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Abstract. We relate the fixed argument pairing inversion problems
(FAPI) and the discrete logarithm problem on an elliptic curve. This
is done using the reduction from the DLP to the Diffie-Hellman problem
developed by Boneh, Lipton, Maurer and Wolf. This approach fails when
only one of the FAPI problems can be solved. In this case we use Cheon’s
algorithm to get a reduction.

1 Introduction

Pairing-based cryptography has become one of the most active research areas in
public key cryptography. The security of a pairing-based cryptosystem depends
on the difficulty of several computational problems, some of them exclusive to
the area, such as the pairing inversion problem (see Definition 1).

Using results of Verheul [19], later extended by Galbraith, Hess and Ver-
cauteren [8], it is well known that if one can solve certain pairing-inversion prob-
lems, then it is also possible to solve the computational Diffie-Hellman (DH)
problem in a number of groups, including a class of subgroups of finite fields.

In this article we find results that relate the difficulty of pairing inversion
problems and the discrete logarithm problem (DLP). We begin using the tech-
niques of Boheh and Lipton [2], and Maurer [12], to show that if one can solve
both the FAPI1 and FAPI2 problems (see Definition 1), then there exist a sub-
exponential discrete lograrithm algorithm in the groups involved.

We also explore the implications of being able to solve only one of the FAPI
problems. In this case it is not possible to solve the computational Diffie-Hellman
problem, so the previous approach does not apply. We prove that it is still possi-
ble to solve the static Diffie-Hellman problem, this will let use algorithms devel-
oped by Brown and Gallant [3], and Cheon [4] that solve the discrete logarithm
problem using a static Diffie-Hellman oracle.

Instead of presenting his algorithm in the context of the static Diffie-Hellman
problem, Cheon presents his algorithm as a solution to the l-Strong Diffie-
Hellman problem (l-SDH).

Problem 1. Given P and αiP for i = 1 . . . l, compute αl+1P .



This problem was first introduced by Boneh and Boyen in [1] to give a security
proof in the standard model for a signature scheme. Cheon’s idea consists of
exploiting the extra information given by the SDH problem to accelerate the
computation of the discrete logarithm α.

This article is organized as follows. In Section 2, we define the pairing in-
version problems we are interested in. Section 3 uses the techniques developed
to reduce the DLP to the DH problem to show that the existence of pairing
inversion algorithms implies the existence of sub-exponential discrete logarithm
algorithms. Section 4 presents Cheon’s algorithm and explores its implications in
the presence of a pairing inversion oracle. We present our conclusions in Section 5

2 Pairings

Throughout this article, we will let G1,G2 and GT denote groups of prime order
p. We will write the group operation in G1 and G2 additively, and we will use
multiplicative notation for GT . We will consider non-degenerate bilinear pairings
of the form

e : G1 ×G2 −→ GT .

We are interested in the following problems:

Definition 1. Let e be a non-degenerate bilinear pairing as above.
The Fixed Argument Pairing Inversion 1 (FAPI1) problem is: given P1 ∈
G1, z ∈ GT , find P2 ∈ G2 such that e(P1, P2) = z.
The Fixed Argument Pairing Inversion 2 (FAPI2) problem is: given P2 ∈
G2, z ∈ GT , find P1 ∈ G1 such that e(P1, P2) = z.

Given an instance (P1, z) of the FAPI1 problem, we will denote its solution as
P2 = FAPI1(P1, z). Analogously, a solution to an instance (P2, z) of the FAPI2
problem will be denoted as P1 = FAPI2(P2, z).

The existence of efficient algorithms to solve the FAPI1 and FAPI2 prob-
lems would have profound consecuences. Galbraith, Hess and Vercauteren have
generalized results of Verheul, and proved in [8] the following:

Theorem 1. [Theorem 1 in [8]] Let e : G1 ×G2 −→ GT be a non-degenerate
bilinear pairing on cyclic groups of prime order p. Given access to FAPI1 and
FAPI2 oracles, it is possible to solve the computational Diffie-Hellman problem
in G1,G2 and GT in polynomial time.

In practice, G will be a subgroup of an elliptic curve E and e will be the
Tate- or Weil-pairing (or a variant thereof). Let the elliptic curve E be defined
over the field K, and suppose that K contains the group of pth roots of unity µp.
If E[p] denotes the p-torsion subgroup of E, and E[p] ⊂ E(K), the Tate-pairing
is a non-degenerate bilinear function

〈·, ·〉 : E[p]×E(K)/pE(K) −→ K∗/(K∗)p.



If K is a finite field, it is possible to get a unique element of K as result of
the pairing as

e(P,Q) = 〈P,Q〉(#K/p).

This bilinear function is known as the reduced Tate-pairing.
Recent developments in pairing computation techniques, prominently the

short Miller loops aforded by the ate-pairing [9], have raised questions regarding
the possibility of solving one of the FAPI problems for some special curves. In
the following sections we will explore some consequences of the existence of pair-
ing inversion algorithms. A detailed description of the subtleties and difficulties
regarding efficient pairing inversion can be found in [8, 17].

3 FAPI, the DH and DLP problems

After the publication of Verheul’s results [19, 20] and with the results recently
obtained by Galbraith, Hess and Vercauteren in [8], it is widely known that
the ability to invert pairings in polynomial time implies that the computational
Diffie-Hellman problem can also be solved in polynomial time.

Combining the results of den Boer [6], Boneh and Lipton [2], and Maurer
and Wolf [12], which relate the Diffie-Hellman problem and the discrete loga-
rithm problem, and the reduction from pairing inversion to the Diffie-Hellman
problem proved in [19, 8], we will prove that pairing inversion can be used to
solve the discrete logarithm problem in sub-exponential time in the order of the
groups. These results, although well-known to experts in the field, have not been
published and we include them here to provide a reference.

3.1 Black Box Fields

A black-box field is an abstract construction introduced in [2]. It is analogous
to the extensively studied black-box groups construction.

Definition 2. A black-box field is a 5-tuple (p, S, h, F,G), where p is a prime
and S is a set with p elements. The functions h, F,G are defined as follows:

– The function h : S −→ Fp is a bijection.
– The function F : S×S −→ S corresponds to addition, that is h(F (s1, s2)) =
h(s1) + h(s2).

– The function G : S×S −→ S corresponds to multiplication, that is h(G(s1, s2)) =
h(s1) · h(s2).

Following Boneh and Lipton, given x an element of Fp, we will write [x]
to denote the element s of S such that h(s) = x. Note that the given functions
suffice to compute field inversion, since [x−1] = [xp−2]. It is interesting to observe
that there exist an algorithm by Shanks to extract square roots in Fp using only
operations available in black-box fields [5]. This observation is fundamental in
the techniques developed to relate the DH and DL problems.



Definition 3. Let (p, S, h, F,G) be a black-box field for some prime p. Denote
the map sending x to [x] by [·]. The black-box field problem is: given oracles for
F,G, [·] and an element [α] ∈ S, find α explicitly.

The concept of a black-box field is important because being able to solve the
computational Diffie-Hellman problem in a group G of order p, gives us a black
box representation of Fp by elements of G.

Definition 4. Given an instance (P, aP, bP ) of the computational Diffie-Hellman
problem, we denote its solution as abP = DH(P, aP, bP ).

Lemma 1. Let G be group with prime order p generated by P . If we denote the
group binary operation as + and let

h :G −→ Fp
aP 7→ a,

denote a bijection between G and Fp, the 5-tuple (p,G, h,+,DH(P, ·, ·)) forms
a black-box field representation of Fp.

Proof. Since (a + b)P = aP + bP , it follows that h(aP ) + h(bP ) = h((a +
b)P ). Analogously, since abP = DH(P, aP, bP ), we have that h(DH(P, aP, bP )) =
h(aP ) · h(bP ).

Note that in this construction [a] = aP for a ∈ Fp. In this context, the DLP for
the group G becomes the black-box field problem for (p,G, h,+,DH(P, ·, ·)).

The reduction from the DH problem to the DLP presented in [2, 13] uses the
following idea of Maurer [12] to solve the DLP problem in the group G generated
by P :

1. Find an elliptic curve EA,B , defined over Fp by the equation y2 = x3 +Ax+
B, with N -smooth order for a suitably small N . Assume that EA,B(Fp) is
generated by Q.

2. Given P and aP in G, use the black-box representation of Fp on G afforded
by the DH oracle and Lemma 1 to find [y] such that (a, y) ∈ EA,B .

3. Since the order of EA,B is N -smooth, use the Pohling-Hellman algorithm to
find the discrete logarithm of (a, y) with respect to Q.

4. Recover a using the known coordinates of Q.

The elliptic curve EA,B is known as an auxiliary group, and an approach using
more general algebraic groups has been explored in [13].

A run of the algorithm to compute discrete logarithms using a Diffie-Hellman
oracle thus consist of two parts: firstly, finding an appropriate curve EA,B , and
secondly, computing the discrete logarithm of (a, y) with respect to Q. The best
result in this direction was proven by Boneh and Lipton in [2], and is presented
here as Theorem 2.

Maurer [12] argues that with high probability there is a number in the interval
[p+1−2

√
p, p+1+2

√
p] whose largest prime factor is polynomial in log p. Since



for every integer n in this interval there is an elliptic curve over Fp with n
points [7], knowing the equation defining such an elliptic curve would provide
a polynomial time algorithm to solve discrete logarithms in groups of order p
with access to a DH-oracle. The implications of these result are not clear, since
finding n (and hence the elliptic curve) is likely to be exponentially hard.

Incidentally, Muzereau, Smart and Vercauteren have found auxiliary groups
with N -smooth order (220 ≤ N ≤ 283), for most of the NIST elliptic curves [15].
This is, of course, a hardness result for the Diffie-Hellman problem, as there is
no reason to expect the DL problem in this curves to be easy.

3.2 Black-Box fields and Pairing Inversion

After the costruction described in the previous subsection, a pairing inversion
algorithm could then be used as a DH-oracle in the reduction of Boneh and
Lipton to solve discrete logarithms in the p-torsion subgroup of an elliptic curve
and the group of p-roots of unity µp in K. This proves that (conditional to some
conjectures regarding the number of N -smooth numbers in Hasse-Weil intervals)
there is a reduction from the discrete logarithm problem to solving both of FAPI1
and FAPI2.

Definition 5. Given a natural number n and a real number α, such that 0 ≤
α ≤ 1, denote

Ln(α) = exp((log n)α(log log n)1−α).

Conjecture 1. [Conjecture 2.10 in [11]] A random interger in the interval (p+1−
2
√
p, p+1+2

√
p) is Lp(α) smooth with probability at least 1/Lp(1−α)1−α+o(1)

for any α.

Assuming Conjecture 1, Boneh and Lipton prove the following:

Theorem 2. Given a group G of prime order p, and access to a DH oracle
for G, it is possible to compute discrete logarithms in G in time Lp(1/2)2+o(1).

Using Theorem 2, we are ready to prove the main result of this section.

Theorem 3. Consider e : G1 ×G2 −→ GT a non-degenerate bilinear pairing.
Given access to FAPI1 and FAPI2 oracles, it is possible to solve the DLP in
G1,G2 and GT in time Lp(1/2)2+o(1)

Proof. Using Theorem 1, the FAPI oracles can be used to construct a Diffie-
Hellman oracle for all the groups involved. The result follows immediately from
Theorem 2. ut

This theorem proves that the existence of algorithms that efficiently solve the
FAPI1 and FAPI2 problems implies the existence of sub-exponential DLP algo-
rithms for the groups involved. However, the Quadratic Sieve and the Number
Field Sieve already provide sub-exponential DLP algorithms in finite fields, and
using the MOV [14] attack, we get a sub-exponential DLP algorithm for elliptic



curves with sufficiently small embedding degree. In this respect, Theorem 3 is
hardly a surprising result.

Furthermore, for a fixed embedding degree k, computing discrete logarithms
using our reduction would be slower than a direct attack using the Number Field
Sieve on the embedding field Fpk , where discrete logarithms can be computed in
time Lpk(1/3). It would be very interesting to find algorithms that accelerate the
computation of discrete logarithms using a DH oracle in groups that already have
a sub-exponential discrete logarithm algorithm, such as the group of invertible
elements in a finite field.

4 Cheon’s algorithm and the DLP

In the previous section we proved that being able to solve the FAPI problems
allows for the computation of discrete logarithms in sub-exponential time. Note
that it might be possible to have algorithms that solve only one of the FAPI
problems. In that case, the techniques of Boneh, Lipton, Maurer and Wolf can
not be used.

We will prove that one might still adapt an approach developed by Brown and
Gallant [3], and Cheon [4], to work in this setting. As we mentioned before, Cheon
developed an algorithm to solve the DLP in the context of the l-SDH problem.
Using oracle calls to just one FAPI problem, we can use Cheon’s algorithm to
compute discrete logarithms.

4.1 Static Diffie-Hellman Problem

In [3], Brown and Gallant introduce the concept of the static Diffie-Hellman
(ScDH) problem.

Definition 6. Given fixed elements P and aP of the group G, and a random
element yP , find ayP .

Given an instance ((P, aP ), Q) of the ScDH problem, we will denote its solution
as aQ = ScDH(P,aP )(Q).

The interest in this problem comes from the fact that in many protocols,
including static Diffie-Hellman key agreement, a user has a fixed public key aP ,
and attacks to the system would involve solving an instance of the Diffe-Hellman
problem with one of the entries equal to aP . The security of the system from the
user’s perspective thus depends on the difficulty of solving the ScDH problem
and not the traditional DH problem.

Brown and Gallant prove that for a group G with prime order p, if p−1 = uv,
and one is given access to a ScDH oracle, it is possible to solve the DLP in G in
time O(

√
u+
√
v). In the next subsection we present an algorithm due to Cheon

that is similar to the algorithm presented by Brown and Gallant proving their
result.

Our interest in the static Diffie-Hellman problem arises from the fact that
having access to an oracle that solves exactly one of the FAPI1 or FAPI2 problems
provides us with a ScDH oracle when interpreted in the appropriate groups.



Proposition 1. Given a bilinear pairing e : G1×G2 −→ GT , elements P1 ∈ G1

P2, αP2 ∈ G2 and access to a FAPI2 oracle, it is possible to solve the ScDH
problem in GT with static input (z, zα), where z = e(P1, P2), in polynomial time.

Proof. Let z = e(P1, P2). Then zα = (P1, αP2). Given zy, we can use the
FAPI2 oracle to find yP1 = FAPI2(P2, z

y). We finish simply computing zyα =
e(yP1, αP2). ut

4.2 Cheon’s algorithm

We now explore Cheon’s algorithm [4] and analyse how can it be combined with
a FAPI oracle to solve the DLP. We decided to present Cheon’s algorithm instead
of the very similar solution presented by Brown and Gallant [3], since Cheon’s
work allows for the computation of discrete logarithms using the factors of either
p− 1 or p+ 1, and is more general from our perspective.

Theorem 4. [Theorem 1 in [4]] Let P be an element of prime order p in an
abelian group. Suppose that d is a positive divisor of p − 1. If P, P1 = αP and
Pd = αdP are given, α can be computed in O(log p(

√
(p− 1)/d +

√
d)) group

operations using O(max{
√

(p− 1)/d,
√
d}) memory.

To prove Theorem 4 it suffices to show that Algorithm 1 is correct and finishes
in the indicated time. The running time of O(log p(

√
p/d+

√
d)) for Algorithm 1

was later improved to O(
√
p/d+

√
d) by Kozaki et al in [10].

Algorithm 1 Cheon’s Algorithm
Input: A tuple (P, P1 = αP, Pd = αdP ), where d|p− 1.
Output: α
1: Find a generator ζ0 ∈ F∗

p.
2: ζ := ζd

0 .
3: d1 := d

p
(p− 1)/de.

4: Find 0 ≤ u1, v1 < d1 such that ζ−u1Pd = ζd1v1P by BSGS.
5: k0 := d1v1 + u1. Note αd = ζk0 .
6: d2 := d

√
de.

7: Find 0 ≤ u2, v2 < d2 such that ζ
−u2(p−1)/d
0 P1 = ζ

k0+d2v2(p−1)/d
0 P by BSGS.

8: return ζ
k0+(d2v2+u2)(p−1)/d
0

Cheon presents several other algorithms to find the discrete logarithm of an
element using extra information presented in some cryptographic schemes. Using
a special implementation of Algorithm 1, Cheon proves the following:

Corollary 1. Let P be an element of prime order p in an abelian group. Suppose
that p−1 =

∏t
i=1 di, for di pairwise relatively prime. If P and Pi = α(p−1)/di for

1 ≤ i ≤ t are given, then α can be computed in O

(
log p

(√∑t
i=1 di

))
group

operations using max{
√
di}1≤i≤t memory.



Finally, Cheon represents elements of Fp2 as pairs of elements of Fp, and uses
a clever representation of elements in the subgroup µp+1 of F∗p2 to prove:

Theorem 5 (Theorem 2 in [4]). Let P be an element of prime order p in an
abelian group. Suppose that d is a positive divisor of p + 1 and Pi = αiP for
i = 1, 2, . . . 2d are given. Then α can be computed in O(log p(

√
(p+ 1)/d + d))

group operations using O(max{
√

(p+ 1)/d,
√
d}) memory.

4.3 Cheon’s algorithm and FAPI

Algorithm 1 was presented in the context of problems similar to the l-SDH
problem as discussed above. However, there is another area where they can
potentially be used to attack a cryptosystem.

Proposition 2. Given P1 ∈ G1, P2, αP2 ∈ G2, and access to a FAPI2 oracle,
then it is possible to compute αiP1 for every i using O(i) calls to the FAPI2
oracle.

Proof. The proof follows from a simple induction argument. Having found αnP1,
we can compute

αn+1P1 = FAPI2(P2, e(αnP1, P2).

An analogous computation recovers αn−1P1. ut

Using Cheon’s algorithm and the previous Proposition, we get the following:

Theorem 6. Consider e : G1 ×G2 −→ GT a non-degenerate bilinear pairing
between groups of prime order p. Given P2, αP2 ∈ G2, access to a FAPI2 oracle
and a positive integer d dividing p − 1 or p + 1, there exists an algorithm that
computes α in time O(

√
p/d+ d).

Proof. Use d calls to the FAPI2 oracle to compute αdg as described in Propo-
sition 2. Given P, αP and αdP we can use the algorithm in [10] to recover α
running in time O(

√
p/d+

√
d). The result follows. ut

Using heuristic results describing the divisors of p+ 1 and p− 1, we can give
an effective version of Theorem 6. If we assume that for a prime number p, the
prime decomposition of p+ 1 and p− 1 is the same as that of a random integer,
we get the following.

Conjecture 2 (Section 3 of [3]). The largest prime factor of p − 1 and p + 1 is
typically of size O(p2/3).

Combining Theorem 6 with Conjecture 2, we can prove:

Corollary 2. Under the hypotheses of Theorem 6, if p is a random prime, with
high probability there exists an algorithm to find α in time O(p1/3).



Proof. If either of p+ 1 or p− 1 has a prime factor of size O(p2/3), then it also
has a divisor of size O(p1/3). Using this divisor as d in Theorem 6 gives a running
time of O(p1/3). ut

Note that Pollard’s rho method [16] has a running time of O(n1/2) to compute
discrete logarithms. If we are in a situation where Pollard’s rho in G1 is balanced
with the cost of the Number Field Sieve in GT , Theorem 6 and Corollary 2
provide an actual speed-up in the computation of discrete logarithms.

5 Conclusions

The relation between pairing inversion algorithms and other well-studied com-
putational problems has only recently received widespread attention [8, 17]. In
many pairing-based cryptosystems, the groups G1 and G2 are the same, or there
is an efficiently computable morphism between them. In this cases, Theorem 3
proves that if the DLP is hard, no efficient pairing inversion algorithm exists.
The same can be argued from Theorem 6, although in this case the reduction
is much looser. As mentioned, if the embedding degree is fixed, the MOV at-
tack [14] already provides a faster sub-exponential reduction. For some values
of k, the MOV attack becomes exponentially slow while pairings can still be
computed in polynomial time.

The families of pairing friendly elliptic curves for which the authors of [8]
prove that the Miller inversion problem can be solved in polynomial time have
embedding degree

k ≈ α
(

log r
log log r

)
,

so if one could invert pairings for this families, the reduction given by Theorem 2
would be asymptotically faster than that provided by the MOV attack. Note
that the curves in this family are ordinary elliptic curves, so there is no obvious
non-trivial morphism between G1 and G2.

From a practical point of view, if a sub-exponential but expensive pairing
inversion algorithm existed, Theorem 6 might provide a faster tool to compute
discrete logarithms even in cases where an efficiently computable map Ψ : G1 −→
G2 exists. This is because the algorithms described in Section 3 use significantly
more calls to a DH oracle in order to compute discrete logarithms than those
based in Cheon’s algorithm.

If an efficiently computable isomorphim between G1 and G2 is known, it is
possible to find αdP using only O(log d) applications of the FAPI2 algorithm
combining Proposition 2 and a square-and-multiply algorithm; this would allow
us to compute discrete logarithms in O(

√
p/d+

√
d+C log p) operations, where C

is the cost of a run of the FAPI2 algorithm. For example, if either of p+1 or p−1
has a divisor of size O(p1/2), discrete logarithms can be found in O(p1/4+C log p)
operations. Depending on the value of C, this could provide a great speed-up in
the computation of discrete logarithms.



Our results show that the existence of efficient algorithms to solve the FAPI
problems would accelerate the computation of discrete logarithms on some el-
liptic curves. Depending on the parameters being used, our reduction from the
FAPI problems to the DLP might be faster than the reduction given by the
MOV attack on pairing frieldy elliptic curves.
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