
Foundations of Group Key Management —
Framework, Security Model and a

Generic Construction
Naga Naresh Karuturi∗,§, Ragavendran Gopalakrishnan∗, Rahul Srinivasan† and Pandu Rangan Chandrasekaran∗

∗Theoretical Computer Science Laboratory
Department of Computer Science and Engineering

Indian Institute of Technology Madras
Chennai, India

nnaresh@cse.iitm.ernet.in, ragav@cse.iitm.ernet.in, prangan@iitm.ac.in

†Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Mumbai, India
rahul.srinivasan@iitb.ac.in

Abstract—Group Key Establishment is fundamental for a
variety of security mechanisms in group applications. It allows
n ≥ 2 principals to agree upon a common secret key. This
can further be classified into Group Key Exchange (or Group
Key Agreement), where all the principals participate in the
construction of the key, and Group Key Transport (or Group Key
Distribution), where the key is chosen by a singe principal and is
then securely communicated to the others. Both these techniques
can be analyzed in the context of either static or dynamic groups.
Dynamic Group Key Establishment is better known as Group
Key Management (GKM), as it involves not only the initital key
establishment, but also efficient key management when group
members join or leave the group. Dynamic Group Key Exchange
is also known as decentralized or distributed GKM, while
Dynamic Group Key Transport is known as centralized GKM.
While there has been a lot of recent work in formal security
models for Dynamic Group Key Exchange, little, if any, attention
has been directed towards building a concrete framework and
formal security model for centralized GKM. Many such schemes
that have been proposed so far have been broken, as they cite
ambiguous arguments and lack formal proofs. In this paper, we
take a first step towards addressing this problem by providing
firm foundations for centralized Group Key Management. We
provide a generalized framework for centralized GKM along with
a formal security model and strong definitions for the security
properties that dynamic groups demand. We also show a generic
construction of a centralized GKM scheme from any given multi-
receiver ID-based Key Encapsulation Mechanism (mID-KEM).
By doing so, we unify two concepts that are significantly different
in terms of what they achieve. Our construction is simple and
efficient. We prove that the resulting GKM inherits the security of
the underlying mID-KEM up to CCA security. We also illustrat e
our general conversion using the mID-KEM proposed in 2007
by Delerablée.

Index Terms—Provable Security, General Framework, Secu-
rity Model, Group Communication, Multicast Security, Grou p
Key Management, ID-based Cryptography, Generic Conversion

§Work Supported by Project No. CSE/05-06/075/MICO/CPAN on Founda-
tion Research in Cryptography sponsored by Microsoft Research India

I. I NTRODUCTION

The growth and commercialization of the Internet offers
a large variety of scenarios where group communication
using multicast will greatly save bandwidth and sender re-
sources. Immediate examples include news feeds and stock
quotes, video transmissions, teleconferencing, softwareup-
dates, movie on demand and more. (See [1] for a more
complete survey on multicast applications.) Secure multicast
sessions can be implemented by applying encryption schemes.
The messages are protected by encryption using a chosen
key, which, in the context of group communication, is known
as Session Keyor Data Encryption Key(DEK). Only those
who know the DEK can recover the original message. There-
fore, the problem of securely sending data to authorized
group members reduces to securely establishing the DEKs
among the authorized group members. Furthermore, changes
in membership may require that the group key be refreshed.
Such a key refreshing procedure prevents a joining (leaving)
group member from decoding messages exchanged in the past
(future), even if he has recorded earlier messages, in their
encrypted form (encrypted with the old (new) keys).

However, establishing and managing the group key among
valid members is a complex problem. Although refreshing
the DEK before the join of a new member is trivial (in
a centralized setting, for example, the central authority can
simply send a new group key to the group members encrypted
with the old group key), performing it after a member leaves is
far more complicated. The old key cannot be used to establish
a new one, because the leaving group member knows the old
key. Therefore, some other scalable mechanism to refresh the
data encryption key must be provided.

Group Key Establishment — Group Key Establishment allows
n ≥ 2 principals to agree upon a common secret key. This
general definition can further be shaped in two different
classes — Group Key Exchange (Agreement) and Group Key
Transport (Distribution).

• Group Key Transport (Distribution). A Group Key Trans-
port (Distribution) protocol is a Group Key Establishment
technique where a single entity (often known as the
central authority) creates or otherwise obtains a secret
value, and securely transfers it to the other members. This
definition leaves open whether the central authority may
be a group member. It is also imaginable to have some
trusted third party (TTP) as the central authority.

• Group Key Exchange (Agreement). A Group Key Ex-
change (Agreement) protocol is a Group Key Establish-
ment technique where a shared secret is derived by two
or more group members as a function of the information
contributed by each of them, such that no group member
can predetermine the resulting value. Here, the main
difference from Group Key Transport techniques is that
no group member is allowed to choose the group key on
behalf of the whole group.

Both group key establishment techniques can be analyzed in
context of either static or dynamic groups. Of course, it is
always possible to establish the group key for the modified
group by restarting the protocol. However, this may be in-
efficient if groups are large or the protocol is expensive (in
terms of communication or computational costs). Therefore,
many Group Key Establishment protocols that are designed
for dynamic groups provide more efficient operations for
addition and exclusion of group members. Dynamic Group
Key Establishment is better known as Group Key Management
(GKM).

Group Key Management — As defined by Menezes et al.
in [2], Group Key Management is the set of techniques and
procedures supporting the establishment and maintenance of
keying relationships between authorized parties that forma
group. It plays an important role enforcing access control
on the group key (DEK) (and consequently on the group
communication). According to [3], group key management can
be classified into the following three categories.

• Centralized Group Key Management— In these schemes,
there is a Key Distribution Center (KDC), also known
as Central Authority (CA), who maintains the entire
group, performing operations which involve allocating
keys to members, communicating the Data Encryption
Key (DEK) to the members, etc. This category falls into
the class of Dynamic Group Key Transport (Distribution)
protocols.

• Decentralized Group Key Management— In decentral-
ized Group Key Management schemes, members of a
multicast group are split into several smaller subgroups
which are managed by different subgroup controllers.
This reduces the load on the KDC. Properties associated

with decentralized GKM schemes are key independence,
keys vs. data, type of communication, etc. This category
falls into the class of Dynamic Group Key Exchange
(Agreement) protocols.

• Distributed Group Key Management— The distributed
Group Key Management approach is characterized by
having no group controller. The group key can be gener-
ated either in a contributory fashion, or by one member.
Parameters like the number of rounds, number of mes-
sages and computation during setup are used to evaluate
the efficiency of such protocols. This category can fall
under the class of Dynamic Group Key Exchange or
Dynamic Group Key Transport, depending on how the
group key is generated.

Security Properties — Any secure GKM scheme must satisfy
the following desired security properties. We will define them
formally in Section IV-C.

1) Perfect Forward Secrecy. It ensures that when aRekey
is performed, a group member cannot decipher past
messages encrypted with any of the older DEKs.

2) Group Forward Secrecy. It prevents a leaving or expelled
group member from continued access to group commu-
nication.

3) Group Backward Secrecy. It prevents a new group mem-
ber from decoding messages exchanged before he joined
the group.

4) Collusion Resistance. It ensures that even if all the past
group members who currently do not belong to the group
collude, they will not be able to decipher group messages
that are encrypted with the current DEK.

Multi-receiver ID-based Key Encapsulation Mechanism
(mID-KEM) — A multi-receiver Key Encapsulation Mecha-
nism (mKEM) enables a cryptographic key (which may be
used subsequently for other purposes) to be securely sent
across to a set of receivers. Smart [4] introduced the notion
of mKEM in 2004. It was extended later, in [5], [6], to
multi-receiver ID-based Key Encapsulation Mechanism (mID-
KEM), i.e., mKEM in the ID-based setting. Later, [7] proposed
an mID-KEM that has an efficient trade-off between the
ciphertext size and the private key size. Recently, Abdallaet al.
[8] proposed an mID-KEM construction where ciphertexts are
of constant size, but private keys grow quadratic in the number
of receivers. Furukawa [9] and Delerablée [10] independently
proposed an mID-KEM scheme which achieves constant size
ciphertext at the cost of the public key size growing linearly
in the number of receivers.

A. Related Work on Centralized Group Key Management

One of the major contributions of this paper is a generic
framework and concrete security model for centralized GKM.
Here, we discuss the related work done in the area of cen-
tralized GKM, and highlight the major drawbacks of various
existing schemes, so as to better emphasize the need for such
a formal security model.

The key generation concept used byGroup Key Management
Protocol (GKMP) [11] is a cooperative generation between
two protocol entities. There are several key generation algo-
rithms viable for use in GKMP (i.e., RSA, Diffie-Hellman,
elliptic curves). All these algorithms use asymmetric key
technology to pass information between two entities to create
a single cryptographic key. Apart from protocols like GKMP,
the centralized group key management schemes can behier-
archical tree based andflat-table based. We briefly mention
a few tree based group key management protocols below (a
detailed description of all these protocols can be found in [3]).

• Logical Key Hierarchy(LKH) [12] — The KDC is the
root of the tree and it maintains a tree of keys. The leaves
of the tree are the group members, and each node is
associated with aKey Encryption Key(KEK). Each group
member (leaf) maintains a copy of the KEKs associated
with all the nodes that are part of the unique path from
itself to the root. If a member joins or leaves, the KDC
updates the KEKs of all the nodes that are part of the
corresponding root-to-leaf path, preserving group secrecy.

• One-Way Function Tree(OFT) [13] — A node’s KEK is
generated rather than just attributed. The KEKs held by a
node’s children are blinded using a one-way function and
then mixed together using a mixing function, resulting in
the KEK held by the node.

• One-Way Function Chain Tree[14] — A pseudo random
generator is used to generate the new KEKs rather than a
one-way function and it is done only during user removal.

• Hierarchical a-ary Tree with Clustering[15] — The
group with n members is divided into clusters of size
m and each cluster is assigned to a unique leaf node,
resulting inn/m clusters. All members in a cluster share
the same cluster KEK. Every member of a cluster is also
assigned a unique key which is shared only with the KDC.

The group rekeying method proposed in [16] uses the Chinese
Remainder Theorem to construct a secure lock that is used to
lock the group decryption key. Because the lock is common
among all valid members, the transmission efficiency of the
decryption key isO(1) if the message size is disregarded.
However, this method suffers from scalability problems.

Cliques [17] provides a way to distribute group session keys
in dynamic groups. However, it doesn’t scale well to a large
group. Molva et al. [18] proposed a scalable alternative. Never-
theless, the scheme would modify the structure of intermediate
components of the multicast communication such as routers or
proxies and it suffers from collusion attacks.

The flat-table based schemes proposed by Waldvogel et al.
[19] uses a table to reduce the number of keys stored at the
KDC. When a member leaves, the KDC changes all the keys
associated with that member. Chang et al. [20] use boolean
function minimization to minimize the number of messages
needed forRekey, but this method is not collusion resistant.
Some attribute based encryption schemes, like FT (CP-ABE)
by Cheung et al. [21] are collusion resistant as well.

Drawbacks — In most of the schemes that are cited above,
there is no formal security proof presented in a suitable
security model. Therefore, most of them base their security
claims on informal arguments. Even though [17] presents a
somewhat formal proof, it is not clear as to how each security
property is satisfied. Waldvogel et al. [19] argue how their
scheme is secure only against certain types of attacks such as
denial-of-service, man-in-the-middle, etc. And almost all the
tree based schemes lackperfect forward secrecy. Some of the
flat-table based schemes are not collusion resistant.

B. Our Contribution

Though a lot of work has been done in the development of
formal frameworks and security models for Dynamic Group
Key Exchange [22], no concrete framework and security model
for centralized Group Key Management exists in literature.
To the best of our knowledge, we are the first to propose
a generic framework for centralized GKM, and more impor-
tantly, to present a formal security model that defines each of
the security properties (forward secrecy, backward secrecy,
perfect forward secrecyand collusion resistance). This is
done in Section III. None of the existing centralized GKM
schemes have been formally proven secure due to the lack
of such a formal security model. Numerous attacks [23] have
been mounted on various GKM schemes proposed so far. In
Section IV, we construct adversarial games for each of the
security properties mentioned above, to provide a framework
in which one can formally prove a centralized GKM scheme
secure. Next, we construct a generalized conversion from any
multi-receiver ID-based Key Encapsulation Mechanism to a
full-fledged centralized Group Key Management scheme in
Section VI, which is so simple (yet powerful) that there is no
significant overhead while going from mID-KEM to GKM.
Thus we show that any efficient mID-KEM is enough to obtain
an efficient GKM. Further, in Section VII, we proceed to
use formal reduction techniques to establish the security of
the GKM scheme, using our own security model. We prove
forward secrecy, backward secrecy and collusion resistance
of our GKM scheme by reduction to the underlying mID-
KEM. For perfect forward secrecy, we build our proof on
one-way functions. Finally, in Section VIII, we illustrateour
generalization by extending the efficient mID-KEM proposed
in [10], to centralized GKM. This is the first GKM scheme to
achieve constant-size rekeying message length.

II. PRELIMINARIES

In this section, we review important concepts likeone-way
functions, bilinear mapsandnegligible functionsthat are used
in the forthcoming sections.

A. One-Way Functions

A function F : {0, 1}∗ → {0, 1}∗ is calledone-wayif the
following conditions hold.

• Easy to Compute.There exists a (deterministic) polyno-
mial time algorithmA such that on inputx, algorithmA
outputsF(x).

• Hard to Invert. Let Un denote a random variable uni-
formly distributed over{0, 1}n. For every probabilistic
polynomial time algorithmA′, every polynomialp(·), and
all sufficiently largen,

Pr
[

A′(f(Un), 1n) ∈ f−1(f(Un))
]

≤
1

p(n)

We denote the advantage of an adversaryB in inverting a
one-way functionF as

Advinv
F = Pr [F(B(F(x))) = F(x) | x← {0, 1}n]

B. Bilinear Maps

We present the necessary facts about bilinear maps and
bilinear map groups. LetG be an additive cyclic group and
G1 be a multiplicative cyclic group, both of prime orderp. A
bilinear mapor a bilinear pairing is a mapê : G×G→ G1

with the following properties.
• Bilinearity. For all P, Q, R ∈ G,

– ê(P + Q, R) = ê(P, R) · ê(Q, R)
– ê(P, Q + R) = ê(P, Q) · ê(P, R)
– ê(aP, bQ) = ê(P, Q)ab

• Non-Degeneracy. There exist P, Q ∈ G such that
ê(P, Q) 6= IG1 , whereIG1 is the identity inG1.

• Computability. There exists an efficient algorithm to
computeê(P, Q) for all P, Q ∈ G.

Modified Weil pairing [24] and Tate pairing [25] are ex-
amples of cryptographic bilinear maps whereG is an elliptic
curve group andG1 is a subgroup of a finite field.

C. Negligible Functions

We call a functionµ : N → R negligible if, for every
possible polynomialp(·), there exists anN such that for all
n > N , we haveµ(n) < 1

p(n) . Negligible functions remain
negligible when multiplied by any fixed polynomial.

III. A F ORMAL FRAMEWORK FORGROUP KEY

MANAGEMENT

In centralized Group Key Management(centralized GKM)
schemes, there is an entity known as theCentral Authority
(CA), who maintains a dynamically changing group of mem-
bers (users) by performing operations that include, but are
not restricted to, allocating unique secret keys to members,
establishing the commonData Encryption Key(DEK) among
members, and ensuring and maintaining group secrecy at all
times, especially when a member joins or leaves the group.
Every group member is uniquely identified with anidentifier.
In the case of ID-based systems for example, this identifier
may be the member’s identity itself.

At an abstract level, GKM consists of initially establishing
a group key and “managing” it throughout the lifetime of the
group. By management, we mean activities that the CA carries
out in order to preserve the desired security properties of the
group. In centralized schemes, key establishment simplifies to
secure key transport, that is, the CA broadcasts a ciphertext
which the group members decipher to obtain the key. A

standalone cryptographic primitive that achieves this ismulti-
receiver Key Encapsulation Mechanism(mKEM).

It becomes natural, therefore, to think of centralized GKM
schemes as being constructed out of mKEMs. Many GKM
schemes do not explicitly view it this way. For example, in
LKH [12], the KDC first distributes theKEKs which are
then used to encrypt theDEK. The underlying mKEM here
is a simple symmetric key encryption scheme. The FT (CP-
ABE) scheme [21] explicitly uses a public key technique called
ciphertext policy - attribute based encryptionto establish the
DEK. Normal multi-receiver encryption schemes also fall into
the category of mKEMs; the difference lies in the fact that,
in encryption schemes, the key that isencryptedis known be-
forehand and is a necessary input to the encryption algorithm.
Whereas, in traditional KEMs, it is impossible to know the key
that is encapsulatedbeforehand; the encapsulation algorithm
outputs both the ciphertext and the key that would emerge
during its decapsulation.

We now describe the algorithms that form the building
blocks of a generic GKM scheme. The description is largely
functional in nature; the implementation details are specific to
the underlying mKEM and the GKM scheme using it.

1) Setup(k,N,Sinit, E)
� Input. k is a security parameter,N is the maximum
number of group members (the capacity)1, Sinit is the
set of identifiers of initial group members andE is an
underlying multi-receiver key encapsulation mechanism,
which is described by the following algorithms. Note
that our description is that of a most general mKEM,
including normal multi-receiver encryption schemes.
Depending upon the specific mKEM that is used, some
inputs to the algorithms may not actually be necessary.

a) SetupE(k,N) — This algorithm takes as input
a security parameterk and the maximum number
of receiversN and outputs the public system
parameters (or public key) asPK, the secret keys
SKi of users with identifiersi, and, if used, a
master secret keyMSK.

b) EncapsulateE(DEK,PK,MSK,S) — This
algorithm takes as input the keyDEK to be
encrypted2, the public keyPK, the master secret
key MSK (if used) and the setS of receivers
who alone can decrypt and recoverDEK (known
as authorized, privileged or intended receivers). It
returns a ciphertext, more specifically known in
our context as a headerHdr, and in the case
of a non-trivial mKEM (mKEMs that are not
simply encryption schemes), also returns theDEK
corresponding to the header.

1This is an optional input as there may be GKM schemes which can
accommodate any number of group members and do not require anupper
bound to be specified beforeSetup.

2This input will not be required (indeed, it would be impossible to know
the key being encrypted beforehand) when the mKEM used is nota normal
multi-receiver encryption scheme (where the key would simply be encrypted
(just like a message) and sent to the user(s)).

c) DecapsulateE(Hdr,PK,SKi,S) — This algo-
rithm takes as input the ciphertext or headerHdr,
the public keyPK, the secret keySKi of one of
the authorized decrypting receivers, and the setS
of authorized receivers3. It returns the keyDEK
corresponding to the headerHdr.

� The CA runsSetupE(k,N,Sinit) to obtainPKE ,
SKE

i for all users with identifiersi, andMSKE . Using
these, the CA generates the public keyPK, the secret
keysSKi (SKE

i must explicitly be part ofSKi as the
users would need it for decapsulation) and the master
secret keyMSK of the GKM scheme.

� Every member with identifieri in the setSinit of
current group members is given through secure channels,
his secret keySKi and the initial DEK, which may be
chosen randomly from the key spaceK.

2) Rekey(S,PK,MSK, E)
� Input. S is the set of identifiers of the current group
members,PK is the public key,MSK is the master
secret key, andE is the underlying mKEM.

� Every group member first updates his secret key and
securely erases the old one. The exact mechanism, for
example, whether this updating process involves an input
from the CA or is independent of it, would depend
on the specific GKM scheme. Failure to securely erase
the old key would enable someone who gains control
of the group member’s hardware to retrieve the old
key using hardware forensics. If a group member does
not securely erase the previous key, it is considered a
violation of the protocol, meaning that he has already
been compromised. Also, the CA can choose to update
the public key as well, if required.

� The CA has the pair(HdrE , DEKE), after running
EncapsulateE(DEKE ,PKE ,MSKE ,S). He com-
putes(Hdr, DEK) for the group and broadcastsHdr.

� The group members with identifiersi retrieve
HdrE from Hdr and decrypt it by executing
DecapsulateE(HdrE ,PKE ,SKE

i ,S) to obtain
DEKE , from which DEK is recovered. Again, the
exact mechanism is specific to the GKM scheme.

3) Join(i,S,PK,MSK, E)
� Input. i is the identifier of the member who wishes
to join the group,S is the set of identifiers of current
group members,PK is the public key,MSK is the
master secret key, andE is the underlying mKEM.
� A member with identifieri /∈ S who wishes to join
the group establishes a secure connection with the CA
who may perform some checks before authorizing the
user to join the group.
� The CA updates the setS ← S∪{i}, and givesSKi

to the joining member through a secure channel.
� The CA then runsRekey(S,PK,MSK, E).

3While most existing mKEMs require the specification of this set, there
may be some which do not require thatS be specified.

4) Leave(L,S,PK,MSK, E)
� Input. L is the set of identifiers of the members who
wish to leave the group or are being banned (revoked),
S is the set of identifiers of current group members,PK
is the public key,MSK is the master secret key, andE
is the underlying mKEM.
� The CA updates the setS ← S − L.
� The CA then runsRekey(S,PK,MSK, E).

Note. Many GKM schemes exist that specify different
techniques forLeavedepending on whetherL is single-
ton or not.

Note. The CA may choose to perform theRekey operation
periodically even if no member joins or leaves the group, in
order to maintain the “freshness” of the group and the data
encryption key. This measure is necessary to ensureperfect
forward secrecy.

IV. SECURITY MODEL FOR GROUPKEY MANAGEMENT

In this section, we present formally, the security model for
GKM. We proceed as follows. First, we describe the notations
that are used throughout the rest of this paper. Then, we
describe the oracles that are used in the adversarial games,
following which we formally describe these games for each
of the four security properties that were informally discussed
above.

A. Notations

We stress that it is vital that the notations that are presented
here are understood beyond doubt, as we have used them
liberally in the rest of this paper. We useSt to denote the
set of identifiers of group members at time instantt. We have
introduced time as a variable in order to model the dynamics
of GKM. Table IV.1 summarizes the notations dealing with
time.

B. Oracles

The adversarial games involve a challenger to present the
adversary with an interface consisting of the oracles that model
the algorithms of the real scheme. Below, we describe, again
only in functional terms, the oracles to be implemented by a
challenger of a generic GKM scheme.

1) OJoin(i) — This oracle simulates theJoin algorithm of
the GKM, to include the memberi in the current group.

• Input. i should be the identifier of a member who
is not currently part of the group.

• The oracle aborts ifi ∈ St
−
now

.
• The set of identifiers of current group members is

updated asStnow
← St

−
now
∪ {i}.

• TheRekey algorithm is run and the new ciphertext
is recorded.

4There is no ambiguity because, as we shall see, in every adversarial game,
the adversary makes at most one corrupt query

5In other words, the group parameters used in generating the challenge
ciphertext will be those at timetChallenge

t An arbitrary instant of time
tnow The current time instant (the present time)

tCorrupt The time at which the corrupt query was issued4

tChallenge The time for which the challenge ciphertext is to be generated5

tJoin(i) The time at which the user with identifieri most recently joined the group
tLeave(i) The time at which the user with identifieri most recently left the group

t
−
now The time instant just beforetnow

TABLE IV.1
T IME-RELATED NOTATIONS

2) OLeave(i)
6 — This oracle simulates theLeave algo-

rithm of the GKM, to expel the memberi from the
current group.

• Input. i should be the identifier of a member who
is currently part of the group.

• The oracle aborts ifi /∈ St
−
now

.
• The set of identifiers of current group members is

updated asStnow
← St

−
now
− {i}.

• TheRekey algorithm is run and the new ciphertext
is recorded.

3) OCiphertext(t) — This oracle is used to retrieve the
broadcasted ciphertext ofRekey operations.

• Input. t should be the present time or a time in the
past.

• The oracle aborts ift > tnow.
• The ciphertext (header) corresponding to timet

is returned. By “corresponding to”, we mean the
following.
– If a Rekeyoperation was done at timet, then the

ciphertext broadcasted during thatRekeyopera-
tion is returned.

– Otherwise, the ciphertext broadcasted during the
most recentRekeyoperation done before timet
is returned.

4) ODecrypt(Hdr, t) — This oracle is used to retrieve the
DEK from its encrypted form.

• Input. Hdr should be a ciphertext andt should be
the present time or a time in the past.

• The oracle aborts ift > tnow.
• The setSt of group members at timet is recalled

and the secret keySKi corresponding to a user with
identifier i ∈ St at time t is obtained.

• HdrE and SKE
i are derived fromHdr and SKi

respectively.
• DecapsulateE(HdrE ,PKE ,SKE

i ,St) is run, and
the resultantDEK is returned.

5) OCorrupt(i, type) — This oracle simulates the com-
promise of a member.

• Input. i should be the identifier of a member,
and type should be one offs (forward secrecy),

6For a setL of leaving members, this oracle can be called repeatedly on
each member inL

bs (backward secrecy) orpfs (perfect forward
secrecy), indicating the type of security that is being
attacked using this compromised member.

• The oracle aborts iftype = pfs and i /∈ Stnow

because, forperfect forward secrecy, the member
who is to be corrupted must be part of the group
when he is compromised.

• Depending on whethertype is fs, bs or pfs, the
secret key corresponding to the user with identifier
i at time tLeave(i), tJoin(i) or tnow respectively is
returned.

Note. The challenger who runs these oracles must have some
mechanism of recording the set of group members, secret keys
and ciphertexts as time progresses. The most natural way of
doing this is to maintain lists (indexed by time) for each of
these variables and keep appending the new values to the
respective lists whenever changes occur.

C. Formal Definitions of Security

Normal multi-receiver cryptographic schemes which do not
involve operations carried out over a time-line, but are just
a collection of algorithms that are executed once, have two
clearly defined extremes when describing the intensity of
attacks —static attacks, while proving the security against
which, the adversary is required to submit the identifiers of
the entities whom he would attack during the challenge phase
of the game, andadaptiveattacks, in which case, the adversary
is under no such restriction. In Group Key Management,
we consider static and adaptive security not only along the
dimension of receiver identifiers, but also along the time
dimension. While describing adversarial games fortime-static
security, the adversary would be required to submit beforehand
the time at which he would like the challenge to be generated,
which would eventually be given to him during the challenge
phase. The adversary is not required to do so fortime-adaptive
security. From now, when we simply say “static” (“adaptive”),
we mean static (adaptive) in both dimensions. In contexts
where a mixed security is discussed, we will be explicit with
respect to the two dimensions.

Before describing the adversarial games involved, we formally
define the four security notions that were informally discussed
in Section I. For simplicity, we define only the CCA2 security
against adaptive attacks here. We discuss briefly about other
notions in a separate paragraph at the end of this section.

Definition 1: A (k, N)−GKM scheme isforward secure
against adaptive chosen ciphertext attacks(secure in the
sense offs-CCA2) if for all polynomialsN(·), the advantage
Advfs−CCA2

GKM of any probabilistic polynomial time adver-
saryAfs−GKM in the gameGfs−GKM

CCA2 against a challenger
Cfs−GKM is negligible ink, the security parameter.

Definition 2: A (k, N)−GKM scheme isbackward secure
against adaptive chosen ciphertext attacks(secure in the
sense ofbs-CCA2) if for all polynomialsN(·), the advantage
Advbs−CCA2

GKM of any probabilistic polynomial time adver-
saryAbs−GKM in the gameGbs−GKM

CCA2 against a challenger
Cbs−GKM is negligible ink, the security parameter.

Definition 3: A (k, N)−GKM scheme isperfect forward
secure against adaptive chosen ciphertext attacks(secure in
the sense ofpfs-CCA2) if for all polynomials N(·), the
advantageAdvpfs−CCA2

GKM of any probabilistic polynomial time
adversaryApfs−GKM in the gameGpfs−GKM

CCA2 against a chal-
lengerCpfs−GKM is negligible ink, the security parameter.

Definition 4: A (k, N)−GKM scheme iscollusion resis-
tant against adaptive chosen ciphertext attacks(secure in the
sense ofcr-CCA2) if for all polynomialsN(·), the advantage
Advcr−CCA2

GKM of any probabilistic polynomial time adver-
saryAcr−GKM in the gameGcr−GKM

CCA2 against a challenger
Ccr−GKM is negligible ink, the security parameter.

These definitions are not complete because we have neither
described the adversarial games nor defined the advantage of
an adversary. In Game IV.1, we describe formally a generic
adversarial CCA2 gameGGKM

CCA2. Below, we define the games
Gfs−GKM

CCA2 , Gbs−GKM
CCA2 and Gpfs−GKM

CCA2 as special cases of
this generic game. The collusion resistance gameGcr−GKM

CCA2

is described in Game IV.2.

We define the adversarial games that model attacks against
forward secrecy, backward secrecy, perfect forward secrecy
andcollusion resistanceas follows.

• Adversarial Game for Forward Secrecy

Gfs−GKM
CCA2 = GGKM

CCA2(Cfs−GKM,Afs−GKM,fs)

In this adversarial game, we allow the adversary to
corrupt any member of his choice at any time he wishes
(before the challenge phase). Meanwhile, he can also
query other oracles to learn about the system. A GKM
scheme satisfies forward secrecy, if a member who has
left the group cannot decipher any future ciphertexts
intended to the group when he is no longer part of the
group. Since we are talking about a corrupted member
who has left the group, during the corrupt phase, we give
the adversary the secret key of the corrupted member at
the time of his leaving the group. We allow the adversary
to enter the challenge phase at any time after the corrupt
phase. In particular, he may choose to make the challenge
query at the time that he thinks is most convenient for him
to win the challenge. Of course, since we are dealing with
forward secrecy, when the adversary makes the challenge
query, the corrupted member should not be in the group.

• Adversarial Game for Backward Secrecy

Gbs−GKM
CCA2 = GGKM

CCA2(Cbs−GKM,Abs−GKM,bs)

In this adversarial game, we allow the adversary to
corrupt any member of his choice at any time he wishes
(before the challenge phase). Meanwhile, he can also
query other oracles to learn about the system. A GKM
scheme satisfies backward secrecy, if a member who has
joined the group cannot decipher any past ciphertexts
intended to the group when he was not part of the group.
Since we are talking about a corrupted member who has
joined the group, during the corrupt phase, we give the
adversary the secret key of the corrupted member at the
time of his joining the group. And, during the challenge
phase, we allow the adversary to specify any time of
his choice (before the corrupted member last joined the
group) as the timetChallenge during which the challenge
is to be generated. Of course, since we are dealing with
backward secrecy, the corrupted member should not be
part of the group duringtChallenge.

• Adversarial Game for Perfect Forward Secrecy

Gpfs−GKM
CCA2 = GGKM

CCA2(Cpfs−GKM,Apfs−GKM,pfs)

In this adversarial game, we allow the adversary to
corrupt any member of his choice at any time he
wishes (before the challenge phase). A constraint that
we impose here is that this member should be part of
the group when he is being corrupted. This is because
perfect forward secrecy deals with the situation when a
member is compromised when he is part of the group.
Accordingly, we give the adversary the secret key of the
corrupted member at the time of corruption. Meanwhile,
he can also query other oracles to learn about the system.
The compromised group member should not be able to
decipher any past ciphertexts. So, we require that the time
tChallenge at which the adversary wants the challenge to
be generated occurs before the member was corrupted.
Another constraint is that the corrupted member should
be in the group duringtChallenge. Otherwise, it would
model backward secrecy.

• Adversarial Game for Collusion Resistance

Gcr−GKM
CCA2

This game is described in Game IV.2. Collusion resis-
tance means that at any point in time, even if all the
members who are currently not part of the group collude,
they will not be able to decipher the present ciphertext. To
model this, in this adversarial game, during the challenge
phase, we give the secret keys7 of all the users who are
currently not part of the group to the adversary.

Other Security Notions. We have defined only adaptive CCA2
security for GKM . Now, without going into detailed defi-
nitions for other security definitions, which would result in

7Since secret keys are time dependent, we give the adversary the secret
keys of the members corresponding to the time when they last left the group.

Game IV.1 GGKM
CCA2(CGKM,AGKM, type)

This generic game is played between a challengerCGKM and an adversaryAGKM . The variabletype signifies the type of
security that the adversary claims he can break, and can takeon any of three valuesfs, bs, or pfs.

Both the challenger and the adversary are given the securityparameterk, the maximum number of group membersN , and the
specification of the underlying mKEME . The game consists of the following phases which are presented in the order in which
they occur. In addition to carrying out these phases, the challenger takes care of simulating theRekeyoperation periodically
(if periodic rekey is carried out in the GKM scheme that is being attacked).

Setup Phase — The challenger runsSetup(k,N,Sinit, E), for any choice ofSinit by the adversary. The public keyPK is
given to the adversaryAGKM . A Rekeyoperation is simulated immediately after, and the time-line is started at this instant
(t = 0).

Query Phase 1 — During this phase, the adversary is given access to the oracles as described below.

• Queries of the formOJoin(i) andOLeave(i). The adversary can use these queries to control the group dynamics, i.e., he
can make a member with identifieri join or leave the group using these queries.

• Queries of the formOCiphertext(t). These queries help the adversary to retrieve theHdr corresponding to the most
recentRekeyoperation performed at or before a past timet (Note theJoin and Leaveoperations also involve aRekey
operation and such rekeys are also taken into account).

• Queries of the formODecrypt(Hdr, t). The adversary can use these queries to learn theDEK corresponding to any
Hdr of his choice, as decrypted at any timet in the past. The challenger responds by decryptingHdr using the secret
key SKu of some useru ∈ St.

Corrupt Phase — The adversary, at any timetCorrupt of his choice, invokesOCorrupt(ic, type), whereic is the identifier of a
member of the adversary’s choice. The only constraint is that if type = pfs, then the member with identifieric must currently
be part of the group. The adversary receives, in return, the secret keySKic

corresponding to timetLeave(ic), tJoin(ic), or
tnow, depending whethertype is fs, bs or pfs respectively. Note that unlike in the other phases, theCorrupt oracle can
be invoked only once in this phase.

Query Phase 2 — The description of this phase is identical to that ofQuery Phase 1 — the adversary is given access to
OJoin, OLeave, OCiphertext andODecrypt.

Challenge Phase — The adversary issues one challenge query to the challengerCGKM specifying the timetChallenge, subject
to one of the following restrictions depending on the value of type.

• If type = fs, the restrictions aretChallenge = tnow and ic /∈ StChallenge
.

• If type = bs, the restrictions aretChallenge < tJoin(ic) and ic /∈ StChallenge
.

• If type = pfs, the restrictions aretChallenge < tCorrupt and ic ∈ StChallenge
.

The challenger runsEncapsulateE(DEKE ,PKE ,MSKE ,StChallenge
), at the end of which he has the(HdrE , DEKE) pair.

Using this, he computes(Hdr∗, DEK∗) corresponding to timetChallenge, following which he selects a random bitb, setsKb

to DEK∗ andK1−b to a randomDEK from the key spaceK and challenges the adversary with〈Hdr∗, K0, K1〉.

Query Phase 3 — The adversary can continue to adaptively issue queries to all the oracles as in earlier query phases, subject
to the restriction that(Hdr∗, tChallenge) is not given as a query toODecrypt.

Guess Phase The adversary outputs a guessb′ of b from {0, 1} and he wins the game ifb′ = b. The adversary’s advantage in
winning the game is defined asAdvCCA2

GKM = |Pr[b′ = b]− 1
2 |

Note. We have provided twoQuery Phases before theChallenge Phase to model a situation in which the Adversary can
corrupt a member at a time of his choice before receiving the challenge.

Game IV.2 Gcr−GKM
CCA2

This game is played between the challengerCcr−GKM and the adversaryAcr−GKM . Both the challenger and the adversary
are given the security parameterk, the maximum number of group membersN , and the specification of the underlying mKEM
E . The game consists of the following phases which are presented in the order in which they occur. In addition to carrying
out these phases, the challenger takes care of simulating the Rekeyoperation periodically (if periodic rekey is carried out in
the GKM scheme that is being attacked).

Setup Phase — Same as inGGKM
CCA2(Ccr−GKM ,Acr−GKM , ·).

Query Phase 1 — Same as inGGKM
CCA2(Ccr−GKM ,Acr−GKM , ·).

Challenge Phase — The adversary issues one challenge query to the challengerCcr−GKM at any time instanttChallenge.
First, the adversary is given the secret keysSKi corresponding to timetLeave(i) of all the group members with identifiersi /∈
StChallenge

. The challenger obtains the(HdrE , DEKE) pair by runningEncapsulateE(DEKE ,PKE ,MSKE ,StChallenge
).

Using this, he computes(Hdr∗, DEK∗) corresponding to timetChallenge, following which he selects a random bitb, setsKb

to DEK∗ andK1−b to a randomDEK from the key spaceK and challenges the adversary with〈Hdr∗, K0, K1〉.

Query Phase 2 — The adversary can continue to adaptively issue queries to all the oracles as in earlier query phase, subject
to the restriction that(Hdr∗, tChallenge) is not given as a query toODecrypt.

Guess Phase The adversary outputs a guessb′ of b from {0, 1} and he wins the game ifb′ = b. The adversary’s advantage in
winning the game is defined asAdvcr−CCA2

GKM = |Pr[b′ = b]− 1
2 |

considerable repetition, we explain the intuition behind them.
We consider adaptive CCA and adaptive CPA security as well
as static versions of these security notions.

• Adaptive CCA Security— The adversarial game
G

(·)−GKM
CCA for adaptive CCA security is the same as

the gameG(·)−GKM

CCA2 , except that in theQuery phase
that follows theChallengephase, the adversary is denied
access toODecrypt altogether.

• Adaptive CPA Security— The adversarial game
G

(·)−GKM
CPA for adaptive CPA security is the same as the

gameG(·)−GKM
CCA , except that in all theQueryphases, the

adversary is denied access toODecrypt.
• Static Security— The adversarial gamesG(·)−GKM

sCCA2 ,
G

(·)−GKM
sCCA and G(·)−GKM

sCPA for static security are the
same as the respective games for adaptive security, except
that the adversary must submitStChallenge

(for identifier-
static) and tChallenge (for time-static) to the challenger
in the beginning of theSetupphase.

V. M ULTI -RECEIVER ID-BASED KEY ENCAPSULATION

MECHANISM (M ID-KEM)

In this section, we quickly review the basic framework of
an mID-KEM and the formal security model for the same. In
the forthcoming sections, we shall be using these as black-
boxes while taking a general mID-KEM to a GKM scheme
and proving its security.

A. General Framework of an mID-KEM

We describe the framework of a non-trivial mID-KEM here.
By non-trivial, we mean that we do not consider normal
encryption schemes (which may trivially be used to encrypt
keys just like messages) as KEMs for the purposes of our

discussion. An mID-KEM consists of a Private Key Generator
(PKG), who generates, using a master secret keyMSK, the
private keysSKIDi

of group members with identitiesIDi,
and securely transmits these keys to them. The sender uses
the public keyPK and identities of the privileged receivers
to generate a ciphertext or header, which can be decrypted only
by the privileged receivers to obtain a key. More formally, a
multi-receiver ID-based Key Encapsulation Mechanism (mID-
KEM) with security parameterk and maximum sizeN of
the set of privileged members, consists of the following
algorithms8.

Setup(k,N) — This algorithm inputs a security parameter
k and the maximum size of the set of authorized receiversN ,
and outputs a master secret keyMSK and a public keyPK.
The PKG is givenMSK, andPK is made public.

Extract(MSK, IDi,PK) — This algorithm inputs the mas-
ter secret keyMSK, a user identityIDi, and the public key
PK, and outputs the private keySKIDi

of the user, which is
securely transported to the user.

Encapsulate(S,PK) — This algorithm inputs a set
of identities of privileged (intended) receiversS =
{ID1, ID2, . . . , IDt}, with t ≤ N and the public keyPK,
and outputs a pair(Hdr, DEK). Hdr is called the header
andDEK ∈ K, whereK is the key space.

Decapsulate(S, IDi,SKIDi
,Hdr,PK) — This algorithm

inputs the setS of identities of the intended receivers, the
identity IDi of one of the intended receivers, and the corre-
sponding private keySKIDi

, a headerHdr, and the public
key PK. If IDi ∈ S, the algorithm outputs the keyK.

8Our description of an mID-KEM does fall into the generic framework of
the underlying mKEM discussed in Section III; the only difference is that the
Setupalgorithm is split here into two algorithmsSetupandExtract

Game V.1 GmID−KEM
CCA2

This game is played between the challengerCmID−KEM and the adversaryAmID−KEM . Both the challenger and the adversary
are given the security parameterk and the maximum number of receiversN . The game consists of the following phases that
are presented in the order in which they occur.

Setup Phase — The challenger runsSetup(k,N) and the public keyPK is given to the adversaryAmID−KEM .

Query Phase 1 — During this phase the adversary is given access to the oracles as described below.

• Queries of the formOExtract(IDi) — The adversary can use this query to learn the secret keys of any of the members
of his choice.

• Queries of the formODecapsulate(IDi,S,Hdr) — The adversary can use this query to learn theDEK corresponding
to anyHdr meant for any subset of privileged users.

Challenge Phase — During this phase the adversary issues one challenge queryto the challenger, submitting a setS∗ of
identities of users of the adversary’s choice. The only restriction is thatS∗ should not contain an identity of a user whose
secret key was queried earlier by the adversary. The challenger then uses theEncapsulatealgorithm withS∗ as input to obtain
a (Hdr∗, DEK∗) pair. He then chooses a bitb ∈ {0, 1} at random and setsKb to DEK∗ and K1−b to a random element
from the key spaceK. He then challenges the adversary with〈Hdr∗, K0, K1〉.

Query Phase 2 — During this phase the adversary can continue to query the oracles as before, subject to the following
restrictions.

• He should not query theExtract oracle for the secret key of any member whose identity belongs toS∗.

• He should not query theDecapsulateoracle with(IDi,S
∗, Hdr∗), for any IDi ∈ S

∗.

Guess Phase — During this phase, the adversary outputs a guessb′ of b from {0, 1} and he wins the game ifb′ = b. The
adversary’s advantage in winning the game is defined asAdvCCA2

mID−KEM = |Pr[b′ = b]− 1
2 |.

B. Security Model for mID-KEM

The adversarial game involves a challenger who presents
the adversary with an interface consisting of oracles that
model the algorithms of the real scheme. Below, we describe
in functional terms, the oracles to be implemented by a
challenger of a generic mID-KEM.

1) OExtract(IDi) — Here, IDi is the identity of a user.
The oracle returns the secret keySKIDi

of the user by
using theExtract algorithm.

2) ODecapsulate(IDi,S,Hdr) — Here, IDi is the iden-
tity of an intended user,S is the set of identities of the
intended (privileged) users, andHdr is a header to be
decrypted. The oracle returns theDEK corresponding
to Hdr by using theDecapsulatealgorithm.

We define CCA2 security for mID-KEM using the adversarial
gameGmID−KEM

CCA2 that is described in Game V.1.

Definition 5: A (k, N) − mID − KEM is CCA2 secure
against adaptive chosen ciphertext attacks if for all poly-
nomials N(·), the advantageAdvCCA2

mID−KEM of any proba-
bilistic polynomial time adversaryAmID−KEM in the game
GmID−KEM

CCA2 against a challengerCmID−KEM is negligible
in k, the security parameter.

Other Security Notions. We have defined only adaptive CCA2
security for mID-KEM. Now, without going into detailed
definitions for other security definitions, which would result in
considerable repetition, we explain the intuition behind them.

We consider adaptive CCA and adaptive CPA security as well
as static versions of these security notions.

• Adaptive CCA Security— The adversarial game
GmID−KEM

CCA for adaptive CCA security is the same as
the gameGmID−KEM

CCA2 , except that in theQuery phase
that follows theChallengephase, the adversary is denied
access toODecrypt altogether.

• Adaptive CPA Security— The adversarial game
GmID−KEM

CPA for adaptive CPA security is the same as the
gameGmID−KEM

CCA , except that in all theQueryphases,
the adversary is denied access toODecrypt.

• Static Security— The adversarial gamesGmID−KEM
sCCA2 ,

GmID−KEM
sCCA andGmID−KEM

sCPA for static security are the
same as the respective games for adaptive security, except
that the adversary must submit, in the beginning of the
Setupphase, to the challenger, the setS∗ of identities of
users he wishes to be challenged upon.9

VI. A G ENERIC CONVERSION TOCENTRALIZED GKM
FROM MID-KEM

Let mID −KEM be the underlying mID-KEM and let
GKM be the centralized GKM scheme that is to be con-
structed usingmID −KEM. Before we formally describe
the constituent algorithms ofGKM as per our construction,
we state informally what it does and the intuition behind it.

9Consequently, inQuery Phase 1of GmID−KEM

(·)
, the adversary should

not query theExtract oracle for any identities that are present inS∗.

Consider the following trivial (and hypothetical) construc-
tion of GKM. For Setup, run the Setup algorithm of
mID −KEM, make the public key public, run theExtract
algorithm of mID −KEM for all the group members, and
securely transport their secret keys and the initial DEK to
them. ForRekey, simply execute theEncapsulatealgorithm of
mID −KEM and broadcast the new header to the members,
who can retrieve the new DEK by running theDecapsulate
algorithm. ForJoin andLeave, just update the set of identities
of the current group members accordingly and do aRekey
operation. It is not difficult to see that thisGKM will be
forward secure, backward secure and collusion resistant if
mID −KEM is provably secure. But it is notperfect forward
securebecause, a header generated now can be decrypted by
the group member (who was part of the group when the
ciphertext was generated) at any point in the future. This
enables a group member to decrypt past headers and recover
past DEKs. We circumvent this problem by introducing time-
dependent secret keys for group members, so that a group
member cannot use his current secret key to decrypt a header
that was generated in the past.

Informally, all that our construction does is to introduce
an additional time-varying secret key componentg that is
common to all group members, with which the header of
mID −KEM is XORed before being broadcasted to the
group. The group members first recover the header because
they know the secretg, and then decrypt it to recover the DEK.
Both the CA and the members update this secretg during every
Rekeyoperation by using a one-way function, the old value of
g, and a randomness parameter that is broadcasted by the CA.
Since we are using a one-way function to update the secret
keys, a group member cannot derive a past secret key from
his present secret key. (If he manages to do that, then he can
decrypt past headers.) Of course, the group member can store
his past secret keys, but we prohibit this in our construction,
considering it to be a violation of the protocol.

Formally,GKM consists of the following algorithms, all of
which are run by the CA, who plays the role of the PKG of
mID −KEM as well.

Setup(k,N,Sinit,mID −KEM)

• Input. Take as input the security parameterk, the maxi-
mum number of group membersN , the setSinit of the
identities of initial group members, andmID −KEM,
the underlying multi-receiver key encapsulation mecha-
nism.

• Choose a one-way functionF : Z∗
p → Z∗

p, and a random
seedg ∈ Z∗

p, wherep is a large prime such that|p| = k.

• Run SetupmID−KEM(k, N) to obtain PKmID−KEM

and MSKmID−KEM. Construct the public keyPK =
〈PKmID−KEM,F , mID −KEM〉 and make it public.

• SetMSK = 〈MSKmID−KEM, g〉.

• Choose a data encryption keyDEK at random from the
key spaceK.

• Run ExtractmID−KEM(IDi) for each identityIDi ∈
Sinit to obtain the secret keys of all the members
SKmID−KEM

IDi
. ComputeSKIDi

= (SKmID−KEM
IDi

, g)
for all IDi ∈ Sinit and securely send these keys to
the corresponding members. Also send the initialDEK
securely to these members.

Note. We refer to the second component of the secret key
SKIDi

, which is common to all the group members, as the
dynamic key. It is “dynamic” because, as we shall see, it is
updated regularly during everyRekeyoperation.
Rekey(S,PK)

• Input. Take as input the setS of the identities of current
group members, and the public keyPK.

• Select a randomr ∈ Z∗
p and update thedynamic keyby

using the one-way functionF asg ← r · F(g).

• Run EncapsulatemID−KEM(S, PKmID−KEM) to ob-
tain a (HdrmID−KEM, DEK) pair.

• ConstructHdrGKM = HdrmID−KEM ⊕ (g) 10 and
broadcast〈HdrGKM, r〉 to the group.

• Every group member also updates the second component
of his secret key (the dynamic key) asg ← r · F(g) and
securely erases the old copy ofg values.

• Every group member with identityIDi will re-
trieve HdrmID−KEM = HdrGKM ⊕ g and run
DecapsulatemID−KEM (S, IDi, SKmID−KEM

IDi
,

HdrmID−KEM, PKmID−KEM) to obtainDEK.
Note. The CA keeps running theRekeyalgorithm periodically
even though the group may remain static without anyJoin or
Leaveoperations.
Join(IDi,S,PK)

• Input. Take as input the identityIDi of a member who
wishes to join the group, the setS of identities of current
group members, and the public keyPK.

• The joining member establishes a secure connection
with the CA, who may perform some checks before
authorizing the member to join the group. If authorized,
run ExtractmID−KEM(IDi) to obtain the secret key
SKmID−KEM

IDi
of the member.

• Compute SKIDi
= (SKmID−KEM

IDi
, g) and securely

send it to the joining member.

• Update the set of identities of current group members as
S ← S ∪ {IDi}.

• Run Rekey(S,PK).

Leave(L,S,PK)

• Input. Take as input the setL of identities of members
who wish to leave the group or are revoked, the setS of
identities of current group members, and the public key
PK.

• Update the set of identities of current group members as
S ← S − L.

• Run Rekey(S,PK).

10The XOR operation is done bitwise.g is represented as bits and is padded
with additional zeroes if necessary.

VII. F ORMAL SECURITY PROOF FORGKM

We now prove thatGKM is secure againstadaptive11

Chosen Ciphertext Attacks(CCA) with respect to all the four
security properties by assuming the adaptive CCA security of
the underlying mID-KEM and the hardness of inverting one-
way functions. For proofs which involve the reduction of an
adversary ofmID −KEM to an adversary ofGKM, we will
be running the following two adversarial games in parallel.

• GmID−KEM
CCA — The CCA game corresponding to

mID −KEM. The challenger for this game is denoted
by CmID−KEM and the adversary for this game is
denoted byAmID−KEM.

• G
(·)−GKM

CCA — The (·)-CCA game corresponding to
GKM. Here,(·) can refer tofs, bs, pfs or cr depend-
ing on the security property that is being proved. The
challenger and adversary for this game are denoted by
C(·)−GKM andA(·)−GKM respectively.

For proofs which involve the reduction of the problem of
inverting a given one-way function to the problem of breaking
the security ofGKM, we will just run the gameG(·)−GKM

CCA .

Before presenting the formal proof, we give a short informal
overview of the two proof techniques that we employ.

• Proofs for Forward Secrecy, Backward Secrecy and Col-
lusion Resistance— For these properties, we shall be
reducingAmID−KEM toA(·)−GKM. That is, we assume
the existence of an adversaryA(·)−GKM who can break
a particular security property ofGKM and use him to
construct the adversaryAmID−KEM who can break the
security ofmID −KEM. We letAmID−KEM take on
the role ofC(·)−GKM and interact withA(·)−GKM on one
side through the gameG(·)−GKM

CCA and simultaneously in-
teract withCmID−KEM through the gameGmID−KEM

CCA .
Thus, the task ofAmID−KEM is to use its interaction
with A(·)−GKM to try and win againstCmID−KEM.

• Proof for Perfect Forward Secrecy— For this property,
we shall be reducing the problem of inverting a one-way
function F to the problem of breaking perfect forward
secrecy ofGKM. This reduction is somewhat weak in the
sense that we do not give an exact algorithm for inverting
a given one-way function, but merely show the existence
of such an algorithm. The algorithm acts as the challenger
Cpfs−GKM of the adversaryApfs−GKM, and interacts
with him through the gameGpfs−GKM

CCA . Thus, the task
of the algorithm is to forceApfs−GKM to invert the one-
way functionF , if at all he is to winGpfs−GKM

CCA .
We now describe the working ofC(·)−GKM, who is an
important entity in all our proofs.12 He maintains five lists
Lc, Ls, Lg, Lj andLℓ as described below.
• Lc contains entries of the form〈t, HdrGKM〉, where

HdrGKM is the broadcast ciphertext of theRekeyop-
eration performed at timet.

11Both time-adaptiveand identity-adaptive
12It must be kept in mind that in the proofs for forward secrecy,backward

secrecy and collusion resistance,C(·)−GKM is alsoAmID−KEM

• Ls contains entries of the form〈t,St〉, whereSt is the
set of identities of the group members present at timet.

• Lg contains entries of the form〈t, gt〉, wheregt is the
dynamic key at timet.

• Lj contains entries of the form〈ID, tJoin(ID)〉. Recall
that tJoin(ID) is the most recent time at which the
member with identityID joined the group. For every
ID, there will be a unique entry in this list.

• Lℓ contains entries of the form〈ID, tLeave(ID)〉. Recall
that tLeave(ID) is the most recent time at which the
member with identityID left the group. For everyID,
there will be a unique entry in this list.

C(·)−GKM, acting as the challenger forA(·)−GKM, must
provide access to all the oracles involved inG(·)−GKM

CCA . In
those three proofs in which he is also an adversary for
mID −KEM, he has access to the oracles provided by
CmID−KEM, namelyOmID−KEM

Extract andOmID−KEM
Decapsulate . In the

proof in which there is no access to these oracles, he can sim-
ulate them himself.13 In any case, we describe howC(·)−GKM

simulates the oracles ofGKM using those ofmID −KEM
and a little bookkeeping.

• OJoin(IDi) — C(·)−GKM does the following.

1) Retrieve the last entry,(t′,St′), from Ls and check
if IDi ∈ St′ . If so, then abort. Else, setStnow

=
St′ ∪ {IDi} and append(tnow,Stnow

) to Ls.

2) Retrieve gt
−
now

from Lg (gt
−
now

= gt′′ , where
(t′′, gt′′) is the last entry inLg), pick a random
r ∈ Z

∗
p, computegtnow

= r · F(gt
−
now

) and append
the entry(tnow, gtnow

) to Lg.

3) RunEncapsulatemID−KEM(Stnow
, PKmID−KEM)

to obtain HdrmID−KEM corresponding
to a new DEK, compute HdrGKM =
〈HdrmID−KEM ⊕ gtnow

, r〉 and append the
entry (tnow, HdrGKM) to Lc.

4) Record the join by appending the entry(IDi, tnow)
to Lj . If there already exists an entry corresponding
to IDi, overwrite it.

• OLeave(IDi) — C(·)−GKM does the following.

1) Retrieve the last entry,(t′,St′), from Ls and check
if IDi /∈ St′ . If so, then abort. Else, setStnow

=
St′ − {IDi} and append(tnow,Stnow

) to Ls.

2) Retrieve gt
−
now

from Lg (gt
−
now

= gt′′ , where
(t′′, gt′′) is the last entry inLg), pick a random
r ∈ Z∗

p, computegtnow
= r · F(gt

−
now

) and append
the entry(tnow, gtnow

) to Lg.

3) RunEncapsulatemID−KEM(Stnow
, PKmID−KEM)

to obtain HdrmID−KEM corresponding
to a new DEK, compute HdrGKM =
〈HdrmID−KEM ⊕ gtnow

, r〉 and append the
entry (tnow, HdrGKM) to Lc.

13He is able to do so because there is no gameGmID−KEM

CCA
and no

corresponding challenger to win against.

4) Record the leave by appending the entry
(IDi, tnow) to Lℓ. If there already exists an
entry corresponding toIDi, overwrite it.

• OCiphertext(t) — C(·)−GKM aborts if t > tnow. Oth-
erwise, he retrieves, if present, the entry(t′, HdrGKM)
from Lc such thatt′ is the most recent (numerically
largest) time stamp satisfyingt′ ≤ t and returns
HdrGKM. If no such entry is present, he returns⊥.

• ODecrypt(HdrGKM, t) — C(·)−GKM aborts ift > tnow.
Otherwise, he does the following.

1) Retrieve, if present, the entries(t′,St′) from Ls

and(t′, gt′) from Lg such thatt′ is the most recent
(numerically largest) time stamp satisfyingt′ ≤ t.
If no such entries are present, return⊥.

2) Generate the headerHdrmID−KEM = HdrGKM⊕
gt′ corresponding tomID −KEM and return the
result of OmID−KEM

Decapsulate (IDi,St′ , HdrmID−KEM),
whereIDi is chosen at random fromSt′ .

• OCorrupt(IDi, type) — C(·)−GKM does the following.
1) When type = fs, retrieve if present, the entries

(IDi, tLeave(IDi)) and(tLeave(IDi), gtLeave(IDi))
from Lℓ and Lg respectively. If no such en-
tries are present, return⊥. Else obtainSIDi

by
queryingOmID−KEM

Extract (IDi) and returnSKIDi
=

(SKmID−KEM
IDi

, gtLeave(IDi)).

2) When type = bs, retrieve if present, the entries
(IDi, tJoin(IDi)) and (tJoin(IDi), gtJoin(IDi))
from Lj and Lg respectively. If no such en-
tries are present, return⊥. Else obtainSIDi

by
queryingOmID−KEM

Extract (IDi) and returnSKIDi
=

(SKmID−KEM
IDi

, gtJoin(IDi)).

3) When type = pfs, retrieve the last entry(t, gt)
from Lg, queryOmID−KEM

Extract (IDi) to obtainSIDi

and returnSKIDi
= (SKmID−KEM

IDi
, gt).

We now present the four security theorems and their formal
proofs.

Theorem 1. GKM is fs-CCA secureif mID −KEM is at
leastCCA secure.

Proof. Here, we describe how the adversaryAmID−KEM

on one side acts as the challengerCfs−GKM who inter-
acts withAfs−GKM, while simultaneously interacting with
CmID−KEM on the other side, trying to win against him. Since
the two games are being run in parallel and we describe the
events in chronological order, the description below switches
between the phases of the two games. To ensure some clarity,
we present the description from the point of view of the game
Gfs−GKM

CCA .

1) Setup Phase— The challengerCmID−KEM runs
SetupmID−KEM(k, N) to obtainPKmID−KEM, and
gives it to AmID−KEM, who constructsPK =
〈PKmID−KEM,F , mID −KEM〉 and gives it to

Afs−GKM. He also picks a random seedg from
Z∗

p and sets the master secret keyMSK to
〈MSKmID−KEM, g〉.

2) Query Phase 1— Afs−GKM is allowed to query the
oraclesOJoin, OLeave, OCiphertext andODecrypt.

3) Corrupt Phase— Afs−GKM choosesIDic
, an iden-

tity which he wants to corrupt and makes the query
OCorrupt(IDic

,fs) at time tCorrupt (which is the
choice ofAfs−GKM).

4) Query Phase 2— Afs−GKM can query the oracles as
in Query Phase 1.

5) Challenge Phase— Afs−GKM issues one challenge
query to its challengerAmID−KEM at time tChallenge

(which is the choice ofAfs−GKM), subject to the
restriction thatIDic

/∈ StChallenge
. Now, AmID−KEM

does the following before responding with the challenge.

• Retrieve the setStChallenge
from the listLs.

• Issue a challenge query, specifying the set
StChallenge

, to the challengerCmID−KEM.

• Receive the challenge(Hdr∗mID−KEM, K0, K1).

• Compute Hdr∗GKM as 〈Hdr∗mID−KEM ⊕
gtChallenge

, rtChallenge
〉.14

AmID−KEM returns(Hdr∗GKM, K0, K1) as the chal-
lenge toAfs−GKM.

6) Guess Phase— Afs−GKM outputs a bitb′ ∈ {0, 1}
as its guess.AmID−KEM passes onb′ as its guess to
CmID−KEM.

It is easy to see that the advantage ofAfs−GKM in break-
ing the forward secrecy ofGKM is the same as that of
AmID−KEM in breaking the CCA security ofmID −KEM.

Advfs−CCA
GKM = AdvCCA

mID−KEM =

∣

∣

∣

∣

Pr[b = b′]−
1

2

∣

∣

∣

∣

This means that if there exists no adversaryAmID−KEM

who can break the CCA security ofmID −KEM with
non-negligible advantage, then there cannot be any adversary
Afs−GKM who can break the forward secrecy ofGKM with
non-negligible advantage.

Theorem 2. GKM is bs-CCA secureif mID −KEM is at
leastCCA secure.

Proof. Here, we describe how the adversaryAmID−KEM on
one side acts as the challengerCbs−GKM who interacts with
Abs−GKM, while simultaneously interacting withCmID−KEM

on the other side, trying to win against him. Since the two
games are being run in parallel and we describe the events in

14gtChallenge
is retrieved from the listLg . Since gtChallenge

=
rtChallenge

· F(g
t
−
Challenge

), it can be seen thatrtChallenge
can be

computed usinggtChallenge
and g

t
−
Challenge

, both of which are available

in Lg.

chronological order, the description below switches between
the phases of the two games. Again, we present the description
from the point of view of the gameGbs−GKM

CCA .

1) Setup Phase— The challengerCmID−KEM runs
SetupmID−KEM(k, N) to obtainPKmID−KEM, and
gives it to AmID−KEM, who constructsPK =
〈PKmID−KEM,F , mID −KEM〉 and gives it to
Abs−GKM. He also picks a random seedg from
Z∗

p and sets the master secret keyMSK to
〈MSKmID−KEM, g〉.

2) Query Phase 1— Abs−GKM is allowed to query the
oraclesOJoin, OLeave, OCiphertext andODecrypt.

3) Corrupt Phase— Abs−GKM choosesIDic
, an iden-

tity which he wants to corrupt and makes the query
OCorrupt(IDic

,bs) at time tCorrupt (which is the
choice ofAbs−GKM).

4) Query Phase 2— Abs−GKM can query the oracles as
in Query Phase 1.

5) Challenge Phase— Abs−GKM issues one challenge
query to its challengerAmID−KEM, specifying a time
tChallenge (which is the choice ofAbs−GKM), sub-
ject to the restrictions thatIDic

/∈ StChallenge
and

tChallenge ≤ tJoin(IDic
). Now, AmID−KEM does the

following before responding with the challenge.

• Retrieve the setStChallenge
from the listLs.

• Issue a challenge query, specifying the set
StChallenge

, to the challengerCmID−KEM.

• Receive the challenge(Hdr∗mID−KEM, K0, K1).

• Compute Hdr∗GKM as 〈Hdr∗mID−KEM ⊕
gtChallenge

, rtChallenge
〉.15

AmID−KEM returns(Hdr∗GKM, K0, K1) as the chal-
lenge toAbs−GKM.

6) Guess Phase— Abs−GKM outputs a bitb′ ∈ {0, 1}
as its guess.AmID−KEM passes onb′ as its guess to
CmID−KEM.

It is easy to see that the advantage ofAbs−GKM in break-
ing the backward secrecy ofGKM is the same as that of
AmID−KEM in breaking the CCA security ofmID −KEM.

Advbs−CCA
GKM = AdvCCA

mID−KEM =

∣

∣

∣

∣

Pr[b = b′]−
1

2

∣

∣

∣

∣

This means that if there exists no adversaryAmID−KEM

who can break the CCA security ofmID −KEM with
non-negligible advantage, then there cannot be any adversary
Abs−GKM who can break the backward secrecy ofGKM with
non-negligible advantage.

15gtChallenge
is retrieved from the listLg . Since gtChallenge

=
rtChallenge

· F(g
t
−
Challenge

), it can be seen thatrtChallenge
can be

computed usinggtChallenge
and g

t
−
Challenge

, both of which are available

in Lg .

Theorem 3. GKM is pfs-CCA secureif inverting F is hard.

Proof. This proof differs somewhat from the other proofs
because we are reducing the security ofGKM to the
one-wayness ofF . Here, we describe how the challenger
Cpfs−GKM interacts withApfs−GKM and forces him to invert
the one-way functionF in order for him to win against
Cpfs−GKM. The game that is being described isGpfs−GKM

CCA .

1) Setup Phase — Cpfs−GKM runs
SetupmID−KEM(k, N) to obtain PKmID−KEM. He
constructsPK = 〈PKmID−KEM,F , mID −KEM〉
and gives it toApfs−GKM. He also picks a random
seedg from Z

∗
p and sets the master secret keyMSK

to 〈MSKmID−KEM, g〉.

2) Query Phase 1— Apfs−GKM is allowed to query the
oraclesOJoin, OLeave, OCiphertext andODecrypt.

3) Corrupt Phase— Apfs−GKM choosesIDic
, an iden-

tity which he wants to corrupt and makes the query
OCorrupt(IDic

,bs) at time tCorrupt (which is the
choice ofApfs−GKM).

4) Query Phase 2— Apfs−GKM can query the oracles as
in Query Phase 1.

5) Challenge Phase— Apfs−GKM issues one challenge
query to Cpfs−GKM, specifying a time tChallenge

(which is the choice ofApfs−GKM), subject to the
restrictions thatIDic

∈ StChallenge
and tJoin(IDic

) <
tChallenge < tCorrupt. Now, Cpfs−GKM does the fol-
lowing before responding with the challenge.

• Retrieve the setStChallenge
from the listLs.

• Obtain a(HdrmID−KEM, DEK) pair by running
EncapsulatemID−KEM(StChallenge

, PKmID−KEM).

• Compute Hdr∗GKM ← 〈HdrmID−KEM ⊕
gtChallenge

, rtChallenge
〉.15

• Randomly select a bitb ∈ {0, 1} and setKb =
DEK andK1−b to a random element from the key
spaceK.

Now, Cpfs−GKM returns (Hdr∗GKM, K0, K1) as the
challenge toApfs−GKM.

6) Guess Phase— Apfs−GKM outputs a bitb′ ∈ {0, 1} as
its guess.

Note that sincegtChallenge
= rtChallenge

· F(gt
−
Challenge

) and
rtChallenge

is random inZ∗
p, gtChallenge

is also random. There-
fore, the challengeHdr∗GKM is also random. So, the only
way by which the adversaryApfs−GKM can get any informa-
tion about fromHdr∗GKM about theDEK corresponding to
HdrmID−KEM is by obtainingHdrmID−KEM itself. This
implies that, if he is able to obtainHdrmID−KEM, then
he is also able to obtaingtChallenge

16 from gtCorrupt
. Since

tChallenge < tCorrupt, this shows the ability of the adversary
to invert the one-way functionF . Hence the advantage of the

16Obtaining gtChallenge
from Hdr∗

GKM
and HdrmID−KEM just in-

volves an XOR operation

adversaryApfs−GKM is at most his advantage in inverting the
one-way functionF .

Advpfs−CCA
GKM < Advinv

F

This means that if there exists no algorithm that can invert a
one-way functionF with non-negligible advantage, then there
cannot be any adversaryApfs−GKM who can break the perfect
forward secrecy ofGKM with non-negligible advantage.

Theorem 4. GKM is cr-CCA secureif mID −KEM is at
leastCCA secure.

Proof. Here, we describe how the adversaryAmID−KEM on
one side acts as the challengerCcr−GKM who interacts with
Acr−GKM, while simultaneously interacting withCmID−KEM

on the other side, trying to win against him. Since the two
games are being run in parallel and we describe the events in
chronological order, the description below switches between
the phases of the two games. As usual, we present the
description from the point of view of the gameGcr−GKM

CCA .

1) Setup Phase— The challengerCmID−KEM runs
SetupmID−KEM(k, N) to obtainPKmID−KEM, and
gives it to AmID−KEM, who constructsPK =
〈PKmID−KEM,F , mID −KEM〉 and gives it to
Acr−GKM. He also picks a random seedg from
Z∗

p and sets the master secret keyMSK to
〈MSKmID−KEM, g〉.

2) Query Phase— Acr−GKM is allowed to query the
oraclesOJoin, OLeave, OCiphertext andODecrypt.

3) Challenge Phase— Acr−GKM issues one challenge
query to its challengerAmID−KEM at time tChallenge

(which is the choice ofAcr−GKM). Now,AmID−KEM

does the following before responding with the challenge.
• Retrieve the setStChallenge

from the list Ls, and
gtLeave(IDi) from the list Lg, for all IDi /∈
StChallenge

.

• For each identityIDi /∈ StChallenge
, issue the

queryOmID−KEM
Extract (IDi) to obtainSIDi

and return
SKIDi

= (SIDi
, gtLeave(IDi)).

• Issue a challenge query, specifying the set
StChallenge

, to the challengerCmID−KEM.

• Receive the challenge(Hdr∗mID−KEM, K0, K1).

• Compute Hdr∗GKM as 〈Hdr∗mID−KEM ⊕
gtChallenge

, rtChallenge
〉.17

AmID−KEM returns(Hdr∗GKM, K0, K1) as the chal-
lenge toAcr−GKM.

4) Guess Phase— Acr−GKM outputs a bitb′ ∈ {0, 1}
as its guess.AmID−KEM passes onb′ as its guess to
CmID−KEM.

17gtChallenge
is retrieved from the listLg . Since gtChallenge

=
rtChallenge

· F(g
t
−
Challenge

), it can be seen thatrtChallenge
can be

computed usinggtChallenge
and g

t
−
Challenge

, both of which are available

in Lg .

It is easy to see that the advantage ofAcr−GKM in breaking
the collusion resistance ofGKM is the same as that of
AmID−KEM in breaking the CCA security ofmID −KEM.

Advcr−CCA
GKM = AdvCCA

mID−KEM =

∣

∣

∣

∣

Pr[b = b′]−
1

2

∣

∣

∣

∣

This means that if there exists no adversaryAmID−KEM

who can break the CCA security ofmID −KEM with
non-negligible advantage, then there cannot be any adversary
Acr−GKM who can break the collusion resistance ofGKM
with non-negligible probability.

VIII. A N ILLUSTRATION OF THE GENERIC CONVERSION

TO CENTRALIZED GKM

In this section, we present an example of the generalized
transformation to centralized GKM that was presented in
Section VI. We first recall the efficient mID-KEM that was
proposed by Delerablée [10] in 2007, and then construct the
most efficient centralized GKM scheme proposed till date
using this mID-KEM. This is the first efficient and scalable
GKM scheme to achieve a constant size rekeying message.

A. Delerabĺee’s mID-KEM

Setup(k,N) — Given the security parameterk and the
maximum number of receiversN , a bilinear map group
systemB = (p, G1, G2, GT , ê(·, ·)) is constructed such that
|p| = k. Also, two generatorsf ∈ G1 and h ∈ G2 and
a secret valueγ ∈ Z∗

p are randomly selected. Choose a
cryptographic hash functionH : {0, 1}∗ → Z∗

p. The master
secret key is defined asMSK = (f, γ). The public key is
PK = (ω, v, h, hγ , . . . , hγN

) whereω = fγ , andv = ê(f, h).

Extract(MSK, IDi,PK) — Given MSK = (f, γ), the
public key PK and the identityIDi, this algorithm outputs
SKIDi

= f
1

γ+H(IDi)

Encapsulate(S,PK) — Assume for notational simplicity
that S = {IDj}

s
j=1, with s ≤ N . Given PK, this algorithm

randomly picksr ∈ Z∗
p and computesHdr = (C1, C2) and

DEK ∈ K where

C1 = ω−α, C2 = h
α·

s
∏

i=1

(γ+H(IDi))
, DEK = vα

and outputs(Hdr, DEK).

Decapsulate(S, IDi,SKIDi
,Hdr,PK) — In order to re-

trieve theDEK encapsulated in the headerHdr = (C1, C2),
the user with identityIDi and the corresponding private key
SKIDi

= f
1

γ+H(IDi) (with IDi ∈ S) computes the data
encryption key as follows.

DEK =
(

ê(C1, h
pi,S(γ)) · ê(skIDi

, C2)
)

1
s
∏

j=1,j 6=i
H(IDj)

with

pi,S(γ) =
1

γ
·





s
∏

j=1,j 6=i

(γ +H(IDj))−

s
∏

j=1,j 6=i

H(IDj)





Delerablée has shown this scheme to be secure againststatic
chosen plaintext attacks. Because of this, the centralized GKM
scheme that we derive from this mID-KEM will also enjoy
only identity-static CPAsecurity. However, our GKM scheme
will be secure againsttime-adaptiveattacks. As noted in [10],
her mID-KEM can be converted to one that is secure against
chosen ciphertext attacks by using the result of [26], on using
which the resultant GKM scheme would also be CCA secure.

B. The Centralized GKM Scheme from Delerablée

Now, we present, without much ado, theidentity-static,
time-adaptive CPA securecentralized GKM scheme that is
constructed out of Delerablée’s mID-KEM. While describing
this GKM scheme, we follow the general framework that we
presented in Section III.

Setup(k,N,Sinit)

• Input. Take as input the security parameterk, the maxi-
mum number of group membersN , the setSinit of the
identities of initial group members.

• A bilinear map group systemB = (p, G1, G2, GT , ê(·, ·))
is constructed such that|p| = k.

• Two generatorsf ∈ G1 and h ∈ G2 and a secret value
γ ∈ Z∗

p are randomly selected.
• Choose a cryptographic hash functionH : {0, 1}∗ → Z∗

p

and aone-way functionF : Z∗
p → Z∗

p.
• Pick a randomg ∈ Z∗

p, a seed for the one-way function.
• The master secret key is defined asMSK = (f, γ, g)

andPK = (ω, v, h, hγ , . . . , hγN

,H,F) is the public key
whereω = fγ , andv = ê(f, h).

• Choose a data encryption keyDEK at random from the
key spaceK.

• ComputeSKi = (f
1

γ+H(IDi) , g) for all IDi ∈ Sinit and
securely send these keys to the corresponding members.
Also send the initialDEK securely to these members.

Rekey(S,PK)

• Input. Take as input the setS of the identities of current
group members, and the public keyPK.

• Pick a randomr ∈ Z∗
p and update thedynamic keyby

using theone-way functionF asg ← r · F(g).
• Compute

C1 = ω−α, C2 = h
α·

s
∏

i=1

(γ+H(IDi))
, DEK = vα

• ConstructHdrGKM = 〈Hdr ⊕ g, r〉, where Hdr =
(C1, C2) and broadcast it to the group.

• Every group member parsesHdrGKM as (C0, r), up-
dates the second component of his secret key (the dy-
namic key) asg ← r · F(g), and securely erases any
copies of olderg values.

• Every group member with identityIDi will retrieve
Hdr = C0 ⊕ g, parseHdr = (C1, C2), and compute

DEK =
(

ê(C1, h
pi,S(γ)) · ê(skIDi

, C2)
)

1
s
∏

j=1,j 6=i
H(IDj)

with

pi,S(γ) =
1

γ
·





s
∏

j=1,j 6=i

(γ +H(IDj))−

s
∏

j=1,j 6=i

H(IDj)





to obtainDEK.

Join(IDi,S,PK)

• Input. Take as input the identityIDi of a member who
wishes to join the group, the setS of identities of current
group members, and the public keyPK.

• The joining member establishes a secure connection with
the CA, who may perform some checks before authoriz-
ing the member to join the group. If authorized, compute
SKi = (f

1
γ+H(IDi) , g) and securely send it to the joining

member.
• Update the set of identities of current group members as
S ← S ∪ {IDi}.

• Run Rekey(S,PK).

Leave(L,S,PK)

• Input. Take as input the setL of identities of members
who wish to leave the group or are revoked, the setS of
identities of current group members, and the public key
PK.

• Update the set of identities of current group members as
S ← S − L.

• Run Rekey(S,PK).

IX. CONCLUSION

In this paper, we have identified the lack of a formal
framework and security model for Group Key Management. To
fill this gap, we proposed a generic framework for GKM and
a fitting formal security model in which we defined the vital
security properties that any GKM scheme should satisfy. We
have also shown how to convert any multi-receiver ID-based
key encapsulation mechanism to a centralized GKM scheme
and formally prove its security properties, assuming the secu-
rity of the mID-KEM and the existence of one-way functions.
Future work can now concentrate on the relatively simpler
problem of constructing mID-KEMs which are efficient and
secure against adaptive attacks. Though simple and efficient, a
drawback of our generic conversion is that the GKM inherits
the security strength of the underlying mID-KEM only up
to CCA. The generic conversion from mID-KEM to GKM
would be complete if the security-inheritance of the resulting
GKM goes further to CCA2. Another open problem is to
investigate if mKEMs (that are not ID-based) can also be
converted to GKM schemes. Decentralized schemes come in
handy when the system becomes huge and there is pressure
on the central authority who manages the entire group. While
some form of formal framework and security models do exist
for decentralized GKM in the form of security models for
Dynamic Group Key Exchange (which is a larger class of
protocols) in [22], it is nevertheless worthwhile to investigate if
a simpler, more personalized security model for decentralized
GKM can be derived by extending that of centralized GKM.

REFERENCES

[1] B.Quinn, “Ip multicast applications: Challenges and solutions,” Bob
Quinn, IP Multicast Applications: Challenges and Solutions, draft-quinn-
multicastapps-00.txt, November 1998.

[2] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,Handbook of
Applied Cryptography. CRC Press, 1996.

[3] S. Rafaeli and D. Hutchison, “A Survey of Key Management for Secure
Group Communication,”ACM Comput. Surv., vol. 35, no. 3, pp. 309–
329, 2003.

[4] N. P. Smart, “Efficient key encapsulation to multiple parties,” in SCN,
2004, pp. 208–219.

[5] J. Baek, R. Safavi-Naini, and W. Susilo, “Efficient multi-receiver
identity-based encryption and its application to broadcast encryption,”
in Public Key Cryptography, 2005, pp. 380–397.

[6] M. Barbosa and P. Farshim, “Efficient identity-based keyencapsulation
to multiple parties,” inIMA Int. Conf., 2005, pp. 428–441.

[7] S. Chatterjee and P. Sarkar, “Multi-receiver identity-based key encapsu-
lation with shortened ciphertext,” inINDOCRYPT, 2006, pp. 394–408.

[8] M. Abdalla, E. Kiltz, and G. Neven, “Generalized key delegation for
hierarchical identity-based encryption,” inESORICS, 2007, pp. 139–154.

[9] R. Sakai and J. Furukawa, “Identity-based broadcast encryption,” Cryp-
tology ePrint Archive, Report 2007/217, 2007.

[10] C. Delerablée, “Identity-based broadcast encryption with constant size
ciphertexts and private keys,” inASIACRYPT, 2007, pp. 200–215.

[11] H. Harney and C. Muckenhirn,Group Key Management Protocol
(GKMP) Specification. United States: RFC Editor, 1997.

[12] C. K. Wong, M. G. Gouda, and S. S. Lam, “Secure Group Communi-
cations using Key Graphs,”IEEE/ACM Trans. Netw., vol. 8, no. 1, pp.
16–30, 2000.

[13] A. T. Sherman and D. A. McGrew, “Key Establishment in Large
Dynamic Groups Using One-Way Function Trees,”IEEE Trans. Softw.
Eng., vol. 29, no. 5, pp. 444–458, 2003.

[14] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast Security: A Taxonomy and Some Efficient Constructions,” in
Proceedings of the IEEE INFOCOM, vol. 2, 1999, pp. 708–716.

[15] R. Canetti, T. Malkin, and K. Nissim, “Efficient Communication-Storage
Tradeoffs for Multicast Encryption,” inEUROCRYPT. New York, NY,
USA: Springer-Verlag New York, Inc., 1999, pp. 459–474.

[16] G. huei Chiou and W.-T. Chen, “Secure broadcasting using the secure
lock,” IEEE Trans. Softw. Eng., vol. 15, no. 8, pp. 929–934, 1989.

[17] M. Steiner, G. Tsudik, and M. Waidner, “Cliques: A new approach to
group key agreement,” inICDCS, 1998, pp. 380–387.

[18] R. Molva and A. Pannetrat, “Scalable multicast security in dynamic
groups,” inACM Conference on Computer and Communications Secu-
rity, 1999, pp. 101–112.

[19] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The
VersaKey Framework: Versatile Group Key Management,”IEEE Journal
on Selected Areas in Communications, vol. 17, no. 9, pp. 1614–1631,
sep 1999.

[20] I. Chang, R. Engel, D. D. Kandlur, D. E. Pendarakis, and D. Saha,
“Key management for secure internet multicast using boolean function
minimization techniques,” inINFOCOM, 1999, pp. 689–698.

[21] L. Cheung, J. A. Cooley, R. Khazan, and C. Newport, “Collusion-
Resistant Group Key Management Using Attribute-Based Encryption,”
in 1st International Workshop on Group-Oriented Cryptographic Proto-
cols, 2007.

[22] M. Manulis, Provably Secure Group Key Exchange. Europäischer
Universitätsverlag, 2007.

[23] G. Steel, “Group protocol attacks,” 2006.
[24] D. Boneh and M. K. Franklin, “Identity-Based Encryption from the Weil

Pairing,” in CRYPTO, 2001, pp. 213–229.
[25] S. D. Galbraith, K. Harrison, and D. Soldera, “Implementing the Tate

Pairing,” in ANTS. Springer-Verlag, 2002, pp. 324–337.
[26] R. Canetti, S. Halevi, and J. Katz, “Chosen-ciphertextsecurity from

identity-based encryption,” inEUROCRYPT, 2004, pp. 207–222.

