
A NEW MESSAGE RECOGNITION PROTOCOL FOR AD HOC PERVASIVE
NETWORKS

ATEFEH MASHATAN1 AND DOUGLAS R. STINSON2

Abstract. We propose a message recognition protocol which is suitable for ad hoc pervasive

networks without the use of hash chains. Hence, we no longer require the sensor motes to save

values of a hash chain in their memories. This relaxes the memory requirements. Moreover, we

do not need to fix the total number of times the protocol can be executed which implies a desired

flexibility in this regard. Furthermore, our protocol is secure without having to consider families of

assumptions that depend on the number of sessions the protocol is executed. Hence, the security

does not weaken as the protocol is executed over time. Last but not least, we provide a practical

procedure for resynchronization in case of any adversarial disruption or communication failure.

1. Introduction

In this paper, we examine the notion of message recognition which is a weaker notion compared to
message authentication. It refers to the process where two parties initially meet in an authenticated
setting, and later, one party is assured that the received messages over the insecure channel is
sent from the same second party. In other words, message recognition provides data integrity
with respect to the source of the message. Standard approaches of public-key and secret-key
cryptography provide many proposals for message authentication or recognition, digital signature
schemes for instance. However, these techniques either require enough computational power to
handle public-key operations, or they assume the existence of a shared secret. These assumptions
may not be reasonable for some constraint scenarios such as ad hoc pervasive networks. Moreover,
assuming a trusted third party in ad hoc networks settings is often undesirable. Indeed, constraint
devices such as sensor network motes or RFID tags spread over a hostile environment have limited
computational power and it maybe unrealistic to assume the availability of confidential channel to
pre-authenticate some data, such as shared secret-key.

Let Alice and Bob be small devices, such as sensor motes, to be spread in a hostile environment.
They once meet in an authenticated setting. Later, Alice sends messages to Bob and she wants Bob
to recognize the messages that are sent from her. The adversary, Eve, is present all the time and
would like to make Bob recognize a message sent from Eve as a message from Alice. Eve has the

Date: July 2, 2008.
1 Department of Combinatorics and Optimization
amashatan@uwaterloo.ca
2 David R. Cheriton School of Computer Science
dstinson@uwaterloo.ca

University of Waterloo
Waterloo, Ontario CANADA N2L 3G1
.

1



ability to choose messages and make Alice send them to Bob. Note that Eve wins if Bob recognizes
a message that Alice has never sent to be a message from Alice.

The common approach in the literature is to assume the availability of two channels: an authen-
ticated narrow-band channel for the initialization step and the usual insecure broadband channel.
The authenticated channel is denoted by ⇒ and the insecure channel by →. The adversary is
assumed to have full control over the messages sent over the insecure channel. She can listen to
these messages, modify them or stops any flow over this channel. She can also insert a new message
of her choice over this channel. On the other hand, she can only read the messages sent over the
authenticated channel, but cannot modify them or stall them from delivery.

Recently, there has been a lot of activities in this area of research to design message recognition
protocols. Assuming availability of a time-stamping service or the use of signatures, [1] proposes
a message recognition protocol. Assuming a rather heavy amount of computation and communi-
cation, [6] proposes a recognition protocol called ‘Remote User Authentication Protocol’. Using a
hash chaining technique, [5] and [7] proposed an interactive recognition protocol where the number
n is fixed to be the maximum number of messages to be authenticated. Each pair of users willing
to communicate, must have a separate pair of hash chain which puts a relatively heavy memory
requirement on the sensor motes. Furthermore, the security assumptions for this protocol depend
on the number of sessions the protocol has been executed which gives birth to the notion of “depth-i
security”. We briefly summarize the existing results and discuss why they need to be improved.

We further propose a new design for message recognition in ad hoc pervasive networks and ex-
plain the advantages of using this new design compared to previous alternatives. Our proposed
recognition protocol does not make use of hash chains. As a result, we no longer require the sensor
motes to save values of a hash chain in their memories. This relaxes the memory requirements.
Moreover, the passwords are set to be chosen at random in each session. Hence, they are indepen-
dent of one another and are being refreshed in each session. This can be done for any arbitrary
number of times, so we do not need to fix the total number of times the protocol can be executed.

As the passwords corresponding to each session are chosen at random and are independent of
one another, we do not need to consider assumptions that depend on the number of sessions the
protocol is executed. Consequently, the security does not weaken as the protocol is executed over
time. We commit to a password by sending its hash value, so that Eve cannot change it. Further,
we need to bind two consecutive passwords, in order to detect adversarial intrusions and to be
able to resynchronize in such a case. Last but not least, we provide a practical procedure for
resynchronization in case of any possible adversarial disruption or communication failure.

Section 2 summarizes the existing results on message recognition protocols. In Section 3, we
propose a new message recognition protocol and its resynchronization technique followed by a
discussion about the advantages of using this protocol. Section 5 is devoted to proof the security
of this protocol based in the assumptions listed in Section 4.

2



2. Literature review on Message Recognition Protocol

Here, we briefly examine the existing recognition protocols and discuss their performance and
practicality in ad hoc pervasive settings where communication bandwidth, computational power,
and memory capacity are rather low.

Anderson et. al. proposed the Guy Fawkes protocol in [1]. The first variant of this protocol
assumes that a time-stamping service is available for every session. The second variant avoids this
assumption by using a signature in the initialization step. Moreover, it requires that users commit
to messages one session a head of time. That is, users are supposed to perform two sessions to
authenticate a single message.

The ‘Remote User Authentication Protocol’ was proposed in [6]. It uses a message authentication
code (MAC) and requires that users compute a lot of MAC values. The MAC values are sent over
the authenticated channel. This is a concern in our setting since the authenticated channels usually
have low bandwidth. Moreover, the amount of computations and communication assumed in this
protocol may not be desirable in a pervasive network with devices with low computational power.

The ‘Zero Common-Knowledge (ZCK)’ protocol was proposed in [7]. They use the values of a
hash chain as keys for a MAC. This protocol was implemented in [4] as a proof-of-concept. The
observations from this implementation ensured that this protocol is suitable for devices with low
computational power, low code space, low communication bandwidth and low energy resources. It
also raised a couple of areas of concern, mainly denial-of-service and memory complexity.

Note that [4] explored the practicality of the ZCK protocol and not its security proof. Later, [5]
found a problem in the security proof of this protocol and proposed a variant to fix the problem.
Similar to the original ZCK protocol, they form a hash chain by fixing the number n to be the
maximum number of messages to be authenticated. Alice and Bob randomly choose a0 and b0,
respectively. Then, they respectively form hash chains ai = h(ai−1) and bi = h(bi−1), i = 1, . . . , n.
Note that for each pair of users willing to communicate, there must be a separate pair of hash
chains. This means that if a sensor mote wants to communicate with m users, it has to deal with m

different hash chains of length n. This is of concern when dealing with sensor motes in a pervasive
network with memory constraints, also noted by [4].

Furthermore, [5] has to consider security assumptions that depend on the number of sessions the
protocol has been executed in order to prove the security of their protocol in the standard model. In
particular, they have to treat the first session separately and then deal with the security of session
i inductively. In other words, they prove “depth-i security” of their protocol based on assumptions
such as “depth-i non-invertability”, “depth-i Second Preimage Resistance”, “depth-i unforgability”,
and “depth-i combined security”. In other words, they are with families of assumptions that should
hold for each i, 1 ≤ i ≤ n. As they note in their paper, one could argue that, as the number of
times the protocol is executed, its security weakens.

It is of interest to design a message recognition protocol that avoids assumptions that depend on
the number of sessions the protocol has been executed and do not require the devices to have a high
enough memory capacity to save several hash chains. Next, we describe a new message recognition
protocol with such properties.

3



3. A New Message Recognition Protocol Without the Use of Hash Chains

In this section, we describe the details of our proposed protocol. The initialization phase, exe-
cution of the protocol, and the resynchronization process are separately described. The section is
concluded by examining the advantages of using this protocol in comparison to previous designs.

We begin by describing the internal states of Alice and Bob. Internal state of Alice includes:

• x0 and x1: the passwords for this session and the next session, respectively.
• X0 = H(x0) and X1 = H(x1): the committing hash values of the passwords.
• X0 = H(x0, X1) = H(x0, H(x1)): the binding hash value of the passwords.
• y∗−1, Y ∗0 , Y∗0 : Bob’s most recent password, committing hash value, and binding hash value

accepted by Alice.

Similarly, internal state of Bob includes:

• y0 and y1: the passwords for this session and the next session, respectively.
• Y0 = H(y0) and Y1 = H(y1): the committing hash values of the passwords.
• Y0 = H(y0, Y1) = H(y0, H(y1)): the binding hash value of the passwords.
• x∗−1, X∗0 , X ∗0 : Alice’s most recent password, committing hash value, and binding hash value

accepted by Bob.

In this protocol, x0 and y0 are considered to be passwords of the current session. Similarly,
x1 and y1 are the passwords of the next session. We commit to a password by sending its hash
value, so that Eve cannot change it. Further, we bind two consecutive passwords, in order to detect
adversarial intrusions and to be able to resynchronize in such a case.

Alice performs the initialization phase as follows:

• Choose random x0 and x1.
• Compute X0 := H(x0), X1 := H(x1), and X0 := H(x0, X1).
• Send X0,X0 to Bob over the authenticated channel.
• Receive Y0,Y0 from Bob over the authenticated channel.
• Let y∗−1 :=⊥, Y ∗0 = Y0, and Y∗0 = Y0.

Similarly, Bob executes the initialization phase according to the following steps:

• Choose random y0 and y1.
• Compute Y0 := H(y0), Y1 := H(y1), and Y0 := H(y0, Y1).
• Receive X0,X0 from Alice over the authenticated channel.
• Send Y0,Y0 to Alice over the authenticated channel.
• Let x∗−1 :=⊥, X∗0 = X0, and X ∗0 = X0.

The initialization phase of the protocol is depicted in Figure 1. Next, we move on to the
description of the proposed message recognition protocol illustrated in Figure 2.

On input (m, Bob), Alice’s execution can be described as follows:

• Choose a random x2.
• Compute X2 := H(x2),X1 := H(x1, X2), and h = H[m, x0].
• Send m, h to Bob and wait to receive y′0, Y

′
1 ,Y ′1 from Bob. Resend m, h if Bob did not

respond.
4



Alice Bob
Choose random x0 and x1 and form Choose random y0 and y1 and form
X0 := H(x0), X1 := H(x1), Y0 := H(y0), Y1 := H(y1),

and X0 := H(x0, X1)
X0,X0
=====⇒ and Y0 := H(y0, Y1)

Y0,Y0⇐=====

Let y∗−1 :=⊥, Y ∗0 = Y0, and Y∗0 = Y0. Let x∗−1 :=⊥, X∗0 = X0, and X∗0 = X0.

Figure 1. Initialization Phase of the New Message Recognition Protocol

• If H(y′0) = Y ∗0 and H(y′0, Y
′
1) = Y∗0 , then send (x0, X1,X1) to Bob and update your internal

state: y∗−1 := y′0, Y ∗0 := Y ′1 , Y∗0 := Y ′1, x0 := x1, x1 := x2, X0 := X1, X1 := X2, and
X0 := X1. Otherwise, initiate resynchronization with Bob.

Bob, on the other hand executes the protocol in the following manner:

• After receiving m′, h′, choose a random y2.
• Compute Y2 := H(y2) and Y1 := H(y1, Y2).
• Send y0, Y1,Y1 to Alice and wait to receive x′0, X

′
1,X ′1. Resend y0, Y1,Y1 to Alice if Alice

did not respond.
• If H(x′0) = X∗0 and H(x′0, X

′
1) = X ∗0 , and h′ = H[m′, x′0], then update your internal state:

x∗−1 := x′0, X∗0 := X ′1, X ∗0 := X ′1, y0 := y1, y1 := y2, Y0 := Y1, Y1 := Y2, and Y0 := Y1, and
output (Alice, m′). Otherwise, initiate resynchronization with Alice.

Internal-state of Alice: Internal-state of Bob:
x0, x1, X0, X1, X0, y∗−1, Y ∗0 ,Y∗0 . y0, y1, Y0, Y1, Y0, x∗−1, X∗0 ,X∗0 .

Alice Bob

Receive input (m, Bob)
Choose a random x2 and form
X2 := H(x2),X1 := H(x1, X2).

Compute h = H[m, x0].
m, h

−−−−−−−−−−−→ Receive m′, h′.

Choose a random y2 and form

Receive y′0, Y ′1 ,Y′1.
y0, Y1,Y1←−−−−−−−−−−− Y2 := H(y2),Y1 := H(y1, Y2).

If H(y′0) = Y ∗0 and H(y′0, Y ′1 ) = Y∗0 ,
then send (x0, X1,X1) and
update your internal state:

y∗−1 := y′0, Y ∗0 := Y ′1 , Y∗0 := Y′1,
x0 := x1, x1 := x2,
X0 := X1, X1 := X2, X0 := X1.

else initiate resynchronization.
x0, X1,X1−−−−−−−−−−−→ Receive x′0, X′1,X ′1.

If H(x′0) = X∗0 , H(x′0, X′1) = X∗0 ,
and h′ = H[m′, x′0],

then update your internal state:
x∗−1 := x′0, X∗0 := X′1, X

∗
0 := X ′1,

y0 := y1, y1 := y2,
Y0 := Y1, Y1 := Y2, Y0 := Y1,
and output (Alice, m′).

else initiate resynchronization.

Figure 2. New Message Recognition Protocol

In case of no adversarial intrusion or communication failure, all the conditions verify and Alice
and Bob will not initiate a resynchronization process. When they realize that one of the conditions
does not hold, they suspect a communication failure or a possible adversarial intrusion. Hence,

5



they need to resynchronize in order to make sure they have the correct commitment and binding
hash values. The synchronization process is illustrated in Figure 3. Bob sends y0, Y1,Y1 to Alice
and Alice sends x0, X1,X1 to Bob. Note, Alice should already have y0, Y1 and is verifying if they
match with what she has. Similarly, Bob is verifying if x0, X1 match with what he has. However,
the values of X1 and Y1 are new. It is possible for the adversary to make either Alice or Bob to
compute a binding hash value in a bogus session. In that case, the binding hash value is being
refreshed. Note that the resynchronization process is not symmetrical. This is due to the fact that
Bob may detect an intrusion after Alice has updated her state. In this case, the values x0, X1,X1

that Alice sends over the resynchronization process need to be verified differently.

Internal-state of Alice: Internal-state of Bob:
x0, x1, X0, X1, X0, y∗−1, Y ∗0 ,Y∗0 . y0, y1, Y0, Y1, Y, x∗−1, X∗0 ,X∗0 .

Alice Bob
Choose a random x2 and form Choose a random y2 and form
X2 := H(x2),X1 := H(x1, X2). Y2 := H(y2),Y1 := H(y1, Y2).

Receive y′0, Y ′1 ,Y′1.
y0, Y1,Y1←−−−−−−−−−−−

x0, X1,X1−−−−−−−−−−−→ Receive x′0, X′1,X ′1.

If y∗−1 = y′0 and Y ∗0 = Y ′1 , If x∗−1 = x′0 and X∗0 = X′1,
then Y∗0 := Y′1, then X∗0 := X ′1,
else initiate resynchronization. else if H(x′0) = X∗0 and H(x′0, X′1) = X∗0 ,

then x∗−1 := x′0 and X∗0 := X′1, X
∗
0 := X ′1.

else initiate resynchronization.

Figure 3. The Resynchronization Process

Since we are not using a hash chain, the memory requirement on the devices is relaxed. The
octuple (x0, x1, X0, X1,X0, y

∗
−1, Y

∗
0 ,Y∗0 ) is all Alice needs to communicate with Bob and she will

need another octuple for each different user. In the previous protocols, the devices had to deal with
a hash chain for every single device they wanted to communicate with. Storing all the values of a
hash chain, for example a0, a1, . . ., an is too demanding for low-end devices. On the other hand,
storing only the root value of the hash chain, for instance a0, requires too many computations at
each session. The alternative is to employ a time-storage trade-off and store some of the hash values,
see for example [2]. Still, there are some storage and computational requirements associated with
this implementation. Our proposal for not having to deal with a hash chaining technique avoids
any memory or computational requirement of this nature for every session.

Moreover, the passwords are set to be chosen at random in each session. Hence, they are
independent of one another and are being refreshed in each session. As a result, we do not need to
consider assumptions that depend on the number of sessions the protocol is executed. Consequently,
the security does not weaken as the protocol is executed over time.

Furthermore, the devices can run this protocol as many times as they want and the total number
of sessions is not fixed. This provides extra flexibility compared to the protocols based on the hash
chain technique. Next, we look at the security assumptions relevant for this new protocol.

6



4. Security Assumptions

In this section, we define new notions of hash function security, mainly Paired Preimage
Resistance, (PPR), Paired Second-Preimage Resistance, (PSPR), Paired Collision Re-
sistance, (PCR), Binding Preimage Resistance, (BPR) . Each notion is presented as a
game between a player Oscar and a Challenger. Note that these assumptions are independent of
the number of sessions the protocol has been executed. In other words, in contrast to the approach
taken in [5], where they have to assume “depth-i non-invertability”, “depth-i Second Preimage
Resistance”, “depth-i unforgability”, and “depth-i combined security” for every i, 1 ≤ i ≤ n, we
are only assuming four assumptions.

Oscar Challenger

Choose random y0 and y1 and form
Y0 := H(y0) and Y0 := H(y0, Y1).

Y0,Y0←−−−−−

Find y′0 and Y ′1 .
y′0, Y ′1−−−−−→

Eve wins if Y0 = H(y′0) and
Y0 = H(y′0, Y ′1 ).

Figure 4. Paired Preimage Resistance

Depicted in Figures 4 is the PPR notion. We note that the PPR property is analogous to the
notion of “depth-2 non-invertability” defined in [5]. Furthermore, this one assumption is replacing
a whole family of assumptions “depth-i non-invertability”, for 1 ≤ i ≤ n.

Oscar Challenger

Choose random x0 and x1 and form
X1 := H(x1).

x0, X1←−−−−−

Find x′0 and X′1, such that

(x0, X1) 6= (x′0, X′1)
x′0, X′1−−−−−→

Eve wins if H(x0) = H(x′0) and
H(x0, X1) = H(x′0, X′1).

Figure 5. Paired Second-Preimage Resistance

Figure 5 illustrates the PSPR notion. This notion is analogous to “depth-2 Second Preimage
Resistance” defined in [5]. It is replacing the family of assumptions “depth-i Second Preimage
Resistance”, for i, 1 ≤ i ≤ n.

The notion of PCR is depicted in Figure 6. Analogous to this notion, [5] defines “depth-2 unfor-
gability”. Note that the PCR notion is replacing a family of assumptions “depth-i unforgability”,
for i, 1 ≤ i ≤ n.

In Section 5, we will see that the PCR, PPR, and PSPR notions correspond to attacks that start
and finish over one session. Moreover, attack scenarios spanning over two sessions are also analyzed
and the BPR notion illustrated in Figure 7 is associated to these attacks.

Next, we prove the security of our protocol based on these assumption that PPR, PSPR, PCR,
and BPR games are hard to win.

7



Oscar Challenger

Choose random x0, x1, x2 and and form
X0 := H(x0), X1 := H(x1), X2 := H(x2),
X0 := H(x0, X1) and X1 := H(x1, X2) .

X0,X0←−−−−−−
m−−−−−−→ Compute h := H(m, x0).

h←−−−−−−

Choose m such that m 6= m′.
m′, h′
−−−−−−→ Eve wins if h′ = H(m′, x0).

Figure 6. Paired Collision Resistance

Oscar Challenger

Choose random y0, y1, y2 and and form
Y ∗0 := H(y0), Y1 := H(y1),Y2 := H(y2),

Y ∗0 ,Y∗0←−−−−−− Y∗0 := H(y0, Y1), and Y1 := H(y1, Y2).

Y∗0 6= (Y∗0 )′
(Y∗0 )′
−−−−−−→

y0, Y1,Y1←−−−−−−

Y ′1−−−−−−→ Eve wins if H(y0, Y ′1 ) = (Y∗0 )′.

Figure 7. Binding Preimage Resistance

5. Security of the Proposed Recognition Protocol

Recall that the goal of the adversary is to make Bob accept a message m′ that was never sent
from Alice. A successful attack is one that Bob is deceived and he outputs (Alice, m′).

Let (x0, x1, X0, X1,X0, y
∗
−1.Y

∗
0 ,Y∗0 ) and (y0, y1, Y0, Y1,Y0, x

∗
−1, X

∗
0 ,X ∗0 ) be the internal states of

Alice and Bob, respectively. Now, assume that Eve, having been passive all along, mounts a
successful attack for the first time and Bob actually outputs (Alice, m′), where m 6= m′. Since, Eve
had been passive before this attack, we can assume that y∗−1 = y0, Y

∗
0 = H(y0) = Y0,Y∗0 = Y0 =

H(y0, H(y1)), x∗−1 = x0, X
∗
0 = X0 = H(x0), and X ∗0 = X0 = H(x0, H(x1)). Eve may complete her

attack in one session, or she may mount an attack that spans over more than one session. Next,
we examine one-round attacks.

5.1. One-session Attacks.
In order to exhaustively list all possible one-round attacks against our protocol, we adapt the

notation of [3] in labelling different orderings of the flows. This notation labels each flow sent by
the adversary by either A, if the recipient is Alice, or by B, when the recipient is Bob. For example,
an ordering of ABAB corresponds to the following attack scenario:

• A: Eve sends m to Alice and she responds with m, h.
• B: Eve sends m′, h′ to Bob and he replies with y0, Y1,Y1.
• A: Eve sends y′0, Y

′
1 ,Y ′1 to Alice and receives x0, X1,X1 from her.

• B: Eve sends x′0, X
′
1,X ′1.

8



It is proved in [3] that the number of different possible attacks against a three round protocol is(
4
2

)
= 6. These attacks are described, using the above mentioned labelling, to be AABB, ABBA,

BABA, ABAB, BBAA, and BAAB. Next, we will analyze each of these attack scenarios.
It can be proved that the BABA attack scenario can be reduced to the ABBA attack. In other

words, if the adversary can mount a successful attack of type BABA, then she also succeeds in the
ABBA attack scenario. Similarly, one can show that the BAAB and ABBA attack scenarios will
be reduced to the ABAB case. These three reductions are described in the Appendix. Hence, it
remains to investigate the AABB, BBAA, and ABAB attack scenarios. We prove that the AABB,
BBAA, and ABAB attacks are not possible by reducing them to the PPR, PSPR, or PCR games.

5.1.1. Attack of Type AABB.
Illustrated in Figure 8 is the attack of type AABB. In this attack scenario, Eve finishes her

interactions with with Alice before she starts her interactions with Bob. In other words, Eve has
to first deceive Alice in order to get her to reveal the information she needs to then deceive Bob.

Alice Eve Bob

m←−−−−−−−−−−− A

m, h
−−−−−−−−−−−→

y′0, Y ′1 ,Y′1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

B
m′, h′

−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−

B
x′0, X′1,X ′1−−−−−−−−−−−→

Figure 8. Attack of Type AABB

If Eve successfully deceives Alice, then she receives (x0, X1,X1). Now, Eve computes h′ =
H(m′, x0), for m′ of her choice. She then sends m′, h′ to Bob. Finally, she completes her attack
with setting (x′0, X

′
1,X ′1) = (x0, X1,X1) and sending it to Bob.

In order to deceive Alice, Eve has to find y′0 and Y ′1 such that Y0 = H(y′0) and Y0 = H(y′0, Y
′
1),

where Y0 and Y0 were transmitted in the session immediately before the attack. Note that Eve,
not having seen (y0, Y1), has sent (y′0, Y

′
1), which has been accepted by Alice. This is exactly the

problem of PPR, depicted in Figure 4.

5.1.2. Attack of Type BBAA.
The attack of type BBAA is illustrated in Figure 9. In this scenario, Eve interacts with Alice

after she has finished interacting with Bob. That is, she receives (y0, Y1,Y1) from Bob before she
has to choose (y′0, Y

′
1 ,Y ′1). If she chooses (y′0, Y

′
1 ,Y ′1) such that (y0, Y1) 6= (y′0, Y

′
1) and remains

undetected by Alice, then, Eve can be reduced to a successful player against the PSPR game of
Figure 5. We deal with the case where (y0, Y1) = (y′0, Y

′
1) and Y1 6= Y ′1 in Section 5.2. The only

remaining case is that, having received (y0, Y1,Y1) from Bob, Eve lets (y′0, Y
′
1 ,Y ′1) = (y0, Y1,Y1) to

avoid being detected by Alice.
9



Alice Eve Bob

B
m′, h′

−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−

B
x′0, X′1,X ′1−−−−−−−−−−−→

m←−−−−−−−−−−− A

m, h
−−−−−−−−−−−→

y′0, Y ′1 ,Y′1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

Figure 9. Attack of Type BBAA

A successful attack of this type implies that Bob has accepted m′. That is, not having seen
(x0, X1), Eve has found x′0, X

′
1. Once Eve finds the appropriate x′0 and X ′1, she can compute

h′ = H(m′, x′0), for an m′ of her choice. Note that Eve has received X0 and X0 from the previous
session. Now, she has to find x′0, X

′
1 such that X0 = H(x′0) and X0 = H(x′0, X

′
1). This translates

to the notion of PPR if we replaces each x value by its corresponding y value.

5.1.3. Attack of Type ABAB.
Figure 10 illustrates the attack of type ABAB. In this attack, Eve receives the correct (y0, Y1,Y1)

from Bob before she has to send (y′0, Y
′
1 ,Y ′1) to Alice. As it was discussed in the case of the BBAA

attack, Eve will be detected by Alice unless she sets (y′0, Y
′
1 ,Y ′1) = (y0, Y1,Y1). This way Alice will

not detect Eve and she will reveal (x0, X1,X1). The adversary has two choices now. She either sets
(x′0, X

′
1) = (x0, X1) and send it to Bob, or she sends (x′0, X

′
1) to Bob where (x′0, X

′
1) 6= (x0, X1).

We will analyze each of these two cases separately.

Alice Eve Bob

m←−−−−−−−−−−− A

m, h
−−−−−−−−−−−→ B

m′, h′
−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−

y′0, Y ′1 ,Y′1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

B
x′0, X′1,X ′1−−−−−−−−−−−→

Figure 10. Attack of Type ABAB

Let us first consider the case where (x′0, X
′
1) = (x0, X1). In this case, the adversary has collected

(X0,X0) from previous session. She then sends m to Alice and Alice replies with (m, h). She will
then send (m′, h′) to Bob. At this point the rest of the flows are determined to be the following:
She receives (y0, Y1,Y1) from Bob, sets (y′0, Y

′
1 ,Y ′1) = (y0, Y1,Y1), and sends it to Alice. Further,

10



she receives (x0, X1,X1) from Alice, lets (x′0, X
′
1,X ′1) = (x0, X1,X1), and sends it Bob. Hence, this

case is exactly the notion of PCR depicted in Figure 6.
The second case is when (x′0, X

′
1) 6= (x0, X1). Assume that Eve can mount a successful attack

of type ABAB with (x′0, X
′
1) 6= (x0, X1). That is, she has collected X0,X0 from previous session.

She chooses m and receives h such that h = H(m, x0). Then, she submits m′, h′. Finally, she
receives x0, X1 and she is supposed to send x′0, X

′
1 such that (x′0, X

′
1) 6= (x0, X1), H(x0) = H(x′0),

H(x0, X1) = H(x′0, X
′
1), and h′ = H(m′, X ′0). We reduce Eve to a successful player against the

Challenger of PSPR game, depicted in Figure 5. The reduction is illustrated in Figure 11.

Eve Oscar Challenger

Choose random x0 and x1

Let X0 := H(x0)
x0, X1←−−−−−− and form X1 := H(x1).

and X0 := H(x0, X1).
X0,X0←−−−−−−

m−−−−−−→ Compute h := H(m, x0).

h←−−−−−−

m′, h′
−−−−−−→

x0, X1←−−−−−−

x′0, X′1−−−−−−→ Check if (x′0, X′1) 6= (x0, X1)
x′0, X′1−−−−−−→

Oscar wins if H(x0) = H(x′0)
and H(x0, X1) = H(x′0, X′1).

Figure 11. Reducing Eve to a Player Against the Challenger of PSPR

Note that, Oscar is playing against the Challenger of PSPR and at the same time he is playing
the role of both Alice and Bob against Eve.

5.2. Two-session Attacks.
Now consider attack scenarios which span over two or more sessions. That is the adversary is

active but remains undetected in all sessions of the attack. She then submits her message in the
last session of the attack. If she tampers with y0, Y1, x0, or X1 and remains undetected, then we go
back to the cases described above. Hence, it remains to examine the cases when she changes the
binding hash values. We look at the case where Eve changes the value of Y1 to Y ′1. The case where
Eve alters X1 to X ′1 is analogous due to the symmetry of the protocol structure.

Assume that Eve changes Y1 to Y ′1 and does not touch y0 or Y1. She goes undetected in this
session because Alice verifies y0 and Y1, but only records Y ′1 without verification. She then updates
her state as follows y∗−1 := y0, Y ∗0 := Y1, (Y∗0 )′ := Y ′1.

Now, in the next session, Alice sends (y0, Y1,Y1) and Eve has to change it to an appropriate
(y′0, Y

′
1 ,Y ′1) to remain undetected. Otherwise, Alice will call for resynchronization. Alice checks to

see if H(y′0) = Y ∗0 and H(y′0, Y
′
1) = (Y∗0 )′. We treat the two cases y0 = y′0 and y0 6= y′0 separately.

If H(y′0) = Y ∗0 and y0 6= y′0, then Eve having seen y0 has found y′0 such that H(y′0) = H(y0).
This means that Eve has found a second pre-image of y0.

11



On the other hand, when y0 = y′0, the condition H(y′0) = Y ∗0 holds. Then, Alice verifies to see if
H(y0, Y

′
1) = (Y∗0 )′. If it holds, then Eve is a successful player in the BPR game of Figure 7.

If the adversary were to mount an attack that spans over more than two rounds, she would have
to successfully pass the second round. However, the above discussion shows that the adversary can
only pass the second session without being detected if she can win the BPR game or SPR game.

5.3. The Security Theorem.
We investigated all possible attacks against the message recognition protocol of Figure 2 by

considering two different cases, mainly if the attack is taking place over one session, or if it spans
over more than one session. We examined these two cases separately.

In the first case, there are six possible attack scenarios: BABA, BAAB, ABBA, AABB, BBAA,
and ABAB. Attacks of type BABA, BAAB, and ABBA can be reduced to the ABAB case. Further,
we showed that a successful adversary (Eve) in attacks of type AABB, BBAA, and ABAB attacks
can be reduced to a successful player (Oscar) in the PPR, PSPR, or PCR games.

In the case of attacks that occur over more than one session, we showed that the successful
adversary can be reduced to a successful player against the BPR or SPR games.

This concludes the analysis of different attack scenarios and implies the following theorem

Theorem 1. A successful adversary who can efficiently deceive Bob in outputting (Alice, m′),
where Alice never sent m′, implies an efficient algorithm in winning PPR, PSPR, PCR, or BPR
hash function games.

This theorem precisely identifies the required properties for a hash function to be used in the
message recognition protocol of Figure 2. There is no concrete construction of such a hash function.
However, no one knows how to prove that a concrete construction of a hash function has any non-
trivial property. It is a standard approach taken in the literature to assume some properties for
an idealized hash function and to prove security of a given protocol assuming these assumptions.
Note that the same approach was taken in [5].

6. Conclusion and Final Remarks

We proposed a new design for message recognition protocols suitable for ad hoc pervasive net-
works. This proposal does not make use of hash chains. Hash chaining techniques have been used
in recent designs of message recognition protocols. In this approach, the sensor motes are required
to save values of a hash chain in their memories for every single user they want to communicate
with. Since we do not use this technique, we no longer require the sensor motes to save values of a
hash chain in their memories. This relaxes the memory requirements.

Moreover, the passwords are chosen at random in each session. Hence, they are independent of
one another and are being refreshed in each session. This can be done for any arbitrary number
of times, so we do not need to fix the total number of times the protocol can be executed which
implies a desired flexibility in this regard.

As the passwords are independent of one another, we do not need to consider assumptions that
depend on the number of sessions the protocol is executed. Whereas recent designs based on the

12



hash chaining technique had to assume families of assumptions based on the number of sessions the
protocol is executed. This implies that their security weakens as the number of sessions increases.
Since we are not using hash chains, the security of our protocol is independent of the number of
times the protocol is executed.

Finally, a practical procedure for resynchronization is provided. This implies that in case of any
possible adversarial disruption or communication failure, the protocol can be recovered.

13



References

[1] Ross Anderson, Francesco Bergadano, Bruno Crispo, Jong-Hyeon Lee, Charalampos Manifavas, and Roger Need-

ham. A new family of authentication protocols. In ACMOSR: ACM Operating Systems Review, volume 32, pages

9–20, 1998.

[2] Don Coppersmith and Markus Jakobsson. Almost optimal hash sequence traversal. In Financial Cryptography,

pages 102–119, 2002.

[3] Christian Gehrmann. Multiround unconditionally secure authentication. Designs, Codes, and Cryptography,

15(1):67–86, 1998.

[4] Jonathan Hammell, André Weimerskirch, Joao Girao, and Dirk Westhoff. Recognition in a low-power environment.

In ICDCSW ’05: Proceedings of the Second International Workshop on Wireless Ad Hoc Networking (WWAN)

ICDCSW’05), pages 933–938, Washington, DC, USA, 2005. IEEE Computer Society.

[5] Stefan Lucks, Erik Zenner, André Weimerskirch, and Dirk Westhoff. Entity recognition for sensor network motes.

In GI Jahrestagung (2), pages 145–149, 2005.

[6] Chris J. Mitchell. Remote user authentication using public information. In Kenneth G. Paterson, editor, IMA Int.

Conf., volume 2898 of Lecture Notes in Computer Science, pages 360–369. Springer, 2003.

[7] André Weimerskirch and Dirk Westhoff. Zero common-knowledge authentication for pervasive networks. In Se-

lected Areas in Cryptography, volume 3006 of Lecture Notes in Computer Science, pages 73–87. Springer, 2003.

7. Appendix

As described in in Section 5, there are six possible one-session attacks against the protocol of
Figure 2. Three of these attacks, mainly AABB, BBAA, and ABAB, were analyzed previously.
Here we want to examine the remaining three attacks, mainly BABA, BAAB and ABBA.

We begin by reducing the BABA attack to the ABBA attack. Further, we reduce the ABBA
attack to the ABAB attack that was analyzed in Section 5. Finally, the only remaining attack
scenario, BAAB, is also reduced to the ABAB attack. This concludes the analysis of the six
different attack scenarios.

7.1. Reducing BABA attack to ABBA attack.
Attack of type ABBA is depicted in Figure 12 and Figure 13 illustrates the attack of Type

BABA.

Alice Oscar Bob

m←−−−−−−−−−−− A

m, h
−−−−−−−−−−−→ B

m′, h′
−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−

B
x′0, X′1,X ′1−−−−−−−−−−−→

y′0, Y ′1 ,Y′1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

Figure 12. Attack of Type ABBA

These two attacks differ only in the order of the first two steps. The ABBA attack is as follows:
14



Alice Oscar Bob

B
m′, h′

−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−
m←−−−−−−−−−−− A

m, h
−−−−−−−−−−−→

B
x′0, X′1,X ′1−−−−−−−−−−−→

y′0, Y ′1 ,Y′1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

Figure 13. Attack of Type BABA

• A: Oscar sends m to Alice and she responds with m, h.
• B: Oscar sends m′, h′ to Bob and he replies with y0, Y1,Y1.
• B: Oscar sends x′0, X

′
1,X ′1.

• A: Oscar sends y′0, Y
′
1 ,Y ′1 to Alice and receives x0, X1,X1 from her.

The BABA attack has the following order:

• B: Oscar sends m′, h′ to Bob and he replies with y0, Y1,Y1.
• A: Oscar sends m to Alice and she responds with m, h.
• B: Oscar sends x′0, X

′
1,X ′1.

• A: Oscar sends y′0, Y
′
1 ,Y ′1 to Alice and receives x0, X1,X1 from her.

Note that in the BABA attack scenario, the choice of m is independent of what the values of
y0, Y1 and Y1 are. That is, knowing y0, Y1,Y1 before choosing m is not going to help Oscar. On the
other hand, he is committing himself to m′, h′ before receiving any values, such as h, that could
possibly help him. If Oscar wins by first choosing m′, h′ and then receiving h in the BABA attack
scenario, then he can also win the ABBA attack by using the same values m, m′, and h′.

7.2. Reducing ABBA attack to ABAB.
Recall the ABAB attack described in Section 5:

• A: Eve sends m to Alice and she responds with m, h.
• B: Eve sends m′, h′ to Bob and he replies with y0, Y1,Y1.
• A: Eve sends y′0, Y

′
1 ,Y ′1 to Alice and receives x0, X1,X1 from her.

• B: Eve sends x′0, X
′
1,X ′1.

This attack differers from the ABBA attack in the order of the last two steps. In the ABAB
attack, Eve first receives x0, X1,X1 from Alice, then she has to send x′0, X

′
1,X ′1 to Bob. Whereas

in the case of the ABBA attack, Oscar has to send x′0, X
′
1,X ′1 to Bob before he receives x0, X1,X1

from Alice. If Oscar has a winning strategy in the ABBA attack, the Eve can use him in her ABAB
attack by sending the same values of x′0, X

′
1,X ′1 that Oscar sends to Bob.

7.3. Reducing BAAB attack to ABAB.
15



Depicted in Figure 14 is the attack Type of BAAB.

Alice Oscar Bob

B
m′, h′

−−−−−−−−−−−→

y0, Y1,Y1←−−−−−−−−−−−
m←−−−−−−−−−−− A

m, h
−−−−−−−−−−−→

y′0, Y ′1 ,Y′1←−−−−−−−−−−− A

x0, X1,X1−−−−−−−−−−−→

B
x′0, X′1,X ′1−−−−−−−−−−−→

Figure 14. Attack of Type BAAB

Recall that knowing y0, Y1,Y1 before choosing m is not going to help Oscar. Moreover, in the
BAAB attack, Oscar is first committing himself to m′, h′. If Oscar wins the BAAB attack by first
choosing m′, h′ and then receiving h, then so will Eve in the ABAB attack, by just using the same
values m, m′, and h′.

16


