
Accountability of Perfect Concurrent Signature

 Li Yunfeng, He Dake, Lu Xianhui

Lab. of Info. Security & National Computing Grid
Southwest Jiaotong University

Chengdu 610031, Sichuan, China
forwardlyf@gmail.com

Abstract. Concurrent signature provided a novel idea for fair exchange protocol
without trusted third party. Perfect Concurrent Signature is proposed to strengthen the
ambiguity of the concurrent signature. Wang et al, pointed out there exist an attack
against the fairness of Perfect Concurrent Signature and proposed the improved perfect
concurrent signature. This paper find that in proposed (perfect) concurrent signature
protocol, no matter two party or multi-party, the signer could bind multiple messages
with one keystone set but let the other signers know only one of the messages. This is a
new unfair case in the application of concurrent signature. Based on this observation,
we propose that accountability should be one of the security properties of (perfect)
concurrent signature and we give the definition of accountability of concurrent
signature. To illustrate this idea, we give an attack scene against the accountability of
improved perfect concurrent signature proposed by Wang et al, and propose an update
version of perfect concurrent signature to avoid such attack.

Keywords: fair exchange, concurrent signature, accountability

1. Introduction

Fair exchange is a well studied problem. Especially after the optimized fair exchange
concept was firstly proposed by Asokan, etc [1], many schemes [2] are proposed to
implement fair exchange with off-line Trusted Third Party. In [3], Chen et al.
ingeniously observed that the full power of fair exchange is not necessary in many
applications, since there are some mechanisms that provide a more natural dispute
resolution than the reliance on a TTP. Chen et al, proposed the concept of concurrent
signature, CS for short, at Eurocrypt2004. Such signature scheme allows two parties,
without any third party, to produce and exchange two ambiguous signatures which are
ambiguous for any third party until an extra piece of information (called keystone) is
released by one of the parties.

In order to strength the ambiguity of the signature before keystone is released,
Susilo, Mu and Zhang [4] further proposed a strong notion called perfect concurrent
signatures, PCS for short. Unfortunately, In [5] Wang et al, observed that, in PCS, the
initiator generate the two keystones independently which enable the initiator could
bind different ambiguous signature, but not the one send to the matching singer, with
the one generated by the matching signer. To resolve this problem, Wang et al,

2 Li Yunfeng, He Dake, Lu Xianhui

proposed improved perfect concurrent signature, called iPCS for short. The difference
is that in iPCS the initial signer and matching signer generate one piece of keystone
respectively. But in PCS only the initiator generates the two piece of keystone alone.

Later, in [6], Chow et al, improved their generic construction of (Identity-based)
perfect concurrent signature with the idea from [5]. Asymmetric concurrent signature
[7], tripartite concurrent signature [8] and mutli-party concurrent signature[11,12] are
proposed. Recently, Feng et al, apply the concept of concurrent signature to establish
the new concept of fair authenticated key exchange protocol in [11].

However, we found proposals given in [3,4,5,6,7,8,9,10] are vulnerable to follow
attack scene: Any party of one (perfect) concurrent signature could generate multiple
ambiguous signatures, for different messages, which could be bound with the same
keystone at the same time. These messages maybe different from the one included in
the ambiguous signature sent to the matching (initial) singer. Based on this
observation, we propose that accountability [12] should be one of the security
properties of (perfect) concurrent signature. Accountability means any third party
could be convinced that the ambiguous signature, which can pass the verification of
the verify algorithm, is the only one generated by the signer based on the released
keystone.

In Section 2, we briefly overview the protocol structure and algorithms used in
PCS and iPCS, and discuss the security properties of concurrent signature. Then we
descript the attack against accountability of iPCS1 in section 3. Proposal to avoid this
kind of attack is given in Section 4. Section 5 is the conclusion of this paper.

2. Overview of PCS/iPCS and security properties of CS

As mentioned by [5], the PCS and iPCS use the same protocol structure and
algorithms, so, in this section, we firstly review the concept of PCS[4] and secondly
review the iPCS1 protocol [5]. At last, we descript the new security property,
accountability of (Perfect) Concurrent Signature in section 2.3.

2.1 Overview of Perfect Concurrent Signature

Basically, PCS consists of four algorithms: SETUP, ASIGN, AVERIFY and VERIFY
as described below.
− SETUP. On input a security parameter l, the SETUP algorithm first randomly

generates two large prime numbers p and q such that q|(p-1), and a generator
pg Z∈ of order q. It also selects a cryptographic hash function *

1 : (0,1) qH Z→ .
Then, the SETUP algorithm sets message space M, keystone space K, and keystone
fix space F as follows: M=K={0,1}* and F=Zq

* . In addition, we assume that
(, mod)Ax

A Ax y g p= and (, mod)Bx
B Bx y g p= are the private/public key pairs of

Alice and Bob, respectively.
− ASIGN. The algorithm ASIGN outputs an ambiguous signature (, ',)c s sσ = , given

the input (yA, yB, xA, s,m), where yA and yB are two public keys BA yy ≠ , xA, is the

Accountability of Perfect Concurrent Signature 3

private key matching with yA (i.e. mod Ax
Ay g p=), 1(), ,R qs H k k Z s F= ∈ ∈ , k is the

keystone and Mm∈ is the message to be signed. The algorithm is carried out as
follows:
1. Select a random number qZα ∈ .
2. Evaluate 1(, mod)s

Bc H m g y pα= .
3. Compute 1' () modAs c x qα −= − ⋅ .
4. Output anonymous signature (, ',)c s sσ = .

− AVERIFY. Given an ambiguous signature-message pair(, , ,)A By y mσ , the AVERIFY
algorithm outputs accept, if '

1 (, m od)c s s
A Bc H m g y y p= holds, Otherwise, it

outputs reject.
− VERIFY. The algorithm accepts input (,)k S , where k K∈ is the keystone

and (, , ,)A BS y y mσ= . The algorithm VERIFY outputs accept if AVERIFY(S) =
accept and the keystone k is valid by running a keystone verification algorithm.
Otherwise, VERIFY outputs reject.
Note that the above are just the basic algorithms for generating and verifying

perfect concurrent signatures. In the following concrete iPCS1 protocol, it explicitly
describes how to generate and verify keystones, and how to exchange concurrent
signatures between two parties without the help of a TTP.

In PCS, the initiator chooses the two pieces of keystone for herself and Bob
independently, which result in the attack scene described in section3.1 of [5]. Then
Wang, et al, argued to let the responder choose the second piece of keystone and
proposed the iPCS1 and iPCS2 protocols. Follow section 2.2 will give the specified
iPCS1 protocol.

2.2 Overview of iPCS1

As in [3,4,5], iPCS1 assumes that the SETUP algorithm is already executed and that
the initial signer Alice and the matching signer Bob want to exchange their signatures
on messages ,A Bm m respectively.
1. The initial Alice performs as follow:
− Choose a random keystone Kk∈ and set 1 1()s H k= .
− Run 1(, , , ,)A A B AASIGN y y x s mσ ← . Let 2 1(, ,)A c s sσ = .
− Send (,)A Amσ to the matching signer Bob.

2. Upon receiving (,)A Amσ , Bob checks (, , ,) A A B AAVERIFY y y m acceptσ = .If not,
then Bob just aborts. Otherwise, Bob acts in the following way.
− Pick a random qt Z∈ and compute ˆ modt

Bt y p=
− Compute () mod

t
Bx

Ar y p= , and k’=r mod q.
− Set 1 1 1' (') mods s H k q= + .
− Run 2 1 1(', ', ') (, , , ',)B B A B Bc s s ASIGN y y x s mσ = ← .
− Send ˆ(, ,)B Bm tσ to Alice.

3. After ˆ(, ,)B Bm tσ is received, Alice performs as follows.

4 Li Yunfeng, He Dake, Lu Xianhui

− Compute ˆ modAxr t p= , and k’=r mod q..
− Test whether 1 1 1' (') mods s H k q= + .
− Check whether (, , ,) B A B BAVERIFY y y m acceptσ =
− If Bσ is invalid, abort. Otherwise, release the keystone (k,k’) publicly to bind

both signatures Aσ and Bσ concurrently.
4. VERIFY Algorithm. Once the keystone (k,k’) is available, any verifier can verify

that Aσ and Bσ are respectively signed by Alice and Bob if all of the following
equalities hold.
− 1 1()s H k= and 1 1 1' (') mods s H k q= + .
− (, , ,) A A B AAVERIFY y y m acceptσ =
− (, , ,) B A B BAVERIFY y y m acceptσ =

2.3 The accountability of CS/PCS

The original security model of concurrent signature in [3], as well as those defined in
[4,5,8,10], requires a (perfect) concurrent signature to satisfy correctness, ambiguity,
unforgeability and fairness. The correctness makes sure the signature will work out
the desired result. Ambiguity stress that any third party can not identify who is the
exactly signer of one ambiguous signature before the keystone is released. The
unforgeability stress only the one, who has the private key, could generate the
ambiguous signature bound with the keystone. The fairness request the initial signer
and matching signer are bound with the ambiguous signatures at the same time when
the keystone is released.

As defined in [12], Accountability of E_commerce protocol is the property
whereby the association of a unique originator with an object or action can be proved
to a third party. However, accountability is not been covered in the model of
[3,4,5,8,10]. Almost all concurrent signature schemes proposed in [3,4,5,6,7,8,9,10]
are facing attack against accountability. Hereunder, we will define the accountability
for concurrent signature.

Different from the definition of accountability for E-Commerce protocol defined in
[12], the accountability of concurrent signature stress the uniqueness of the message
bound with the keystone and signer. Hereunder is our definition for accountability of
concurrent signature.

Definition 1: Accountability of concurrent signature is the property whereby the
unique association of a signer, a keystone set with a message can be proved to a third
party based on the valid protocol messages.

Informally speaking, accountability requires the signers could convince themselves
and any third party that the messages signed in the ambiguous signature are the
unique set generated in one protocol run. Any signer could not generate ambiguous
signature for any messages other then the one send to other signers in his ambiguous
signature, which could satisfy the VERIFY and AVERIFY algorithm.

Accountability of Perfect Concurrent Signature 5

3. Attack against the accountability of iPCS1

Before we give the attack scene against accountability based on iPCS1[5], we study a
case in real world. Alice is an inexpert music maker, Bob is a manager of shopping
mall, Carl is a music reseller. Bob loves one song named as “happy shopping” created
by Alice and decides to buy it from Alice. Then they run a concurrent signature
protocol and exchange the ambiguous signature and release the keystone. After that
Alice could get money from the bank and Bob get the song. However, based on the
keystone used for this concurrent signature protocol run, Alice could generate another
valid ambiguous signature for another song “elegant shopping” and show it to Carl.
Carl is convinced that this “elegant shopping” is welcome to shopping mall so he may
decide to buy the copyright of this song. It is clear enough that this flaw of concurrent
signature gives Alice the chance to get advantage over Carl and Bob.

We found this results from the fact that in proposals [3,4,5,6,7,8,9,10], only the
keystones are used to bind the two ambiguity signature together. The messages which
are signed and exchanged were not bind with the protocol run. Here we give the
attack scene in iPCS1:
1. Assume Alice and Bob want to exchange message ,A Bm m
2. The dishonest initial signer Alice performs in the following.
− Choose a random keystone k K∈ and set 1 1()s H k=
− Run 1(, , , ,)A A B A AASIG N y y x s mσ ← , 2 1(, ,)A c s sσ = , 1

2 () modAs c x qα −= − ⋅
1

1 (, m o d)s
A Bc H m g y pα= ,

− Run 1(, , , ,)A A B A AASIGN y y x s mσ ←)) , 2 1(, ,)A c s sσ =)))) , 1 1s s=) ,
1

1(, mod)s
A Bc H m g y pα=)) , 1

2 () modAs c x qα −= − ⋅))
− Send (,)A Amσ to Bob and keep the (,)A Amσ)) private.

3. Upon receiving (,)A Amσ , Bob check (, , ,) A A B AAVERIFY y y m acceptσ ≡ . If not,
then Bob just aborts. Otherwise, Bob acts as what the protocol step2 specified in
section 2.2 and send 2 1

ˆ(, ,), (', ', ')B B Bm t c s sσ σ = to Alice.
4. After ˆ(, ,)B Bm tσ is received, Alice acts as the protocol step3 specified as following:
− Compute ˆ modAxr t p= , and ' modk r q= .
− Test whether 1 1 1' (') mods s H k q= + .
− Check whether (, , ,) B A B BAVERIFY y y m acceptσ =
− If Bσ is invalid, abort. Otherwise, release the keystone (k,k’) publicly to bind

signatures BAA or σσσ and) concurrently.
5. Once the keystone (k,k’) is available any one can verify that BAA or σσσ and) are

respectively signed by Alice and Bob because following equalities hold:
− 1 1()s H k= and 1 1 1' (') mods s H k q= + .
− (, , ,) A A B AAVERIFY y y m acceptσ =))

− (, , ,) A A B AAVERIFY y y m acceptσ =

− (, , ,) B A B BAVERIFY y y m acceptσ =

6 Li Yunfeng, He Dake, Lu Xianhui

Bob think (,)A Amσ , ˆ(, ,)B Bm tσ is the only valid signature after the keystones are
released. But in fact, Alice may public (,)A Amσ)) , ˆ(, ,)B Bm tσ as the result of this session
of concurrent signature protocol.
Proposition 1. After the keystone information (k,k’) is released, the two signature-
message pairs (,)A Amσ)) and (,)B Bmσ are binding to Alice and Bob, respectively.
Proof: This proof is almost self-evident, so we just mention the following main facts:
− 1 1 1()s s H k= =) , recall step 2 ;
− 1 1 1' (')s s H k= + recall step 3;
− (, , ,) A A B AAVERIFY y y m acceptσ =))

 and (, , ,) B A B BAVERIFY y y m acceptσ = , since
(,)A Amσ)) and (,)B Bmσ both are properly generated by running algorithm ASIGN in
step 2 and 3 respectively.
Therefore, according to the specification of algorithm VERIFY reviewed in section

2.2 (,)A Amσ)) and (,)B Bmσ are truly binding to Alice and Bob. At the same time,
(,)A Amσ and (,)B Bmσ are also binding to Alice and Bob based on the same keystone.
Symmetrically, dishonest Bob could also generate some (,)B Bmσ))

to bind
with (,)A Amσ . So the iPCS1 protocol could not fulfill the fairness of concurrent
signature.

4. An update version of the iPCS1

The attack, discussed above, against the accountability of PCS and iPCS results from
the fact that Alice or Bob could generate multiple ambiguous signatures for different
messages based on the same keystone, for example, (,)A Amσ and (,)A Amσ)) . The
fundamental reason of this attack is that the keystone is transferred to the parameter
used to create the signature for messages but the messages are not used in the
transformation from keystone to signature parameter. This gives chance to both Alice
and Bob to generate multiple signatures for different messages based on the same
keystone. It is intuitive to include the messages in the transformation process from
keystone to signature parameter to avoid such attack. In order to keep the properties
of the perfect concurrent signature, we propose the update version of iPCS1, called
uPCS1 for short, with the following updated calculations:
− 1 1(,)As H k m= ;
− 1' (,)modBk H r m q=
−

1 1 1' (') mods s H k q= +
The assumption, algorithms: SETUP. ASIGN, AVERIFY, VERIFY, and protocol

structure keeps the same as iPCS1. Hereunder is uPCS1:
1. The initial Alice performs as follow:
− Choose a random keystone k K∈ and set 1 1(,)As H k m= .
− Run 1(, , , ,)A A B AASIGN y y x s mσ ← . Let 2 1(, ,)A c s sσ = .
− Send (,)A Amσ to the matching signer Bob.

Accountability of Perfect Concurrent Signature 7

2. Upon receiving (,)A Amσ , Bob checks (, , ,) A A B AAVERIFY y y m acceptσ = . If not,
then Bob just aborts. Otherwise, Bob acts in the following way.
− Pick a random qt Z∈ and compute ˆ modt

Bt y p=
− Compute pyr tx

A
B mod)(= , and qmrHk B mod),(' 1= .

− Set 1 1 1' (') mods s H k q= + .
− Run 2 1 1(', ', ') (, , , ',)B B A B Bc s s ASIGN y y x s mσ = ← .
− Send ˆ(, ,)B Bm tσ to Alice.

3. After ˆ(, ,)B Bm tσ is received, Alice performs as follows.
− Compute ˆ modAxr t p= , and

1' (,) modBk H r m q= .
− Test whether

1 1 1' (') mods s H k q= + .

− Check whether (, , ,) B A B BAVERIFY y y m acceptσ =
− If Bσ is invalid, abort. Otherwise, release the keystone (k,k’) and Alice’s

signature on the keystone:))',(,,(kkBASig
Ax

. publicly to bind both signatures

Aσ and Bσ concurrently.
4. VERIFY Algorithm. Once the keystone (k,k’) is available, any verifier can verify

that Aσ and Bσ are respectively signed by Alice and Bob if all of the following
equalities hold.
− Check the vality of))',(,,(kkBASig

Ax
based on (k,k’)

− 1 1(,)As H k m= and 1 1 1' (')mods s H k q= +
− (, , ,) A A B AAVERIFY y y m acceptσ =
− (, , ,) B A B BAVERIFY y y m acceptσ =
Alice releases the keystone and his signature on it at the same time. This makes

sure that Bob will not forge valid keystones. Based on the results in [3,4,5] and the
discussions previously provided, it is easy to see that the uPCS1 is truly perfect
concurrent signature protocol because the uPCS1 dose not change the protocol
structure and algorithm used in iPCS1. Compare to iPCS1, the uPCS1 has the same
efficiency because uPCS1 only add one parameter for hash function.
Proposition 2: uPCS1 satisfy the accountability.),(AA mσ and),(BB mσ are the unique
ambiguous signature bound with keystone (k, k’) which satisfy the VERIFY
algorithm.
Proof: Assume Alice generate another ambiguous signature),(~~

AA mσ which satisfy
VERIFY algorithm. Then formulae),(~

1
~
1 AmkHs = (1) and)('

1
~
1

'
1 kHss += (2) have to be

hold. However, it is obvious that formula (2) could not hold in protocol uPCS1. So
Alice could not generate a valid),(~~

AA mσ . Bob could generate the only valid
ambiguous signature. Even Bob generates another ambiguous signature),(~~

BB mσ , but
Bob could not generate or forge any valid keystone and Alice’s signature on the
keystone, so),(~~

BB mσ can not be verified by other third party. Based on above
discussion, uPCS1 satisfy the accountability of concurrent signature.

8 Li Yunfeng, He Dake, Lu Xianhui

5. Conclusion and future work

Concurrent signature [3] provides a novel idea for fair exchange protocol which
enables two distrusted party to exchange digital items without any third party.
Reference [4] proposed the perfect concurrent signature to strengthen the ambiguity
of the concurrent signature. And then [5] points out there has an attack against the
fairness of PCS and propose the iPCS. In this paper, we found that dishonest signer
could generate multiple signature pairs for different messages based on the same
keystone in iPCS, which is absolutely unfair. To avoid such attack, we propose the
uPCS1 to bind the keystone and messages with the signer as discussed in section 3.
Most important, we observed that concurrent signature proposals in [3,4,5,6,8,9,10]
also have such flaw. This spurs us to define a new security property, accountability,
for concurrent signature. As the future work, we will try to implement some concrete
fair exchange applications, especially for fair exchanges in P2P network, based on the
uPCS1.

References

[1] Asokan N, Shoup V, Waidner M. Optimistic fair exchange of digital signatures. IEEE
Journal on Selected Areas in Communication, 18(4), pp.593--610,(2000)

[2] S.Kremer, O.Markowitch, and J.Zhou. An intensive survey of fair non-repudiation
protocols. Computer Communications, 25(17), pp.1606-1621, Nov.2002.

[3] L. Chen, C. Kudla, and K. G. Paterson. Concurrent signatures. In: Eurocrypt ’04, LNCS
3027, pp. 287-305. Spriger, Berlin (2004)

[4] W. Susilo, Y. Mu, and F. Zhang. Perfect concurrent signature schemes. In: ICICS ’04,
LNCS, Vol. 3269, pp. 14-26. Springer, Berlin. (2004)

[5] Wang Gui - lin，Bao Feng，Zhou Jian - ying.The fairness of perfect concurrent signatures,
In: ICICS’06, LNCS, Vol. 4307, pp. 435-451, Springer, Berlin (2006)

[6] S.S.M. Chow and W.Susilo, Generic construction of (identity-based) perfect concurrent
signatures, ICICS’05, LNCS, Vol. 3783, pp. 194–206, Springer, Berlin (2005)

[7] K. Nguyen, Asymmetric Concurrent Signatures, ICICS2005, LNCS, Vol. 3783, Springer,
Berlin (2005)

[8] W. Susilo and Y. Mu, Tripartite concurrent signatures, IFIP/SEC’05, pp.425–441, (2005)
[9] Xinwen Zhang, Shangping Wang, Xiaofeng Wang, Identity-based Multi-party Concurrent

Signatures. ChinaCrypt’2007: 325~327, Chengdu China(2007)
[10] Dongyvu Tonien, Willy Susilo and ReihanehSafavi-Naini, Multi-party Concurrent

Signatures, ISC06, LNCS, Vol. 4176, pp.131-145, Springer-Verlag Berlin (2006)
[11] Dengguo Feng, Weidong Chen, Security Model and Modular Design of Fair Authenticated

Key Exchange Protocols, 3rd SKLOIS Workshop, Security protocols, pp.1-18, Beijing,
(2007)

[12] Kailar R. Accountability in electronic commerce protocols. IEEE Trans. on Software
Engineering, 22(5), pp. 313−328. (1996)

