
An analysis of the infrastructure in real function
fields

David J. Mireles Morales

Mathematics Department
Royal Holloway, University of London

david.mireles@gmail.com

Abstract. We construct a map injecting the set of infrastructure ideals
in a real function field into the class group of the correspoding hyperel-
liptic curve. This map respects the ‘group-like’ structure of the infras-
tructure, as a consequence of this construction we show that calculating
distances in the set of infrastructure ideals is equivalent to the DLP in
the underlying hyperelliptic curve. We also give a precise description of
the elements missing in the infrastructure to be a group.

1 Introduction

1.1 Historical overview

Let K be a quadratic number field and let O be an order in K with discriminant
D. If K is an imaginary number field, there is a well-known bijection between
the set of reduced, positive definite quadratic forms F, and the ideal class group
Cl(O) of O. (see Lenstra [9])

When K is a real quadratic field this bijection no longer exists. Instead, there
is a many-to-one map ψ : F −→ Cl(O) from the group of reduced quadratic forms
F to the ideal class group Cl(O). Shanks realized that the set R = ψ−1(O) of
quadratic forms mapping into the principal class could be given an algebraic
structure, associating a distance to every element [14].

The set R, together with the underlying structure described by Shanks is
known as the infrastructure of O. The fastest algorithms to compute the regula-
tor of O known to-date use infrastructure, these algorithms can be found in [3].
A very good account of the theory behind these algorithms is presented in [13].

Buchmann and Williams presented a key exchange algorithm very similar
to the Diffie-Hellman proposal using the infrastructure of an order O in a real
number field K [1]. This proposal had a number of problems, including the
need to deal with approximations to certain algebraic numbers, high bandwidth
and ambiguity problems. This problems were overcome with the proposal by
Scheidler, Stein and Williams in [12] to use the set of infrastructure ideals in
the function field associated to a hyperelliptic curve given by a real model over
a finite field. It is this proposal, and its succesive adaptations[11, 8, 7], that we
study in this article.

1.2 Description of the article

The main result of this paper is Theorem 1, proving that there exists a map
from the set of infrastructure ideals into the class group of the underlying hy-
perelliptic curve that preserves the “group-like”structure of the infrastructure.
As a consequence of this result we show that calculating distances in the set
of infrastructure ideals is equivalent to the DLP in the underlying hyperelliptic
curve. This is a significant contribution as this result was previously known only
in genus 1.

It has been claimed that Algorithm 6 provides the unique Diffie-Hellman-like
key exchange protocol implemented over a non-group algebraic structure. We will
show that there is a simple (and very natural) embedding of the infrastructure
ideals into the class group of the curve that makes the group operations in Cl0(C)
compatible with those of the infrastructure. We also show that every algorithm
using the infrastructure to obtain cryptographic primitives can be implemented
more efficiently in the class group of the corresponding hyperelliptic curve C.
This is not only because the class group of the curve fills the ‘holes’ that prevent
R from being a group, but also because the representation of the elements of
Cl0(C) used when working with the infrastructure is not optimal.

2 Hyperelliptic Curves

All curves considered in this article will be hyperelliptic curves given by a plane
real model over a field k with char(k) 6= 2. Such a curve C will be given by an
equation of the form C : y2 = F (x), where F (x) is a monic polynomial in k[x]
with even degree and no repeated roots. The curve C will have two k-rational
points at infinity, which we will denote∞+ and∞−. The hyperelliptic conjugate
of a point P in C will be denoted P .

2.1 The Group of Divisors

Definition 1. Let C be an algebraic curve defined over a field k. The group of
divisors on C is the group of finite formal sums D =

∑
niPi, for integers ni and

points Pi on C(k). It is denoted as Div(C).

Definition 2. A divisor D =
∑
niPi is said to be effective if every coefficient

ni is non-negative. The support of the divisor D =
∑
niPi is the set of points

Pi for which the coefficient ni is nonzero. We say that the divisor

Dz =
∑

i

max(ni, 0)Pi,

is the divisor of zeros of D. Analogously, the divisor

Dp =
∑

i

min(ni, 0)Pi,

is the divisor of poles of D.

The degree of the divisor D =
∑
niPi is the integer deg(D) =

∑
ni. We will

denote the subgroup of degree 0 divisors as Div0(C).

2.2 Principal Divisors

Given a curve C defined over the field k, let k(C) define the field of k-valued
rational functions on C. To every function f ∈ k(C)∗ one can associate the
divisor

div(f) =
∑

P∈C(k)

ordP (f),

where ordP (f) is the order of the function f at P [6]. For every function f , the
degree of the divisor div(f) is 0 [5][Corollary II.6.10].

Definition 3. We say that a divisor D is principal if it is the divisor associated
to a function D = div(f). We will denote the group of principal divisors on C
as Prin(C).

Definition 4. Two divisors D0 and D1 are linearly equivalent, denoted D0 ≡
D1, if there is a function f ∈ k(C) such that

div(f) = D1 −D0.

2.3 The Divisor Class Group

Definition 5. The divisor class group of the curve C is the group of divisor
classes modulo principal divisors linear equivalence. We will denote it as Cl(C).
The class of a divisor D in Cl(C) will be denoted by [D].

Definition 6. Given two divisors D1 and D2, we will denote the set of pairs of
integers ω+, ω− such that

D1 ≡ D2 + ω+∞+ + ω−∞−,

as ω(D1, D2). We say that the numbers ω+ and ω− are counterweights for D1

and D2 if (ω+, ω−) ∈ ω(D1, D2).

The set ω(D1, D2) may be empty. If [∞+−∞−] is a torsion point on Cl0(C),
and the set ω(D1, D2) is not empty, then it is infinite; however this will not
affect our algorithms. Given two divisors D1 and D2, calculating the values of
the counterweights relating them is a difficult problem. When these values are
needed in our algorithms, there will be a simple way to calculate them. Since
every principal divisor has degree 0. It follows that the degree function is well
defined on divisor classes. We define Cl0(C) as the degree zero subgroup of Cl(C).

Definition 7. If the curve C is defined over a non algebraically closed field k,
we say that a divisor D is k-rational if it is invariant under the action of the
Galois group Gal(k/k). The group of k-rational divisors is denoted as Divk(C).

Note that points in the support of a k-rational divisor D might not be k-rational.
Analogously, we say that a divisor class is k-rational if it is Gal(k/k)-stable. We
denote the group of k-rational divisor classes as Clk(C).

Proposition 1. Let D∞ be a k-rational degree g divisor, and let D ∈ Div0(C)
be a k-rational divisor on the hyperelliptic curve C. Then [D] has a unique
representative in Cl0(C) of the form [D0 − D∞], where D0 is an effective k-
rational divisor of degree g whose affine part is reduced.

Proof. See [4]. ut

2.4 Points at infinity

Let C be a hyperelliptic curve given by a real model, and denote the two points
at infinity on C as ∞+ and ∞−. It is possible to prove that

(y/xg+1)(∞+) = 1, (y/xg+1)(∞−) = −1.

Hence, for p(x) a polynomial of the form p(x) = (xg+1 +
∑

0≤i≤g bix
i), the

function y − p(x) will have valuation strictly larger than −(g + 1) at ∞+ and
valuation −(g + 1) at ∞−.

Definition 8. In the notation of the previous paragraph, among all monic degree
g + 1 polynomials, there is a unique polynomial in k[x] for which the valuation
of the function at ∞+ is maximal; we will denote this polynomial by H+. Define
the polynomial H− as H−(x) = −H+(x).

If C(x, y) is the equation of the curve, then H+(x) and H−(x) are the poly-
nomials with leading coefficient 1 and −1 such that C(x,H±(x)) has minimal
degree. Their coefficients can thus be found recursively. The polynomials H±(x)
are just a technical tool to specify a point at infinity, similar to the choice of
sign when computing the square root of a complex number.

Definition 9. Given two divisors D1 and D2, we will denote the set of pairs of
integers ω+, ω− such that

D1 ≡ D2 + ω+∞+ + ω−∞−,

as ω(D1, D2). We say that the numbers ω+ and ω− are counterweights for D1

and D2 if (ω+, ω−) ∈ ω(D1, D2).

The set ω(D1, D2) may be empty. If [∞+−∞−] is a torsion point on Cl0(C),
and the set ω(D1, D2) is not empty, then it is infinite; however this will not affect
our results.

2.5 Mumford representation

Definition 10. We say that an effective divisor D =
∑

i Pi on a hyperelliptic
curve C is semi-reduced if i 6= j implies Pi 6= P j. If the hyperelliptic curve C
has genus g, we say that a divisor D on C is reduced if it is semi-reduced, and
has degree d ≤ g. We will denote the degree of a divisor Di as di.

Let C be a hyperelliptic curve given by the equation y2 = F (x). To every pair
of polynomials (u(x), v(x)) such that F (x)− v(x)2 ≡ 0 mod u(x), we associate
a divisor as follows

If u(x) =
∏

i

(x− ri), then (u(x), v(x)) 7→
∑

i

(ri, v(ri)).

Note that the divisor associated to the pair (u(x)v(x)) is always an effective
affine semi-reduced divisor.

Conversely, if D is an effective, affine, semi-reduced divisor, there exists a
pair of polynomials (u(x), v(x)) with F (x)− v(x)2 ≡ 0 mod u(x) and such that
the divisor associated to (u(x), v(x)) is D

Definition 11. In the notation of the previous paragraph, we say that (u(x), v(x))
is a Mumford representation for D, and we will denote this as D = div(u(x), v(x)).

Remark 1. Note that for D is an effective reduced affine divisor, the second
polynomial v(x) in its Mumford representation D = div(u(x), v(x)) is only well
defined modulo u(x). If we require that deg(v) < deg(u) we can get a unique
Mumford representation for every affine semi-reduced divisor.

3 Algorithms on the Mumford Representation of Divisors

Algorithm 1 Modified Composition
Input: Semi-reduced affine divisors D1 = div(u1, v1) and D2 = div(u2, v2).
Output: A semi-reduced affine divisor D3 = div(u3, v3) and a pair (ω+, ω−), such

that (ω+, ω−) ∈ ω(D1 +D2, D3).
1: Compute s (monic), f1, f2, f3 ∈ k[x] such that

s = gcd(u1, u2, v1 + v2 + h) = f1u1 + f2u2 + f3(v1 + v2 + h).

2: Set u3 := u1u2/s
2 and v3 := (f1u1v2 + f2u2v1 + f3(v1v2 + F)) /s mod u3

3: return div(u3, v3) and (deg(s), deg(s)).

The result D3 of Algorithm 1 will be denoted D3, (ω+, ω−) = comp(D1, D2).
Algorithm 1 is also known as divisor composition.

Proposition 2. Given two semi-reduced affine divisors D1 = div(u1, v1) and
D2 = div(u2, v2), the divisor of the function s from Algorithm 1 is

div(s) = D1 +D2 −D3 −
d1 + d2 − d3

2
(∞+ +∞−), (1)

in particular, (ω+, ω−) ∈ ω(D1 +D2, D3).

Given an affine semi-reduced divisor D0, of degree d0 ≥ g + 2, Algorithm 2
finds another affine semi-reduced divisor D1 with smaller degree d1, and a pair
of integers (ω+, ω−) such that

(ω+, ω−) ∈ ω(D0, D1) (2)

Algorithm 2 Modified Reduction
Input: A semi-reduced affine divisor D0 = div(u0, v0), with d0 ≥ g + 2.
Output: A semi-reduced affine divisor D1 = div(u1, v1) and a pair (ω+, ω−), such

that d1 < d0 and Equation (2) holds.
1: Set u1 := (v2

0 + hv0 − F)/u0 made monic.
2: Let v1 := (−v0 − h) mod u1.
3: if the leading term of v0 is xg+1 then
4: Let (ω+, ω−) := (d0 − g − 1, g + 1− d1).
5: else if the leading term of v0 is −xg+1 then
6: Let (ω+, ω−) := (g + 1− d1, d0 − g − 1).
7: else
8: Let (ω+, ω−) := (d0−d1

2
, d0−d1

2
).

9: end if
10: return div(u1, v1), (ω+, ω−).

Proposition 3. Let D0 = div(u0, v0) be a divisor of degree d0 ≥ g + 2. Then,
in the notation of Algorithm 2 we have

div
(
y − v0(x)

u0

)
= D0 −D1 − ω+∞+ − ω−∞−. (3)

Algorithm 3 Composition at Infinity and Reduction
Input: A semi-reduced affine divisor D0 = div(u0, v0) of degree d0 ≤ g + 1.
Output: A reduced affine divisor D1 = div(u1, v1) and a pair of integers (ω+, ω−)

such that (ω+, ω−) ∈ ω(D0, D1).
1: v′1 := H+ + (v0 −H+ mod u0),
2: u1 := (v′21 − F)/u0 made monic.
3: v1 := −v′1 mod u1.
4: Let (ω+, ω−) := (d0 − g − 1, g + 1− d1).
5: return div(u1, v1), (ω+, ω−).

Algorithm 3 is only defined for affine semi-reduced divisors on curves given
by a real model. If it were applied on a divisor of degree at least g + 2, Algo-
rithm 3 would coincide with Algorithm 2. When applied on a divisor D0 degree

at most g+ 1, Algorithm 3 can be interpreted as composing the divisor D0 with
some divisor at infinity, followed by Algorithm 2. The polynomial v′1 in this al-
gorithm is the equivalent to polynomial v3 in Algorithm 1. The result D1 of this
algorithm will be denoted as D1, (ω+, ω−) = red∞(D0). Formally, the action of
this algorithm is given by the following.

Proposition 4. [Proposition 2 [4]] Given an effective semi-reduced divisor with
affine support D0, with Mumford representation div(u0, v0) and degree d0 ≤ g+1.
If D1, (ω+, ω−) = red∞(D0), then in the notation of Algorithm 3,

div
(
y − v′1(x)

u1

)
= D0 −D1 − ω+∞+ − ω−∞−. (4)

In particular (ω+, ω−) ∈ ω(D0, D1).

Remark 2. If we abuse notation, it is possible to prove that the function red∞ :
R −→ R is a bijection. It is then possible to define a function red∞−1 on R, this
will be used in Proposition 8. Another way to calculate red∞−1 in R is simply by
running Algorithm 3 using H− in Step 1 instead. In this case the counterweights
also need to be adapted.

4 Infrastructure

Let C be a genus g hyperelliptic curve given by a real model C : y2 = F (x) over
a field k with char(k) 6= 2. Denote its function field as K = k(C), and let O be
the affine coordinate ring of C, i.e. O = k[x, y]/(y2 − F (x)).

Every ideal a of O has an O-basis of the form a = [SQ, S(y + P)], where
S,Q, P are polynomials in k[x] such that Q divides P 2 − F . The polynomials
S and Q are uniquely defined up to multiplication by elements of k∗, and the
polynomial P is only defined modulo Q. To have a unique basis for the ideal a
we will assume that deg(P) < deg(Q).

Remark 3. Throughout this chapter, when we refer to the basis of an ideal we
will assume that the basis has the form described in the previous paragraph.

Definition 12. If the ideal a has basis [SQ, S(y+P)] as described in the previous
paragraph, we define the degree of the ideal a as deg(SQ).

Definition 13. We say that an ideal is primitive if the polynomial S can be
taken to be S = 1.

Definition 14. We say that an ideal a = [Q,P + y] is reduced if it is primitive
and deg(a) ≤ g.

Definition 15. Let R be the set of principal reduced ideals of O. We say that
R is the set of infrastructure ideals of O [12].

Definition 16. Let a be an infrastructure ideal. By definition a = (α) for some
function α. We define the distance δ(a) of the ideal a as δ(a) = ord∞+(α) [12].

Example 1. The ring O can be seen as the ideal generated by the element 1. It
is an element of R with basis O = [1, 0], and by definition it has distance 0.

If there is a unit β in O with non-zero valuation at ∞+, then there is a least
positive integer R for which there exists a unit βR with valuation R at ∞+. In
this case, the distance of an ideal is only defined modulo R. The integer R is
known as the regulator of O.

Remark 4. The divisor of a unit β in O has to be supported exclusively at ∞+

and ∞−, and have degree 0. It follows that the regulator of O is given by the
order of the element ∞+ − ∞− in Cl0(C). We prove some stronger results in
Theorems 1 and 2.

Ideas related to the set of infrastructure ideals have found their main ap-
plications in cryptography. For these applications the curve C is defined over a
finite field and the set R is finite.

Definition 17. Given ideals a1, a2 ∈ R, we define the distance between a1 and
a2 to be

δ(a1, a2) = δ(a1)− δ(a2).

Given two random infrastructure ideals a1 and a2, finding the distance be-
tween them is a hard problem (see Theorem 3). A very good description of the
ideas and techniques used in the infrastructure of a hyperelliptic curve given by
a real model can be found in [10].

5 Operations on the Infrastructure Ideals

Let a be a primitive ideal of O with basis [Q, y + P]. Note that the pair of
polynomials (Q,P) satisfy all the conditions to be the Mumford representation
of a divisor. In other words, there is an effective, affine, semi-reduced divisor D
on the curve C such that D = div(Q,P).

Definition 18. Given a primitive ideal a of O with basis [Q, y+P], we define the
divisor associated to a as the divisor D = div(a) whose Mumford representation
is (Q,P).

Since the basis [Q, y + P] of the ideal a could also be thought of as the
Mumford representation of a divisor, we can use Algorithm 1 (composition), Al-
gorithm 2 (reduction) and Algorithm 3 (composition at infinity and reduction)
on elements of R. The idea of using these algorithms (or rather, a variant that
does not compute counterweights) on ideals is not new (see [2, 10]). The interpre-
tation of the action of these algorithms on infrastructure ideals is not obvious.
In this section we give an interpretation both of the action of the algorithms on
ideals of O, and of the counterweights returned by the algorithms in terms of
the distance.

Proposition 5. Let a1 and a2 be two primitive ideals of O. If a3, (ω+, ω−) =
comp(a1, a2) is the result obtained from applying Algorithm 1 on the basis of a1

and a2, we get

a1 · a2 = s · a3

ω+ = ord∞+(s),

where s denotes the polynomial obtained in Step 1 of Algorithm 1.

Proof. The first property is a classic result. See [12, Theorem 3.4]. The second
follows from the fact that the order of a polynomial p(x) at ∞+ is given by the
degree deg p(x).

Proposition 6. Let a0 be a primitive divisor with basis a0 = [Q0, y + P0] such
that deg(Q0) ≥ g + 2. If we let a1, (ω+, ω−) = red(a0) be the result of applying
Algorithm 2 to the ideal a0, then

a1 =
(
y − P0

Q0

)
· a0

ω+ = − ord∞+

(
y − P0

Q0

)
.

Proof. If the ideal a0 has basis [Q0, y + P0], then the ideal ((y − P0)/Q0) · a0

has basis [y− P0, (y2 − P 2
0)/Q0], which is by defintion a basis of a1. The second

assertion follows simply from Equation (3).

Proposition 7. Let a0 be a primitive divisor with basis a0 = [Q0, y + P0] such
that deg(Q0) ≤ g+ 1. If we let a1, (ω+, ω−) = red∞(a0) be the result of applying
Algorithm 3 to the ideal a0, then

a1 =
(
y − P0

Q0

)
· a0,

ω+ = − ord∞+

(
y − P0

Q0

)
.

Proof. The proof of the first property is analogous to the proof given for Propo-
sition 6. The second property follows from Equation (4).

Corollary 1. Let a0 be an infrastructure ideal. If a1, (ω+, ω−) = red∞(a0), then

ω+ = −δ(a0, a1).

Proof. Proposition 7 shows that there is a function α with ω+ = − ord∞+(α)
such that a1 = αa0, the result follows from the definition of δ.

Definition 19. Suppose that the regulator R is a positive integer. Given an
integer n between 0 and R− 1, let

δ(n) = max{δ(a)|a ∈ R and δ(a) ≤ n},

and let an be the ideal in R such that δ(an) = δ(n). We say that an is the ideal
closest to the left of n [12].

The following result shows that in principle it is possible to find all the
infrastructure ideals using only the algorithms we have presented, we omit the
proof, but refer the reader to [12].

Proposition 8. Let a be an infrastructure ideal. Then the set {redi
∞(a)}i∈Z is

the set of infrastructure ideals R.

Proof. See [12, Section 3.1].

6 A Cryptographic Interlude

The cryptographic applications of infrastructure have been the motivation for
most of the work done in the area. In this section we present the cryptographic
protocols presented in [12] which use the set of infrastructure ideals as underlying
algebraic structure. It has been claimed that this is the unique Diffie-Hellman-
like key exchange protocol that doesn’t use a group as underlying algebraic
structure, we analyse this claim in the next section, see for example Theorem 1.

Algorithm 4 Constant Addition
Input: An ideal a0 ∈ R and an integer k.
Output: The ideal a1 closest to the left of δ(a0) + k.
1: if k is positive then
2: Use H+ in the red∞ steps.
3: Let a2, (ω

+, ω−) := red∞(a0).
4: Let a1 := a0,, n := ω+.
5: while n < k do
6: a1 := a2.
7: a2, (ω

+, ω−) := red∞(a0), n := n+ ω+.
8: end while
9: else if k is negative then

10: Use H− in the red∞ steps.
11: Let a2, (ω

+, ω−) := red∞(a0).
12: Let a1 := a0, n := ω+.
13: while n ≥ k do
14: a1 := a2.
15: a2, (ω

+, ω−) := red∞(a0), n := n+ ω+.
16: end while
17: end if
18: return a1.

Given an infrastructure ideal a0 with distance δ0 and an integer k, Algo-
rithm 4 finds the ideal closest to the left of k + δ0. We denote the result of
Algorithm 4 as a1 = CA(a0, k).

In the context of affine semi-reduced effective divisors, we mentioned in Sec-
tion 3 that Algorithm 3 (composition at infinity and reduction) has the same

Algorithm 5 Ideal Multiplication
Input: Ideals a1, a2 ∈ R.
Output: The ideal a3 closest to the left of δ(a1) + δ(a2).
1: a3, (ω

+, ω−) := comp(a1, a2), n := ω+.
2: while deg(a3) ≥ g + 2 do
3: a3, (ω

+, ω−) := red(a3), n := n+ ω+.
4: end while
5: if deg(a3) = g + 1 then
6: a3, (ω

+, ω−) := red∞(a3), n := n+ ω+.
7: end if
8: a3 := CA(a3, n).
9: return a3.

action on a divisor D as Algorithm 2 (reduction) if deg(D) ≥ g + 2. In the con-
text of infrastructure, it is customary to use only Algorithm 3; we have chosen
to differentiate its use in Algorithm 5 precisely to separate the cases when only
a reduction is taking place from those when some composition at infinity is also
carried out. From a practical perspective the algorithms are identical, but we
belive that conceptually they deserve being treated differently.

It can be proved that the maximum value of n in Step 8 in Algorithm 5 is
bounded by (g + 1)/2 (see [12]). Algorithm 5 shows that given two ideals with
distances δ1 and δ2, it is possible to find the ideal closest to the left of δ1 + δ2.

Combining Algorithm 5 with Algorithm 4, given an infrastructure ideal a with
distance δ and an integer k, it is possible to find the ideal closest to the left of kδ,
even if δ is not known, in time O(log(k)) (see Algorithm POWER in [12]). This
construction can then be used to implement a key-exchange protocol modeled
on Diffie-Hellman using the infrastructure ideals.

Algorithm 6 Infrastructure Diffie-Hellman
Public Information: An ideal a ∈ R and its distance δ = δ(a).
1: Alice generates a random ideal aA with distance δ(aA) = aδ. Alice knows a.
2: Bob generates a random ideal aB with distance δ(aB) = bδ. Bob knows b.
3: Alice and Bob exchange aA and aB .
4: Alice and Bob compute the ideal aC closes on the left to abδ.
5: Alice and Bob use aC as the key in a symmetric encryption scheme.

7 A map into the class group

As mentioned before, it is claimed that Algorithm 6 provides a Diffie-Hellman-
type key construction algorithm in a non-group structure. In this section we
will explain that the failure of R to be a group is somewhat artificial. The
results in this section are based on the construction of a map relating the set of
infrastructure ideals with certain divisor classes in Cl0(C).

Definition 20. Given a ∈ R an infrastructure ideal, define

ψ :R −→ Cl0(C)

a 7→ [div(a)− deg(a)∞−],

where div(a) refers to the affine effective semi-reduced divisor associated to a
(see Definition 18).

Proposition 9. Let a1 and a2 be two infrastructure ideals. If δ is the distance
δ(a1, a2) between a1 and a2, then

ψ(a1) + δ[∞+ −∞−] = ψ(a2). (5)

Proof. Proposition 8 shows that one can reach any element of R using succesive
applications of red∞ on a1, so it suffices to prove this result for ideals a1 and
a2, (ω+, ω−) = red∞(a1). Let D1 = div(a1) and D2 = div(a2) be affine divisors
of degrees d1 and d2 respectively. Step 4 in Algorithm 3 says that (ω+, ω−) =
(d1 − g − 1, g + 1− d2), and using Equation (4) we get

D1 ≡ D2 + (d1 − (g + 1))∞+ + (g + 1− d2)∞−.

This implies

(D1 − d1∞−) + (g + 1− d1)(∞+ −∞−) ≡ (D2 − d2∞−),

Since a1 = red∞(a0), Corollary 1 proves that δ = −ω+, and since ω+ = d1−g−1.
We can finally conclude that

ψ(a) + δP = ψ(b).

Theorem 1. The map ψ : R −→ Cl0(C) sends an ideal a with distance δ = δ(a)
to the element ψ(a) = δ[∞+ −∞−] of Cl0(C). Nota that this implies that the
map ψ respects the ‘group-like’ structure of the infrastructure.

Proof. The result is trivial for a = O, since we have mentioned that deg(O) = 0
and by definition ψ(O) = 0. It extends inductively to R using Proposition 9.

Corollary 2. Let a be an infrastructure ideal with distance δ, then the Mumford
representation of the affine part of the canonical representative of δ[∞+ −∞−]
using base divisor D∞ = g∞−, is given by the polynomials in the basis of a (see
Remark 3 for the non-uniqueness of the basis of a).

Remark 5. Let g be the genus of the curve C, and let d = d g
2e. In [8][Section

3.3], it is observed that if one composes two ideals with distances δ1 − d and
δ2 − d, and applies a reduction chain to the result, with high probability the
first reduced ideal obtained will be the ideal with distance δ1 + δ2 − d. This can
be explained simply by observing that changing the ideal with distance δ for
the ideal with distance δ − d can be interpreted as changing the base divisor in
Corollary 2 from D∞ = g∞− to D∞ = g/2(∞+ +∞−) if the genus is even (or
to D∞ = (g + 1)/2∞+ + (g − 1)/2∞− if the genus is odd) while staying in a
fixed divisor class. The fact that no extra operations are needed when the base
divisor is balanced is indeed one of the main observations from [4].

We have proved that there is a simple map ψ sending the infrastructure ideals
into the class group Cl0(C) that is compatible with the group-like structure ofR.
Using the explicit description of ψ, we can describe exactly the elements missing
in R to be a group. Let div((u, v), n) denote the element

[div(u, v) + n∞+ + (g − deg(u)− n)∞− − g∞−],

and let G = 〈[∞+−∞−]〉 be the subgroup of Cl0(C) generated by [∞+−∞−].
Using this notation we have the following

Theorem 2. The image ψ(R) of the infrastructure ideals under ψ, consists of
the elements of G of the form div((u, v), 0).

Proof. A different way to state this theorem is by saying that a divisor class [D]
in G is in the image of ψ if and only if the coefficient of ∞+ in its canonical
representative with base divisor g∞− is zero.

By construction, all ideals in the image ψ(R) have the indicated form. We will
prove the converse by induction, and we will only prove it for positive multiples
of [∞+ − ∞−], as the proof for negative multiples is either not necessary or
analogous.

Let a0 be an ideal with distance δ0 = δ(a0). Denote a1, (ω+, ω−) = red∞(a0)
and let δ1 = δ(a1). Since ω+ = deg(a0)−g−1, Corollary 1 proves that δ1− δ0 =
g + 1 − deg(a0). We will show that none of the elements n[∞+ − ∞−], for
δ0 < n < δ1, has the indicated form (if δ1 − δ0 = 1 this is a vacuous statement).

We know from Theorem 1 that ψ(a0) = δ0[∞+ −∞−], and by definition

ψ(a0) = [div(a0) + (g − deg(a0))∞− − g∞−].

For every n such that δ0 < n < δ1 the divisor(
div(a0) + (g − deg(a0))∞− − g∞−

)
+ (n− δ0)(∞+ −∞−),

gives a representative of the divisor class n[∞+ − ∞−]. This divisor can be
rewritten as

div(a0) + (n− δ0)∞+ + (g − deg(a0)− n+ δ0)∞− − g∞−. (6)

Since δ0 < n < δ1 and δ1 − δ0 = g + 1 − deg(a0), we have n − δ0 > 0, and
deg(a0)− g− n+ δ0 ≥ 0. It follows that the divisor given by Equation (6) is the
canonical representative of n[∞+ −∞−] in Cl0(C) with base divisor g∞−. But
the coefficient of ∞+ in this divisor is not zero, hence it does not have the form
div((u, v), 0) and the result follows.

Corollary 3. Let a1, a2 and a3 be infrastructure ideals with

δ(a1) + δ(a2) = δ(a3),

then the operations needed to calculate a3 from a1 and a2 are the same as the
operations needed to add δ(a1)[∞+−∞−] and δ(a2)[∞+−∞−] in Cl0(C), when
these two ideal classes are given by their canonical representatives with base
divisor D∞ = g∞−.

Remark 6. Theorem 1 and Corollary 3 show that the use of infrastructure in
cryptographic protocols is equivalent to the implementation of these protocols
in the class group Cl0(C) of the corresponding hyperelliptic curve C, with the
disadvantage that the infrastructure has some ‘holes’, as proven in Theorem 2,
while Cl0(C) is a group. Corollary 3 also shows that the representation of the
elements of Cl0(C) used when working with the infrastructure is non-optimal,
and it would be better to work with the representation using a balanced divisor
at infinity as described in the article [4].

It is possible to use our results to properly assess the difficulty of computing
the distance of a random infrastructure ideal a. The only arguments known in this
direction show that the problem of finding distances in the set of infrastructure
ideals associated to a real model for an elliptic curve E is equivalent to the DLP
in E; it is then argued that if an algorithm existed to compute distances in the
infrastructure of all hyperelliptic curves, then this algorithm could be used to
solve the DLP in an elliptic curve. This argument is not satisfactory, and we
now present a more refined analysis.

Theorem 3. Let R be the set of infrastructure ideals associated to the hy-
perelliptic curve C given by a real model. The problem of computing the dis-
tance δ(a) of a random ideal a in R is equivalent to the DLP in the subgroup
G = 〈[∞+ −∞−]〉 of the class group Cl0(C).

Proof. Let a be an ideal in R with distance δ = δ(a). Theorem 1 shows that
ψ(a) = δ[∞+ −∞−]. The element ψ(a) can be computed in polynomial time,
and the problem of finding δ is thus reduced to finding the discrete logarithm of
ψ(a) with respect to [∞+ −∞−].

To prove the reverse implication, note that Theorem 2 shows that a random
element of G will belong to the image of R under ψ with high probability. Hence,
given two divisor classes [D1] and [D2], one can find an integer n, relatively
prime to the regulator R, such that n[D1] and n[D2] lie in ψ(R) in probabilistic
polynomial time. The map ψ can be inverted in constant time, and if δ1 and
δ2 are the distances of the ideals ψ−1(n[D1]) and ψ−1(n[D1]), then the discrete
logarithm of [D2] with respect to [D1] is given by δ2/δ1 mod R.

8 Conclusions

The main computational applications of infrastructure in the arithmetic of real
quadratic number fields are the computation of the regulator and of a funda-
mental unit. In the case of the infrastructure of a hyperelliptic curve given by
a real model over a finite field, there exist efficient algorithms to solve both of
these problems.

Calculating the regulator of a hyperelliptic curve C over a finite field Fq

can be done by finding the number of points on the class group Cl0(C) of C.
The best techniques available to count the number of points on the class group
of a hyperelliptic curve do not use the infrastructure of the curve, but rather

sofisticated algorithms depending on the genus of the curve and the size of the
base field.

If the regulator of the hyperelliptic curve C is known, the problem of find-
ing a fundamental unit in the affine coordinate ring of a hyperelliptic curve C
can be solved in polynomial time using Miller’s algorithm. Hence, the only com-
putational task depending on the infrastructure of the curve C would be the
Diffie-Hellman-like key exchange algorithm (Algorithm 6).

It has been claimed that Algorithm 6 provides the unique Diffie-Hellman-like
key exchange protocol implemented over a non-group algebraic structure. In this
article we have shown that there is a simple (and very natural) embedding of
the infrastructure ideals into the class group of the curve that makes the group
operations in Cl0(C) compatible with those of the infrastructure. We have shown
that every algorithm using the infrastructure to obtain cryptographic primitives
can be implemented more efficiently in the class group of the corresponding hy-
perelliptic curve C. This is not only because the class group of the curve fills
the ‘holes’ that prevent R from being a group, but also because the representa-
tion of the elements of Cl0(C) used when working with the infrastructure is not
optimal.

Acknowledgements

The author wishes to thank Steven D. Galbraith for his help during the elab-
oration of this article. The author has been supported in part by a scholarship
from the Mexican Council of Science and Technology CONACYT and the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT. The information in this document reflects only the author’s views, is
provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk
and liability.

References

1. Buchmann, J., and Williams, H. C. A key exchange system based on real
quadratic fields. In CRYPTO (1989), G. Brassard, Ed., vol. 435 of Lecture Notes
in Computer Science, Springer, pp. 335–343.

2. Cantor, D. G. Computing in the Jacobian of a hyperelliptic curve. Math. Comp.
48, 177 (1987), 95–101.

3. Cohen, H. A course in computational algebraic number theory, vol. 138 of Grad-
uate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

4. Galbraith, S. D., Harrison, M., and Mireles Morales, D. J. Efficient
hyperelliptic arithmetic using balanced representation for divisors. ANTS 2008
procceedings (2008). to appear.

5. Hartshorne, R. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate
Texts in Mathematics, No. 52.

6. Hindry, M., and Silverman, J. H. Diophantine geometry, vol. 201 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 2000. An introduction.

7. Jacobson, M., Scheidler, R., and Stein, A. Fast arithmetic on hyperellip-
tic curves via continued fraction expansions. In Advances in Coding Theory and
Cryptography (2007), T. Shaska, W. Huffman, D. Joyner, and V. Ustimenko, Eds.,
vol. 3 of Series on Coding Theory and Cryptology, World Scientific Publishing,
pp. 201–244.

8. Jacobson, M. J., Scheidler, R., and Stein, A. Cryptographic protocols on
real hyperelliptic curves. Adv. Math. Commun. 1, 2 (2007), 197–221.

9. Lenstra, Jr., H. W. On the calculation of regulators and class numbers of
quadratic fields. In Number theory days, 1980 (Exeter, 1980), vol. 56 of London
Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 1982, pp. 123–
150.

10. Paulus, S., and Rück, H.-G. Real and imaginary quadratic representations of
hyperelliptic function fields. Math. Comp. 68, 227 (1999), 1233–1241.

11. Scheidler, R. Cryptography in quadratic function fields. Des. Codes Cryptogra-
phy 22, 3 (2001), 239–264.

12. Scheidler, R., Stein, A., and Williams, H. C. Key-exchange in real quadratic
congruence function fields. Des. Codes Cryptography 7, 1-2 (1996), 153–174.

13. Schoof, R. Computing arakelov class groups. MSRI Publications 44 (2008),
447495.

14. Shanks, D. The infrastructure of a real quadratic field and its applications. In
Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo.,
1972) (Boulder, Colo., 1972), Univ. Colorado, pp. 217–224.

