discrete log assumption. Each party broadcasts gais, where the ais are his polynomial coefficients. These
can then be used by each party to verify their value is correct, yet not gain any information about the refresh
shares of the others.

Instead of this verification scheme, we will use the VSS scheme defined by [29], which do not rely on a
cryptographic assumption such as the irreversibility of discrete log, and contrary to [28] used in [40], it is
easy to fit directly into the register model.

As commonly done in VSS, we assume that broadcast channels are available.

The following algorithms will be used.

add (δ, R, k) is the same as that of the (p, p) case.

refresh
′
α

(

i, j,
{

ρt
ij′ , k

t
ij′

}

1≤j′<j

)

1 � Compute the αth bit of the refreshing pseudo-share from Pi to Pj for refreshing time t to t + 1.
2 Reg[2]← 0
3 if j < c

4 then Reg[2]
$
← {0, 1}

5 else � According to Lagrange interpolation st
ij =

∑c−1
j′=1 st

ij′ · Lj′(j), where Lj′(j) =
∏

v 6=j′
j−v

j′−v

6 Lγ

j′
(j)← 2γ

∏

v 6=j′
j−v

j′−v
� These are constants with no relation to the secrets, so they can

� be computed and stored in main memory, without revealing info
7 for j′ ← 1, ..., c − 1
8 do � Add

[

st
ij′ · Lj′(j)

]

α
to Reg[1] by going bit-by-bit of st

ij′ .

9 for γ ← 1, ..., m
10 do

11 Reg[1]← 0
12 add

(

γ, ρt
ij′ , κ

t
ij′

)

� Compute
[

st
ij′

]

γ
into Reg[1].

13 if Reg[1] = 1
14 then Reg[2] = Reg[2]⊕ Lγ

j′
(j)[α]

15 return Reg[2]

update
′
α

(

(Rt
i, k

t
i),
{(

ρt
ji, κ

t
ji

)}

1≤j≤p

)

is the same as that of the (p, p) case.
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veri

(

Rt
i, k

t
i , R̄

t(j)
i , k̄

t(j)
i

)

1 � Party Pi’s verification at time t that for a given j his share is valid.
2 � Note that the use of this algorithm in the dealing and the refreshing phases are in a sense reversed.
3 � In particular, dealing uses veri for Pi to verify the shares dealt to it by the dealer,
4 � and refreshing uses verj for Pj to verify Pi’s actions.
5 for α← 1, ..., n� Verify for every bit α.
6 do

7 Reg[1]← 0

8 add

(

α, R̄
t(j)
i , k̄

t(j)
i

)

� Compute
[

R̄
t(j)
i · k̄

t(j)
i

]

α
into Reg[1].

9 if Qj = 1
10 then add

(

α, Rt
i , k

t
i

)

� Add
[

Rt
i · k

t
i

]

α
to Reg[1].

11 if
[

gt′(j)(i)
]

α
6= Reg[1]

12 then return invalid
13 return valid

Dealing On input (s, r) where s is the secret of length n and r random string of length poly(n, p):
1. Generate a random c degree polynomial f(·) in GF (2n) (as nothing in the original protocol limits us

to Zq in particular), whose value at 0 is s (that is, the free coefficient is s). Generate from r random
(

k1
1 , . . . , k

1
p

)

∈ {0, 1}m and
(

R1
1, . . . , R

1
p

)

∈ {0, 1}n×m
, such that f(i) = R1

i · k1
i , using gen1

Π .
2. Send (R1

i , k
1
i ) to Pi privately.

3. Verifying: For robustness, the following will be used:
(a) Generate V = poly(n) more c degree polynomials g1(1)(·), . . . , g1(V )(·). For every j ∈ {1 . . . V },

generate random
(

k̄
1(j)
1 , . . . , k̄

1(j)
p

)

∈ {0, 1}m and
(

R̄
1(j)
1 , . . . , R̄

1(j)
p

)

∈ {0, 1}n×m
, such that

g1(j)(i) = R̄
1(j)
i · k̄1(j)

i , using gen1
Π .

(b) For each polynomial g1(j), send each pseudo-share (R̄
1(j)
i , k̄

1(j)
i ) to Pi privately.

(c) Each party i picks QdV (i−1)
p +1e, . . . , QdV i

p e
$← {0, 1} and broadcasts them.

(d) For every j, if Qj = 0, broadcast g′1(j) = g1(j). Otherwise, broadcast g′1(j) = g1(j) + f .
(e) Each party i will run ver to verify for every j that his values are valid (and declare if so).

Note: in the original scheme, the shares f(i) are uniform, and therefore so are the pseudo-shares (k1
i , R1

i ).
Likewise for g1(j)(i).

Refreshing In between each adjacent time periods t and t + 1, each party Pi does the following, to refresh
its old pseudo-share (Rt

i, k
t
i) into a new one (Rt+1

i , kt+1
i ).

1. Generate random
(

κt
i1, ..., κ

t
ip

)

∈ {0, 1}m and
(

ρt
i1, ..., ρ

t
ip

)

∈ {0, 1}n×m
, such that the ρt

ij · κt
ijs will

define a c degree polynomial f t
i whose value at 0 is 0 (that is, the free coefficient is 0), using gen2

Π .
2. Privately send (ρt

ij , κ
t
ij) to party Pj , for all j ∈ [1, p].

3. Privately receive (ρt
ji, κ

t
ji) from party Pj , for all j ∈ [1, p].

4. Verifying: For robustness, follow practically the same method used above by the dealer, in order to
allow validation of the refresh data:
(a) For every v ∈ {1 . . . V }, generate random

(

κ̄
t(v)
i1 , ..., κ̄

t(v)
ip

)

∈ {0, 1}m and
(

ρ̄
t(v)
i1 , ..., ρ̄

t(v)
ip

)

∈
{0, 1}n×m

, such that the ρ̄
t(v)
ij · κ̄t(v)

ij s will define a c degree polynomial g
t(v)
i with free coefficient

0, using gen
2
Π .

(b) For every v ∈ {1 . . . V }, privately send (ρ̄
t(v)
ij , κ̄

t(v)
ij ) to party Pj , for all j ∈ [1, p].

(c) Each party j picks QdV (j−1)
p +1e, . . . , QdV j

p e
$← {0, 1} and broadcasts them.

(d) For every v, if Qv = 0, calculate and broadcast g
′t(v)
i = g

t(v)
i . Otherwise, calculate and broadcast

g
′t(v)
i = g

t(v)
i + f t

i .

(e) Each party j will run ver to verify for every v that g
′t(v)
i (0) = 0 (in main memory), and that

his values are valid (and declare if so).
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5. Generate random kt+1
i and Rt+1

i , such that Rt+1
i · kt+1

i = Rt
i · kt

i +
∑p

j=1 ρt
ji · κt

ji, using gen3
Π .

6. Partially erase all the kt
i and κt

ij , resulting in h(kt
i) and h(κt

ij), respectively.

Remark 12 (gen2
Π and gen3

Π are Protocol Specific). Note that in gen2
Π and gen3

Π we call refresh′α

and update′α, respectively, which are protocol specific.

Reconstruction Any c of the parties pull together their current pseudo-share (Rt
i , k

t
i), and compute the

polynomial and set it to zero to obtain the secret.

Theorem 18. Let φ be the leakage fraction of the partial erasure function h. Let (Exp, Con) be an
(

`, α, φ
)

-
partially erasable form, where Exp(s, $) := (R, k) and Con(R, k) := R · k. Then the proactive (c, p)-threshold

secret sharing scheme described above is a robust and
(

`
V ·p+ρ , α, φ

)

-secure proactive (c, p)-threshold secret

sharing scheme with partial erasures as per definition 15, where ρ := 2(c− 1)p + p− c + 1.

Proof. Correctness in the presence of honest-but-curious adversaries is easy to see, since by construction,
the product of any pair (Rt

i, k
t
i) is the trivial share, and the product of any pair (ρt

i, κ
t
i) is the trivial refresh

share.

For the same reason, correctness in the presence of malicious adversaries is trivial, as it has been proven
in [29], and since the verification polynomials of the refresh data have free coefficient being 0, the receiving
parties can also easily verify the value of the polynomial at 0 is 0 with probability 1− 2−V .

As for privacy in the presence of malicious adversaries, the difference with the honest-but-curious case
is the addition of the VSS. This may give the adversary more information, in the form of partially erased

verification tuples (ρ̄
t(v)
ij , κ̄

t(v)
ij ), sent in step 4e (of the refresh phase, or step 3e in the dealing phase). Clearly,

any of these can only be used when g
′t(v)
i = g

t(v)
i + f t

i was broadcasted in step 4d (giving the adversary full
knowledge of it). In the worst case, all the verification tuples are related to s. Since the amount of verification
tuples sent after each time period is V p, the total sent over τ time periods is less than τV p.

Therefore, over τ time periods, all the adversary may learn is at most τ(V p + ρ) partially erased tuples
related to s. Since the partially erasable form is (`, α, φ)-secure, given the view of the adversary the distance
of the secret from uniform will be upper bounded by 2−α, as long as τ(V p+ρ) ≤ `. In other words, PESS(Π)
described above is ( `

V ·p+ρ , α, φ)-secure as per definition 15. ut

6 More Efficient Compiler for NC0

Our general compiler had to work at the gate level so that we can compute any efficient function on the
secrets just using the constant size registers; this results in a blow up in computation proportional to the time
required for two (bit) contractions and one (bit) expansion (done before and after each gate computation).
However, if all the computations on the secret can be done with constant output locality (where each bit of
the output depends only on a constant number of input bits), then we do not need to go to the gate level.

A summary of the results as to which cryptographic primitives can be computed in a constant output
locality fashion (assuming corresponding assumptions 9) is provided in Section 6. We give the more efficient
compiler in Section 6.

Restricting the computations on the secret to be of constant output locality is stronger than required.
In fact, we gave in Section 5 a proactive secret sharing protocol using partial erasures that is more efficient
than the general compiler, which does not require the computations to be of constant output locality.

9 We stress that, for our results, the assumptions do not relate to security but rather only to the efficiency of the
compiled protocol, since we can always forget about the assumptions and just use the general compiler.
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Summary of Some Results in Parallel Time Complexity The parallel time complexity of crypto-
graphic primitives has been studied in various works, including [37,33,19,47,57,3,6]. They try to minimize
the parallel time complexity of basic cryptographic primitives (or prove impossibility results). Recall that
NCi is the class of functions that can be computed by O((log n)i) depth circuits with bounded fan-in. In
particular, an NC0 function is one where each bit of the output depends on a constant number of input bits
(i.e. constant output locality); this class is also called constant parallel time, for if we had a polynomial num-
ber of processors, an NC0 function would take constant time to evaluate (in the straightforward manner).
We write NC0

c for the class of functions where each bit of the output depends on at most c input bits.
The existence of one-way functions (OWF) and pseudo-random generators (PRG) in NC1 is a relatively

mild assumption, implied by most number-theoretic or algebraic intractability assumptions commonly used
in cryptography, such as the intractability of factoring, discrete logarithms and lattice problems. On the
other hand, until the work of Applebaum, Ishai and Kushilevitz [3], there has been no convincing theoretical
answer to the question of whether there are instances of basic cryptographic primitives that can be computed
in constant parallel time (NC0). The main result in [3] is that, every “moderately easy” OWF (resp., PRG),
say computable in NC1 (or even ⊕L/poly), can be compiled into a corresponding OWF (resp., PRG)
in which each output bit depends on at most 4 input bits, i.e. in NC0

4 . They give a similar compiler for
other cryptographic primitives like one-way permutations, encryption, signatures, commitment, and collision
resistent hashing. Improvements to these (and some additional results) were made in [4,6].

Tables 1 and 2 present a quick summary of the results relevant to us (AC0 is a similar class as NC0

except that the fan-in of each gate can be unbounded).

Negative Results

Result Reference

PRF /∈ AC0 [49]

PRG /∈ NC0
2 [19]

PRG with superlinear stretch /∈ NC0
3 [19]

PRG with superlinear stretch /∈ NC0
4 [57]

Table 1. Some Negative Results in Parallel Time Complexity

For our purposes, the implication of the negative results is that: for protocols that use the corresponding
primitives on the secrets, it might be difficult to replace perfect erasures by partial erasures in the register
model more efficiently than via the general compiler.

Remark 13 (Assumptions). Most of the assumptions above (except for the subset-sum related and the in-
tractability of decoding codes) are implied by standard number-theoretic or algebraic intractability assump-
tions.

Remark 14 (Note on Encryption Schemes). For encryption schemes, the positive result only applies to the
encryption algorithm and not the decryption algorithms. In [3] it is argued that in many settings, decryption
in NC0 is impossible. However, if the scheme is restricted to a single message of bounded length, or maintains
state, then decryption can also be done in NC0. Since [3] adapts the construction used for encryption schemes
to commitments and zero-knowledge schemes, they point out that in general, for the interactive cases of these
primitives there is an analogous problem: the transformation results in an NC0 sender but does not promise
anything regarding the parallel complexity of the receiver. For more details the reader is referred to [3,4].

Remark 15 (Further Improvements). Based on the intractability of some problems from the domain of error
correcting codes, [6] obtained further improvements for some of the results, e.g. a PRG that has output and
input locality (how many bits of output each bit of input influences) of 3.
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Positive Results

Assumption Result Ref

Subset-sum related ∃ PRG with sublinear stretch ∈ AC0 [44]

Intractability in Decoding Random Linear Code ∃ OWF ∈ NC0
3 [3]

Intractability in Decoding “Sparsely Generated” Code ∃ linear stretch PRG ∈ NC0 [5]

∃ TDP whose function evaluator ∈ ⊕L/poly ∃ TDP whose function evaluator ∈ NC0
4 [3]

∃ 1 bit stretching PRG ∈ uniform-⊕L/poly ∃ PRG with sublinear stretch ∈ NC0
4 [4]

∃ 1 bit stretching PRG ∈ uniform-⊕L/poly (Priv./Pub.) Encryption Algorithm ∈ NC0
4 [4]

∃ 1 bit stretching PRG ∈ uniform-⊕L/poly ∃ Signatures ∈ NC0
4 [4]

∃ 1 bit stretching PRG ∈ uniform-⊕L/poly ∃ MACs ∈ NC0
4 [4]

∃ 1 bit stretching PRG ∈ uniform-⊕L/poly (Non-interactive) Commitment ∈ NC0
4 [4]

∃ 1 bit stretching PRG ∈ uniform-⊕L/poly (Non-interactive) ZK Prover ∈ NC0
4 [4]

∃ 1 bit stretching PRG ∈ uniform-⊕L/poly Constant round ZK Prover for NP ∈ NC0
4 [4]

∃ 1 bit stretching PRG ∈ uniform-⊕L/poly (Comp. Secure) MPC of any P-time f ∈ NC0
4 [4]

Table 2. Some Positive Results in Parallel Time Complexity

More Efficient Compiler for NC0 It is straightforward to get a more efficient compiler CompilerNC0 :
instead of going gate-by-gate as in Compute-in-register, for each output bit, reconstruct the constant
number of bits that this bit depends on in the registers (which is possible assuming the appropriate assump-
tions), compute the function in “one-shot,” and output in partially erasable form.

Theorem 19 (Compiler for NC0). For any protocol Πorg that relies on perfect erasures for security,
and in which all the computations on the secrets can be done in NC0 (assuming the appropriate assump-
tions), we have that Πnew := CompilerNC0 UC-emulates Πorg, and tolerates (maintains security even with)
imperfect/partial erasures in the register model.

7 Conclusions

The ability to erase is an important capability of honest parties in cryptographic protocols. Our general
compiler assures us that anywhere erasures can be leveraged to prove or simplify security, it should be used
liberally; at the cost of using more storage and a small computation overhead, the erasures can be imperfect
for all parts of the system, except for a constant number of constant size CPU registers.

7.1 Practical Applications

Our solution can be applied beyond cryptographic protocols to any security solution that does not assume a
trusted computation path or protected execution (which provides an environment for protected cryptographic
functions to execute without modification or exposing key information), even if the solution itself does not
explicitly erase. This is because any security solution involves some secrets and some computations on
those secrets, and unless the execution is protected, information about the secrets might leak through the
computations.

Consider hard drive encryption. Typically, the key either resides on a special part of the drive itself and
is not accessible without a PIN, or on another hardware, e.g. a USB key. Regardless of where the key resides,
on any general computing platform it has to be loaded into the main memory for decryption, and this opens
up the possibility of attacks, as shown for instance in [36].

Also, in Digital Rights Management (DRM), the owner of the computer is the adversary. Without trusted
hardware, if the file is decrypted and is present in the RAM at some point in time, then (utilizing the attack
given in [36]) the user can freeze the RAM and move it to another system to obtain the plaintext (e.g.
an MP3 music file) or even the key for the DRM system. Note that in this setting where the user is the
adversary, this attack is much easier to carry out.
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7.2 Alternative Models of Partial Erasures

The function h is assumed to be a function only of the storage contents to be erased. Furthermore, we
assume that h is fixed in advance. This choice seems to adequately capture erasures that are only partially
successful due to the physical properties of the storage media. However, this modeling may not adequately
capture situations where the failure to erase comes from interactions with an operating system, for instance
memory swapping, and caching. In order to capture this sort of erasure failures, one might want to let h
depend on information other than the contents to be erased, or alternatively to be determined adaptively as
the computation evolves.

Also, notice that under our current model, we cannot make sense of partially erasing one bit. One possible
way of modifying the model might be to consider a length preserving h that is randomized. Obviously,
without any extra conditions on h, no security can be attained, since h : {0, 1}m 7→ {0, 1}m can just ignore
the randomness and output the entire input, which means that nothing is being erased. To this end, consider
the condition that H∞

(

h(k)
)

≥ (1 − φ)m, meaning that h(k) must still contain at least (1 − φ)m bits of
randomness. If k is random then the condition does not help, so consider any fixed k. (This models for
instance the situation in which the hardware might have suffered from burnt-in or other effects that make k
non-random.) However, regardless of what condition we pick, it is difficult to prove any meaningful security
guarantees. At a high level, this is because for a fixed k, the adversary can always do a straightforward
encoding and decoding so that the output of h would allow him to decode 2φm different ks, so he breaks the
scheme for all of those ks.

One can also ask why we have to split the input to several parts Exp(s, $) := (Ext(R, k) ⊕ s, R, k),
where only one part k needs to be erased, independently of the other parts. In a sense the result is stronger
because only one small part needs to be partially erased. On the other hand, this implicitly relies on memory
segmentation: when the honest parties erase using h adversarially designed, we need to trust the OS for
memory protection. This is a pretty reasonable assumption, but should not stop us from asking whether it
can be removed.

Certainly, h cannot be applied to the whole expansion without any other restrictions, since h(Ext(R, k)⊕
s, R, k) can be just the function that computes and outputs s. In the case that the secret s itself is random, we
do not need the one-time pad mechanism, and we claimed in Section 3 that we can just use Exp(s, $) := (R, k)
s.t. R · k = s. Focusing on this case, now the question becomes: can h be applied on (R, k)?

Since we are considering any length-shrinking h, we are dealing with the case in which the source has
good min-entropy even given the adversary’s view (of the partially erased secret). In other words we are
dealing with the most general form of randomness sources; the R part that does not need to be erased
corresponds to the random seed necessary for randomness extraction in this general case. In other words,
without additional restrictions on h, it is impossible to extract randomness from the conditional distribution
(R, k)|h(R, k), since general extractors require an independent seed. Following this view point, the difference
between h(R, k) and h(k) is that in the former, the “seed” is contaminated and no longer independent of the
source k, whereas in the latter, R is still independent of the source and can be used as a seed for a general
randomness extractor.

This leads us to restricting h. If we limit h to s.t. (R, k)|h(R, k) is some form of weak source of randomness
for which deterministic extraction is possible (without an independent seed), then (if the extraction can be
easily inverted) we can construct corresponding partially erasable forms for which h can be applied on
everything to be erased, and the need to rely on memory segmentation is removed.

7.3 Near Optimal Strong Extractors Computable with Constant Memory

If we could find an optimal strong extractor that is computable with constant memory, then using the
partially erasable form based on such an extractor, our compiler would essentially match the lower bound
on the expansion required, i.e. it is about as storage efficient as possible. Unfortunately we do not know of
any such extractors.
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