
Complete Fairness in Secure Two-Party Computation

S. Dov Gordon∗ Carmit Hazay† Jonathan Katz∗‡ Yehuda Lindell†§

Abstract

In the setting of secure two-party computation, two mutually distrusting parties wish to
compute some function of their inputs while preserving, to the extent possible, various security
properties such as privacy, correctness, and more. One desirable property is fairness which
guarantees, informally, that if one party receives its output, then the other party does too.
Cleve (STOC 1986) showed that complete fairness cannot be achieved in general without an
honest majority. Since then, the accepted folklore has been that nothing non-trivial can be
computed with complete fairness in the two-party setting, and the problem has been treated as
closed since the late ’80s.

In this paper, we demonstrate that this folklore belief is false by showing completely-fair
protocols for various non-trivial functions in the two-party setting based on standard crypto-
graphic assumptions. We first show feasibility of obtaining complete fairness when computing
any function over polynomial-size domains that does not contain an “embedded XOR”; this
class of functions includes boolean AND/OR as well as Yao’s “millionaires’ problem”. We also
demonstrate feasibility for certain functions that do contain an embedded XOR, and prove a
lower bound showing that any completely-fair protocol for such functions must have round com-
plexity super-logarithmic in the security parameter. Our results demonstrate that the question
of completely-fair secure computation without an honest majority is far from closed.

Keywords: cryptography, secure computation, fairness, distributed computing
∗Dept. of Computer Science, University of Maryland. Email: {gordon,jkatz}@cs.umd.edu.
†Dept. of Computer Science, Bar-Ilan University. Email: {harelc,lindell}@cs.biu.ac.il
‡Work supported by NSF CAREER #0447075 and US-Israel Binational Science Foundation grant #2004240.
§Work supported by US-Israel Binational Science Foundation grant #2004240.

1 Introduction

In the setting of secure computation, a set of parties wish to run some protocol for computing a
function of their inputs while preserving, to the extent possible, security properties such as privacy,
correctness, input independence, etc. These requirements, and more, are formalized by comparing
a real-world execution of the protocol to an ideal world where there is a trusted entity who performs
the computation on behalf of the parties. Informally, a protocol is “secure” if for any real-world
adversary A there exists a corresponding ideal-world adversary S (corrupting the same parties
as A) such that the result of executing the protocol in the real world with A is computationally
indistinguishable from the result of computing the function in the ideal world with S.

One desirable property is fairness which, intuitively, means that either everyone receives the
output, or else no one does. Unfortunately, it has been shown by Cleve [12] that complete fairness1

is impossible to achieve in general when a majority of parties is not honest (which, in particular,
includes the two-party setting); specifically, Cleve rules out completely-fair coin tossing, which
implies the impossibility of computing boolean XOR with complete fairness. Since Cleve’s work,
the accepted folklore has been that nothing non-trivial can be computed with complete fairness
without an honest majority, and researchers have simply resigned themselves to being unable to
achieve this goal. Indeed, the standard formulation of secure computation (see [19]) posits two ideal
worlds, and two corresponding definitions of security: one that incorporates fairness and is used
when a majority of the parties are assumed to be honest (we refer to the corresponding definition as
“security with complete fairness”), and one that does not incorporate fairness and is used when an
arbitrary number of parties may be corrupted (we refer to the corresponding definition as “security
with abort”, since the adversary in this case may abort the protocol once it receives its output).

Protocols achieving security with complete fairness, for arbitrary functionalities, when a ma-
jority of parties are honest are known [20, 6, 10, 2, 31] (assuming a broadcast channel), as are
protocols achieving security with abort for any number of corrupted parties [20, 19] (under suitable
cryptographic assumptions). Since the work of Cleve, however, there has been no progress toward
a better understanding of complete fairness without an honest majority. No further impossibility
results have been shown (i.e., other than those that follow trivially from Cleve’s result), nor have
any completely-fair protocols for any non-trivial2 functions been constructed. In short, the question
of fairness without an honest majority has been treated as closed for over two decades.

1.1 Our Results

Cleve’s work [12] shows that certain functions cannot be computed with complete fairness without
an honest majority. The “folklore” interpretation of this result seems to have been that nothing
(non-trivial) can be computed with complete fairness without an honest majority. Surprisingly, we
show that this folklore is false by demonstrating that many interesting and non-trivial functions
can be computed with complete fairness in the two-party setting. Our positive results can be based
on standard cryptographic assumptions such as the existence of enhanced trapdoor permutations.
(Actually, our results can be based on the minimal assumption of the existence of oblivious transfer.)

Our first result concerns functions without an embedded XOR, where a function f is said to
have an embedded XOR if there exist inputs x0, x1, y0, y1 such that f(xi, yj) = i⊕ j. We show:

1Various notions of partial fairness have also been considered; see Section 1.2 for a brief discussion.
2It is not hard to see that some trivial functions (e.g., the constant function) can be computed with complete

fairness. Further thought shows that any function that depends on only one party’s input can be computed with
complete fairness. We consider such function “trivial” in the context of general distributed computation.

1

Theorem Let f be a two-input function defined over polynomial-size domains that does not contain
an embedded XOR. Then, under suitable cryptographic assumptions, there exists a protocol for
securely computing f with complete fairness.

This result is described in Section 3. The round complexity of our protocol in this case is linear in
the domain size, explaining the restriction that the domains be of polynomial size.

Examples of functions without an embedded XOR include boolean OR and AND, as well as
Yao’s “millionaires’ problem” [32] (i.e., the greater than function). We remark that even “simple”
functions such as OR/AND are non-trivial in the context of secure two-party computation since
they cannot be computed with information-theoretic privacy [11] and are in fact complete for
two-party secure computation (with abort) [25].

Recall that Cleve’s result rules out completely-fair computation of boolean XOR. Given this
and the fact that our first protocol applies only to functions without an embedded XOR, a nat-
ural conjecture is that the presence of an embedded XOR serves as a barrier to completely-fair
computation of a given function. Our next result shows that this conjecture is false:

Theorem (Under suitable cryptographic assumptions) there exist two-party functions containing
an embedded XOR that can be securely computed with complete fairness.

This result is described in Section 4. The round complexity of the protocol proving our second
result is super-logarithmic in the security parameter. We show that this is, in fact, inherent:

Theorem Let f be a two-party function containing an embedded XOR. Then any protocol securely
computing f with complete fairness (assuming one exists) requires ω(log n) rounds.

Our proof of the above is reminiscent of Cleve’s proof [12], except that Cleve only needed to
consider bias whereas we must jointly consider both bias and privacy (since, for certain functions
containing an embedded XOR, it may be possible for an adversary to bias the output even in the
ideal world). This makes the proof considerably more complex.

1.2 Related Work

Questions of fairness have been studied since the early days of secure computation [33, 17, 4,
21]. Previous work has been dedicated to achieving various relaxations of fairness (i.e., “partial
fairness”), both for the case of specific functionalities like coin tossing [12, 13, 29] and contract
signing/exchanging secrets [7, 27, 15, 5, 14], as well as for the case of general functionalities [33, 17,
4, 21, 16, 8, 30, 18, 23]. While relevant, such work is tangential to our own: here, rather than try
to achieve partial fairness for all functionalities, we are interested in obtaining complete fairness
and then set out to determine for which functionalities this is possible.

1.3 Open Questions

We have shown the first positive results for completely-fair secure computation of non-trivial func-
tionalities without an honest majority. This re-opens an area of research that was previously
thought to be closed, and leaves many tantalizing open directions to explore. The most pressing
question left open by this work is to provide a tight characterization of which boolean functions can
be computed with complete fairness in the two-party setting. More generally, the positive results
shown here apply only to deterministic, single-output, boolean functions defined over polynomial-
size domains. Relaxing any of these restrictions in a non-trivial way (or proving the impossibility
of doing so) would be an interesting next step. Finally, what can be said with regard to complete
fairness in the multi-party setting (without honest majority)? (This question is interesting both

2

with and without the assumption of a broadcast channel.) Initial feasibility results have recently
been shown [22], but much work remains to be done.

2 Definitions

We let n denote the security parameter. A function µ(·) is negligible if for every positive poly-
nomial p(·) and all sufficiently large n it holds that µ(n) < 1/p(n). A distribution ensemble
X = {X(a, n)}a∈Dn, n∈N is an infinite sequence of random variables indexed by a ∈ Dn and n ∈ N,
where Dn is a set that may depend on n. (Looking ahead, n will be the security parameter and Dn

will denote the domain of the parties’ inputs.) Two distribution ensembles X = {X(a, n)}a∈Dn, n∈N
and Y = {Y (a, n)}a∈Dn, n∈N are computationally indistinguishable, denoted X

c≡ Y , if for every non-
uniform polynomial-time algorithm D there exists a negligible function µ(·) such that for every n
and every a ∈ Dn ∣∣Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]

∣∣ ≤ µ(n).

The statistical difference between two distributions X(a, n) and Y (a, n) is defined as

SD
(
X(a, n), Y (a, n)

)
=

1
2
·
∑

s

∣∣Pr[X(a, n) = s]− Pr[Y (a, n) = s]
∣∣ ,

where the sum ranges over s in the support of either X(a, n) or Y (a, n). Two distribution ensem-
bles X = {X(a, n)}a∈Dn, n∈N and Y = {Y (a, n)}a∈Dn, n∈N are statistically close, denoted X

s≡ Y ,
if there is a negligible function µ(·) such that for every n and every a ∈ Dn, it holds that
SD

(
X(a, n), Y (a, n)

) ≤ µ(n).

Functionalities. In the two-party setting, a functionality F = {fn}n∈N is a sequence of random-
ized processes, where each fn maps pairs of inputs to pairs of outputs (one for each party). We
write fn = (f1

n, f2
n) if we wish to emphasize the two outputs of fn, but stress that if f1

n and f2
n are

randomized then the outputs of f1
n and f2

n are correlated random variables. The domain of fn is
Xn × Yn, where Xn (resp., Yn) denotes the possible inputs of the first (resp., second) party.3 If
|Xn| and |Yn| are polynomial in n, then we say that F is defined over polynomial-size domains. If
each fn is deterministic, we will refer to each fn as well as the collection F , as a function.

2.1 Secure Two-Party Computation with Complete Fairness

In what follows, we define what we mean by a secure protocol. Our definition follows the standard
definition of [19] (based on [21, 28, 3, 9]) except for the fact that we require complete fairness even
though we are in the two-party setting. (Thus, our definition is equivalent to the one in [19] for the
case of an honest majority, even though we will not have an honest majority.) We consider active
adversaries, who may deviate from the protocol in an arbitrary manner, and static corruptions.

Two-party computation. A two-party protocol for computing a functionality F = {(f1
n, f2

n)} is
a protocol running in polynomial time and satisfying the following functional requirement: if party
P1 begins by holding 1n and input x ∈ Xn, and party P2 holds 1n and input y ∈ Yn, then the joint
distribution of the outputs of the parties is statistically close to (f1

n(x, y), f2
n(x, y)).

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure

3The typical convention in secure computation is to let fn = f and Xn = Yn = {0, 1}∗ for all n. We will be
dealing with functions defined over polynomial-size domains, which is why we introduce this notation.

3

by definition. This is formalized by considering an ideal computation involving an incorruptible
trusted party to whom the parties send their inputs. The trusted party computes the functionality
on the inputs and returns to each party its respective output. Loosely speaking, a protocol is secure
if any adversary interacting in the real protocol (where no trusted party exists) can do no more
harm than if it was involved in the above-described ideal computation.

Execution in the ideal model. The parties are P1 and P2, and there is an adversary A who has
corrupted one of them. An ideal execution for the computation of F = {fn} proceeds as follows:

Inputs: P1 and P2 hold the same value 1n, and their inputs x ∈ Xn and y ∈ Yn, respectively; the
adversary A receives an auxiliary input z.

Send inputs to trusted party: The honest party sends its input to the trusted party. The
corrupted party controlled by A may send any value of its choice. Denote the pair of inputs
sent to the trusted party by (x′, y′).

Trusted party sends outputs: If x′ 6∈ Xn the trusted party sets x′ to some default input in Xn;
likewise if y′ 6∈ Yn the trusted party sets y′ equal to some default input in Yn. Then the trusted
party chooses r uniformly at random and sends f1

n(x′, y′; r) to party P1 and f2
n(x′, y′; r) to

party P2.

Outputs: The honest party outputs whatever it was sent by the trusted party, the corrupted party
outputs nothing, and A outputs an arbitrary (probabilistic polynomial-time computable)
function of its view.

We let idealF ,A(z)(x, y, n) be the random variable consisting of the output of the adversary and
the output of the honest party following an execution in the ideal model as described above.

Execution in the real model. We next consider the real model in which a two-party protocol
π is executed by P1 and P2 (and there is no trusted party). In this case, the adversary A gets the
inputs of the corrupted party and sends all messages on behalf of this party, using an arbitrary
polynomial-time strategy. The honest party follows the instructions of π.

Let F be as above and let π be a two-party protocol computing F . Let A be a non-uniform
probabilistic polynomial-time machine with auxiliary input z. We let realπ,A(z)(x, y, n) be the
random variable consisting of the view of the adversary and the output of the honest party, following
an execution of π where P1 begins by holding 1n and input x and P2 begins by holding 1n and y.

Security as emulation of an ideal execution in the real model. Having defined the ideal and
real models, we can now define security of a protocol. Loosely speaking, the definition asserts that
a secure protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated as follows:

Definition 2.1 Protocol π is said to securely compute F with complete fairness if for every non-
uniform probabilistic polynomial-time adversary A in the real model, there exists a non-uniform
probabilistic polynomial-time adversary S in the ideal model such that

{
idealF ,S(z)(x, y, n)

}
(x,y)∈Xn×Yn, z∈{0,1}∗, n∈N

c≡ {
realπ,A(z)(x, y, n)

}
(x,y)∈Xn×Yn, z∈{0,1}∗, n∈N .

4

2.2 Secure Two-Party Computation With Abort

This definition is the standard one for secure two-party computation [19] in that it allows early
abort ; i.e., the adversary may receive its own output even though the honest party does not. We
again let P1 and P2 denote the two parties, and consider an adversary A who has corrupted one
of them. The only change from the definition in Section 2.1 is with regard to the ideal model for
computing F = {fn}, which is now defined as follows:

Inputs: As previously.

Send inputs to trusted party: As previously.

Trusted party sends output to corrupted party: If x′ 6∈ Xn the trusted party sets x′ to some
default input in Xn; likewise if y′ 6∈ Yn the trusted party sets y′ equal to some default input
in Yn. Then the trusted party chooses r uniformly at random, computes z1 = f1

n(x′, y′; r) and
z2 = f2

n(x′, y′; r), and sends zi to the corrupted party Pi (i.e., to the adversary A).

Adversary decides whether to abort: After receiving its output (as described above), the ad-
versary either sends abort of continue to the trusted party. In the former case the trusted
party sends ⊥ to the honest party Pj , and in the latter case the trusted party sends zj to Pj .

Outputs: As previously.

We let idealabort
F ,A(z)(x, y, n) be the random variable consisting of the output of the adversary and

the output of the honest party following an execution in the ideal model as described above.

Definition 2.2 Protocol π is said to securely compute F with abort if for every non-uniform prob-
abilistic polynomial-time adversary A in the real model, there exists a non-uniform probabilistic
polynomial-time adversary S in the ideal model such that

{
idealabort

F ,S(z)(x, y, n)
}

(x,y)∈Xn×Yn, z∈{0,1}∗, n∈N
c≡ {

realπ,A(z)(x, y, n)
}

(x,y)∈Xn×Yn, z∈{0,1}∗, n∈N .

2.3 The Hybrid Model

The hybrid model combines both the real and ideal models. Specifically, an execution of a protocol
π in the G-hybrid model, for some functionality G, involves the parties sending normal messages
to each other (as in the real model) but, in addition, the parties have access to a trusted party
computing G. The parties communicate with this trusted party in exactly the same way as in the
ideal models described above; the question of which ideal model is taken (that with or without
abort) must be specified. In this paper, we will always considered a hybrid model where the
functionality G is computed according to the ideal model with abort.

For our purposes here, we will require that any protocol in the G-hybrid model makes only
sequential calls to G; i.e., there is at most a single call to G per round, and no other messages are
sent during any round in which G is called.

Let G be a functionality and let π be a two-party protocol for computing some functionality F ,
where π includes real messages between the parties as well as calls to G. Let A be a non-uniform
probabilistic polynomial-time machine with auxiliary input z. We let hybridGπ,A(z)(x, y, n) be the
random variable consisting of the view of the adversary and the output of the honest party, following
an execution of π (with ideal calls to G) where P1 begins by holding 1n and input x and P2 begins

5

by holding 1n and input y. Both security with complete fairness and security with abort can be
defined via the natural modifications of Definitions 2.1 and 2.2.

The hybrid model gives a powerful tool for proving the security of protocols. Specifically, we
may design a real-world protocol for securely computing some functionality F by first constructing
a protocol for computing F in the G-hybrid model. Letting π denote the protocol thus constructed
(in the G-hybrid model), we denote by πρ the real-world protocol in which calls to G are replaced
by sequential execution of a real-world protocol ρ that computes G. (“Sequential” here implies that
only one execution of ρ is carried out at any time, and no other π-protocol messages are sent during
execution of ρ.) The results of [9] then imply that if π securely computed F in the G-hybrid model,
and ρ securely computes G, we can conclude that the composed protocol πρ securely computes F
(in the real world). For completeness, we state this formally in the form we will use in this work:

Proposition 1 Let ρ be a protocol that securely computes G with abort, and let π be a protocol that
securely computes F with complete fairness in the G-hybrid model (where G is computed according
to the ideal world with abort). Then protocol πρ securely computes F with complete fairness.

2.4 Information-Theoretic MACs

We briefly review the standard definition for information-theoretically secure message authentica-
tion codes (MACs). A message authentication code consists of three polynomial-time algorithms
(Gen, Mac, Vrfy). The key-generation algorithm Gen takes as input the security parameter 1n in
unary and outputs a key k. The message authentication algorithm Mac takes as input a key k and
a message M ∈ {0, 1}≤n, and outputs a tag t; we write this as t = Mack(M). The verification
algorithm Vrfy takes as input a key k, a message M ∈ {0, 1}≤n, and a tag t, and outputs a bit b;
we write this as b = Vrfyk(M, t). We regard b = 1 as acceptance and b = 0 as rejection, and require
that for all n, all k output by Gen(1n), all M ∈ {0, 1}≤n, it holds that Vrfyk(M, Mack(M)) = 1.

We say (Gen, Mac, Vrfy) is a secure m-time MAC, where m may be a function of n, if no
computationally-unbounded adversary can output a valid tag on a new message after seeing valid
tags on m other messages. For our purposes, we do not require security against an adversary who
adaptively chooses its m messages for which to obtain a valid tag; it suffices to consider a non-
adaptive definition where the m messages are fixed in advance. (Nevertheless, known constructions
satisfy the stronger requirement.) Formally:

Definition 2.3 Message authentication code (Gen, Mac, Vrfy) is an information-theoretically secure
m-time MAC if for any sequence of messages M1, . . . , Mm and any adversary A, the following is
negligible in the security parameter n:

Pr
[

k ← Gen(1n); ∀i : ti = Mack(Mi);
(M ′, t′) ← A(M1, t1, . . . , Mm, tm)

: Vrfyk(M
′, t′) = 1

∧
M ′ 6∈ {M1, . . . , Mm}

]
.

3 Fair Computation of the Millionaires’ Problem (and More)

In this section, we describe a protocol for securely computing the millionaires’ problem (and related
functionalities) with complete fairness. (We discuss in Section 3.2 how this generalizes, rather
easily, to any function over polynomial-size domains that does not contain an embedded XOR.)
Specifically, we look at functions defined by a lower-triangular matrix, as in the following table:

6

y1 y2 y3 y4 y5 y6

x1 0 0 0 0 0 0
x2 1 0 0 0 0 0
x3 1 1 0 0 0 0
x4 1 1 1 0 0 0
x5 1 1 1 1 0 0
x6 1 1 1 1 1 0

Let F = {fm(n)}n∈N denote a function of the above form, where m = m(n) denotes the size of the
domain of each input which we assume, for now, have the same size. (In the next section we will
consider the case when they are unequal.) Let Xm = {x1, . . . , xm} denote the valid inputs for the
first party and let Ym = {y1, . . . , ym} denote the valid inputs for the second party. By suitably
ordering these elements, we may write fm as follows:

fm(xi, yj) =
{

1 if i > j
0 if i ≤ j

. (1)

Viewed in this way, fm is exactly the millionaires’ problem or, equivalently, the “greater than”
function. The remainder of this section is devoted to a proof of the following theorem:

Theorem Let m = poly(n). Assuming the existence of enhanced trapdoor permutations, there
exists a Θ(m)-round protocol that securely computes F = {fm} with complete fairness.

Our protocol requires Θ(m) rounds, which explains why we require m = poly(n). When m = 2,
we obtain a constant-round protocol for computing boolean AND with complete fairness and, by
symmetry, we also obtain a protocol for boolean OR. We remark further that our results extend
to variants of fm such as the “greater than or equal to” function, or the “greater than” function
where the sizes of the domains X and Y are unequal; see Section 3.2 for a full discussion.

3.1 The Protocol

In this section, we write f in place of fm, and X and Y in place of Xm and Ym.

Intuition. At a high level, our protocol works as follows. Say the input of P1 is xi, and the input
of P2 is yj . Following a constant-round “pre-processing” phase, the protocol proceeds in a series
of m iterations, where P1 learns the output — namely, the value f(xi, yj) — in iteration i, and P2

learns the output in iteration j. (That is, in contrast to standard protocols, the iteration in which
a party learns the output depends on the value of its own input.) If one party (say, P1) aborts after
receiving its iteration-k message, and the second party (say, P2) has not yet received its output,
then P2 “assumes” that P1 learned its output in iteration k, and so computes f on its own using
input xk for P1. (In this case, that means that P2 would output f(xk, yj).) We stress that a
malicious P1 may, of course, abort in any iteration it likes (and not necessarily in the iteration in
which it learns its output); the foregoing is only an intuitive explanation.

That this approach gives complete fairness can be intuitively understood as follows. Say P1 is
malicious and uses xi as its effective input, and let y denote the (unknown) input of P2. There are
two possibilities: P1 either aborts in iteration k < i, or iteration k ≥ i. (If P1 never aborts then
fairness is trivially achieved.) In the first case, P1 never learns the correct output and so fairness is
achieved. In the second case, P1 does obtain the output f(xi, y) (in iteration i) and then aborts in
some iteration k ≥ i. Here we consider two sub-cases depending on the value of P2’s input y = yj :

• If j < k then P2 has already received its output in a previous iteration and fairness is achieved.

7

• If j ≥ k then P2 has not yet received its output. Since P1 aborts in iteration k, the protocol
directs P2 to output f(xk, y) = f(xk, yj). Since j ≥ k ≥ i, we have f(xk, yj) = 0 = f(xi, yj)
(relying on the specifics of f), and so the output of P2 is equal to the output obtained by P1

(and thus fairness is achieved). This is the key observation that enables us to obtain fairness
for this function.

We formalize the above intuition in our proof, where we demonstrate an ideal-world simulator cor-
responding to the actions of any malicious P1. Of course, we also consider the case of a malicious P2.

Formal description of the protocol. We use a message authentication code (Gen, Mac,Vrfy);
see Definition 2.3. For convenience, we use an m-time message authentication code (MAC) with
information-theoretic security, though a computationally-secure MAC would also suffice.

We also rely on a sub-protocol for securely computing a randomized functionality ShareGen
defined in Figure 1. In our protocol, the parties will compute ShareGen as a result of which
P1 will obtain shares a

(1)
1 , b

(1)
1 , a

(1)
2 , b

(1)
2 , . . . and P2 will obtain shares a

(2)
1 , b

(2)
1 , a

(2)
2 , b

(2)
2 , (The

functionality ShareGen also provides the parties with MAC keys and tags so that if a malicious
party modifies the share it sends to the other party, then the other party will almost certainly
detect this. In case such manipulation is detected, it will be treated as an abort.) The parties then
exchange their shares one-by-one in a sequence of m iterations. Specifically, in iteration i party P2

will send a
(2)
i to P1, thus allowing P1 to reconstruct the value ai

def= a
(1)
i ⊕ a

(2)
i , and then P1 will

send b
(1)
i to P2, thus allowing P2 to learn the value bi

def= b
(2)
i ⊕ b

(1)
i .

Let π be a protocol that securely computes ShareGen with abort. Such a protocol can be
constructed using standard tools for secure two-party computation, and in fact there exists a
constant-round protocol π with the desired security properties assuming the existence of enhanced
trapdoor permutations [26]. Our protocol for computing f is given in Figure 2.

ShareGen

Inputs: Let the inputs to ShareGen be xi and yj with 1 ≤ i, j ≤ m. (If one of the received inputs
is not in the correct domain, then both parties are given output ⊥.) The security parameter is n.
Computation:

1. Define values a1, . . . , am and b1, . . . , bm in the following way:

• Set ai = bj = f(xi, yj).

• For ` ∈ {1, . . . ,m}, ` 6= i, set a` = null.

• For ` ∈ {1, . . . ,m}, ` 6= j, set b` = null.

(Technically, ai, bi are represented as 2-bit values with, say, 00 interpreted as ‘0’, 11 interpreted
as ‘1’, and 01 interpreted as ‘null’.)

2. For 1 ≤ i ≤ m, choose (a(1)
i , a

(2)
i) and (b(1)

i , b
(2)
i) as random secret sharings of ai and bi,

respectively. (I.e., a
(1)
i is random and a

(1)
i ⊕ a

(2)
i = ai.)

3. Compute ka, kb ← Gen(1n). For 1 ≤ i ≤ m, let tai = Macka(i‖a(2)
i) and tbi = Mackb

(i‖b(1)
i).

Output:

1. P1 receives the values a
(1)
1 , . . . , a

(1)
m and (b(1)

1 , tb1), . . . , (b
(1)
m , tbm), and the MAC-key ka.

2. P2 receives the values (a(2)
1 , ta1), . . . , (a(2)

m , tam) and b
(2)
1 , . . . , b

(2)
m , and the MAC-key kb.

Figure 1: Functionality ShareGen.

8

Protocol 1

Inputs: Party P1 has input x and party P2 has input y. The security parameter is n.
The protocol:

1. Preliminary phase:

(a) Parties P1 and P2 run protocol π for computing ShareGen, using their respective inputs
x, y, and security parameter n.

(b) If P1 receives ⊥ from the above computation (because P2 aborts the computation or
uses an invalid input in π) it outputs f(x, y1) and halts. Likewise, if P2 receives ⊥, it
outputs f(x1, y) and halts. Otherwise, the parties proceed.

(c) Denote the output of P1 from π by a
(1)
1 , . . . , a

(1)
m , (b(1)

1 , tb1), . . . , (b
(1)
m , tbm), and ka.

(d) Denote the output of P2 from π by (a(2)
1 , ta1), . . . , (a(2)

m , tam), b
(2)
1 , . . . , b

(2)
m , and kb.

2. For i = 1, . . . , m do:

P2 sends the next share to P1:

(a) P2 sends (a(2)
i , tai) to P1.

(b) P1 receives (a(2)
i , tai) from P2. If Vrfyka

(i‖a(2)
i , tai) = 0 (or if P1 received an invalid

message, or no message), then P1 halts. If P1 has already determined its output in some
earlier iteration, then it outputs that value. Otherwise, it outputs f(x, yi−1) (if i = 1,
then P1 outputs f(x, y1)).

(c) If Vrfyka
(i‖a(2)

i , tai) = 1 and a
(1)
i ⊕ a

(2)
i 6= null (i.e., x = xi), then P1 sets its output to

be a
(1)
i ⊕ a

(2)
i (and continues running the protocol).

P1 sends the next share to P2:

(a) P1 sends (b(1)
i , tbi) to P2.

(b) P2 receives (b(1)
i , tbi) from P1. If Vrfykb

(i‖b(1)
i , tbi) = 0 (or if P2 received an invalid message,

or no message), then P2 halts. If P2 has already determined its output in some earlier
iteration, then it outputs that value. Otherwise, it outputs f(xi, y).

(c) If Vrfykb
(i‖b(1)

i , tbi) = 1 and b
(1)
i ⊕ b

(2)
i 6= null (i.e., y = yi), then P2 sets its output to

be b
(1)
i ⊕ b

(2)
i (and continues running the protocol).

Figure 2: Protocol for computing f .

Theorem 3.1 If (Gen, Mac, Vrfy) is an information-theoretically secure m-time MAC, and π se-
curely computes ShareGen with abort, then the protocol in Figure 2 securely computes {fm} with
complete fairness.

Proof: Let Π denote the protocol in Figure 2. We analyze Π in a hybrid model where there
is a trusted party computing ShareGen. (Note: since π is only guaranteed to securely compute
ShareGen with abort, the adversary in the hybrid model is allowed to abort the trusted party
computing ShareGen before output is sent to the honest party.) We prove that an execution of Π
in this hybrid model is statistically close to an evaluation of f in the ideal model (with complete
fairness), where the only difference occurs due to MAC forgeries. Applying Proposition 1 then
implies the theorem.

We separately analyze corruption of P1 and P2, beginning with P1:

Claim 2 For every non-uniform, polynomial-time adversary A corrupting P1 and running Π in a
hybrid model with access to an ideal functionality computing ShareGen (with abort), there exists a

9

non-uniform, polynomial-time adversary S corrupting P1 and running in the ideal world with access
to an ideal functionality computing f (with complete fairness), such that

{
idealf,S(z)(x, y, n)

}
(x,y)∈Xm×Ym,z∈{0,1}∗,n∈N

s≡
{
hybridShareGen

Π,A(z) (x, y, n)
}

(x,y)∈Xm×Ym,z∈{0,1}∗,n∈N
.

Proof: Let P1 be corrupted by A. We construct a simulator S given black-box access to A:

1. S invokes A on the input x, the auxiliary input z, and the security parameter n.

2. S receives the input x′ of A to the computation of the functionality ShareGen.

(a) If x′ /∈ X (this includes the case when x′ = ⊥ since A aborts), then S hands ⊥ to A as
its output from the computation of ShareGen, sends x1 to the trusted party computing f ,
outputs whatever A outputs, and halts.

(b) Otherwise, if the input is some x′ ∈ X, then S chooses uniformly-distributed shares
a

(1)
1 , . . . , a

(1)
m and b

(1)
1 , . . . , b

(1)
m . In addition, it generates keys ka, kb ← Gen(1n) and

computes tbi = Mackb
(i‖b(1)

i) for every i. Finally, it hands A the strings a
(1)
1 , . . . , a

(1)
m ,

(b(1)
1 , tb1), . . . , (b

(1)
m , tbm), and ka as its output from the computation of ShareGen.

3. If A sends abort to the trusted party computing ShareGen (signalling that P2 should receive
⊥ as output from ShareGen), then S sends x1 to the trusted party computing f , outputs
whatever A outputs, and halts. Otherwise (i.e., if A sends continue), S proceeds as below.

4. Let i (with 1 ≤ i ≤ m) be the index such that x′ = xi (such an i exists since x′ ∈ X).

5. To simulate iteration j, for j < i, simulator S works as follows:

(a) S chooses a
(2)
j such that a

(1)
j ⊕ a

(2)
j = null, and computes the tag taj = Macka(j‖a(2)

j).

Then S gives A the message (a(2)
j , taj).

(b) S receives A’s message (b̂(1)
j , t̂bj) in the jth iteration:

i. If Vrfykb
(j‖b̂(1)

j , t̂bj) = 0 (or the message is invalid, or A aborts), then S sends xj to
the trusted party computing f , outputs whatever A outputs, and halts.

ii. If Vrfykb
(j‖b̂(1)

j , t̂bj) = 1, then S proceeds to the next iteration.

6. To simulate iteration i, simulator S works as follows:

(a) S sends xi to the trusted party computing f , and receives back the output z = f(xi, y).

(b) S chooses a
(2)
i such that a

(1)
i ⊕ a

(2)
i = z, and computes the tag tai = Macka(i‖a(2)

i). Then
S gives A the message (a(2)

i , tai).

(c) S receives A’s message (b̂(1)
i , t̂bi). If Vrfykb

(i‖b̂(1)
i , t̂bi) = 0 (or the message is invalid, or A

aborts), then S outputs whatever A outputs, and halts. If Vrfykb
(j‖b̂(1)

j , t̂bj) = 1, then S
proceeds to the next iteration.

7. To simulate iteration j, for i < j ≤ m, simulator S works as follows:

(a) S chooses a
(2)
j such that a

(1)
j ⊕ a

(2)
j = null, and computes the tag taj = Macka(j‖a(2)

j).

Then S gives A the message (a(2)
j , taj).

10

(b) S receives A’s message (b̂(1)
j , t̂bj). If Vrfykb

(j‖b̂(1)
j , t̂bj) = 0 (or the message is invalid, or A

aborts), then S outputs whatever A outputs, and halts. If Vrfykb
(j‖b̂(1)

j , t̂bj) = 1, then S
proceeds to the next iteration.

8. If S has not halted yet, at this point it halts and outputs whatever A outputs.

We analyze the simulator S described above. In what follows we assume that if Vrfykb
(j‖b̂(1)

j , t̂bj) = 1

then b̂
(1)
j = b

(1)
j (meaning that A sent the same share that it received). Under this assumption,

we show that the distribution generated by S is identical to the distribution in a hybrid execution
between A and an honest P2. Since this assumption holds with all but negligible probability (by
security of the information-theoretic MAC), this proves statistical closeness as stated in the claim.

Let y denote the input of P2. It is clear that the view of A in an execution with S is identical
to the view of A in a hybrid execution with P2; the only difference is that the initial shares given
to A are generated by S without knowledge of z = f(x′, y), but since these shares are uniformly
distributed the view of A is unaffected. Therefore, what is left to demonstrate is that the joint
distribution of A’s view and P2’s output is identical in the hybrid world and the ideal world. We
show this now by separately considering three different cases:

1. Case 1: S sends x1 to the trusted party because x′ 6∈ X, or because A aborted the computation
of ShareGen: In the hybrid world, P2 would have received ⊥ from ShareGen, and would have
then output f(x1, y) as instructed by protocol Π. This is exactly what P2 outputs in the ideal
execution with S because, in this case, S sends x1 to the trusted party computing f .

If Case 1 does not occur, let xi be defined as in the description of the simulator.

2. Case 2: S sends xj to the trusted party, for some j < i: This case occurs when A aborts
the protocol in some iteration j < i (either by refusing to send a message, sending an invalid
message, or sending an incorrect share). There are two sub-cases depending on the value of
P2’s input y. Let ` be the index such that y = y`. Then:

(a) If ` ≥ j then, in the hybrid world, P2 would not yet have determined its output (since
it only determines its output once it receives a valid message from P1 in iteration `).
Thus, as instructed by the protocol, P2 would output f(xj , y). This is exactly what P2

outputs in the ideal world, because S sends xj to the trusted party in this case.

(b) If ` < j then, in the hybrid world, P2 would have already determined its output f(x′, y) =
f(xi, y`) in the `th iteration. In the ideal world, P2 will output f(xj , y`) since S sends
xj to the trusted party. Since j < i we have ` < j < i and so f(xj , y`) = f(xi, y`) = 1.
Thus, P2’s output f(xi, y) in the hybrid world is equal to its output f(xj , y) in the ideal
execution with S.

3. Case 3: S sends xi to the trusted party: Here, P2 outputs f(xi, y) in the ideal execution. We
show that this is identical to what P2 would have output in the hybrid world. There are two
sub-cases depending on P2’s input y. Let ` be the index such that y = y`. Then:

(a) If ` < i, then P2 would have already determined its output f(x′, y) = f(xi, y) in the `th
iteration. (The fact that we are in Case 3 means that A could not have sent an incorrect
share prior to iteration i.)

(b) If ` ≥ i, then P2 would not yet have determined its output. There are two sub-cases:

i. A sends correct shares in iterations j = i, . . . , ` (inclusive). Then P2 would determine
its output as b

(1)
` ⊕ b

(2)
` = f(x′, y) = f(xi, y), exactly as in the ideal world.

11

ii. A sends an incorrect share in iteration ζ, where i ≤ ζ ≤ `. In this case, by the
specification of the protocol, party P2 would output f(xζ , y) = f(xζ , y`). However,
since i ≤ ζ ≤ ` we have f(xζ , y`) = 0 = f(xi, y`). Thus, P2 outputs the same value
in the hybrid and ideal executions.

This concludes the proof of the claim.

The following claim, dealing with a corrupted P2, completes the proof of the theorem:

Claim 3 For every non-uniform, polynomial-time adversary A corrupting P2 and running Π in a
hybrid model with access to an ideal functionality computing ShareGen (with abort), there exists a
non-uniform, polynomial-time adversary S corrupting P2 and running in the ideal world with access
to an ideal functionality computing f (with complete fairness), such that

{
idealf,S(z)(x, y, n)

}
(x,y)∈Xm×Ym,z∈{0,1}∗,n∈N

s≡
{
hybridShareGen

Π,A(z) (x, y, n)
}

(x,y)∈Xm×Ym,z∈{0,1}∗,n∈N
.

Proof: Say P2 is corrupted by A. We construct a simulator S given black-box access to A:

1. S invokes A on the input y, the auxiliary input z, and the security parameter n.

2. S receives the input y′ of A to the computation of the functionality ShareGen.

(a) If y′ /∈ Y (this includes the case when y′ = ⊥ since A aborts), then S hands ⊥ to A as its
output from the computation of ShareGen, sends y1 to the trusted party computing f ,
outputs whatever A outputs, and halts.

(b) Otherwise, if the input is some y′ ∈ Y , then S chooses uniformly-distributed shares
a

(2)
1 , . . . , a

(2)
m and b

(2)
1 , . . . , b

(2)
m . In addition, it generates keys ka, kb ← Gen(1n) and

computes tai = Macka(i‖a(2)
i) for every i. Finally, it hands A the strings b

(2)
1 , . . . , b

(2)
m ,

(a(2)
1 , ta1), . . . , (a

(2)
m , tam), and kb as its output from the computation of ShareGen.

3. If A sends abort to the trusted party computing ShareGen, then S sends y1 to the trusted party
computing f , outputs whatever A outputs, and halts. Otherwise (i.e., if A sends continue),
S proceeds as below.

4. Let i (with 1 ≤ i ≤ m) be the index such that y′ = yi (such an i exists since y′ ∈ Y).

5. To simulate iteration j, for j < i, simulator S works as follows:

(a) S receives A’s message (â(2)
j , t̂aj) in the jth iteration:

i. If Vrfyka
(j‖â(2)

j , t̂aj) = 0 (or the message is invalid, or A aborts), then S sends yj−1

to the trusted party computing f (if j = 1, then S sends y1), outputs whatever A
outputs, and halts.

ii. If Vrfyka
(j‖â(2)

j , t̂aj) = 1, then S proceeds.

(b) Choose b
(1)
j such that b

(1)
j ⊕ b

(2)
j = null, and compute the tag tbj = Mackb

(j‖b(1)
j). Then

give to A the message (b(1)
j , tbj).

6. To simulate iteration i, simulator S works as follows:

(a) S receives A’s message (â(2)
i , t̂ai).

12

i. If Vrfyka
(i‖â(2)

i , t̂ai) = 0 (or the message is invalid, or A aborts), then S sends yi−1

to the trusted party computing f (if i = 1 then S sends y1), outputs whatever A
outputs, and halts.

ii. If Vrfyka
(i‖â(2)

i , t̂ai) = 1, then S sends yi to the trusted party computing f , receives
the output z = f(x, yi), and proceeds.

(b) Choose b
(1)
i such that b

(1)
i ⊕ b

(2)
i = z, and compute the tag tbi = Mackb

(i‖b(1)
i). Then give

to A the message (b(1)
i , tbi).

7. To simulate iteration j, for i < j ≤ m, simulator S works as follows:

(a) S receives A’s message (â(2)
j , t̂aj). If Vrfyka

(j‖â(2)
j , t̂aj) = 0 (or the message is invalid, or

A aborts), then S outputs whatever A outputs, and halts. If Vrfyka
(j‖â(2)

j , t̂aj) = 1, then
S proceeds.

(b) Choose b
(1)
j such that b

(1)
j ⊕ b

(2)
j = null, and compute the tag tbj = Mackb

(j‖b(1)
j). Then

give to A the message (b(1)
j , tbj).

8. If S has not halted yet, at this point it halts and outputs whatever A outputs.

As in the proof of the previous claim, we assume in what follows that if Vrfyka
(j‖â(2)

j , t̂aj) = 1 then

â
(2)
j = a

(2)
j (meaning that A sent P1 the same share that it received). Under this assumption, we

show that the distribution generated by S is identical to the distribution in a hybrid execution
between A and an honest P1. Since this assumptions holds with all but negligible probability (by
security of the MAC), this proves statistical closeness as stated in the claim.

Let x denote the input of P1. Again, it is clear that the view of A in an execution with S
is identical to the view of A in a hybrid execution with P1. What is left to demonstrate is that
the joint distribution of A’s view and P1’s output is identical. We show this by considering four
different cases:

1. Case 1: S sends y1 to the trusted party because y′ 6∈ Y , or because A aborted the computation
of ShareGen: In such a case, the protocol instructs P1 to output f(x, y1), exactly what P1

outputs in the ideal world.

2. Case 2: S sends y1 to the trusted party because A sends an incorrect share in the first iteration:
In this case, the simulator sends y1 to the trusted party computing f , and so the output of P1

in the ideal world is f(x, y1). In the hybrid world, P1 will also output f(x, y1) as instructed
by the protocol.

If Cases 1 and 2 do not occur, let yi be defined as in the description of the simulator.

3. Case 3: S sends yj−1 to the trusted party, for some 1 ≤ j − 1 < i, because A sends an
incorrect share in the jth iteration: The output of P1 in the ideal world is f(x, yj−1). There
are two sub-cases here, depending on the value of P1’s input x. Let ` be the index such that
x = x`. Then:

(a) If ` < j then, in the hybrid world, P1 would have already determined its output f(x, y′) =
f(x`, yi). But since ` ≤ j− 1 < i we have f(x`, yi) = 0 = f(x`, yj−1), and so P1’s output
is identical in both the hybrid and ideal worlds.

13

(b) If ` ≥ j then, in the hybrid world, P1 would not yet have determined its output. There-
fore, as instructed by the protocol, P1 will output f(x, yj−1) in the hybrid world, which
is exactly what it outputs in the ideal execution with S.

4. Case 4: S sends yi to the trusted party: This case occurs when A sends correct shares up
through and including iteration i. The output of P1 in the ideal world is f(x, yi). There are
again two sub-cases here, depending on the value of P1’s input x. Let ` be the index such
that x = x`. Then:

(a) If ` ≤ i, then P1 would have already determined its output f(x, y′) = f(x`, yi) in the `th
iteration. This matches what P1 outputs in the ideal execution with S.

(b) If ` > i, then P1 would not have yet have determined its output. There are two sub-cases:

i. A sends correct shares in iterations j = i + 1, . . . , ` (inclusive). This implies that,
in the hybrid world, P1 would determine its output to be a

(1)
` ⊕ a

(2)
` = f(x, y′) =

f(x, yi), exactly as in the ideal execution.
ii. A sends an incorrect share in iteration ζ, where i < ζ ≤ `. In this case, by the

specification of the protocol, party P1 would output f(x, yζ−1) = f(x`, yζ−1) in the
hybrid world. But since i ≤ ζ − 1 < ` we have f(x`, yζ−1) = 1 = f(x`, yi), and so
P1’s output is identical in both the hybrid and ideal worlds.

This completes the proof of the claim.

The preceding claims along with Proposition 1 imply the theorem.

3.2 Handling any Function without an Embedded XOR

The protocol in the previous section, as stated, applies only to the “greater than” function on
two equal-size domains X and Y . For the case of the greater than function with |X| = |Y | + 1,
the same protocol (with one tiny change) still works. Specifically, let X = {x1, . . . , xm+1} and
Y = {y1, . . . , ym} with f still defined as in Equation (1). Modify the protocol of Figure 2 so that
if the end of the protocol is reached and P1 holds input xm+1, then P1 outputs 1. Then the same
proof as in the previous section shows that this protocol is also completely fair. (Adapting Claim 3
is immediate: the view of a malicious P2 is simulated in the same way; as for the output of the
honest P1, the case when P1 holds input x = xi with i < m + 1 is analyzed identically, and when
x = xm+1 then P1 outputs 1 no matter what in both the hybrid and ideal worlds. Adapting Claim 2
requires only a little thought to verify that the analysis in Case 2(b) still holds when i = m + 1.)

In fact, the protocol can be applied to any function defined over polynomial-size domains that
does not contain an embedded XOR. This is because any such function can be “converted” to the
greater than function as we now describe.

Let g : X × Y → {0, 1} be a function that does not contain an embedded XOR, and let
X = {x1, . . . , xm1} and Y = {y1, . . . , ym2}. It will be convenient to picture g as an m1×m2 matrix,
where entry (i, j) contains the value g(xi, yj). Similarly, we can view any matrix as a function.

We will apply a sequence of transformations to g that will result in a “functionally equivalent”
function g′′, where by “functionally equivalent” we mean that g can be computed with perfect
security (and complete fairness) in the g′′-hybrid model (where g′′ is computed by a trusted party,
with complete fairness). It follows that a secure and completely-fair protocol for computing g′′

yields a secure and completely-fair protocol for computing g. The transformations are as follows:

14

1. First, remove any duplicate rows or columns in g. (E.g., if there exist i and i′ such that
g(xi, y) = g(xi′ , y) for all y ∈ Y , then remove either row i or row i′.) Denote the resulting
function by g′, and say that g′ (viewed as a matrix) has dimension m′

1 ×m′
2. It is clear that

g′ is functionally equivalent to g.

2. We observe that no two rows (resp., columns) of g′ have the same Hamming weight. To
see this, notice that two non-identical rows (resp., columns) with the same Hamming weight
would imply the existence of an embedded XOR in g′, and hence an embedded XOR in g.

Since the maximum Hamming weight of any row is m′
2, this implies that m′

1 ≤ m′
2 + 1.

Applying the same argument to the columns shows that m′
2 ≤ m′

1 + 1. We assume m′
1 ≥ m′

2;
if not, we may simply take the transpose of g′ (which just has the effect of swapping the roles
of the parties).

3. Order the rows of g′ in increasing order according to their Hamming weight. Order the
columns in the same way. Once again this results in a function g′′ that is functionally equiv-
alent to g′ (and hence to g).

We remark that all the above transformations are efficiently computable since we are assuming that
the initial domains X and Y are of polynomial size.

Given g′′ resulting from the above transformations, there are now three possibilities:

1. Case 1: m′
1 = m′

2 + 1. In this case the first row of g′′ is an all-0 row and the last row is an
all-1 row, and we exactly have an instance of the greater than function with m′

1 = m′
2 + 1.

2. Case 2: m′
1 = m′

2 and the first row of g′′ is an all-0 row. Then we again have an instance of
the greater than function, except now with equal-size domains.

3. Case 3: m′
1 = m′

2 and the first row of g′′ is not an all-0 row. In this case, the last row of g′′

must be an all-1 row. Taking the complement of every bit in the matrix (and then re-ordering
the rows and columns accordingly) gives a function that is still functionally equivalent to g
and is exactly an instance of the greater than function on equal-size domains.

We have thus proved:

Theorem 3.2 Let f be a two-input function defined over polynomial-size domains that does not
contain an embedded XOR. Then, assuming the existence of enhanced trapdoor permutations, there
exists a protocol for securely computing f with complete fairness.

In fact, the existence of oblivious transfer is both necessary and sufficient for the above result.
Oblivious transfer suffices because it suffices for constructing a secure-with-abort protocol for any
polynomial-time functionality [24], as used as a component of our protocol. Furthermore, the
existence of even a secure-with-abort protocol for computing, e.g., boolean OR implies the existence
of oblivious transfer [25].

4 Fair Computation of Functions with an Embedded XOR

Recall that Cleve’s result showing impossibility of completely-fair coin tossing implies the impossi-
bility of completely-fair computation of boolean XOR. (More generally, it implies the impossibility
of completely-fair computation of any function f for which coin tossing is possible in the f -hybrid

15

world where f is computed by a trusted party with complete fairness.) Given this, along with
the fact that our result in the previous section applies only to functions that do not contain an
embedded XOR, it is tempting to conjecture that no function containing an embedded XOR can
be computed with complete fairness. In this section, we show that this is not the case and that
there exist function with an embedded XOR that can be computed with complete fairness. Inter-
estingly, however, such functions appear to be “more difficult” to compute with complete fairness;
specifically, we refer the reader to Section 5 where we prove a lower bound of ω(log n) on the round
complexity of any protocol for completely-fair computation of any function having an embedded
XOR. (Actually, this bound is technically incomparable to the result of the previous section, where
the round complexity was linear in the domain size.)

It will be instructive to see why Cleve’s impossibility result does not immediately rule out
complete fairness for all functions containing an embedded XOR. Consider the following function f
(which is the example for which we will later prove feasibility):

y1 y2

x1 0 1
x2 1 0
x3 1 1

If the parties could be forced to choose their inputs from {x1, x2} and {y1, y2}, respectively, then it
would be easy to generate a fair coin toss from any secure computation of f (with complete fairness)
by simply instructing both parties to choose their inputs uniformly from the stated domains. (This
results in a fair coin toss since the output is uniform at long as either party chooses their input at
random.) Unfortunately, a protocol for securely computing f does not restrict the first party to
choosing its input in {x1, x2}, and cannot prevent that party from choosing input x3 and thus biasing
the result toward 1 with certainty. (Naive solutions such as requiring the first party to provide a
zero-knowledge proof that it chose its input in {x1, x2} do not work either.) Of course, this only
shows that Cleve’s impossibility result does not apply but does not prove that a completely-fair
protocol for computing f exists.

4.1 The Protocol

Preliminaries. In this section we present a generic protocol for computing a boolean function
F = {fn : Xn×Yn → {0, 1}}. (For convenience, we write X and Y and drop the explicit dependence
on n in what follows.) The protocol is parameterized by a function α = α(n), and the number of
rounds is set to m = ω(α−1 log n) in order for correctness to hold with all but negligible probability.
(We thus must have α noticeable to ensure that the number of rounds is polynomial in n.)

We do not claim that the protocol is completely-fair for arbitrary functions F and arbitrary
settings of α. Rather, we claim that for some functions F there exists a corresponding α for which
the protocol is completely fair. In Section 4.2, we prove this for one specific function that contains
an embedded XOR. In Appendix A we generalize the proof and show that the protocol can be used
for completely-fair computation of other functions as well.

Overview and Intuition. As in the protocol of the previous section, the parties begin by running
a “preliminary” phase during which values a1, b1, . . . , am, bm are generated based on the parties’
respective inputs x and y, and shares of the {ai, bi} are distributed to each of the parties. (As before,
this phase will be carried out using a standard protocol for secure two-party computation, where
one party can abort the execution and prevent the other party from receiving any output.) As in
the previous protocol, following the preliminary phase the parties exchange their shares one-by-one

16

ShareGen′

Inputs: Let the inputs to ShareGen′ be x ∈ X and y ∈ Y . (If one of the received inputs is not in
the correct domain, then both parties are given output ⊥.) The security parameter is n.
Computation:

1. Define values a1, . . . , am and b1, . . . , bm in the following way:

• Choose i∗ according to a geometric distribution with parameter α (see text).

• For i = 1 to i∗ − 1 do:

– Choose ŷ ← Y and set ai = f(x, ŷ).
– Choose x̂ ← X and set bi = f(x̂, y).

• For i = i∗ to m, set ai = bi = f(x, y).

2. For 1 ≤ i ≤ m, choose (a(1)
i , a

(2)
i) and (b(1)

i , b
(2)
i) as random secret sharings of ai and bi,

respectively. (E.g., a
(1)
i is random and a

(1)
i ⊕ a

(2)
i = ai.)

3. Compute ka, kb ← Gen(1n). For 1 ≤ i ≤ m, let tai = Macka
(i‖a(2)

i) and tbi = Mackb
(i‖b(1)

i).

Output:

1. Send to P1 the values a
(1)
1 , . . . , a

(1)
m and (b(1)

1 , tb1), . . . , (b
(1)
m , tbm), and the MAC-key ka.

2. Send to P2 the values (a(2)
1 , ta1), . . . , (a

(2)
m , tam) and b

(2)
1 , . . . , b

(2)
m , and the MAC-key kb.

Figure 3: Functionality ShareGen′, parameterized by a value α.

in a sequence of m iterations, with P1 reconstructing ai and P2 reconstructing bi in iteration i.
At the end of the protocol, P1 outputs am and P2 outputs bm. If a party (say, P1) ever aborts,
then the other party (P2 in this case) outputs the last value it successfully reconstructed; i.e., if P1

aborts before sending its iteration-i message, P2 outputs bi−1. (This assumes i > 1. See the formal
description of the protocol for further details.)

In contrast to our earlier protocol, however, the values a1, b1, . . . , am, bm are now generated
probabilistically in the following way: first, a value i∗ ∈ {1, . . . , m} is chosen according to a geometric
distribution with parameter α (see below). For i < i∗, the value ai (resp., bi) is chosen in a manner
that is independent of P2’s (resp., P1’s) input; specifically, we set ai = f(x, ŷ) for randomly-chosen
ŷ ∈ Y (and analogously for bi). For all i ≥ i∗, the values ai and bi are set equal to f(x, y).
Note that if m = ω(α−1 log n), we have am = bm = f(x, y) with all but negligible probability
and so correctness holds. (The protocol could also be modified so that am = bm = f(x, y) with
probability 1, thus giving perfect correctness. But the analysis is easier without this modification.)

Fairness is more difficult to see and, of course, cannot hold for all functions f since some
functions cannot be computed fairly. But as intuition for why the protocol achieves fairness for
certain functions, we observe that: (1) if a malicious party (say, P1) aborts in some iteration i < i∗,
then P1 has not yet obtained any information about P2’s input and so fairness is trivially achieved.
On the other hand, (2) if P1 aborts in some iteration i > i∗ then both P1 and P2 have received
the correct output f(x, y) and fairness is obtained. The worst case, then, occurs when P1 aborts
exactly in iteration i∗, as it has then learned the correct value of f(x, y) while P2 has not. However,
P1 cannot identify iteration i∗ with certainty (this holds even if it knows the other party’s input y)
and, even though it may guess i∗ correctly with noticeable probability, the fact that it can never
be sure whether its guess is correct suffices to ensure fairness. (This intuition merely provides a
way of understanding the protocol; the formal proof does not follow this intuition.)

Formal description of the protocol. The protocol is parameterized by a value α = α(n) which is

17

assumed to be noticeable. Let m = ω(α−1 log n). As in the previous section, we use an m-time MAC
with information-theoretic security. We also rely on a sub-protocol π computing a functionality
ShareGen′ that generates shares (and associated MAC tags) for the parties; see Figure 3. (As
before, π securely computes ShareGen′ with abort.) We continue to let a

(1)
1 , b

(1)
1 , a

(1)
2 , b

(1)
2 , . . . denote

the shares obtained by P1, and let a
(2)
1 , b

(2)
1 , a

(2)
2 , b

(2)
2 , . . . denote the shares obtained by P2.

Functionality ShareGen′ generates a value i∗ according to a geometric distribution with param-
eter α. This is the probability distribution on N = {1, 2, . . .} given by repeating a Bernoulli trial
(with parameter α) until the first success. In other words, i∗ is determined by tossing a biased coin
(that is heads with probability α) until the first head appears, and letting i∗ be the number of tosses
performed. We remark that, as far as ShareGen′ is concerned, if i∗ > m then the exact value of i∗

is unimportant, and so ShareGen′ can be implemented in strict (rather than expected) polynomial
time. In any case, our choice of m ensures that i∗ ≤ m with all but negligible probability.

Our second protocol calls ShareGen′ as a subroutine and then has the parties exchange their
shares as in our first protocol. As discussed above, aborts are handled differently here in that a
party also outputs the last value it reconstructed if the other party aborts. A formal description
of the protocol is given in Figure 4.

Protocol 2

Inputs: Party P1 has input x and party P2 has input y. The security parameter is n.
The protocol:

1. Preliminary phase:

(a) P1 chooses ŷ ∈ Y uniformly at random, and sets a0 = f(x, ŷ). Similarly, P2 chooses
x ∈ X uniformly at random, and sets b0 = f(x̂, y).

(b) Parties P1 and P2 run protocol π for computing ShareGen′, using their respective inputs
x and y, and security parameter n.

(c) If P1 receives ⊥ from the above computation, it outputs a0 and halts. Likewise, if P2

receives ⊥ then it outputs b0 and halts. Otherwise, the parties proceed to the next step.

(d) Denote the output of P1 from π by a
(1)
1 , . . . , a

(1)
m , (b(1)

1 , tb1), . . . , (b
(1)
m , tbm), and ka.

(e) Denote the output of P2 from π by (a(2)
1 , ta1), . . . , (a(2)

m , tam), b
(2)
1 , . . . , b

(2)
m , and kb.

2. For i = 1, . . . , m do:

P2 sends the next share to P1:

(a) P2 sends (a(2)
i , tai) to P1.

(b) P1 receives (a(2)
i , tai) from P2. If Vrfyka

(i‖a(2)
i , tai) = 0 (or if P1 received an invalid

message, or no message), then P1 outputs ai−1 and halts.

(c) If Vrfyka
(i‖a(2)

i , tai) = 1, then P1 sets ai = a
(1)
i ⊕a

(2)
i (and continues running the protocol).

P1 sends the next share to P2:

(a) P1 sends (b(1)
i , tbi) to P2.

(b) P2 receives (b(1)
i , tbi) from P1. If Vrfykb

(i‖b(1)
i , tbi) = 0 (or if P2 received an invalid message,

or no message), then P2 outputs bi−1 and halts.

(c) If Vrfykb
(i‖b(1)

i , tbi) = 1, then P2 sets bi = b
(1)
i ⊕b

(2)
i (and continues running the protocol).

3. If all m iterations have been run, party P1 outputs am and party P2 outputs bm.

Figure 4: Generic protocol for computing a function f .

18

4.2 Proof of Security for a Particular Function

Protocol 2 cannot guarantee complete fairness for all functions f . Rather, what we claim is that for
certain functions f and particular associated values of α, the protocol provides complete fairness.
In this section, we prove security for the following function f :

y1 y2

x1 0 1
x2 1 0
x3 1 1

This function has an embedded XOR, and is defined over a finite domain so that Xn = X =
{x1, x2, x3} and Yn = Y = {y1, y2}. For this f , we set α = 1/5 in Protocol 2.

Theorem 4.1 If (Gen,Mac, Vrfy) is an information-theoretically secure m-time MAC, and π se-
curely computes ShareGen′ with abort, then the protocol in Figure 4, with α = 1/5, securely computes
f with complete fairness.

Proof: Let Π denote the protocol in Figure 4 with α = 1/5. We analyze Π in a hybrid model where
there is a trusted party computing ShareGen′. (One again, we stress that since π is only guaranteed
to securely compute ShareGen′ with abort, the adversary is allowed to abort the trusted party
computing ShareGen′ before it sends output to the honest party.) We will prove that an execution
of Protocol 2 in this hybrid model is statistically close to an evaluation of f in the ideal model
(with complete fairness), where the only differences can occur due to MAC forgeries. Applying
Proposition 1 then implies the theorem.

In the two claims that follow, we separately analyze corruption of P2 and P1. The case of a
corrupted P2 is relatively easy to analyze since P1 always “gets the output first” (because, in every
iteration — and iteration i∗ in particular — P2 sends its share first). The proof of security when
P1 is corrupted is much more challenging, and is given second.

Claim 4 For every non-uniform, polynomial-time adversary A corrupting P2 and running Π in a
hybrid model with access to an ideal functionality computing ShareGen′ (with abort), there exists a
non-uniform, polynomial-time adversary S corrupting P2 and running in the ideal world with access
to an ideal functionality computing f (with complete fairness), such that

{
idealf,S(z)(x, y, n)

}
(x,y)∈X×Y,z∈{0,1}∗,n∈N

s≡
{
hybridShareGen′

Π,A(z) (x, y, n)
}

(x,y)∈X×Y,z∈{0,1}∗,n∈N
.

Proof: Let P2 be corrupted by A. We construct a simulator S given black-box access to A:

1. S invokesA on the input y, the auxiliary input z, and the security parameter n. The simulator
also chooses ŷ ∈ Y uniformly at random. (It will send ŷ to the trusted party, if needed.)

2. S receives the input y′ of A to the computation of the functionality ShareGen′.

(a) If y′ /∈ Y (this includes the case when y′ = ⊥ since A aborts), then S hands ⊥ to A as its
output from the computation of ShareGen′ and sends ŷ to the trusted party computing f .
It then halts and outputs whatever A outputs.

(b) Otherwise, if the input is some y′ ∈ Y , then S chooses uniformly-distributed shares
a

(2)
1 , . . . , a

(2)
m and b

(2)
1 , . . . , b

(2)
m . In addition, it generates keys ka, kb ← Gen(1n) and

computes tai = Macka(i‖a(2)
i) for every i. Finally, it hands A the strings b

(2)
1 , . . . , b

(2)
m ,

(a(2)
1 , ta1), . . . , (a

(2)
m , tam), and kb as its output from the computation of ShareGen′.

19

3. If A sends abort to the trusted party computing ShareGen′, then S sends ŷ to the trusted
party computing f . It then halts and outputs whatever A outputs. Otherwise (i.e., if A sends
continue), S proceeds as below.

4. Choose i∗ according to a geometric distribution with parameter α.

5. For i = 1 to i∗ − 1:

(a) S receives A’s message (â(2)
i , t̂ai) in the ith iteration. If Vrfyka

(i‖â(2)
i , t̂ai) = 0 (or the

message is invalid, or A aborts), then S sends ŷ to the trusted party computing f ,
outputs whatever A outputs, and halts. Otherwise, S proceeds.

(b) S chooses x̂ ∈ X uniformly at random, computes bi = f(x̂, y′), sets b
(1)
i = b

(2)
i ⊕ bi, and

computes tbi = Mackb
(i‖b(1)

i). It gives A the message (b(1)
i , tbi). (Note that a fresh x̂ is

chosen in every iteration.)

6. For i = i∗:

(a) S receives A’s message (â(2)
i∗ , t̂ai∗). If Vrfyka

(i∗‖â(2)
i∗ , t̂ai∗) = 0 (or the message is invalid,

or A aborts), then S sends ŷ to the trusted party computing f , outputs whatever A
outputs, and halts. Otherwise, S sends y′ to the trusted party computing f , receives
the output z = f(x, y′), and proceeds.

(b) S sets b
(1)
i∗ = b

(2)
i∗ ⊕z, and computes tbi∗ = Mackb

(i∗‖b(1)
i∗). It gives A the message (b(1)

i∗ , tbi∗).

7. For i = i∗ + 1 to m:

(a) S receives A’s message (â(2)
i , t̂ai) in the ith iteration. If Vrfyka

(i‖â(2)
i , t̂ai) = 0 (or the

message is invalid, or A aborts), then S outputs whatever A outputs, and halts.

(b) S sets b
(1)
i = b

(2)
i ⊕ z, and computes tbi = Mackb

(i‖b(1)
i). It gives A the message (b(1)

i , tbi).

8. If S has not halted yet, at this point it outputs whatever A outputs and halts.

We assume that if Vrfyka
(i‖â(2)

i , t̂ai) = 1, then â
(2)
i = a

(2)
i (meaning that A sent the same share

that it received). It is straightforward to prove that this is the case with all but negligible probability
based on the information-theoretic security of the MAC. Under this assumption, the distribution
generated by S in an ideal-world execution with a trusted party computing f is identical to the
distribution in a hybrid execution between A and an honest P1. To see this, first note that the view
of A is identical in both worlds. As for the output of P1, if A aborts (or sends an invalid message)
before sending its first-iteration message, then P1 outputs f(x, ŷ) for a random ŷ ∈ Y in both the
hybrid and ideal worlds. If A aborts after sending a valid iteration-i message then, conditioned on
A’s view at that point, the distribution of i∗ is identical in the hybrid and ideal worlds. Moreover,
in both worlds, P1 outputs f(x, ŷ) (for a random ŷ ∈ Y) if i < i∗ and outputs f(x, y′) if i ≥ i∗.
This concludes the proof of this case.

We remark that the proof of the preceding claim did not depend on the value of α or the
particular function f . The value of α and the specific nature of f will become important when we
deal with a malicious P1 in the proof of the following claim.

Claim 5 For every non-uniform, polynomial-time adversary A corrupting P1 and running Π in a
hybrid model with access to an ideal functionality computing ShareGen′ (with abort), there exists a

20

non-uniform, polynomial-time adversary S corrupting P1 and running in the ideal world with access
to an ideal functionality computing f (with complete fairness), such that

{
idealf,S(z)(x, y, n)

}
(x,y)∈X×Y,z∈{0,1}∗,n∈N

s≡
{
hybridShareGen′

Π,A(z) (x, y, n)
}

(x,y)∈X×Y,z∈{0,1}∗,n∈N
.

Proof: Say P1 is corrupted by an adversary A. We construct a simulator S that is given black-
box access to A. For readability in what follows, we ignore the presence of the MAC-tags and keys.
That is, we do not mention the fact that S computes MAC-tags for messages it gives to A, nor do
we mention the fact that S must verify the MAC-tags on the messages sent by A. When we say
that A “aborts”, we include in this the event that A sends an invalid message, or a message whose
tag does not pass verification.

1. S invokes A on the input4 x′, auxiliary input z, and the security parameter n. The simulator
also chooses x̂ ∈ X uniformly at random (it will send x̂ to the trusted party, if needed).

2. S receives the input x of A to the computation of the functionality ShareGen′.

(a) If x /∈ X (this includes the case when x = ⊥ since A aborts), then S hands ⊥ to A as its
output from the computation of ShareGen′, sends x̂ to the trusted party computing f ,
outputs whatever A outputs, and halts.

(b) Otherwise, if the input is some x ∈ X, then S chooses uniformly-distributed shares
a

(1)
1 , . . . , a

(1)
m and b

(1)
1 , . . . , b

(1)
m . Then, S gives these shares to A as its output from the

computation of ShareGen′.

3. If A sends abort to the trusted party computing ShareGen′, then S sends x̂ to the trusted party
computing f , outputs whatever A outputs, and halts. Otherwise (i.e., if A sends continue),
S proceeds as below.

4. Choose i∗ according to a geometric distribution with parameter α. We now branch depending
on the value of x.

If x = x3:

5. For i = 1 to m:

(a) S sets a
(2)
i = a

(1)
i ⊕ 1 and gives a

(2)
i to A. (Recall that f(x3, y) = 1 for any y.)

(b) If A aborts and i ≤ i∗, then S sends x̂ to the trusted party computing f . If A aborts
and i > i∗ then S sends x = x3 to the trusted party computing f . In either case, S then
outputs whatever A outputs, and halts.
If A does not abort, then S proceeds to the next iteration.

6. If S has not halted yet, then if i∗ ≤ m it sends x3 to the trusted party computing f while if
i∗ > m it sends x̂. Finally, S outputs whatever A outputs and halts.

If x ∈ {x1, x2}:
7. Let x̄ be the “other” value in {x1, x2}; i.e., if x = xc then x̄ = x3−c.

8. For i = 1 to i∗ − 1:
4To simplify readability later, we reserve x for the value input by A to the computation of ShareGen′.

21

(a) S chooses ŷ ∈ Y uniformly at random, computes ai = f(x, ŷ), and sets a
(2)
i = a

(1)
i ⊕ ai.

It gives a
(2)
i to A. (Note that a fresh ŷ is chosen in every iteration.)

(b) If A aborts:

i. If ai = 0, then with probability 1/3 send x̄ to the trusted party computing f , and
with probability 2/3 send x3.

ii. If ai = 1, then with probability 1/3 send x to the trusted party computing f ; with
probability 1/2 send x̄; and with probability 1/6 send x3.

In either case, S then outputs whatever A outputs, and halts.
If A does not abort, then S proceeds.

9. For i = i∗ to m:

(a) If i = i∗ then S sends x to the trusted party computing f and receives z = f(x, y).

(b) S sets a
(2)
i = a

(1)
i ⊕ z and gives a

(2)
i to A.

(c) If A aborts, then S then outputs whatever A outputs, and halts. If A does not abort,
then S proceeds.

10. If S has not yet halted, and has not yet sent anything to the trusted party computing f (this
can only happen if i∗ > m and A has never aborted), then it sends x̂ to the trusted party.
Then S outputs whatever A outputs and halts.

We will show that the distribution generated by S in an ideal-world execution with a trusted
party computing f is identical to the distribution in a hybrid execution betweenA and an honest P2.
(As always, we are ignoring here the possibility that A can forge a valid MAC-tag; once again, this
introduces only a negligible statistical difference.) We first observe that the case of x = x3 is
straightforward since in this case S does not need to send anything to the trusted party until after
A aborts. (This is because ai = 1 for all i since f(x3, y) = 1 for all y ∈ Y ; note that this is the first
time in the proof we rely on specific properties of f .) For the remainder of the proof, we therefore
focus our attention on the case when x ∈ {x1, x2}.

Let viewhyb(x, y) be the random variable denoting the view of A in the hybrid world (i.e.,
running Π with a trusted party computing ShareGen′) when P2 holds input y and A uses input x in
the computation of ShareGen′. Let viewideal(x, y) be the random variable denoting the view of A in
the ideal world (i.e., where S runs A as a black-box and interacts with a trusted party computing f)
with x, y similarly defined. Finally, let outhyb(x, y),outideal(x, y) be random variables denoting
the output of the honest player P2 in the hybrid and ideal worlds, respectively, for the given x
and y. We will show that for any x ∈ {x1, x2} and y ∈ Y ,

(
viewhyb(x, y),outhyb(x, y)

) ≡ (
viewideal(x, y),outideal(x, y)

)
. (2)

(We stress that the above assumes A never forges a valid MAC-tag, and therefore the security
parameter n can be ignored and perfect equivalence obtained. Taking into account this possibility,
the above distributions would then have statistical difference negligible in the security parameter n.)
It is immediate from the description of S that viewhyb(x, y) ≡ viewideal(x, y) for any x, y; the
difficulty lies in arguing about the joint distribution of A’s view and P2’s output, as above.

We prove Eq. (2) by showing that for any x, y as above and any view v and bit b, it holds that:

Pr
[(

viewhyb(x, y),outhyb(x, y)
)

= (v, b)
]

= Pr
[(

viewideal(x, y),outideal(x, y)
)

= (v, b)
]
. (3)

22

Clearly, if v represents a view that does not correspond to the actions of A (e.g., v contains ai, but
given view v the adversary would have aborted prior to iteration i; or v does not contain ai, but
given view v the adversary would not have aborted prior to iteration i), then both probabilities
in Eq. (3) are identically 0 (regardless of b). From now on, therefore, we only consider views that
correspond to actions of A.

A’s view consists of its initial inputs, the values a
(1)
1 , b

(1)
1 , . . . , a

(1)
m , b

(1)
m that A receives from

computation of ShareGen′, and — if A does not abort before the first iteration — a sequence
of values a1, . . . , ai where i is the iteration in which A aborts (if any). (Technically A receives
a

(2)
1 , . . . , a

(2)
i but we equivalently consider the reconstructed values a1, . . . , ai instead.) Looking at

the description of S, it is easy to see that if v represents a view in which A aborts before the first
iteration, or in which A never aborts (i.e., A runs the protocol to completion), then Eq. (3) holds
for either choice of b. Thus, the “difficult” cases to analyze are exactly those in which A aborts in
some iteration i.

Let v be a view in which A aborts in iteration i (i.e., after receiving its iteration-i message).
We will let A’s initial inputs and its outputs from ShareGen′ be implicit, and focus on the vector
of values ~ai = (a1, . . . , ai) that A sees before it aborts in iteration i, We will show that for any x, y
as above, any ~ai, and any bit b it holds that

Pr
[(

viewhyb(x, y),outhyb(x, y)
)

= (~ai, b)
]

= Pr
[(

viewideal(x, y),outideal(x, y)
)

= (~ai, b)
]
. (4)

We stress that we are considering exactly those views ~ai = (a1, . . . , ai) in which A aborts after
receiving its iteration-i message; there is thus no possibility that A might abort given the sequence
of values a1, . . . , aj (with j < i).

Toward proving Eq. (4), we first prove:

Claim 6 For any x ∈ {x1, x2} and y ∈ Y ,

Pr
[(

viewhyb(x, y),outhyb(x, y)
)

= (~ai, b)
∧

i∗ < i
]

= Pr
[(

viewideal(x, y),outideal(x, y)
)

= (~ai, b)
∧

i∗ < i
]
. (5)

Proof: Fix some x, y and let these be implicit in what follows. To prove the claim, note that

Pr
[(

viewhyb,outhyb

)
= (~ai, b)

∧
i∗ < i

]

= Pr
[
outhyb = b | viewhyb = ~ai

∧
i∗ < i

]
· Pr

[
viewhyb = ~ai

∧
i∗ < i

]

and

Pr
[(

viewideal,outideal

)
= (~ai, b)

∧
i∗ < i

]

= Pr
[
outideal = b | viewideal = ~ai

∧
i∗ < i

]
· Pr

[
viewideal = ~ai

∧
i∗ < i

]
.

It follows from the description of S that Pr [viewhyb = ~ai
∧

i∗ < i] = Pr [viewideal = ~ai
∧

i∗ < i].
Furthermore, conditioned on i∗ < i the output of P2 is the correct output f(x, y) in both the hybrid
and ideal worlds. We conclude that Eq. (5) holds.

To complete the proof of Eq. (4), we prove that for any x ∈ {x1, x2} and y ∈ Y , any ~ai ∈ {0, 1}i,
and all b ∈ {0, 1} it holds that

Pr
[(

viewhyb(x, y),outhyb(x, y)
)

= (~ai, b)
∧

i∗ ≥ i
]

= Pr
[(

viewideal(x, y),outideal(x, y)
)

= (~ai, b)
∧

i∗ ≥ i
]
. (6)

23

This is the crux of the proof. Write ~ai = (~ai−1, a), viewhyb = (viewi−1
hyb ,viewi

hyb), and viewideal =
(viewi−1

ideal,viewi
ideal). (In what follows, we also often leave x and y implicit in the interests of

readability.) Then

Pr
[(

viewhyb,outhyb

)
= (~ai, b)

∧
i∗ ≥ i

]

= Pr
[(

viewi
hyb,outhyb

)
= (a, b) | viewi−1

hyb = ~ai−1

∧
i∗ ≥ i

]
· Pr

[
viewi−1

hyb = ~ai−1

∧
i∗ ≥ i

]

and

Pr
[(

viewideal,outideal

)
= (~ai, b)

∧
i∗ ≥ i

]

= Pr
[(

viewi
ideal,outideal

)
= (a, b) | viewi−1

ideal = ~ai−1

∧
i∗ ≥ i

]
· Pr

[
viewi−1

ideal = ~ai−1

∧
i∗ ≥ i

]
.

Once again, it follows readily from the description of S that

Pr
[
viewi−1

hyb = ~ai−1

∧
i∗ ≥ i

]
= Pr

[
viewi−1

ideal = ~ai−1

∧
i∗ ≥ i

]
.

Moreover, conditioned on the event that i∗ ≥ i, the random variables of viewi
hyb and outhyb (resp.,

viewi
ideal and outideal) are independent of viewi−1

hyb (resp., viewi−1
ideal) for fixed x and y. Thus,

Eq. (6) is proved once we show that

Pr
[(

viewi
hyb,outhyb

)
= (a, b) | i∗ ≥ i

]
= Pr

[(
viewi

ideal,outideal

)
= (a, b) | i∗ ≥ i

]
(7)

for all x, y, a, b as above. We prove this via case-by-case analysis. For convenience, we recall the
table for f :

y1 y2

x1 0 1
x2 1 0
x3 1 1

Case 1: x = x1 and y = y1. We analyze the hybrid world first, followed by the ideal world.

Hybrid world. We first consider the hybrid world where the parties are running protocol Π. If A
aborts after receiving its iteration-i message, P2 will output outhyb = bi−1. Since i∗ ≥ i, we have
bi−1 = f(x̂, y1) where x̂ is chosen uniformly from X. So Pr[outhyb = 0] = Prx̂←X [f(x̂, y1) = 0] =
1/3 and Pr[outhyb = 1] = 2/3.

Since i∗ ≥ i, the value of viewi
hyb = ai is independent of the value of bi−1. Conditioned on

the event that i∗ ≥ i, we have Pr[i∗ = i] = α = 1/5 and Pr[i∗ > i] = 4/5. If i∗ = i, then
ai = f(x, y) = f(x1, y1) = 0. If i∗ > i, then ai = f(x1, ŷ) where ŷ is chosen uniformly from Y . So
Pr[ai = 1] = Prŷ←Y [f(x1, ŷ) = 1] = 1/2 and Pr[ai = 0] = 1/2. Overall, then, we have

Pr[viewi
hyb(x1, y1) = 0 | i∗ ≥ i] = α + (1− α) · 1

2
=

3
5

Pr[viewi
hyb(x1, y1) = 1 | i∗ ≥ i] = (1− α) · 1

2
=

2
5

.

Putting everything together gives

Pr
[(

viewi
hyb(x1, y1),outhyb(x1, y1)

)
= (a, b) | i∗ ≥ i

]
=





3
5 · 1

3 = 1
5 (a, b) = (0, 0)

3
5 · 2

3 = 2
5 (a, b) = (0, 1)

2
5 · 1

3 = 2
15 (a, b) = (1, 0)

2
5 · 2

3 = 4
15 (a, b) = (1, 1)

(8)

24

Ideal world. We now turn our attention to the ideal world. Since we are conditioning on i∗ ≥ i,
here it is also the case that Pr[i∗ = i] = α = 1/5 and Pr[i∗ > i] = 4/5. Furthermore, if i∗ = i then
viewi

ideal = ai = f(x1, y1) = 0. Now, however, if i∗ = i then S has already sent x1 to the trusted
party computing f (in order to learn the value f(x1, y1)) and so P2 will also output f(x1, y1) = 0,
rather than some independent value bi−1.

When i∗ > i, then (by construction of S) we have Pr[ai = 0] = Prŷ←Y [f(x1, ŷ) = 0] = 1/2 and
Pr[ai = 1] = 1/2. Now, however, the output of P2 depends on the value sent to the trusted party
following an abort by A, which in turn depends on ai (cf. step 8(b) of S). In particular, we have:

Pr[outideal(x1, y1) = 0 | ai = 0
∧

i∗ > i]

= Pr[S sends x1 to the trusted party | ai = 0
∧

i∗ > i] = 0,

and

Pr[outideal(x1, y1) = 0 | ai = 1
∧

i∗ > i]

= Pr[S sends x1 to the trusted party | ai = 1
∧

i∗ > i] = 1/3

(in calculating the above, recall that x = x1). Putting everything together, we obtain

Pr
[(

viewi
ideal(x1, y1),outideal(x1, y1)

)
= (0, 0) | i∗ ≥ i

]

= α · Pr
[(

viewi
ideal(x1, y1),outideal(x1, y1)

)
= (0, 0) | i∗ = i

]

+ (1− α) · Pr
[(

viewi
ideal(x1, y1),outideal(x1, y1)

)
= (0, 0) | i∗ > i

]

= α + (1− α) · 0 =
1
5

. (9)

Similarly,

Pr
[(

viewi
ideal(x1, y1),outideal(x1, y1)

)
= (0, 1) | i∗ ≥ i

]
= (1− α) · 1

2
· 1 =

2
5

(10)

Pr
[(

viewi
ideal(x1, y1),outideal(x1, y1)

)
= (1, 0) | i∗ ≥ i

]
= (1− α) · 1

2
· 1
3

=
2
15

(11)

Pr
[(

viewi
ideal(x1, y1),outideal(x1, y1)

)
= (1, 1) | i∗ ≥ i

]
= (1− α) · 1

2
· 2
3

=
4
15

, (12)

in exact agreement with Eq. (8).

Case 2: x = x2 and y = y1. In all the remaining cases, the arguments are the same as before;
just the numbers differ. Therefore, we will allow ourselves to be more laconic.

In the hybrid world, conditioned on i∗ ≥ i, the values of outhyb = bi−1 and viewi
hyb = ai are

again independent. The distribution of bi−1 is given by: Pr[bi−1 = 0] = Prx̂←X [f(x̂, y1) = 0] = 1/3
and Pr[bi−1 = 1] = 2/3. As for the distribution of ai, we have

Pr[ai = 1 | i∗ ≥ i] = α · Pr[ai = 1 | i∗ = i] + (1− α) · Pr[ai = 1 | i∗ > i]
= α · 1 + (1− α) · Prŷ←Y [f(x1, ŷ) = 1]

=
1
5

+
4
5
· 1
2

=
3
5
,

25

and so Pr[ai = 0 | i∗ ≥ i] = 2/5. Putting everything together gives

Pr
[(

viewi
hyb(x2, y1),outhyb(x2, y1)

)
= (a, b) | i∗ ≥ i

]
=





2
5 · 1

3 = 2
15 (a, b) = (0, 0)

2
5 · 2

3 = 4
15 (a, b) = (0, 1)

3
5 · 1

3 = 1
5 (a, b) = (1, 0)

3
5 · 2

3 = 2
5 (a, b) = (1, 1)

(13)

In the ideal world, if i∗ = i then outideal = viewi
ideal = f(x2, y1) = 1. If i∗ > i, then the

distribution of viewi
ideal = ai is given by Pr[ai = 1] = Prŷ←Y [f(x1, ŷ) = 1] = 1/2 and Pr[ai = 0] =

1/2. The value of outideal is now dependent on the value of ai (cf. step 8(b) of S); specifically:

Pr[outideal(x2, y1) = 0 | ai = 0
∧

i∗ > i]

= Pr[S sends x1 to the trusted party | ai = 0
∧

i∗ > i] = 1/3,

and

Pr[outideal(x2, y1) = 0 | ai = 1
∧

i∗ > i]

= Pr[S sends x1 to the trusted party | ai = 1
∧

i∗ > i] = 1/2

(using the fact that x = x2). Putting everything together, we obtain

Pr
[(

viewi
ideal(x2, y1),outideal(x2, y1)

)
= (0, 0) | i∗ ≥ i

]
= (1− α) · 1

2
· 1
3

=
2
15

(14)

Pr
[(

viewi
ideal(x2, y1),outideal(x2, y1)

)
= (0, 1) | i∗ ≥ i

]
= (1− α) · 1

2
· 2
3

=
4
15

(15)

Pr
[(

viewi
ideal(x2, y1),outideal(x2, y1)

)
= (1, 0) | i∗ ≥ i

]
= (1− α) · 1

2
· 1
2

=
1
5

(16)

Pr
[(

viewi
ideal(x2, y1),outideal(x2, y1)

)
= (1, 1) | i∗ ≥ i

]
= α + (1− α) · 1

2
· 1
2

=
2
5

, (17)

in exact agreement with Eq. (13).

Case 3: x = x1 and y = y2. In the hybrid world, this case is exactly symmetric to the case
when x = x2 and y = y1. Thus we obtain the same distribution as in Eq. (13).

In the ideal world, if i∗ = i then outideal = viewi
ideal = f(x1, y2) = 1. If i∗ > i, then the

distribution of viewi
ideal = ai is given by Pr[ai = 1] = Prŷ←Y [f(x2, ŷ) = 1] = 1/2 and Pr[ai = 0] =

1/2. The value of outideal is dependent on the value of ai (cf. step 8(b) of S); specifically:

Pr[outideal(x1, y2) = 0 | ai = 0
∧

i∗ > i]

= Pr[S sends x2 to the trusted party | ai = 0
∧

i∗ > i] = 1/3,

and

Pr[outideal(x1, y2) = 0 | ai = 1
∧

i∗ > i]

= Pr[S sends x2 to the trusted party | ai = 1
∧

i∗ > i] = 1/2

(using the fact that x = x1). Putting everything together, we obtain the same distribution as in
Eqs. (14)–(17). The distributions in the hybrid and ideal worlds are, once again, in exact agreement.

26

Case 4: x = x2 and y = y2. In the hybrid world, this case is exactly symmetric to the case
when x = x1 and y = y1. Thus we obtain the same distribution as in Eq. (8).

In the ideal world, if i∗ = i then outideal = viewi
ideal = f(x2, y2) = 0. If i∗ > i, then the

distribution of viewi
ideal = ai is given by Pr[ai = 1] = Prŷ←Y [f(x2, ŷ) = 1] = 1/2 and Pr[ai = 0] =

1/2. The value of outideal is dependent on the value of ai (cf. step 8(b) of S); specifically:

Pr[outideal(x2, y2) = 0 | ai = 0
∧

i∗ > i]

= Pr[S sends x2 to the trusted party | ai = 0
∧

i∗ > i] = 0,

and

Pr[outideal(x2, y2) = 0 | ai = 1
∧

i∗ > i]

= Pr[S sends x2 to the trusted party | ai = 1
∧

i∗ > i] = 1/3

(using the fact that x = x2). Putting everything together, we obtain the same distribution as in
Eqs. (9)–(12). The distributions in the hybrid and ideal worlds are, once again, in exact agreement.
This completes the proof of Claim 5.

The preceding claims along with Proposition 1 conclude the proof of Theorem 4.1.

5 A Lower Bound for Functions with an Embedded XOR

In the previous section we have shown a protocol that enables completely-fair computation of
certain functions that contain an embedded XOR. That protocol, however, has round complexity
ω(log n). (The round complexity may be worse, depending on α, but if α is constant them the
round complexity is m = ω(log n).) In this section we prove that this is inherent for any function
that has an embedded XOR.

5.1 Preliminaries

Let f be a single-output, boolean function with an embedded XOR, that is, for which there exist
inputs x0, x1, y0, y1 such that f(xi, yj) = i ⊕ j. Let Π be an r(n)-round protocol that securely
computes f with complete fairness. Here we denote the two parties executing the protocol by A
and B. We present some basic conventions below, as well as the specification of a series of fail-stop
adversaries that we will use in our proof.

Notation and conventions: We assume that A sends the first message in protocol Π, and B
sends the last message. A round of Π consists of a message from A followed by a message from B.
If A aborts before sending its ith-round message (but after sending the first i− 1 messages), then
we denote by bi−1 the value output by B (so B outputs b0 if A sends nothing). If B aborts before
sending its ith-round message (but after sending the first i− 1 messages), then we denote by ai the
value output by A (so A outputs a1 if B sends nothing). If neither party aborts, then B outputs
br and A outputs ar+1.

Proof overview. We consider executions of Π in which each party begins with input distributed
uniformly in {x0, x1} or {y0, y1}, respectively. We describe a series of 4r fail-stop adversaries
{Ai1, Ai0, Bi1, Bi0}r

i=1 where, intuitively, the aim of adversary Aib is to guess B’s input while si-
multaneously biasing B’s output toward the bit b. (The aim of adversary Bib is exactly analogous.)

27

We show that if r = O(log n), then one of these adversaries succeeds with “high” probability even
though, as explained next, this is not possible in the ideal world.

In the ideal world evaluation of f (when B chooses its input at random in {y0, y1}), it is certainly
possible for an adversary corrupting A to learn B’s input with certainty (this follows from the fact
that f contains an embedded XOR), and it may be possible, depending on f , to bias B’s output
with certainty. It is not possible, however, to do both simultaneously with high probability. (We
formally state and prove this below.) This gives us our desired contradiction whenever r = O(log n),
and shows that no protocol with this many rounds can be completely fair.

Descriptions of the adversaries. Before giving the formal specification of the adversaries,
we provide an intuitive description of adversary Ai1. (The other adversaries rely on the same
intuition.) Ai1 chooses a random input x ∈ {x0, x1} and runs the protocol honestly for i − 1
rounds. It then computes the value it would output if B aborted the protocol at the current point,
i.e., it computes ai. If ai = 1, then Ai1 continues the protocol for one more round (hoping that this
will cause B to output 1 also) and halts. If ai = 0, then Ai1 halts immediately (hoping that B’s
output does not yet “match” Ai1’s, and that B will still output 1). In addition to this behavior
during the protocol, Ai1 also guesses B’s input, in the natural way, based on its own input value x
and the value of ai it computed. In particular, if x = xσ then Ai1 guesses that B’s input is yai⊕σ

(since f(xσ, yai⊕σ) = ai).
Say B’s input is y. Intuitively, because the protocol is completely fair, if the output that Ai1

computes in round i is biased toward the correct value of f(x, y), it must be that the last message
sent by Ai1 has relatively limited relevance (i.e., that B would output the same bit whether Ai1

sends its ith round message or not). In particular, in the case of Ar1, the computed output must
be equal to f(x, y) (with all but negligible probability), and therefore the last message of the
protocol is, in some sense, unnecessary. Using induction (for a logarithmic number of steps) we
will demonstrate that the same holds for each of the prior rounds, and conclude that a protocol
running in O(log n) rounds can be transformed into an empty protocol in which neither party sends
anything. This is, of course, impossible; therefore, no such protocol exists.

We now formally describe the adversaries.

Adversary Ai1:

1. Choose x ∈R {x0, x1}.
2. Run the honest A for the first i− 1 rounds (using input x) and compute ai:

(a) If ai = 1 and x = x0, then output guess(y = y1), send the ith round message, and halt.

(b) If ai = 1 and x = x1, then output guess(y = y0), send the ith round message, and halt.

(c) If ai = 0 and x = x0, then output guess(y = y0) and halt immediately.

(d) If ai = 0 and x = x1, then output guess(y = y1) and halt immediately.

Adversary Ai0:

1. Choose x ∈R {x0, x1}.
2. Run the honest A for the first i− 1 rounds (using input x) and compute ai:

(a) If ai = 0 and x = x0, then output guess(y = y0), send the ith round message and halt.

(b) If ai = 0 and x = x1, then output guess(y = y1), send the ith round message and halt.

(c) If ai = 1 and x = x0, then output guess(y = y1) and halt immediately.

(d) If ai = 1 and x = x1, then output guess(y = y0) and halt immediately.

28

Adversary Bi1:
1. Choose y ∈R {y0, y1}.
2. Run the honest B for the first i − 1 rounds (using input y), receive A’s ith round message,

and compute bi:

(a) If bi = 1 and y = y0, then output guess(x = x1), send the ith round message, and halt.
(b) If bi = 1 and y = y1, then output guess(x = x0), send the ith round message, and halt.
(c) If bi = 0 and y = y0, then output guess(x = x0) and halt immediately.
(d) If bi = 0 and y = y1, then output guess(x = x1) and halt immediately.

Adversary Bi0:
1. Choose y ∈R {y0, y1}.
2. Run the honest B for the first i − 1 rounds (using input y), receive A’s ith round message,

and compute bi:

(a) If bi = 0 and y = y0, then output guess(x = x0), send the ith round message, and halt.
(b) If bi = 0 and y = y1, then output guess(x = x1), send the ith round message, and halt.
(c) If bi = 1 and y = y0, then output guess(x = x1) and halt immediately.
(d) If bi = 1 and y = y1, then output guess(X = x0) and halt immediately.

Success probability for Ai1: As preparation for the proof that follows, we calculate the proba-
bility that Ai1 succeeds in simultaneously guessing B’s input y correctly, and having B output 1.
By construction, if (say) Ai1 uses x = x0 as input and obtains ai = 0, then it guesses correctly iff
y = y0. Furthermore, since it received ai = 0 it does not send its ith round message; thus, by our
notation, B outputs 1 if bi−1 = 1. There are three other possible ways for this to occur as well:

Pr[Ai1 guesses y ∧B outputs 1]
= Pr[x = x0 ∧ y = y0 ∧ ai = 0 ∧ bi−1 = 1] + Pr[x = x0 ∧ y = y1 ∧ ai = 1 ∧ bi = 1]

+ Pr[x = x1 ∧ y = y1 ∧ ai = 0 ∧ bi−1 = 1] + Pr[x = x1 ∧ y = y0 ∧ ai = 1 ∧ bi = 1].

The calculations are similar for Ai0, Bi1, and Bi0 so we present them with no further explanation.

Success probability for Ai0:

Pr[Ai0 guesses y ∧B outputs 0]
= Pr[x = x0 ∧ y = y0 ∧ ai = 0 ∧ bi = 0] + Pr[x = x0 ∧ y = y1 ∧ ai = 1 ∧ bi−1 = 0]

+ Pr[x = x1 ∧ y = y1 ∧ ai = 0 ∧ bi = 0] + Pr[x = x1 ∧ y = y0 ∧ ai = 1 ∧ bi−1 = 0].

Success probability for Bi1:

Pr[Bi1 guesses x ∧A outputs 1]
= Pr[y = y0 ∧ x = x0 ∧ bi = 0 ∧ ai = 1] + Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai+1 = 1]

+ Pr[y = y1 ∧ x = x1 ∧ bi = 0 ∧ ai = 1] + Pr[y = y1 ∧ x = x0 ∧ bi = 1 ∧ ai+1 = 1].

Success probability for Bi0:

Pr[Bi0 guesses x ∧A outputs 0]
= Pr[y = y0 ∧ x = x0 ∧ bi = 0 ∧ ai+1 = 0] + Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 0]

+ Pr[y = y1 ∧ x = x1 ∧ bi = 0 ∧ ai+1 = 0] + Pr[y = y1 ∧ x = x0 ∧ bi = 1 ∧ ai = 0].

29

5.2 The Proof

We begin by showing that, in the ideal model, it is impossible for an adversary to bias the output of
the honest party while simultaneously guessing the honest party’s input, with probability greater
than 1/2. Note that an adversary can certainly do one or the other. For example, if the honest
B uses input y ∈R {y0, y1} and an adversarial A uses input x0, then A learns the input of B (by
observing if the output is 0 or 1). Furthermore, if there exists a value x′ for which f(x′, y0) =
f(x′, y1) = 1 then A can completely bias the output of B to be 1.5 In the first case, however, B’s
output is a random bit; in the second case, A learns no information about B’s input. The following
claim proves that these two extremes represent, in some sense, the best possible strategies:

Claim 7 Consider an ideal-world evaluation of f (with complete fairness), where the honest party
B chooses its input y uniformly from {y0, y1} and the corrupted A∗ outputs a guess for y following
its interaction with the trusted party. For any A∗ and any σ ∈ {0, 1}, it holds that

Pr[A∗ guesses y ∧B outputs σ] ≤ 1
2

.

An analogous claim holds for the case when A is honest.

Proof: We consider the case of an honest B. Let X0
def= {x | f(x, y0) = f(x, y1) = 0}, and

likewise X1
def= {x | f(x, y0) = f(x, y1) = 1}. Let X⊕ = {x | f(x, y0) 6= f(x, y1)}. Note that X0, X1,

and X⊕ partition the set of all inputs for A∗. In the following, when we say “A∗ sends x” we mean
that it sends x to the trusted party in the ideal model. For any σ ∈ {0, 1} we have:

Pr[A∗ guesses y ∧B outputs σ]
= Pr[A∗ guesses y ∧B outputs σ ∧A∗ sends x ∈ Xσ̄]

+ Pr[A∗ guesses y ∧B outputs σ ∧A∗ sends x ∈ Xσ]
+ Pr[A∗ guesses y ∧B outputs σ ∧A∗ sends x ∈ X⊕]

= Pr[A∗ guesses y ∧B outputs σ | A∗ sends x ∈ Xσ̄] · Pr[A∗ sends x ∈ Xσ̄]
+ Pr[A∗ guesses y ∧B outputs σ | A∗ sends x ∈ Xσ] · Pr[A∗ sends x ∈ Xσ]
+ Pr[A∗ guesses y ∧B outputs σ | A∗ sends x ∈ X⊕] · Pr[A∗ sends x ∈ X⊕].

Clearly Pr[A∗ guesses y ∧ B outputs σ | A∗ sends x ∈ Xσ̄] = 0 since B always outputs σ̄ when A∗

sends x ∈ Xσ̄. Also,

Pr[A∗ guesses y ∧B outputs σ | A∗ sends x ∈ Xσ] = Pr[A∗ guesses y | A∗ sends x ∈ Xσ] =
1
2
,

where the first equality is because party B always outputs σ when A∗ sends x ∈ Xσ, and the
second equality is because A learns no information about B’s input (which was chosen uniformly
from {y0, y1}). Finally,

Pr[A∗ guesses y ∧B outputs 1 | A∗ sends x ∈ X⊕] ≤ Pr[B outputs 1 | A∗ sends x ∈ X⊕] =
1
2
,

because B’s input is chosen uniformly from {y0, y1}. Combining the above proves the claim.

5We stress that this is different from the case of boolean XOR, where it is impossible to bias the honest party’s
output at all in the ideal model (when the honest party uses a random input).

30

The above claim, along with the assumed security of Π (with complete fairness), implies that
for every inverse polynomial µ = 1/poly we have

Pr[Bi0 guesses x ∧A outputs 0] ≤ 1
2

+ µ(n) (18)

Pr[Bi1 guesses x ∧A outputs 1] ≤ 1
2

+ µ(n) (19)

Pr[Ai0 guesses y ∧B outputs 0] ≤ 1
2

+ µ(n) (20)

Pr[Ai1 guesses y ∧B outputs 1] ≤ 1
2

+ µ(n) (21)

for sufficiently-large n and all 1 ≤ i ≤ r(n).
We now prove a claim that states, informally, that if both parties can compute the correct

output with high probability after running i rounds of Π, then they can also compute the correct
output with high probability even when B does not send its ith-round message.

Claim 8 Fix a function µ and a value of n for which Equations (18)–(21) hold for 1 ≤ i ≤ r(n),
and let µ = µ(n). For any 1 ≤ i ≤ r(n), if the following inequalities hold:

∣∣∣∣Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai+1 = 1]− 1
4

∣∣∣∣ ≤ µ (22)
∣∣∣∣Pr[y = y1 ∧ x = x0 ∧ bi = 1 ∧ ai+1 = 1]− 1

4

∣∣∣∣ ≤ µ (23)
∣∣∣∣Pr[y = y0 ∧ x = x0 ∧ bi = 0 ∧ ai+1 = 0]− 1

4

∣∣∣∣ ≤ µ (24)
∣∣∣∣Pr[y = y1 ∧ x = x1 ∧ bi = 0 ∧ ai+1 = 0]− 1

4

∣∣∣∣ ≤ µ (25)

when x is chosen uniformly from {x0, x1} and y is chosen uniformly from {y0, y1}, then:
∣∣∣∣Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 1]− 1

4

∣∣∣∣ ≤ 4µ (26)
∣∣∣∣Pr[y = y1 ∧ x = x0 ∧ bi = 1 ∧ ai = 1]− 1

4

∣∣∣∣ ≤ 4µ (27)
∣∣∣∣Pr[y = y0 ∧ x = x0 ∧ bi = 0 ∧ ai = 0]− 1

4

∣∣∣∣ ≤ 4µ (28)
∣∣∣∣Pr[y = y1 ∧ x = x1 ∧ bi = 0 ∧ ai = 0]− 1

4

∣∣∣∣ ≤ 4µ (29)

when x and y are chosen in the same way.

The first four equations represent the probability with which both parties receive correct output
after executing the first i rounds of Π (i.e., after B sends its message in round i), for all possible
choices of their inputs. The last four equations consider the same event, but when B does not send
its message in round i. The claim asserts that the fact that B does not send its message in round i
has a limited effect on the probability with which the parties obtain correct outputs.

Proof: We first prove Equation (26). That Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 1] ≤ 1
4 + 4µ

is immediate, since Pr[y = y0 ∧ x = x1] = 1
4 . We must therefore prove the corresponding lower

31

bound. Combining Equations (18), (24), and (25), and using our earlier calculation for the success
probability for Bi0, we obtain

1
2

+ µ ≥ Pr[Bi0 guesses x ∧A outputs 0]

= Pr[y = y0 ∧ x = x0 ∧ bi = 0 ∧ ai+1 = 0] + Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 0]
+ Pr[y = y1 ∧ x = x1 ∧ bi = 0 ∧ ai+1 = 0] + Pr[y = y1 ∧ x = x0 ∧ bi = 1 ∧ ai = 0]

≥ 1
4
− µ + Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 0]

+
1
4
− µ + Pr[y = y1 ∧ x = x0 ∧ bi = 1 ∧ ai = 0]

= Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 0] + Pr[y = y1 ∧ x = x0 ∧ bi = 1 ∧ ai = 0]

+
1
2
− 2µ ,

implying
Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 0] ≤ 3µ . (30)

We also have

Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 0] + Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 1]
= Pr[y = y0 ∧ x = x1 ∧ bi = 1]

≥ Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai+1 = 1] ≥ 1
4
− µ ,

using Equation (22) for the final inequality. Combined with Eq. (30), we conclude that

Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 1] ≥ 1
4
− 4µ,

proving Equation (26).
Using a symmetric argument, we can similarly prove Equation (27). Using an exactly analogous

argument, but with adversary Bi1 in place of Bi0, we can prove Equations (28) and (29).

The proof of the following claim exactly parallels the proof of the preceding claim, but using
adversaries Ai0 and Ai1 instead of adversaries Bi0 and Bi1.

Claim 9 Fix a function µ and a value of n for which Equations (18)–(21) hold for 1 ≤ i ≤ r(n),
and let µ = µ(n). For any 1 ≤ i ≤ r(n), if the following inequalities hold:

∣∣∣∣Pr[y = y0 ∧ x = x1 ∧ bi = 1 ∧ ai = 1]− 1
4

∣∣∣∣ ≤ µ

∣∣∣∣Pr[y = y1 ∧ x = x0 ∧ bi = 1 ∧ ai = 1]− 1
4

∣∣∣∣ ≤ µ

∣∣∣∣Pr[y = y0 ∧ x = x0 ∧ bi = 0 ∧ ai = 0]− 1
4

∣∣∣∣ ≤ µ

∣∣∣∣Pr[y = y1 ∧ x = x1 ∧ bi = 0 ∧ ai = 0]− 1
4

∣∣∣∣ ≤ µ

32

when x is chosen uniformly from {x0, x1} and y is chosen uniformly from {y0, y1}, then:
∣∣∣∣Pr[y = y0 ∧ x = x1 ∧ bi−1 = 1 ∧ ai = 1]− 1

4

∣∣∣∣ ≤ 4µ

∣∣∣∣Pr[y = y1 ∧ x = x0 ∧ bi−1 = 1 ∧ ai = 1]− 1
4

∣∣∣∣ ≤ 4µ

∣∣∣∣Pr[y = y0 ∧ x = x0 ∧ bi−1 = 0 ∧ ai = 0]− 1
4

∣∣∣∣ ≤ 4µ

∣∣∣∣Pr[y = y1 ∧ x = x1 ∧ bi−1 = 0 ∧ ai = 0]− 1
4

∣∣∣∣ ≤ 4µ

when x and y are chosen in the same way.

We now prove the following theorem.

Theorem 5.1 Let f be a two-party function containing an embedded XOR. Then any protocol
securely computing f with complete fairness (assuming one exists) requires ω(log n) rounds.

Proof: Let Π be a protocol computing f with complete fairness using r = r(n) rounds. Set
µ = 1/poly(n) for some polynomial to be fixed later. By correctness of Π, we have that for n
sufficiently large

∣∣∣∣Pr[y = y0 ∧ x = x1 ∧ br = 1 ∧ ar+1 = 1]− 1
4

∣∣∣∣ ≤ µ(n)
∣∣∣∣Pr[y = y1 ∧ x = x0 ∧ br = 1 ∧ ar+1 = 1]− 1

4

∣∣∣∣ ≤ µ(n)
∣∣∣∣Pr[y = y0 ∧ x = x0 ∧ br = 0 ∧ ar+1 = 0]− 1

4

∣∣∣∣ ≤ µ(n)
∣∣∣∣Pr[y = y1 ∧ x = x1 ∧ br = 0 ∧ ar+1 = 0]− 1

4

∣∣∣∣ ≤ µ(n)

when x and y are chosen uniformly from {x0, x1} and {y0, y1}, respectively. Taking n large enough
so that Equations (18)–(21) also hold for 1 ≤ i ≤ r(n), we see that Claim 8 may be applied
with i = r. Since the conclusion of Claim 8 is the assumption of Claim 9 and vice versa, the claims
can be repeatedly applied r times, yielding:

∣∣∣∣Pr[y = y0 ∧ x = x1 ∧ b0 = 1 ∧ a1 = 1]− 1
4

∣∣∣∣ ≤ 42r(n) · µ(n)
∣∣∣∣Pr[y = y1 ∧ x = x0 ∧ b0 = 1 ∧ a1 = 1]− 1

4

∣∣∣∣ ≤ 42r(n) · µ(n)
∣∣∣∣Pr[y = y0 ∧ x = x0 ∧ b0 = 0 ∧ a1 = 0]− 1

4

∣∣∣∣ ≤ 42r(n) · µ(n)
∣∣∣∣Pr[y = y1 ∧ x = x1 ∧ b0 = 0 ∧ a1 = 0]− 1

4

∣∣∣∣ ≤ 42r(n) · µ(n) .

If r = O(log n), then p(n) def= 42r(n) is polynomial. Taking µ(n) = 1/16p(n) implies that, for n
sufficiently large, A and B can both correctly compute (with probability at least 3/4) the value
f(x, y), for all x ∈ {x0, x1} and y ∈ {y0, y1}, without any interaction at all. This is impossible, and
so we conclude that r = ω(log n).

33

References

[1] Advances in Cryptology — Crypto ’91, volume 576 of Lecture Notes in Computer Science.
Springer, 1992.

[2] D. Beaver. Secure multi-party protocols and zero-knowledge proof systems tolerating a faulty
minority. Journal of Cryptology, 4(2):75–122, 1991.

[3] D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology — Crypto
’91 [1], pages 377–391.

[4] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority. In Proc. 30th
Annual Symposium on Foundations of Computer Science (FOCS), pages 468–473, 1989.

[5] M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A fair protocol for signing contracts. IEEE
Trans. Information Theory, 36(1):40–46, 1990.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. 20th Annual ACM Symposium on Theory of
Computing (STOC), pages 1–10, 1988.

[7] M. Blum. How to exchange (secret) keys. ACM Trans. Computer Systems, 1(2):175–193, 1983.

[8] D. Boneh and M. Naor. Timed commitments. In Advances in Cryptology — Crypto 2000,
volume 1880 of Lecture Notes in Computer Science, pages 236–254. Springer, 2000.

[9] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143–202, 2000.

[10] D. Chaum, C. Crépeau, and I. D. rd. Multi-party unconditionally secure protocols. In Proc.
20th Annual ACM Symposium on Theory of Computing (STOC), pages 11–19, 1988.

[11] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM Journal of Discrete
Math, 4(1):36–47, 1991.

[12] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proc. 18th
Annual ACM Symposium on Theory of Computing (STOC), pages 364–369, 1986.

[13] R. Cleve. Controlled gradual disclosure schemes for random bits and their applications. In
Advances in Cryptology — Crypto ’89, volume 435 of Lecture Notes in Computer Science,
pages 573–588. Springer, 1990.

[14] I. Damg̊ard. Practical and provably secure release of a secret and exchange of signatures. J.
Cryptology, 8(4):201–222, 1995.

[15] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Comm.
ACM, 28(6):637–647, 1985.

[16] M. Franklin. Complexity and Security of Distributed Protocols. PhD thesis, Columbia Univer-
sity, 1993.

[17] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-tolerant protocols
and the public-key model. In Advances in Cryptology — Crypto ’87, volume 293 of Lecture
Notes in Computer Science, pages 135–155. Springer, 1988.

34

[18] J. Garay, P. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness and composability
of cryptographic protocols. In 3rd Theory of Cryptography Conference, volume 3876 of Lecture
Notes in Computer Science, pages 404–428. Springer-Verlag, 2006.

[19] O. Goldreich. Foundations of Cryptography, Volume 2 – Basic Applications. Cambridge Uni-
versity Press, 2004.

[20] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity, or all
languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[21] S. Goldwasser and L. Levin. Fair computation and general functions in the presence of immoral
majority. In Advances in Cryptology — Crypto ’90, volume 537 of Lecture Notes in Computer
Science. Springer, 1991.

[22] S. Gordon and J. Katz. Complete fairness in multi-party computation without an honest
majority. Manuscript, 2008.

[23] S. Gordon and J. Katz. Partial fairness in secure two-party computation. Available at
http://eprint.iacr.org/2008/206.

[24] J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th Annual ACM Symposium
on Theory of Computing (STOC), pages 20–31, 1988.

[25] J. Kilian. A general completeness theorem for two-party games. In Proc. 23rd Annual ACM
Symposium on Theory of Computing (STOC), pages 553–560, 1991.

[26] Y. Lindell. Parallel coin-tossing and constant-round secure two-party computation. J. Cryp-
tology, 16(3):143–184, 2003.

[27] M. Luby, S. Micali, and C. Rackoff. How to simultaneously exchange a secret bit by flipping
a symmetrically-biased coin. In Proc. 24th Annual Symposium on Foundations of Computer
Science (FOCS), pages 23–30, 1983.

[28] S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology — Crypto ’91 [1],
pages 392–404.

[29] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss: Cleve’s bound is tight.
Manuscript available from the authors.

[30] B. Pinkas. Fair secure two-party computation. In Advances in Cryptology — Eurocrypt 2003,
volume 2656 of Lecture Notes in Computer Science, pages 87–105. Springer, 2003.

[31] T. Rabin and M. Ben-Or. Verifiable secret sharing and multi-party protocols with honest
majority. In Proc. 21st Annual ACM Symposium on Theory of Computing (STOC), pages
73–85, 1989.

[32] A. C.-C. Yao. Protocols for secure computations. In Proc. 23rd Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 160–164, 1982.

[33] A. C.-C. Yao. How to generate and exchange secrets. In Proc. 27th Annual Symposium on
Foundations of Computer Science (FOCS), pages 162–167, 1986.

35

A Complete Fairness for Other Functions using Protocol 2

A.1 Preliminary Discussion

Before specifying the more general functions for which Protocol 2 (cf. Figure 4) can be applied,
we briefly discuss how we chose the value α = 1/5 for the specific f of Section 4.2. This will
provide some intuition that will be helpful in the section that follows. It should be clear that our
entire discussion in this appendix assumes the specific simulation strategy described in the proof of
Theorem 4.1. It may be the case that a different simulation strategy would allow for other values
of α, or there may exist a different protocol altogether for computing f .

Consider the case of a malicious P1 who aborts after receiving its iteration-i message, and let
the parties’ inputs be x = x1, y = y1 (note f(x1, y1) = 0). We use the notation as in the proof of
Claim 5, so that viewi

hyb denotes the value ai that P1 reconstructs in iteration i and outhyb denote
the output of the honest P2. The protocol itself ensures that in the hybrid world we have

Pr[
(
viewi

hyb(x1, y1),outhyb(x1, y1)
)

= (0, 0) | i∗ ≥ i]

= Pr[viewi
hyb(x1, y1) = 0 | i∗ ≥ i] · Pr[outhyb(x1, y1) = 0 | i∗ ≥ i],

since outhyb = bi−1 is independent of viewi
hyb = ai when i∗ ≥ i. We have

Pr[outhyb(x1, y1) = 0 | i∗ ≥ i] = Pr
x̂←X

[f(x̂, y1) = 0] = 1/3

and

Pr[viewi
hyb(x1, y1) = 0 | i∗ ≥ i]

= α · Pr[viewi
hyb(x1, y1) = 0 | i∗ = i] + (1− α) · Pr[viewi

hyb(x1, y1) = 0 | i∗ > i]

= α + (1− α) · Prŷ←Y [f(x1, ŷ) = 0]

= α + (1− α) · 1
2

,

where the first equality holds since Pr[i∗ = i | i∗ ≥ i] = α. Putting everything together we see that

Pr[
(
viewi

hyb(x1, y1),outhyb(x1, y1)
)

= (0, 0) | i∗ ≥ i] =
1
3
·
(

α + (1− α) · 1
2

)
.

In the ideal world, our simulation strategy ensures that, conditioned on i∗ ≥ i, the simulator
S sends x = x1 to the trusted party with probability α; when this occurs, the simulator will then
set viewi

ideal = ai = f(x1, y1) = 0, and the honest party P2 will output f(x1, y1) = 0. Therefore,
regardless of anything else the simulator might do,

Pr[
(
viewi

ideal(x1, y1),outideal(x1, y1)
)

= (0, 0) | i∗ ≥ i] ≥ α.

If we want the ideal-world and hybrid-world distributions to be equal, then this requires

α ≤
(

α + (1− α) · 1
2

)
· 1
3

,

which is equivalent to requiring α ≤ 1/5. A similar argument applied to the other possible values
for x, y shows that α ≤ 1/5 suffices for all of them. Setting α = 1/5 minimizes the number of
rounds of the protocol.

36

Having fixed the value of α, we now explain how we determined the simulator’s actions (for a
malicious P1) in step 8(b). We begin by introducing some notation that we will also use in the
following section.

Define pxi

def= Prŷ←Y [f(xi, ŷ) = 1] and, similarly, define pyi

def= Prx̂←X [f(x̂, yi) = 1]. Let x′ be
as in the description of S in the proof of Claim 5. If A aborts in round i < i∗ after receiving the
bit ai, then we denote the event that S sends xi to the ideal functionality computing f by X

(ai)
x′→xi

.
Using this notation, we have from step 8(b) of S that:

Pr[X(1)
x1→x1

] =
1
3

Pr[X(1)
x1→x2

] =
1
2

Pr[X(1)
x1→x3

] =
1
6

.

Consider once again the case x = x1 and y = y1. In the hybrid world, by construction of Protocol 2,
we have

Pr[
(
viewi

hyb(x1, y1),outhyb(x1, y1)
)

= (1, 1) | i∗ ≥ i]

= Pr[viewi
hyb(x1, y1) = 1 | i∗ ≥ i] · Pr[outhyb(x1, y1) = 1 | i∗ ≥ i]

= (1− α) · px1 · py1 .

(Note that if i∗ = i, which occurs with probability α, then ai = f(x1, y1) = 0.) Because of the way
S is defined, in the ideal world we have

Pr[
(
viewi

ideal(x1, y1),outideal(x1, y1)
)

= (1, 1) | i∗ ≥ i]

= Pr[viewi
ideal(x1, y1) = 1 | i∗ ≥ i] · Pr[outideal(x1, y1) = 1 | viewi

ideal(x1, y1) = 1
∧

i∗ ≥ i]

= (1− α) · px1 ·
(
Pr[X(1)

x1→x2
] + Pr[X(1)

x1→x3
]
)

.

If we want these to be equal, this requires Pr[X(1)
x1→x2] + Pr[X(1)

x1→x3] = py1 = 2
3 .

Proceeding similarly for the case when x = x1 and y = y2 and looking at the probability that
ai = 0 and the output of P2 is 1, we derive

Pr[X(1)
x1→x1

] + Pr[X(1)
x1→x3

] =
α · (py2 − 1)

(1− α)(1− px1)
+ py2 =

1
2
.

Combining the above two with the constraint that Pr[X(1)
x1→x1] + Pr[X(1)

x1→x2] + Pr[X(1)
x1→x3] = 1 we

obtain the unique feasible values used in step 8(b) of S (for the case x = x1). The case of x = x2

follows via a similar analysis.
Looking at the problem more generally, we observe that for certain functions f (e.g., the boolean

XOR function), the problem is over-constrained and no feasible solution exists (regardless of the
choice of α). In the following section we will argue that our protocol can be applied to any function f
for which the above constraints can be satisfied for all possible inputs x, y.

A.2 Characterization of Functions for which Protocol 2 Applies

In this section we characterize a class of functions that can be securely computed with complete
fairness using Protocol 2. The proof is a generalization of the proof from Section 4.2.

Notation. We assume a single-output, boolean function f : X × Y → {0, 1} defined over a finite
domain, where X = {x1, . . . x`} and Y = {y1, . . . , ym}. We let Mf denote the `×m matrix whose

37

entry at position (i, j) is f(xi, yj), and let vy denote the column of Mf corresponding to the input
y of P2. For every input x ∈ X of player P1 we define

px
def= Prŷ←Y [f(x, ŷ) = 1],

where ŷ is chosen uniformly from the domain Y of player P2. Equivalently, px =
P

y∈Y f(x,y)

m . We

define py, for y ∈ Y , symmetrically. In addition, let p̄x
def= 1− px and p̄y

def= 1− py.
We set α as follows:

α
def= min

(i,j)

{ ∣∣1− f(xi, yj)− pxi

∣∣ · ∣∣1− f(xi, yj)− pyj

∣∣
∣∣1− f(xi, yj)− pxi

∣∣ · ∣∣1− f(xi, yj)− pyj

∣∣ +
∣∣f(xi, yj)− pyj

∣∣

}
, (31)

where the minimum is taken over 1 ≤ i ≤ ` and 1 ≤ j ≤ m. By simple calculation, one can show
that 0 < α ≤ 1 and, in fact, α < 1 unless f is a constant function (in which case completely-fair
computation of f is trivial). Using this value of α we define, for x ∈ X, the m-dimensional row
vector ~C

(0)
x , indexed by y ∈ Y , as follows:

~C(0)
x (y) def=





py if f(x, y) = 1
α·py

(1−α)·p̄x
+ py if f(x, y) = 0

.

Similarly, we define ~C
(1)
x via:

~C(1)
x (y) def=





α·(py−1)
(1−α)·px

+ py if f(x, y) = 1

py if f(x, y) = 0

(The denominators, above, are never 0.)
A row vector (p1, . . . , p`) of real numbers is a probability vector if 0 ≤ pi ≤ 1 for all i, and∑

i pi = 1. We are now ready to prove the following:

Theorem A.1 Let f be a single-output, boolean function, and let Mf and ~C
(b)
xi be as defined above.

If for all b ∈ {0, 1} and x ∈ X there exists a probability vector ~X
(b)
x = (p1, . . . , p`) such that

~X(b)
x ·Mf = ~C(b)

x ,

then there exists a protocol that securely computes f with completes fairness.

Proof: We take Protocol 2 with α computed as in Eq. (31). Simulation for a corrupted P2 follows
exactly along the lines of the proof of Claim 4; recall that the simulator in that case did not rely
on any specific properties of the function f or the value of α. We therefore focus our attention on
the case when the adversary A corrupts P1. In this case, our simulator S is almost identical to the
simulator described in the proof of Claim 5 (except, of course, that it uses the appropriate value
of α); the only significant change is how we deal with an abort in iteration i < i∗ (this corresponds
to step 8(b) in the simulator from the proof of Claim 5). For completeness, we describe the modified
simulator in its entirety, although we once again ignore the presence of the MAC-tags and keys for
simplicity.

1. S invokes A on the input x′, the auxiliary input, and the security parameter n. The simulator
also chooses x̂ ∈ X uniformly at random.

38

2. S receives the input x of A to the computation of the functionality ShareGen′.

(a) If x /∈ X, then S hands ⊥ to A as its output from the computation of ShareGen′, sends
x̂ to the trusted party computing f , outputs whatever A outputs, and halts.

(b) Otherwise, if the input is some x ∈ X, then S chooses uniformly-distributed shares
a

(1)
1 , . . . , a

(1)
m and b

(1)
1 , . . . , b

(1)
m . Then, S gives these shares to A as its output from the

computation of ShareGen′.

3. If A sends abort to the trusted party computing ShareGen′, then S sends x̂ to the trusted party
computing f , outputs whatever A outputs, and halts. Otherwise (i.e., if A sends continue),
S proceeds as below.

4. Choose i∗ according to a geometric distribution with parameter α.

5. For i = 1 to i∗ − 1:

(a) S chooses ŷ ∈ Y uniformly at random, computes ai = f(x, ŷ), and sets a
(2)
i = a

(1)
i ⊕ ai.

It gives a
(2)
i to A.

(b) If A aborts, then S chooses x′ according to the distribution defined by6 ~X
(ai)
x , and sends

x′ to the trusted party computing f . It then outputs whatever A outputs, and halts.
If A does not abort, then S proceeds.

6. For i = i∗ to m:

(a) If i = i∗ then S sends x to the trusted party computing f and receives z = f(x, y).

(b) S sets a
(2)
i = a

(1)
i ⊕ z and gives a

(2)
i to A.

(c) If A aborts, then S then outputs whatever A outputs, and halts. If A does not abort,
then S proceeds.

7. If S has not yet halted, and has not yet sent anything to the trusted party computing f (this
can only happen if i∗ > m and A has not aborted), then it sends x̂ to the trusted party. Then
S outputs whatever A outputs and halts.

(The simulator constructed in Claim 5 branched depending on the value of x, but this was only
a simplification due to the fact that the input x3, there, completely determined the output. In
general there need not be any such input.)

We borrow the same notation as in our proof of Claim 5. Examining that proof, we see that
the proof here will proceed identically up to the point where we need to show that, for all inputs
x, y and all a, b ∈ {0, 1}:

Pr
[(

viewi
hyb,outhyb

)
= (a, b) | i∗ ≥ i

]
= Pr

[(
viewi

ideal,outideal

)
= (a, b) | i∗ ≥ i

]
(32)

(This is Eq. (7) there. As was done there, we suppress explicit mention of the inputs when the
notation becomes cumbersome.) We now fix arbitrary x, y and show that the above holds. We
consider two sub-cases depending on the value of f(x, y).

6This is understood in the natural way; i.e., xj is chosen with probability ~X
(ai)
x (j).

39

Case 1: x and y are such that f(x, y) = 0. In the hybrid world, when A aborts after receiving
its iteration-i message, then P2 outputs outhyb = bi−1 and the value of viewi

hyb = ai is independent
of the value of bi−1. By definition of the protocol, we have

Pr[bi−1 = 0 | i∗ ≥ i] = p̄y and Pr[bi−1 = 1 | i∗ ≥ i] = py,

since bi−1 = f(x̂, y) for x̂ chosen uniformly from X. As for ai, we have

Pr
[
ai = 0 | i∗ ≥ i

]
= α + (1− α) · p̄x and Pr

[
ai = 1 | i∗ ≥ i

]
= (1− α) · px .

Since bi−1 and ai are independent, we conclude that

Pr
[(

viewi
hyb(x, y),outhyb(x, y)

)
= (a, b) | i∗ ≥ i

]
=





(α + (1− α) · p̄x) · p̄y (a, b) = (0, 0)

(α + (1− α) · p̄x) · py (a, b) = (0, 1)

(1− α) · px · p̄y (a, b) = (1, 0)

(1− α) · px · py (a, b) = (1, 1)

In the ideal world, if i∗ = i then outideal = viewi
ideal = f(x, y) = 0. If i∗ > i, then the

distribution of viewi
ideal = ai is given by Pr[ai = 0] = p̄x. The value of outideal is now dependent

on the value of ai (cf. step 5(b) of the simulator described in this section); specifically, we have:

Pr[outideal(x, y) = 0 | ai = 0
∧

i∗ > i]

= Pr[S sends x′ to the trusted party s.t. f(x′, y) = 0 | ai = 0
∧

i∗ > i]

=
∑

x̄: f(x̄,y)=0

Pr
x′← ~X

(0)
x

[x′ = x̄]

and, in the general case,

Pr[outideal(x, y) = b | ai = a
∧

i∗ > i] =
∑

x̄: f(x̄,y)=b

Pr
x′← ~X

(a)
x

[x′ = x̄].

We therefore have, for example,

Pr
[(

viewi
ideal(x, y),outideal(x, y)

)
= (0, 0) | i∗ ≥ i

]
= α + (1− α) · p̄x ·

∑

x̄: f(x̄,y)=0

Pr
x′← ~X

(0)
x

[x′ = x̄]

= α + (1− α) · p̄x ·
(
1− ~X(0)

x · vy

)

= α + (1− α) · p̄x ·
(
1− ~C(0)

x (y)
)

= α + (1− α) · p̄x ·
(

1− α · py

(1− α) · p̄x
− py

)

= (α + (1− α) · p̄x) · p̄y,

(The second equality uses the definitions of ~X
(0)
x and vy; the third equality uses the assumption,

from the theorem, that ~X
(0)
x · vy = ~C

(0)
x (y). We then use the definition of ~C

(0)
x (y) and re-arrange

using algebra.) This is equal to the associated probability in the hybrid world, as computed above.

40

For completeness, we include the calculations for the remaining cases:

Pr
[(

viewi
ideal(x, y),outideal(x, y)

)
= (0, 1) | i∗ ≥ i

]

= (1− α) · p̄x ·
∑

x̄: f(x̄,y)=1

Pr
x′← ~X

(0)
x

[x′ = x̄]

= (1− α) · p̄x ·
(

~X(0)
x · vy

)

= (1− α) · p̄x · ~C(0)
x (y)

= (1− α) · p̄x ·
(

α · py

(1− α) · p̄x
+ py

)

= (α + (1− α) · p̄x) · py = Pr
[(

viewi
hyb(x, y),outhyb(x, y)

)
= (0, 1) | i∗ ≥ i

]
.

Pr
[(

viewi
ideal(x, y),outideal(x, y)

)
= (1, 0) | i∗ ≥ i

]

= (1− α) · px ·
∑

x̄: f(x̄,y)=0

Pr
x′← ~X

(1)
x

[x′ = x̄]

= (1− α) · px ·
(
1− ~X(1)

x · vy

)

= (1− α) · px ·
(
1− ~C(1)

x (y)
)

= (1− α) · px · (1− py)
= (1− α) · px · p̄y = Pr

[(
viewi

hyb(x, y),outhyb(x, y)
)

= (1, 0) | i∗ ≥ i
]
.

Pr
[(

viewi
ideal(x, y),outideal(x, y)

)
= (1, 1) | i∗ ≥ i

]

= (1− α) · px ·
∑

x̄: f(x̄,y)=1

Pr
x′← ~X

(1)
x

[x′ = x̄]

= (1− α) · px ·
(

~X(1)
x · vy

)

= (1− α) · px · ~C(1)
x (y)

= (1− α) · px · py = Pr
[(

viewi
hyb(x, y),outhyb(x, y)

)
= (1, 1) | i∗ ≥ i

]
.

Equality holds, in all cases, between the corresponding probabilities in the ideal and hybrid worlds.
We thus conclude that Eq. (32) holds for all x, y with f(x, y) = 0.

Case 2: x and y are such that f(x, y) = 1. We provide the calculations with limited discussion.
In the hybrid world, we have

Pr
[(

viewi
hyb(x, y),outhyb(x, y)

)
= (a, b) | i∗ ≥ i

]
=





((1− α) · p̄x) · p̄y (a, b) = (0, 0)

((1− α) · p̄x) · py (a, b) = (0, 1)

(α + (1− α) · px) · p̄y (a, b) = (1, 0)

(α + (1− α) · px) · py (a, b) = (1, 1)

In the ideal world, if i∗ = i then outideal = viewi
ideal = f(x, y) = 1. If i∗ > i, then the distribution

of viewi
ideal = ai is given by Pr[ai = 0] = p̄x, and the value of outideal is now dependent on the

41

value of ai. Working out the details, we have:

Pr
[(

viewi
ideal(x, y),outideal(x, y)

)
= (0, 0) | i∗ ≥ i

]

= (1− α) · p̄x ·
∑

x̄: f(x̄,y)=0

Pr
x′← ~X

(0)
x

[x′ = x̄]

= (1− α) · p̄x ·
(
1− ~X(0)

x · vy

)

= (1− α) · p̄x ·
(
1− ~C(0)

x (y)
)

= (1− α) · p̄x · p̄y.

Pr
[(

viewi
ideal(x, y),outideal(x, y)

)
= (0, 1) | i∗ ≥ i

]

= (1− α) · p̄x ·
∑

x̄: f(x̄,y)=1

Pr
x′← ~X

(0)
x

[x′ = x̄]

= (1− α) · p̄x ·
(

~X(0)
x · vy

)

= (1− α) · p̄x ·
(

~C(0)
x (y)

)

= (1− α) · p̄x · py.

Pr
[(

viewi
ideal(x, y),outideal(x, y)

)
= (1, 0) | i∗ ≥ i

]

= (1− α) · px ·
∑

x̄: f(x̄,y)=0

Pr
x′← ~X

(1)
x

[x′ = x̄]

= (1− α) · px ·
(
1− ~X(1)

x · vy

)

= (1− α) · px ·
(
1− ~C(1)

x (y)
)

= (1− α) · px ·
(

1− α · (py − 1)
(1− α) · px

− py

)

= (α + (1− α) · px) · p̄y.

Pr
[(

viewi
ideal(x, y),outideal(x, y)

)
= (1, 1) | i∗ ≥ i

]

= α + (1− α) · px ·
∑

x̄: f(x̄,y)=1

Pr
x′← ~X

(1)
x

[x′ = x̄]

= α + (1− α) · px ·
(

~X(1)
x · vy

)

= α + (1− α) · px ·
(

~C(1)
x (y)

)

= α + (1− α) · px ·
(

α · (py − 1)
(1− α) · px

+ py

)

= (α + (1− α) · px) · py.

Once again, equality holds between the corresponding probabilities in the ideal and hybrid worlds
in all cases. This concludes the proof of the theorem.

42

