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Abstract. The piece in hand (PH) is a general scheme which is applicable to any
reasonable type of multivariate public key cryptosystems for the purpose of enhanc-
ing their security. In this paper, we propose a new class PH method called NLPHPV
(NonLinear Piece in Hand Perturbation Vector) method. Although our NLPHPV uses
similar perturbation vectors as is used for the previously known internal perturbation
method, this new method can avoid redundant repetitions in decryption process. With
properly chosen parameter sizes, NLPHPV achieves an observable gain in security from
the original multivariate public key cryptosystem. We demonstrate these by both the-
oretical analyses and computer simulations against major known attacks and provides
the concrete sizes of security parameters, with which we even expect the grater security
against potential quantum attacks.

Key words: public key cryptosystem, multivariate polynomial, multivariate public key
cryptosystem, piece in hand concept, perturbation vector

1 Introduction

Multivariate Public Key Cryptosystems (MPKCs, for short) originally proposed in 80’s as possible
alternatives to the traditional, widely-used public key cryptosystems, such as RSA and ElGamal
cryptosystems. One of the motivations for researching MPKC is that the public key cryptosystems
based on the intractability of prime factorization or discrete logarithm problem are presently as-
sumed to be secure, but their security will not be guaranteed in the quantum computer age. On
the other hand, no quantum algorithm is known so far to be able to solve efficiently the underlying
problem of MPKCs, i.e., the problem of solving a set of multivariate quadratic or higher degree
polynomial equations over a finite field.

Since the original research of MPKCs was started, many new schemes have been proposed so
far. At the same time, many new methods to cryptanalyze MPKCs have also been discovered.
Recently, for the purpose of resisting these attacks, the research on the method for enhancing
security of MPKCs is becoming one of the main themes of this area. The piece in hand (PH,
for short) matrix method aims to bring the computational complexity of cryptanalysis close to
exponential time by adding random polynomial terms to original MPKC. The PH methods were
introduced and studied in a series of papers [27, 28, 29, 30, 31, 32, 33, 34]. Among them, there are
primary two types of the PH matrix methods; the linear PH matrix methods and the nonlinear PH
matrix methods. In particular, the papers [31, 32, 33, 34] proposed the linear PH matrix method
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with random variables and the nonlinear PH matrix method, and showed that these PH matrix
methods lead to the substantial gain in security against the Gröbner basis attack under computer
experiments.

Because of the nonlinearity of the PH matrix, the nonlinear PH matrix methods are expected
to enhance the security of the original MPKC more than the linear PH matrix methods in general.
Thus, in the present paper, we propose a new PH method, called NonLinear Piece in Hand Per-
turbation Vector (NLPHPV, for short) method, which can be applied to both encryption schemes
and signature schemes in general.1 The adopted application of perturbation vector is similar to the
internal perturbation method [3] and the construction of R-SE(2)PKC [13], where random transfor-
mation is mixed with the “non-singular” transformation. In particular, on the internal perturbation
method, computational complexity by the Gröbner basis attack is reported in [5], the paper showed
that when r is not too small (i.e., r & 6), the perturbed Matsumoto-Imai cryptosystem [3] is secure
against the Gröbner basis attack, where r is the perturbation dimension. Note, however, that in
exchange for enhancing the security, the decryption process of the internal perturbation method
becomes qr times slower than unperturbed one, where q is the number of field elements. This
fact contrasts with our NLPHPV method in a sense that it does not require repeated processes of
decryption process which grows exponentially, though the cipher text size becomes slightly large.
From this point of views of efficiency, NLPHPV method can be a good alternative to the internal
perturbation method. We also discuss on security benefit of the NLPHPV method against major
known attacks, i.e., the Gröbner basis attack, the rank attack [37], and the differential attack [9].
Based on also our security considerations, we suggest concrete parameter sizes for the NLPHPV
method.

This paper is organized as follows. We begin in Section 2 with some basic notation and a brief
introduction of the schemes of MPKCs in general. We introduce the NLPHPV method in Section
3. We then show, based on computer experiments, that the NLPHPV method properly provides
substantial security against the Gröbner basis attack in Section 4. We discuss the immunity of
the NLPHPV method against known attacks in Section 5. Based on the discussion, we suggest
parameters for the NLPHPV method in Section 6. We conclude this paper with the future direction
of our work in Section 7.

2 Preliminaries

In this section we review the schemes of MPKCs in general after introducing some notations about
fields, polynomials, and matrices.

2.1 Notations

We represent a column vector in general by bold face symbols such as p, E, and X.

• Fq: finite field which has q elements with q ≥ 2.

• Fq[x1, . . . , xk]: set of all polynomials in variables x1, x2, . . . , xk with coefficients in Fq.

• Sn×l: set of all n× l matrices whose entries are in a nonempty set S with positive integers n
and l. Let Sn×1 = Sn.

1In signature scheme, the parameters of the NLPHPV method are restricted to some region. We will deal with
the issue in Section 3 and Subsection 5.2.
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• Sn: set of all column vectors consisting n entries in S.

• AT ∈ Sl×n: transpose of A for matrix A ∈ Sn×l.

• f(g) = (h1, . . . , hn)T ∈ Fq[x1, . . . , xm]n: substitution of g for the variables in f , where f =
(f1, . . . , fn)T ∈ Fq[x1, . . . , xk]n , g = (g1, . . . , gk)T ∈ Fq[x1, . . . , xm]k are polynomial column
vectors. Each hi is the polynomial in Fq[x1, . . . , xm] obtained by substituting g1, . . . , gk for
the variables x1, . . . , xk in fi, respectively.

• f(p) ∈ Fq
n: vector obtained by substituting p1, . . . , pk for the variables x1, . . . , xk in f ,

respectively, for f ∈ Fq[x1, . . . , xk]n and p ∈ Fq
k, where p = (p1, . . . , pk)T with p1, . . . , pk ∈

Fq.

2.2 MPKCs in General

A MPKC as in [17, 25, 18, 26, 21, 19, 12, 13, 3, 14, 38, 36] are often made by the following building
blocks:

Secret key: The secret key includes the following:

• the two invertible matrices A0 ∈ Fq
k×k, B0 ∈ Fq

n×n;

• the polynomial transformation G ∈ Fq[x1, . . . , xk]n whose inverse is efficiently com-
putable.

Public key: The public key includes the following:

• the finite field Fq including its additive and multiplicative structure;

• the polynomial vector E = B0 G(A0x) ∈ Fq[x1, . . . , xk]n, where x = (x1, . . . , xk)T ∈
Fq[x1, . . . , xk]k.

Encryption: Given a plain text vector p = (p1, . . . , pk)T ∈ Fq
k, the corresponding cipher text is

the vector c = E(p) .

Decryption: Given the cipher text vector c = (c1, . . . , cn)T ∈ Fq
n, decryption includes the fol-

lowing steps:

(i) Compute w = B−1
0 c ∈ Fq

n,

(ii) Compute v ∈ Fq
k from w by using the inverse transformation of G,

(iii) Compute p = A−1
0 v ∈ Fq

k.

p ∈ Fq
k

plain text

-v = A0p
A0: secret key

¾ v ∈ Fq
k -w = G(v)
G: secret key

¾ w ∈ Fq
n -c = B0w
B0: secret key

¾
?

E = B0G(A0x): public key

c ∈ Fq
n

cipher text

Figure 1: Scheme of Multivariate Public Key Cryptosystem
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3 Nonlinear Piece In Hand Perturbation Vector (NLPHPV) Method

Let K be an arbitrary MPKC whose public key polynomial vector is given by E ∈ Fq[x1, . . . , xk]n,
as described in Subsection 2.2. Let f , l and h be any positive integers. We set g =

def
n + l + h. Let p

and z be any positive integers with p ≤ k ≤ z, and let t be any nonnegative integer with t ≤ z− p.
The relation between these parameters and correspondence to plain text and random number is
given in Figure 2.

Let A ∈ Fq
(k−p)×t and C ∈ Fq

f×z be randomly chosen matrices. Let r ∈ Fq[x1, . . . , xz]h be a
randomly chosen polynomial vector. In the NLPHPV method, a new MPKC K̃ is constructed from
the given MPKC K for the purpose of enhancing the security. A public key Ẽ ∈ Fq[x1, . . . , xz]g of
K̃ is constructed from the original public key E of K.

Secret key: The secret key includes the following:

• secret key of K;

• randomly chosen invertible matrix B ∈ Fq
g×g;

• polynomial transformation H ∈ Fq[x1, . . . , xf ]l whose inverse is efficiently computable;

• the nonlinear piece in hand perturbation vector Q ∈ Fq[x1, . . . , xf ]n, which is randomly
chosen.

Public key: The public key includes the following:

• the finite field Fq including its additive and multiplicative structure;

• the number of plain text variables in the NLPHPV method p;

• the polynomial vector Ẽ ∈ Fq[x1, . . . , xz]g. Ẽ is constructed as the following equation:

Ẽ =
def

B




E

(
x

Aµ

)
+ Q(f)

H(f)
r


 . (1)

Here x = (x1, . . . , xp)T ∈ Fq[x1, . . . , xp]p , µ = (xp+1, . . . , xp+t)T ∈ Fq[xp+1, . . . , xp+t]t ,

λ = (xp+1, . . . , xz)T ∈ Fq[xp+1, . . . , xz]z−p , f = (f1, . . . , ff )T = C

(
x
λ

)
∈ Fq[x1, . . . , xz]f

. Note that, in the right-hand side of (1), the vector Aµ ∈ Fq[xp+1, . . . , xp+t]k−p is sub-
stituted for the variables xp+1, . . . , xk in the original public key E while keeping the
variables x1, . . . , xp in E unchanged. Q(f) plays a role in masking the original public
key E and randomizing it. r is appended to the polynomial sets in order to cope with
the differential attack [9, 6].
Note that t random variables xp+1, . . . , xp+t in µ are included in E from z − p ran-
dom variables xp+1, . . . , xz in λ. Then, increasing the value

(
z−p

t

)
makes these random

variables indistinguishable.

Remark 3.1. We may replace E

(
x

Aµ

)
in (1) with E

(
D

(
x
µ

))
in a more general form.

Here D ∈ Fq
k×(p+t) is a randomly chosen matrix such that, for any p,p′ ∈ Fq

p and any
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u1, u
′
1 ∈ Fq

t, if D

(
p
u1

)
= D

(
p′

u′1

)
, then p = p′. This condition on D is needed to

recover the plain text uniquely. However, D can be rewritten as D = U

(
Ip 0
0 A

)
for some

invertible matrix U ∈ Fq
k×k. Thus, the transformation E

(
x

Aµ

)
is equivalent to E

(
D

(
x
µ

))

since A0 is randomly chosen in original MPKC K.

In signature scheme, the requirement of the uniqueness in decryption is removed. Thus,
the matrix D can be randomly chosen and the distinction between plain text and random
variables is also removed.

Encryption: Given a plain text vector p = (p1, . . . , pp)T ∈ Fq
p and a random number u =

(u1, . . . , uz−p)T ∈ Fq
z−p, the corresponding cipher text is the vector c̃ = Ẽ

(
p
u

)
.

Decryption: Given the cipher text vector c̃ = (c̃1, . . . , c̃g)T ∈ Fq
g, decryption includes the follow-

ing steps:

(i) Compute B−1c̃. By (1), we see that

B−1c̃ =




E

(
p
y

)
+ Q(f(z))

H(f(z))
r(z)


 ,

where z =
def

(
p
u

)
∈ Fq

z, u =
(

u1

u2

)
∈ Fq

z−p, u1 ∈ Fq
t, u2 ∈ Fq

z−p−t, y =
def

Au1 ∈
Fq

k−p.
(ii) Compute f(z) from the value H(f(z)) by using the inverse transformation of H.
(iii) Compute Q(f(z)) by substitution of f(z) for Q.

(iv) Compute E

(
p
y

)
from the value E

(
p
y

)
+ Q(f(z)).

(v) Compute
(

p
y

)
by using the secret key of K. Note that y is discarded after the

decryption.

In signature scheme, it is needed to compute u by solving linear equation
(

0 A 0
C

)(
p
λ

)
=

(
y

f(z)

)
for unknown λ, and to check if r

(
p
u

)
= r(z) for the solution u, where r(z)

is the value given above.2 Since the probability that
(

p
u

)
satisfies this criteria is 1/qh on

average, h must be small as possible in signature scheme.

2The equation is replaced with

„
D 0

C

«„
x
–

«
=

0
@ D

„
p
u1

«

f(z)

1
A for unknown x and – when the matrix D

above is randomly chosen.
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The encryption and decryption processes in the NLPHPV method are schematically represented in
Figure 3.

k -¾
plain text in

original MPKC K
p -¾

x

z − p -¾

λµ

t
-¾plain text

variables
random variables

z
-¾

x

p
-¾

Aµ

k − p
-¾

z -¾

z

p -¾

p

z − p -¾
u

u1 u2

t
-¾

z − p− t
-¾

plain text random number

p

p
-¾

y = Au1

k − p
-¾

Figure 2: Plain text and random number

p ∈ Fq
p

plain text

u ∈ Fq
z−p

random number

-

½
½

½
½

½
½

½
½>

(
p
u

)
∈ Fq

z -

public key
computation

Ẽ
c̃ ∈ Fq

g
cipher text

¾

secret key
computation

c ∈ Fq
n¾

secret key of
original MPKC

(
p
y

)
∈ Fq

k

6
E: public key of original MPKC

Z
Z

Z
Z

Z
Z

Z
ZZ}

original MPKC

Figure 3: NonLinear Piece in Hand Perturbation Vector method

4 Experimental Results

In this section, based on computer experiments, we clarify the enhancement of the security by the
NLPHPV method proposed in the previous section.

Recently, Faugère and Joux [8] showed in an experimental manner that computing a Gröbner
basis (GB, for short) of the public key is likely to be an efficient attack to HFE [21], which is
one of major MPKCs. In fact, they broke the first HFE challenge (80bits) proposed by Patarin.
The attack used by them is to compute a Gröbner basis for the ideal generated by polynomial
components in E − c, where E is a public key and c is a cipher text vector.

We report in Table 1 and Table 2 the time required for the GB attack against the perturbed
Matsumoto-Imai-Plus cryptosystem (PMI+, for short) [6] and the Matsumoto-Imai cryptosystem
(MI, for short) [18] enhanced by the NLPHPV method. Note that n = k and q = 2 for the public
keys E ∈ Fq[x1, . . . , xk]n of MI by its specification. We deal with the case of p = z = k, f = l
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Table 1: Computational times of the GB at-
tack for PMI+

Parameters Computational times
k r a in second
28 6 0 845
28 6 5 733
28 6 10 563
28 6 15 436
29 6 15 747
30 6 15 1305

k: number of plain text variables
r: perturbation dimension
a: number of Plus polynomials

Table 2: Computational times of the GB at-
tack for the enhanced MI by the NLPHPV
method

Parameters Computational times
k l h in second
28 17 3 290
28 17 4 289
28 17 5 263
29 17 3 537
29 17 8 402
29 17 10 349
30 17 3 936
30 17 8 701
30 17 13 513

in the NLPHPV method. As an practical example of the polynomial transformation H in the
NLPHPV method, we use the public key polynomials of the HFE,3 though we can choose any H.
The computation times are evaluated on PROSIDE edAEW416R2 workstation with AMD Opteron
Model 854 processors at 2.80GHz and 64GB of RAM. We use the algorithm F4 implemented on
the computational algebra system Magma V2.12-21. In Table 1 and Table 2, due to the constraint
of computing ability, only the cases of k = 28, 29, 30 are computed. Since MI may have polynomial
time complexity about O(k7) of cryptanalysis, as shown in [5] and our preliminary experimental
results, it is quite difficult at present to compare MI with the enhanced MI in a practical length of a
plain text such as 200bits. If we can experimentally cryptanalyze the MI enhanced by the NLPHPV
method in the practical length of a plain text in order to compare it with the original MI, then
this implies that the cryptosystem enhanced by NLPHPV method is useless in itself. This is a
limitation and dilemma of the security evaluation by computer experiments. On the other hand,
our another computer experiments with the same facilities show that it takes about 0.07 seconds
to cryptanalyze the plain MI with k = 30 by the GB attack. Since plain MI with k = 30 was
cryptanalyzed within about 0.07 seconds under our environment, it would be estimated that the
perturbation by internal or NLPHPV enhances the F4 time complexity by about 104 times. This
fact shows that the internal perturbation method and the NLPHPV method enhance the security
of MI against the GB attack.

We now consider the applicability of the internal perturbation method and the NLPHPV
method. The internal perturbation method requires qr times decryption complexity of the original
MPKC. On the other hand, the NLPHPV method requires at most a few times decryption com-
plexity of the original MPKC regardless of the value of q. Though the application of the NLPHPV
method requires the increase of cipher text size, in terms of the decryption time, the NLPHPV
method seems to be a possible alternative to the internal perturbation method in the enhancement
of the security against the GB attack.

Remark 4.1. In the above, we only dealt with the case that no random variable was introduced.
For the purpose of enhancing the security further, it is possible to introduce random variables.

3The optimal choice of H is still open. We will clarify this point in the future work.

7



Table 3: Comparison between computational times of the GB attack for MI and the enhanced MI
by the NLPHPV method

Parameters Computational times
Cryptosystems p k z g f l h t in second

15 < 10−2

MI 20 0.01
25 0.03
30 0.07
35 0.2
40 0.4
45 0.7
50 1
55 2
60 4

15 20 40 35 10 10 5 10 75
The enhanced MI 15 20 43 35 10 10 5 10 129

by the NLPHPV method 15 20 45 35 10 10 5 10 260
15 20 46 35 10 10 5 10 320
15 20 47 35 10 10 5 10 1029
15 20 40 40 10 10 10 10 97
15 20 43 40 10 10 10 10 161
15 20 47 40 10 10 10 10 284
15 20 48 40 10 10 10 10 495
15 20 49 40 10 10 10 10 1077

We report in Table 3 and Table 4 the time required for the GB attack against MPKC (MI
or R-SE(2)PKC (RSE, for short)) and the MPKC enhanced by the NLPHPV method. Note that
n = k and q = 2 for the public keys E ∈ Fq[x1, . . . , xk]n of MI and RSE by their specifications.
Table 3 and Table 4 give the comparison of the particular case with a plain text of 15 bits (MI with
k = 15 and the enhanced MI with z = 47, g = 35, or RSE with k = 15 and the enhanced RSE with
z = 44, g = 35). This shows that the time required for cryptanalysis is increased by more than
105 times by the application of the NLPHPV method. This fact shows that the NLPHPV method
enhances the security of MI and RSE against the GB attack. Table 3 and Table 4 show that the
increase of the number z − p of random variables xp+1, . . . , xz increases the time required for the
GB attack against the enhanced cryptosystem K̃ and provides substantial security against the GB
attack.

5 Discussion on Security

In this section, we discuss the security of the NLPHPV method against major known attacks. The
main purpose of this section is to enclose the secure parameter region of the NLPHPV method by
both theoretical and experimental observations.

8



Table 4: Comparison between computational times of the GB attack for RSE and the enhanced
RSE by the NLPHPV method

Parameters Computational times
Cryptosystems p k z g f l h t in second

15 0.01
RSE 20 0.03

25 0.1
30 0.2
35 0.5
40 1
45 2
50 5
55 9
60 16

15 20 40 35 10 10 5 10 40
The enhanced RSE 15 20 41 35 10 10 5 10 71

by the NLPHPV method 15 20 42 35 10 10 5 10 179
15 20 43 35 10 10 5 10 713
15 20 44 35 10 10 5 10 2791
15 20 40 40 10 10 10 10 51
15 20 42 40 10 10 10 10 82
15 20 44 40 10 10 10 10 231
15 20 45 40 10 10 10 10 877
15 20 46 40 10 10 10 10 2327

5.1 GB Attack

As stated in the previous section, based on computer experiments, the NLPHPV method prop-
erly provides substantial security, and enhances the security of the Matsumoto-Imai cryptosystem
against the GB attack. In the case where the original MPKC is other than Matsumoto-Imai cryp-
tosystem, or in the case where signature scheme is considered, we will clarify their security against
the GB attack in the full version of this paper. A purely theoretical treatment of their security is
also an issue in the future.

5.2 Rank Attack

In 2004 Wolf, Braeken, and Preneel [37] introduced an attack against a class of MPKCs, called
step-wise triangular schemes (STS, for short), based on the rank calculation of the public key (see
also [23, 1, 10]). On the other hand, recently, Ito, Fukushima, and Kaneko [11] proposed an attack
against the MPKC which is obtained by applying the linear PH matrix method to the sequential
solution method as an original MPKC. Their attack makes use of an STS-like structure of the
MPKC.

In fact, the structure of the public key of the NLPHPV method can be seen as a gSTS
(general step-wise triangular structure) [37]. The detailed description is given below. Let A′ =

9






C
Ip 0
0 A 0

R


 ∈ Fq

z×z be an invertible matrix, where A, C are as in Section 3, Ip is the

identity matrix in Fq
p×p, and R is a specific matrix in Fq

(z−k−f)×z. For A′, we define x′ =

(x′1, . . . , x
′
f , . . . , x′f+k, . . . , x

′
z)

T =
def

A′
(

x
λ

)
, where x, λ are as in Section 3. Let x′1 = (x′1, . . . , x

′
f )T ,

x′2 = (x′f+1, . . . , x
′
f+k)

T , and x′3 = (x′f+k+1, . . . , x
′
z)

T be parts of x′. Then, x′1 = C

(
x
λ

)
,

x′2 =
(

x
Aµ

)
, where µ is as in Section 3. We denote H = (h1, . . . , hl)T ∈ Fq[x1, . . . , xf ]l, Q =

(q1, . . . , qn)T ∈ Fq[x1, . . . , xf ]n, E = (e1, . . . , en)T ∈ Fq[x1, . . . , xk]n, where H, Q, and E are as in
Section 3. By substitution of x′1 for the variables in H, we obtain H(x′1), which is equal to H(f)

in (1). Similarly, Q(x′1) and E(x′2) are equal to Q(f) and E

(
x

Aµ

)
in (1), respectively. We define

r′ = (r′1, . . . , r
′
h)T =

def
r

(
(A′)−1X

) ∈ Fq[x1, . . . , xz]h, where X = (x1, . . . , xz)T ∈ Fq[x1, . . . , xz]z and

r is as in Section 3. Then, r′(x′) = r

(
(A′)−1A′

(
x
λ

))
= r

(
x
λ

)
= r.

Using H(x′1), Q(x′1), E(x′2), and r′(x′) above, we construct the gSTS corresponding to (1) as
follows:

Step 1





y′1 = h1(x′1, . . . , x
′
f ),

...
y′l = hl(x′1, . . . , x

′
f ),

Step 2





y′l+1 = q1(x′1, . . . , x
′
f ) + e1(x′f+1, . . . , x

′
f+k),

...
y′l+n = qn(x′1, . . . , x

′
f ) + en(x′f+1, . . . , x

′
f+k),

Step 3





y′l+n+1 = r′1(x
′
1, . . . , x

′
f , . . . , x′f+k, . . . , x

′
z),

...
y′g = r′h(x′1, . . . , x

′
f , . . . , x′f+k, . . . , x

′
z).

(2)

We denote y′ = (y′1, . . . , y
′
g)

T . Then, Ẽ = By′, where Ẽ, B are as in Section 3.
In this gSTS, the number of layers is 3, the numbers of new variables (step-width) are f , k,

z − k − f , and the numbers of equations (step-height) are l, n, h, respectively. This structure
may bring down undesirable vulnerability against the rank attack. In the following, we discuss the
security of the NLPHPV method against two rank attacks; high rank attack and low rank attack.

5.2.1 High Rank Attack

In the high rank attack against the gSTS, to separate the part of Step 3 in (2) from the public
key, the attacker searches vectors v = (v1, . . . , vg)T ∈ Fq

g. The vectors form together an invertible
matrix whose row is a row of the secret key B−1 or its linear equivalent copy, since multiplying
B−1 to the public key Ẽ separates their layers. The attacker can find each of the vectors v with a
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probability 1/qh by checking whether

rank

(
g∑

i=1

viPi

)
≤ f + k,

for randomly chosen v1, . . . vg ∈ Fq, where Pi are matrices, in a quadratic form, of the public
key polynomial vector Ẽ = (ẽ1, . . . , ẽg)T = (XT P1X, . . . , XT PgX)T , with X = (x1, . . . , xz)T ∈
Fq[x1, . . . , xz]z.

One of the simple countermeasures is to make the step-height of Step 3 thick, i.e., to make the
number h of polynomials in the randomly chosen polynomial vector r in the NLPHPV method
large. If qh is large enough, the probability 1/qh becomes negligible. However, larger h loses
efficiency of cryptosystem in signature scheme as mentioned in Section 3.

In the case that h is not too large, one of the countermeasures against the weakness is to combine
Step 2 with Step 3, i.e., to set f + k = z. Then, both on Step 2 and on Step 3 in (2), the rank is
z = f + k, and the difference of the rank between these steps disappears. Also, the combination of
Step 2 and Step 3 replaces the probability 1/qh by 1/qn+h. In the case where n is large enough,
this probability becomes negligible, and therefore the high rank attack could be intractable.

5.2.2 Low Rank Attack

In the low rank attack against the gSTS, the attacker can find w = (w1, . . . , wg)T ∈ Fq
z with a

probability 1/qf by checking whether the unknown v = (v1, . . . , vg) has f solutions in equation
(

g∑

i=1

viPi

)
w = 0,

for randomly chosen w1, . . . wg ∈ Fq.
One of the countermeasures against the weakness is to widen the step-width of Step 1, i.e., to

choose f to be large enough. Then, the probability 1/qf becomes small, and therefore the low rank
attack could be intractable.

5.3 Differential Attack

In 2005 Fouque, Granboulan, and Stern [9] adapted the differential cryptanalysis to MPKCs in
order to break MI and its variant, called PMI [3]. In the differential attack, the attacker tries
to find v = (v1, . . . , vz)T ∈ Fq

z such that dim (ker (Lv)) = δ, where Lv ∈ Fq
z×z, LvX =

Ẽ(X + v)− Ẽ(X)− Ẽ(v) + Ẽ(0), X = (x1, . . . , xz)T ∈ Fq[x1, . . . , xz]z, and δ is a specific value.
We confirmed, by computer experiments, that the dimensions of the kernel in the NLPHPV

method are the same in almost all cases. Moreover, note that the differential cryptanalysis might
be applied only to Matsumoto-Imai type cryptosystems and the application of Plus method might
recover their security against the cryptanalysis [6]. In the NLPHPV method proposed in this
paper, the original MPKC K can be chosen to be any MPKC, not limited to Matsumoto-Imai type
cryptosystems, and the NLPHPV method has a structure like Plus method. Thus, the NLPHPV
method might be immune against the differential cryptanalysis. We will clarify this point in the
future work.
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6 Consideration on Secure Parameter Setting

Based on the discussion on the security in the previous section, we suggest a secure parameter
setting of the NLPHPV method in Table 5.

In recently proposed major MPKCs, public key sizes for encryption schemes are 175 KB in
PMI+ [6] and 160.2 KB in `IC i+ [7], and for signature schemes 15 KB in Rainbow [4] and 9.92
KB in `IC- [7]. The main purpose of these schemes is to implement them on small devices with
limited computing resources. On the other hand, we assume the situation in the future when
quantum computers appear, and place much more value on the security than the efficiency, such
as the reduction of key size. Let us consider the security level of the quantum computer age
where quantum computers are available. Then, the simple application of the Grover’s algorithm
to exhaustive search of 2N candidates reduces the time complexity O(2N ) to O(

√
2N ). On the

other hand, nowadays, the exhaustive search of 280 candidates is thought to be impossible and
the complexity 280 is selected as the standard security level in present cryptographic community.
Therefore, we assume that the security level of the quantum computer age is greater than the
complexity 2160. Note that we omit the evaluation of the size of secret key below. This is because
the size of secret key of a MPKC is much smaller than that of public key and different in various
MPKCs.

Table 5: Parameter Setting

Parameters Public Key
q p k n z g f l h t Size

Encryption scheme 256 260 260 8.89 MB
The enhanced encryption scheme 256 256 260 260 420 300 20 20 20 82 26.65 MB

by the NLPHPV method
Signature scheme 256 30 20 9.92 KB

The enhanced signature scheme 256 30 20 50 30 20 39.78 KB
by the NLPHPV method

6.1 Encryption Scheme

The plain text size is 2048 bits. Information transmission rate (i.e., the size of plain text divided
by the size of cipher text) is 256/300 ≈ 0.853. The public key size increases about 3 times from
the original encryption scheme. In the original encryption scheme, the numbers of plain text and
cipher text variables are 260.

In the high rank attack against this scheme, the probability with which the attacker find each
of the vectors v is 1/qh. Therefore, the attack complexity of the high attack is qh = 2160 on
average. On the other hand, in the low rank attack, the probability with which the attacker find w
is 1/qf . Therefore, the attack complexity of the low rank attack is qf = 2160 on average. For these
reasons, these rank attacks are intractable. Also, since

(
z−p

t

)
=

(
164
82

) ≈ 2160, it is also intractable
to distinguish random variables.

12



6.2 Signature Scheme

The signature size is 400 bits. In the original signature scheme, the number of input variables is 20,
and 30 output variables. The public key size increases about 4 times from the original signature
scheme.

In the high rank attack against this scheme, the probability with which the attacker find each
of the vectors v is 1/qn+h not 1/qh, since z = f + k as noted in Subsection 5.2. Therefore, the
attack complexity of the high rank attack is qn+h > qn = 2720. On the other hand, in the low rank
attack, the probability with which the attacker find w is 1/qf . Therefore, the attack complexity of
the low rank attack is qf = 2160 on average. For these reasons, these rank attacks are intractable.

7 Concluding Remarks

In this paper, we proposed a new class of PH methods called NonLinear Piece in Hand Perturbation
Vector (NLPHPV) method. NLPHPV is more efficient than previously known internal perturbation
methods in terms of the decryption process avoiding redundant repetitive steps. Based on computer
experiments, we have shown the enhancement of the security of the Matsumoto-Imai cryptosystem
by the method against the Gröbner basis attack. Then, by considering the security against known
other attacks, we have suggested a secure parameter setting of the NLPHPV method for the
quantum computer age. From the practical view point of current interest, it is also important
to evaluate the efficiency of both encryption and decryption in the cryptosystem enhanced by
the method. However, since the aim of the present paper is mainly to develop the framework
of nonlinear PH matrix methods as a potential countermeasure against the advent of quantum
computers in the future, this practical issue is not considered in this paper but discussed in another
paper. Because of the same reason, we have not considered some provable security, for example
IND-CCA of the class of PH methods for encryption but considered just the encryption primitive
Ẽ for an MPKC which is obtained by applying the NLPHPV method. We leave the consideration
of the stronger security to a future study.
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