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Abstract. In a directed signature scheme, a verifier can exclusively ver-
ify the signatures designated to himself, and shares with the signer the
ability to prove correctness of the signature to a third party when nec-
essary. Directed signature schemes are suitable for applications such as
bill of tax and bill of health. This paper studies directed signatures in
the identity-based setting. We first present the syntax and security no-
tion that includes unforgeability and invisibility, then propose a con-
crete identity-based directed signature scheme from bilinear pairings.
We then prove our scheme existentially unforgeable under the compu-
tational Diffie-Hellman assumption, and invisible under the decisional
Bilinear Diffie-Hellman assumption, both in the random oracle model.
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1 Introduction

In traditional digital signature schemes, anyone in possession of a signature σ
can tell whether it has been generated by a particular signer on a message M .
This property is usually regarded as the basis for the non-repudiation aspect of
digital signatures. However this public-verifiable property is not desirable when
the signed message contains a sensitive agreement between two companies or
private information.

To solve this problem, Chaum and van Antwerpen [8] introduced the concept
of undeniable signatures. In an undeniable signature scheme, one party can verify
a signature only by interaction with the legitimate signer through a confirmation
protocol. Therefore the signer can control when and by whom his signatures can
be verified. An alternative approach to undeniable signatures is the designated
confirmer signature introduce by Chaum in 1994 [9]. In such scheme, the signer
designates the ability to acknowledge (confirm) a signature to a trusted third
party called confirmer, to ensure that the signature can still be verified when the
original signer gets offline. Other signature schemes with controlled verifiability
include limited verifier signatures [2, 10]3 and designated verifier signatures [18].
3 The limited verifier signature scheme of [2] has been broken by [31].



These schemes mainly focus on protecting the privacy of the signer. However
consider the following situation:

A tax office Alice has issued Bob a bill of tax, in the form of Alice’s digital
signature. Bob then wants to exclusively verify this signature without others
being able to check its validity, because otherwise his financial status is exposed.
Here any other party can see the content of the signed message, but can not be
sure whether the tax bill is valid or legally bind the tax bill to Alice or Bob. Bob
needs to prove his ratal to other authorities when necessary. Alice also shares
the ability and responsibility to acknowledge a bill of tax because Bob, as an
individual, may not be always available to do this.

The aforementioned signature systems with controlled verifiability don’t fully
address this situation because they either lack the option of the receiver’s direct
verification (in undeniable, designated confirmer signatures), don’t allow proving
validity of signature to others (in designated verifier signatures), or allow only
the receiver to acknowledge the signature to a third party (in limited verifier
signatures).

One solution to this problem is the directed signatures suggested by Lim and
Lee in [23]. In a directed signature scheme, any signature is generated for a des-
ignated verifier, who can directly verify the signature while others know nothing
on its validity. In addition, at the time of trouble or if necessary, both the signer
and the designated verifier can prove to a third party that the signature is valid.
As previously suggested [23, 26], directed signature schemes are suitable whence
signed messages are personally or commercially sensitive to and/or somewhat
obligatory on the designated receiver.

As an alternative, one may also apply signcryption schemes. The notion of
signcryption was first proposed by Zheng [32] to perform the functionality of sig-
nature and encryption simultaneously, and more efficiently than the signature-
then-encryption approach. Signcryption schemes can achieve directed verifiabil-
ity by encrypting the message and the signature under the designated verifier’s
public key, thus only the designated verifier can retrieve the message and subse-
quently verify the signature. Almost all signcryption schemes can be extended
to support public verification by publishing the message and the signature em-
bedded in the ciphertext. The primary difference between directed signatures
and signcryption is that, directed signatures do not protect message confiden-
tiality, while signcryption schemes do. We believe that the additional encryption
operation can usually cause efficiency overhead. Indeed, we show in Section 5
that, both being derived from the modified SOK-IBS scheme [3], our proposed
directed signature scheme is more efficient than the signcryption scheme of [21].
Therefore directed signatures are more suitable for the application we considered
above.

The first directed signature scheme was proposed by Lim and Lee [23] based
on the Guillou-Quisquater signature scheme [16]. In 2004, Lal and Kumar [20]
suggested another scheme based on Schnorr’s signature. However, no formal
model was present in [23] and [20]. In 2005, Laguillaumie et al. [19] studied
the universally convertible directed signatures and presented a concrete scheme



which is provably secure in the random oracle model [4]. In 2006, Lu and Cao [25]
independently presented a formal model for directed signatures, and proposed
such a scheme based on the RSA assumption. In 2007, Lu et al. [26] studied
the notion of threshold directed signatures, and presented a (t, n) threshold
directed signature scheme from bilinear pairings, which they proved existentially
unforgeable based on the computational Diffie-Hellman (CDH) assumption.

All the above directed signature schemes work in the Public Key Infrastruc-
ture (PKI) based setting, where the public key is usually a “random” string that
is unrelated to the user’s identity. To bind the public key to its legitimate owner,
a certificate authority (CA) needs to digitally sign a certificate claiming this re-
lationship between the public key and the user. As a result, any verifier must
obtain the valid certificate before performing signature verification. Nowadays,
certificate management (including revocation, storage and distribution) and the
computational cost of certificate verification incur the main complaint against
traditional public key cryptosystems. To eliminate the burden of certificate man-
agement, Shamir introduced the notion of identity-based cryptography [27]. In
an identity-based cryptosystem, a user’s public key is just his publicly available
identity (e.g. real name, email address, or IP address), hence no extra effort is
necessary for ensuring the authenticity of a public key, the complexity of the
certificate management is released. However, the study of directed signatures in
the identity-based setting is far from satisfactory. The only identity-based di-
rected signature scheme that the authors are aware of was proposed by Wang
[28] in 2005. However, there is neither a formal model nor rigorous security proof
in [28]. Besides, it also does not support public verification, which is useful for
applications such as bill of tax since one may be required to prove his ratal in
real life occasionally.

To fill this gap, in this paper, we study directed signatures in the identity-
based setting [27, 5]. In particular, we regard our contribution as follows:

– We define the syntax for identity-based directed signature (IB-DS) and pro-
pose its security notion, which includes both existential unforgeability and
invisibility.

– We propose an identity-based directed signature scheme from bilinear pair-
ings, and prove (in the random oracle model) the scheme existentially un-
forgeable and invisible based on the CDH assumption and the decisional
Bilinear Diffie-Hellman (DBDH) assumption, respectively. Our scheme is an
extension of the modified Sakai-Ogishi-Kasahara identity-based signature
(SOK-IBS) scheme due to Bellare et al. [3]. The security analysis of our
scheme develops based on the work of Libert and Quisquater [21], and deals
with some subtleties incurred by our extension carefully.

We mention that there exists a generic construction of identity-based signa-
ture (IBS) schemes from any PKI-based standard signature S = (S.KeyGen, S.Sign, S.Verify).
The master public/secret key (mpk, msk) is a pair of matching public/secret keys
of the scheme S. To generate a user private key corresponding to identity ID,
the private key generator (PKG) runs S.KeyGen to obtain (pk, sk) and computes
cert by signing the message ID||pk using msk. Here cert serves as a “certificate”



binding pk to ID. In the signing phase of the IBS scheme, the user uses sk to sign
the message. The identity-based signature then consists of this signature along
with cert and pk. In [3], Bellare et al. formalized this construction and showed
that, the resulting IBS is secure if S is secure. In [14], this method is extended
to IBS schemes with additional properties (e.g., blind signatures, proxy signa-
tures, and threshold signatures). However, this method does not work properly
for directed signatures, because the signer should interact with the designated
verifier before signing, in order to obtain his certified public key. But in our
model of IB-DS schemes, there should not be any interaction between the signer
and the verifier in the signing phase because it suffices to know the identity of
the designated verifier.

The rest of the paper is organized as follows. We first review the bilinear pair-
ings and the complexity assumptions, on which our scheme is based, in Section
2. The syntax and security notion of identity-based directed signature schemes
are given in Section 3. We then present our identity-based directed signature
scheme in Section 4 with security proof. In Section 5, we compare our scheme
with related schemes in terms of efficiency and security. Section 6 concludes this
paper.

2 Preliminaries

We now briefly review the properties of bilinear pairings and the complexity
assumptions on which our scheme is based.

2.1 Bilinear Pairings

Let G1 and G2 be additive and multiplicative groups of prime order q, respec-
tively. Let P be a generator of G1. A bilinear pairing is an efficiently computable
map e : G1 ×G1 → G2, with the following properties:

– Bilinearity : For all a, b ∈ Zq, e(aP, bP ) = e(P, P )ab.
– Non-degeneracy : e(P, P ) 6= 1G2 .

Bilinear pairings have found huge application in design of cryptosystems.
See [5, 29, 24, 30] for examples and a survey due to Dutta et al. [12] for detailed
descriptions.

2.2 Computational Diffie-Hellman Assumption

Let G1, q, P be as described in Section 2.1. The challenger selects a, b ∈ Z∗
q

at random from Z∗
q and outputs (P , A = aP , B = bP ). The computational

Diffie-Hellman (CDH) problem is to find abP .

Definition 1 (CDH Assumption). The (ε, t)-CDH assumption holds in group
G1 if there is no algorithm which runs in time at most t and solves the CDH
problem with probability at least ε.



2.3 Decisional Bilinear Diffie-Hellman Assumption

For the same setting described in Section 2.1, the challenger selects a, b, c, z ∈ Z∗
q

at random and flips a fair coin T ∈ {0, 1}. If T = 1 the challenger outputs the
tuple (P , A = aP , B = bP , C = cP , Z = e(P, P )abc); otherwise it outputs (P ,
A = aP , B = bP , C = cP , Z = e(P, P )z). The decisional Bilinear Diffie-Hellman
(DBDH) problem is to output T . The advantage of a DBDH solver B is defined
as

AdvB =|Pr[B(P, aP, bP, cP, Z) = 1|Z = e(P, P )abc]
− Pr[B(P, aP, bP, cP, Z) = 1|Z = e(P, P )z]|.

Definition 2 (DBDH Assumption). The (ε, t)-DBDH assumption holds if
there is no algorithm which runs in time at most t and solves the DBDH problem
with non-negligible advantage at least ε.

3 Identity-Based Directed Signature Schemes

In an identity-based directed signature (IB-DS) scheme, a private key generator
(PKG) holds a master key and issues private keys for the users. The latter
then uses the private key to generate digital signature which is designated to
a particular verifier, using the verifier’s identity. Formally, an IB-DS scheme is
defined by the following probabilistic polynomial-time (PPT) algorithms:

– System initialization (Setup): The PKG generates the system parameters
params and the master key x, params are made public, while x is kept
secret. params are implicit input to all the following algorithms.

– Key extraction (Extract): Given an identity ID and the master key x, the
PKG computes the private key dID and sends it to the corresponding user
through a secret channel.

– Signature generation (Sign): On input signer’s identity IDS , the verifier’s
identity IDV , a message M and the private key dIDS

, the signer IDS gen-
erates his signature σ on M designated to IDV .

– Direct verification (DVerify): Given signer’s identity IDS , verifier’s identity
IDV and the corresponding private key dIDV

, a message M and a signature
σ, this algorithm checks the validity of σ to output 1 (valid) or 0 (invalid).

– Public verification (PVerify): On input signer’s identity IDS , verifier’s iden-
tity IDV , a message M , and a purported signature σ, a third party T, with
an Aid provided by IDS or IDV , outputs 1 if σ is valid, and 0 otherwise.

Remark 1. A relaxation of the PVerify procedure in our definition compared to
that of [25] and [26] is that, the Aid is not required to be verifiable. We believe
that this relaxation is not a problem in real-world applications, as long as it is
computationally infeasible for an adversary to forge a ‘correct’ Aid, which is the
case for all the directed signature schemes proposed so far.



3.1 Security Notions

The security of IB-DS schemes consists of two aspects: unforgeability and invis-
ibility.

Unforgeability. The standard security notion for digital signature schemes
is existential unforgeability against adaptively chosen message attack [15]. Cha
and Cheon generalized this notion to identity-based signature schemes [7]. [19]
and [25] independently formalized this notion for directed signatures under their
respective settings. Developed in the same line with [15, 7, 25], existential un-
forgeability of IB-DS schemes is defined by the following game between a chal-
lenger and a PPT attacker A:

Setup. The challenger runs the Setup algorithm of the IB-DS scheme to obtain
the public parameters params and the master secret. It then gives params
to A and keeps the master secret to itself.

Queries. A adaptively makes a number of different queries to the challenger.
Each query can be one of the following.
– Extract query. A requests the private key of any identity ID. The chal-

lenger runs the Extract algorithm on ID and forwards the output dID

to A.
– Sign query. A requests the signature of a signer IDS to a designated

verifier IDV on message M . The challenger first runs the Extract algo-
rithm to obtain a private key dIDS

of IDS , then runs the Sign algorithm
on IDS , IDV , M and dIDS

to obtain a signature σ, which is forwarded
to A.

– DVerify query. A submits (IDS , IDV ,M, σ) to the challenger. The chal-
lenger first extracts IDV ’s private key dIDV

, then uses dIDV
to verify

the signature. If the signature is valid, the challenger returns 1 (valid)
to A, otherwise it returns 0 (invalid).

– PVerify query. A submits (IDS , IDV ,M, σ) to the challenger. The chal-
lenger returns ⊥ to A if σ turns out to be invalid with respect to
(IDS , IDV ,M). Otherwise, the challenger produces an Aid on behalf
of the signer IDS or the designated verifier IDV , then forwards Aid to
A.

– Hash query. When the involved hash functions are modeled by random
oracles, A also performs adaptive queries to the hash functions. The
challenger usually responds by randomly picking an element from the
output space of the hash function.

Forgery. A outputs a signer identity ID∗
S , a verifier identity ID∗

V , a message
M∗, and a signature σ∗. A succeeds if the following situations hold:
1. σ∗ is valid (as verified by ID∗

V ) with respect to ID∗
S , ID∗

V and M∗.
2. A has not made an Extract query on ID∗

S .
3. σ∗ was not returned by a previous Sign query on (ID∗

S , ID∗
V ,M∗).

A’s advantage in the above game is defined as

AdvA = Pr[A succeeds]



where the probability is taken over all coin tosses made by the challenger and A.
We note that the above game captures the notion of strong unforgeability first
introduced by [1].

Definition 3 (Unforgeability). An IB-DS scheme is (ε, t, qE , qS , qDV , qPV , qH)-
unforgeable, if there is no adversary who runs in time at most t, makes at most
qE Extract oracle queries, qS Sign oracle queries, qDV DVerify oracle queries,
qPV PVerify oracle queries, and qH Hash oracle queries, and has advantage at
least ε in the above game.

Invisibility. Informally, the invisibility property requires that it be (com-
putationally) infeasible for any third party to decide whether a signature was
indeed produced by a signer IDS , designated to IDV , on message M . Invisibility
for digital signatures is studied in two flavors. In [6, 26] this notion is phrased
in terms of deciding whether a signature σ corresponds to a message M0 or
M1, while in several other papers [13, 22], it is defined by the infeasibility of
an attacker to distinguish a valid signature σ on M adaptively chosen by the
attacker from one randomly drawn from the signature space. Since invisibility
(of undeniable signatures) in the latter flavor implies that in the former flavor
as shown by [13], in this paper we also consider inviability in the sense of [13,
22]. Formally, we consider the following game between a PPT distinguisher D
and a challenger.

Setup. The challenger runs the Setup algorithm of the IB-DS scheme to obtain
the public parameters params and the master secret. It then gives params
to D and keeps the master secret to itself.

Phase 1. D adaptively makes a number of different queries to the challenger.
Each query can be either an Extract query, a Sign query, a DVerify query, a
PVerify query, or a Hash query. The challenger responds to these queries in
the same way as in the unforgeability game.

Challenge. Once D decides that Phase 1 is over, it outputs a signer identity
ID∗

S , a verifier identity ID∗
V , and a message M∗, and submits them to the

challenger. The constraint is that ID∗
V must have not been submitted for

the Extract oracle. The challenger then generates a random bit b ∈ {0, 1}, if
b = 1, the challenger produces a signature σ∗ on (ID∗

S , ID∗
V ,M∗) in the same

way as the Sign query. Otherwise, it picks a random σ∗ from the signature
space. In both cases σ∗ is forwarded to D.

Phase 2. D again adaptively performs several oracle queries as it did in Phase
1, subjected to the following restrictions.
– D cannot make an Extract query on ID∗

V .
– D cannot make a DVerify or a PVerify query on (ID∗

S , ID∗
V ,M∗, σ∗).

Guess. Finally D outputs a bit b′ ∈ {0, 1}. D succeeds if b = b′.

D’s advantage in the above game is defined as

AdvD = Pr[D succeeds]− 1
2

where the probability is taken over all coin tosses made by the challenger and
D.



Definition 4 (Invisibility). An IB-DS scheme is (ε, t, qE , qS , qDV , qPV , qH)-
invisible, if there is no adversary who runs in time at most t, makes at most qE

Extract oracle queries, qS Sign oracle queries, qDV DVerify oracle queries, qPV

PVerify oracle queries, and qH Hash oracle queries, and has advantage at least
ε in the above game.

4 Proposed Identity-Based Directed Signature Scheme

We now present our IB-DS scheme based on the modified SOK-IBS scheme.

– Setup. Given security parameter k, the PKG chooses groups G1 and G2 of
prime order q ≥ 2k with a bilinear pairing e and a generator P of G1, as de-
scribed in Section 2.1. He then selects x ∈R Z∗

q and computes the public key
Ppub = xP , also picks two cryptographic hash functions H1,H2 : {0, 1}∗ →
G∗

1. The PKG now publishes params = (G1, G2, q, e, P, Ppub,H1,H2), and
keeps x secret as the master secret key.

– Extract. Given an identity ID ∈ {0, 1}∗, the PKG computes QID = H1(ID) ∈
G1, then computes the user’s private key dID = xQID ∈ G1.

– Sign. To sign a message M to a designated verifier IDV , the signer with
identity IDS and private key dIDS

performs the following actions.
1. Pick r1, r2 ∈R Z∗

q .
2. Compute U = r1P , W = r2QIDS

.
3. Compute V = dIDS

+r1H, where H = H2(IDS , IDV ,M,U, e(dIDS
, r2QIDV

)).
The signature is σ = (U,W, V ).

– DVerify. Given a purported signature σ = (U,W, V ) on signer IDS , verifier
IDV and message M , IDV verifies it with his private key dIDV

as follows.
1. Compute H = H2(IDS , IDV ,M,U, e(dIDV

,W )).
2. Accept the signature if

e(P, V ) = e(Ppub, QIDS
)e(U,H), (1)

reject it otherwise.
– PVerify. Given a purported signature σ = (U,W, V ) on signer IDS , verifier

IDV and message M , to enable a third party T to verify it, either IDS or
IDV computes Aid = e(dIDS

, r2QIDV
) = e(dIDV

,W ) and sends it to T.
The latter then computes H = H2(IDS , IDV ,M,U, Aid), and verifies the
signature by evaluating (1).

Remark 2. In the Sign algorithm, the signer has to store all the values r2 to
allow public verification of the signatures later. Thus he has to maintain a table
where he writes all the tuples (W, r2) for all the signatures he has generated.
This is an efficiency drawback that we share with the scheme of [26], although
the authors of [26] have not mentioned it. Note that since W = r2QIDS

, it is
unnecessary to store any of (M, IDV , U, V ) in the table.

Remark 3. Our extension to the modified SOK-IBS scheme lies in the pairing
operation in the H2 hash function. It prevents any third party from directly
verifying the signature. It also allows us to base the invisibility of our scheme on
the DBDH assumption, the detailed proof is given in Theorem 2.



4.1 Correctness

To show correctness of our scheme, we show that the DVerify algorithm is
consistent with the Sign algorithm because

e(P, V ) = e(P, dIDS
+ r1H2(IDS , IDV ,M,U, e(dIDS

, r2QIDV
)))

= e(Ppub, QIDS
)e(U,H2(IDS , IDV ,M,U, e(dIDV

,W )))
= e(Ppub, QIDS

)e(U,H).

Correctness of the PVerify algorithm is straightforward.

4.2 Security Analysis

In the following two theorems, we prove that our scheme is existentially unforge-
able and invisible, respectively. Proofs of both theorems are developed based on
the work of [21].

Theorem 1 (Unforgeability). If a PPT forger A has an advantage ε in forg-
ing a signature of the proposed IB-DS scheme when running in time t and asking
qHi

queries to random oracles Hi (i = 1, 2), qE queries to the Extract oracle, qS

queries to the Sign oracle, qDV queries to the DVerify oracle, and qPV queries
to the PVerify oracle, then the CDH problem can be solved with probability

ε′ ≥ (ε− qS(2qH2 + qS − 1)
2 · 4k

− 1 + (qH2 + qS)(qDV + qPV )
2k

)(
qE

qE + 1
)qE+1 1

qE
,

within time

t′ ≤ t+(qH1+qH2+qE+4qS)tm+(qH2+qS+(qH2+qS+2)(qDV +qPV ))tbp+(qH2+qS)tmm.

Here tm is the time to compute a scalar multiplication in G1, tbp is the time for
a pairing operation, and tmm is the time to perform a multi-exponentiation in
G1. And for large qE,

ε′ ≥ (ε− qS(2qH2 + qS − 1)
2 · 4k

− 1 + (qH2 + qS)(qDV + qPV )
2k

)
1

e · qE
,

where e denotes the base of the natural logarithm.

Proof. Let B be a PPT attacker against the CDH problem. Given a CDH prob-
lem instance (P,A = aP, B = bP ), B uses A to compute abP by acting as a
challenger for A as follows:

Setup. B initializes A with Ppub = A as the system’s overall public key,
therefore the hidden master secret is a.

Simulation of Oracles. A then starts performing oracle queries. These
queries are answered by B as follows (we assume that, without loss of gener-
ality, an identity was first submitted to the H1 oracle before submitted for other
oracle queries):



– H1 queries: when A submits an identity ID to the H1 oracle, B flips a coin
T ∈ {0, 1} that yields 0 with probability δ, whose value will be determined
later, and 1 with probability 1− δ. B then picks u ∈R Z∗

q and defines

H1(ID) =

{
uP if T = 0,

uB if T = 1.

B then returns H1(ID) to A and inserts a tuple (ID, u, T ) in a list L1, which
is initially empty, to track how it answered the query.

– Extract queries: when A submits an identity ID to the Extract oracle, B
recovers the corresponding (ID, u, T ) entry from L1. If T = 0, it means that
H1(ID) was previously defined as uP ∈ G1, B computes dID = uPpub = uA
and returns it to A. Otherwise, B outputs “failure” and halts because it is
unable to answer the query legitimately.

– H2 queries: when A submits a tuple (IDS , IDV ,M,U, E) to the H2 oracle,
B first scans a list L2, which is initially empty, to see whether an entry for
(IDS , IDV ,M,U, E) exists. If it does exist, the previously defined value is
returned. Otherwise, B picks v ∈R Z∗

q , inserts (IDS , IDV ,M,U, E, v) into
L2 and returns vP ∈ G1 as the hash value to A.

– Sign queries: when A queries the signing oracle on a message M for a signer
IDS , a verifier IDV , B first recovers the previously defined values QIDS

=
H1(IDS) and QIDV

= H1(IDV ) from L1. It then chooses r, t, ν ∈R Z∗
q ,

computes W = rP , U = νPpub = νA ∈ G1 and the bilinear pairing

E = e(W,dIDV
) = e(rPpub, QIDV

).

B halts and outputs “failure” if L2 already contains an entry for (IDS , IDV ,M,U, E).
Otherwise B sets V = tPpub = tA ∈ G1, and then defines H2(IDS , IDV ,M,U,E)
as ν−1(tP−QIDS

) ∈ G1. The tuple (U,W, V ) is returned to A as the directed
signature.

– DVerify queries: D submits (IDS , IDV ,M) and σ = (U,W, V ) to B. The
latter first recovers (IDV , uV , TV ) from L1. It then proceeds in either of the
following directions:
• If TV = 0, it computes dIDV

= uV Ppub = uV A and E = e(dIDV
,W ),

then recovers H = H2(IDS , IDV ,M,U, E) from the L2 list. If this entry
does not exist, B selects v ∈R Z∗

q and defines it as vP . B then verifies
equation (1) to check the validity of σ. It returns the verification result,
which is either 1 (valid) or 0 (invalid), to D.

• If TV = 1, B works on all the possible entries H2(IDS , IDV ,M,U,E)
for some E.
1. For each possible entry H = H2(IDS , IDV ,M,U,E) for some E,
B evaluates (1). If the verification result is 1 (valid), B returns 1
(valid) to D.

2. If the above operation does not lead B to return an answer for D, B
then returns 0 (invalid) to D.



– PVerify queries: D submits (IDS , IDV ,M) and σ = (U,W, V ) to B. The
latter performs basically the same operation as in the simulation of the
DVerify oracle. The only difference is the following: when B deems σ valid
(returns 1 in the DVerify simulation), it returns Aid = E to D; when it
deems σ invalid (returns 0 in the DVerify simulation), it returns ⊥ to D.

It is easy to check that, as long as B does not fail in a query, its simulation
of the H1, Extract, H2 and Sign oracles is perfect and indistinguishable from
that of a real attack game. Although whether A is able to verify the output of
signing oracle depends on whether it knows dIDV

, B’s simulation method ensures
that the output signature is unconditionally valid. It has a probability at most
(qH2 + qS)/2k, which occurs in step 1 of the second case, to return a wrong
answer to each DVerify or PVerify query.

Forgery and Output. Eventually, A outputs a signer identity ID∗
S , a veri-

fier identity ID∗
V , a message M∗ and a signature σ∗ = (U∗,W ∗, V ∗) on (ID∗

S , ID∗
V ,M∗).

B then recovers the triples (ID∗
S , u∗S , T ∗

S) and (ID∗
V , u∗V , T ∗

V ) from L1. If T ∗
S = 0,

then B outputs “failure” and stops. Otherwise, it goes on and the list L2 must
contain at least one entry (ID∗

S , ID∗
V ,M∗, U∗, E∗, v∗) for some E∗ and v∗ with

overwhelming probability (otherwise, B stops and outputs “failure”). B now pro-
ceeds in either of the following ways, depending on whether it knows the exact
value of E∗ corresponding to ID∗

V and W ∗:

– If T ∗
V = 0, B first computes ID∗

V ’s private key dID∗
V

= u∗V A, then computes
E∗ = e(W ∗, dID∗

V
), and recovers the entry H = H2(ID∗

S , ID∗
V ,M∗, U∗, E∗, v∗)

from the L2 list. B then knows that

e(P, V ∗) = e(A,QID∗
S
) · e(U∗,H)

with H = v∗P ∈ G1 and QID∗
S

= u∗SB ∈ G1. Therefore

e(P, V ∗ − v∗U∗) = e(A, u∗SB)

and
u∗−1

S (V ∗ − v∗U∗) (2)

is the solution to the CDH problem instance (P,A = aP, B = bP ).
– Otherwise, B does not know the exact value of E∗, it works on all the entries

(ID∗
S , ID∗

V ,M∗, U∗, E∗, v∗) for some E∗ and v∗ in L2 as follows:
1. Compute (2) and let the result be Z ∈ G1.
2. Evaluate e(A,B) ?= e(Z,P ). If the equation holds, B outputs Z as the

solution to the CDH instance (P,A, B).

Success Probability. We now analyze B’s success probability. At first, in a
signing query, B has 4k choices of (U,E) ∈ G1 ×G2 for each H2 entry, therefore
its probability to fail in a signing query due to a conflict on H2 is at most

Pr1 =
qH2

4k
+

qH2 + 1
4k

+ · · ·+ qH2 + qS − 1
4k

=
qS(2qH2 + qS − 1)

2 · 4k
.



Secondly, the probability forA to output a valid forgery (U∗,W ∗, V ∗) on (ID∗
S , ID∗

V ,M∗)
without asking the corresponding H2 query is at most

Pr2 =
1
2k

.

Third, its probability to fail in a DVerify or PVerify query (by giving a wrong
answer) is at most

Pr3 =
(qH2 + qS)(qDV + qPV )

2k
.

Finally, the probability for B not to fail in a key extraction query and A produces
its forgery on a “good” identity ID∗

S is α(δ) = δqE (1 − δ). By an analysis
developed in [11] and further exercised in [21, 25], this probability is maximal
for δmax = qE

qE+1 and

Pr4 = α(δmax) = (
qE

qE + 1
)qE+1 1

qE
.

For large qE , Pr4 ≈ 1/(e · qE).
Therefore, when δ = qE

qE+1 , B’s success probability in solving the CDH prob-
lem is at least

ε(1− Pr1)(1− Pr2)(1− Pr3)Pr4

>(ε− Pr1 − Pr2 − Pr3)Pr4

=(ε− qS(2qH2 + qS − 1)
2 · 4k

− 1 + (qH2 + qS)(qDV + qPV )
2k

)(
qE

qE + 1
)qE+1 1

qE
.

And for large qE , this value is

(ε− qS(2qH2 + qS − 1)
2 · 4k

− 1 + (qH2 + qS)(qDV + qPV )
2k

)
1

e · qE
.

B’s Running Time. To respond to either a H1 query, an Extract query or
a H2 query requires tm; to respond to a Sign query requires 4tm + tbp + tmm.
To respond to a DVerify or a PVerify query requires at most (qH2 + qS + 2)tbp.
In the final output stage, B’s computation differs in two situations as already
discussed:

– If T ∗
V = 0, then B knows (can compute) the private key of ID∗

V , and it takes
tm + tbp + tmm.

– Otherwise B needs to test each possible entry in L2 until it eventually finds
the right entry. Regarding e(A,B) as a constant, the computation for each
entry is tbp + tmm.

Therefore the worst-case computational cost for the output stage is that of the
second case, which is at most

qH2(tbp + tmm),



since B only needs to check the entries produced by the H2 queries. It then
follows that

t′ ≤ t+(qH1+qH2+qE+4qS)tm+(qH2+qS+(qH2+qS+2)(qDV +qPV ))tbp+(qH2+qS)tmm.ut

Theorem 2 (Invisibility). If a PPT distinguisher D has an advantage ε in
breaking the invisibility of our IB-DS scheme when running in time t and asking
qHi queries to random oracles Hi (i = 1, 2), qE , qS , qDV , qPV queries to the
Extract oracle, Sign oracle, DVerify oracle and PVerify oracle, respectively, then
the DBDH problem can be solved with advantage

ε′ ≥ (ε− (qS + 1)(2qH2 + qS)
2 · 4k

− (qH2 + qS)(qDV + qPV )
2k

)(
qE

qE + 1
)qE+1 1

qE
,

within time

t′ ≤ t+(qH1 +qH2 +qE +4qS)tm +(qS +(qH2 +qS +2)(qDV +qPV ))tbp +qStmm.

Here tm, tbp and tmm are of the same meanings as in Theorem 1. And for large
qE,

ε′ ≥ (ε− (qS + 1)(2qH2 + qS)
2 · 4k

− (qH2 + qS)(qDV + qPV )
2k

)
1

e · qE
,

where e denotes the base of the natural logarithm.

Proof. We construct a DBDH problem solver B using D. Let B be given a ran-
dom DBDH problem instance (P,A = aP, B = bP,C = cP, Z). B simulates a
challenger for D as follows.

Setup. B initializes D with Ppub = A = aP as the system’s overall public
key, therefore the hidden master secret is a.

Simulation of Oracles. D then starts performing oracle queries. These
queries are answered by B in the same way as in the proof of Theorem 1 (we
again assume that any oracle query involving an identity is preceded by a H1

query for the same identity).
Challenge. After D performs a polynomial number of these oracle queries

in Phase 1, it chooses a signer identity ID∗
S , a verifier identity ID∗

V , a message
M∗ and submits them to B. B then recovers (ID∗

V , u∗V , T ∗
V ) from L1. If T ∗

V = 0, B
outputs “failure” and terminates the simulation. Otherwise, B chooses r, t, ν ∈R

Z∗
q and sets U∗ = νPpub = νA ∈ G1, W ∗ = rC, V ∗ = tPpub = tA ∈ G1. Since

H(ID∗
V ) was previously defined as u∗V B, it follows that

e(dID∗
V
,W ∗) = e(a · u∗V B, rC) = e(P, P )abc(r·u∗V ).

Accordingly, to implant the DBDH problem into the challenge signature, B then
inserts

H2(ID∗
S , ID∗

V ,M∗, U∗, Zr·u∗V ) =⇒ ν−1(tP −QID∗
S
) (3)

into the L2 list, and forwards σ∗ = (U∗,W ∗, V ∗) to D as the challenge signa-
ture. If an entry was already defined for the input (ID∗

S , ID∗
V ,M∗, U∗, Zr·u∗V ),

B outputs “failure” and halts.



U∗, W ∗ and V ∗ in the challenge signature are uniformly random and pair-
wise independent, therefore whether σ∗ is a valid signature on (ID∗

S , ID∗
V ,M∗)

depends on the H2 entry defined by (3). It is not hard to see that, if (P,A =
aP, B = bP,C = cP, Z) is a real BDH tuple, the H2 entry produced in (3) is a
‘real’ hash entry for (ID∗

S , ID∗
V ,M∗) and σ∗, then σ∗ is a real valid signature

and of the same distribution as that in a actual game. Otherwise, the H2 entry
produced in (3) does not corresponds to (ID∗

S , ID∗
V ,M∗) and σ∗, as Zr·u∗V is

unrelated to e(dID∗
V
,W ∗), then σ∗ is not related to (ID∗

S , ID∗
V ,M∗) in a mean-

ingful way, hence randomly chosen from the signature space in the viewpoint of
D.

Therefore B’s simulation of the challenge signature is indistinguishable from
a real game, as long as it does not fail. And the challenge bit b, which is hidden
from B, is actually

b =

{
1 if Z = (P, P )abc,

0 otherwise.

Guess and Output. After performing several oracle queries in Phase 2
subjected to the proper restrictions, D outputs a bit b′ ∈ {0, 1} as its guess of b.
B then outputs b′ as the answer to the DBDH problem instance (P,A = aP, B =
bP,C = cP, Z). This is justified by the above analysis on the challenge signature
and the hidden challenge bit.

B’s Advantage. Similar to Theorem 1, B’s probability to fail in a signing
query or the Challenge stage due to a conflict on H2 is at most

Pr1 =
(qS + 1)(2qH2 + qS)

2 · 4k
.

Its probability to fail in a DVerify or PVerify query (by giving a wrong answer)
is at most

Pr2 =
(qH2 + qS)(qDV + qPV )

2k
.

The probability for B not to fail in a key extraction query, and D requests
challenge on a “good” identity ID∗

V is α(δ) = δqE (1 − δ). This probability is
maximal for δmax = qE

qE+1 and

Pr3 = α(δmax) = (
qE

qE + 1
)qE+1 1

qE
.

For large qE , Pr3 ≈ 1/(e · qE).
Eventually, it follows that, when δ = qE

qE+1 , B’s advantage in solving the
DBDH problem is at least

(ε− Pr1 − Pr2)Pr3

=(ε− (qS + 1)(2qH2 + qS)
2 · 4k

− (qH2 + qS)(qDV + qPV )
2k

)(
qE

qE + 1
)qE+1 1

qE
.

And for large qE , this value is

(ε− (qS + 1)(2qH2 + qS)
2 · 4k

− (qH2 + qS)(qDV + qPV )
2k

)
1

e · qE
.



Table 1. Comparison of our scheme to previous schemes

Scheme SOK-IBSE [21] Wang [28] Our Scheme

Signature/Ciphertext Size 2|G1| + l |G1| + |Z∗q | 3|G1|
Formal Model and Proof Yes No Yes

Computation Costs
Signing 4tm + tbp + tE 3tm + tbp 4tm + tbp

Direct Verify tm + 4tbp + tD tm + 2tbp 4tbp

Public Verify 3tbp Unsupported 3tbp

B’s Running Time. The computational cost for answering each oracle query
is same as that of Theorem 1. In assessing B’s total running time, if we omit the
cost in the Challenge stage (which is 3tm + 1 exponentiation in G2 + tmm), we
have

t′ ≤ t+(qH1 +qH2 +qE +4qS)tm +(qS +(qH2 +qS +2)(qDV +qPV ))tbp +qStmm.ut

We have shown that our proposed IB-DS scheme is unforgeable and invisible
assuming intractability of the CDH problem and the DBDH problem in G1,
respectively.

5 Efficiency and Comparison

We now analyze the efficiency of our proposed scheme and compare it with the
related schemes, including the SOK-IBSE scheme [21] and the IB-DS scheme of
Wang [28]. The comparison is summarized in Table 1. Here l is the ciphertext
length of the symmetric cipher (E ,D) used by the SOK-IBSE scheme, tE is the
computational cost to perform encryption of the scheme, and tD for decryption.
Note that we don’t consider hash function evaluation, point addition in G1 and
multiplication in G2 as they are much cheaper than other operations.

As shown by Table 1, our scheme has a comparable signature/ciphertext
size with the SOK-IBSE scheme, and it is more efficient than the latter scheme
in signing and direct verification, due to the fact that the latter performs the
additional message encryption. Public verification in the two schemes has the
same computation cost because they are both based on the SOK-IBS scheme.

Compared with Wang’s scheme, our scheme is slightly less efficient. However
it offers more security guarantee than Wang’s scheme by admitting rigorous
security proofs under a reasonable security model, and provides the feature of
public verification.

6 Conclusions

Directed signatures are applicable where the designated receiver needs to exclu-
sively verify a signature, and shares, with the signer, the ability to prove validity
of the signature to others. In this paper, we studied directed signatures in the
identity-based setting. We first formally defined the syntax and security notions



for identity-based directed signatures (IB-DS), then proposed a concrete IB-DS
scheme from bilinear pairings. In the random oracle model, our scheme is proved
to be unforgeable and invisible based on the intractability of CDH problem and
DBDH problem, respectively. In the future, we are interested in designing an
identity-based directed signature scheme without relying on the (expensive) bi-
linear pairings.
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