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Abstract.  At EUROCRYPT 2005, Sahai and Waters presented the Fuzzy Identity Based 

Encryption (Fuzzy-IBE) which could be used for biometrics and attribute-based encryption in the 
selective-identity model. When a secure Fuzzy-IBE scheme in the selective-identity model is 
transformed to full identity model it exist an exponential loss of security. In this paper, we use the CPA 
secure Gentry's IBE (exponent inversion IBE) to construct the first Fuzzy IBE that is fully secure 
without random oracles. In addition, the same technique is used to the modification of CCA secure 
Gentry's IBE which introduced by Kiltz and Vahlis to get the CCA secure Fuzzy IBE in the full-identity 
model. 
Keywords: full-identity security, fuzzy identity based encryption, without random oracles. 
1 Introduction 
In an Identity Based Encryption (IBE) system any string like an e-mail address or other identifier can 
function as a public key. The ability that uses identities as public keys largely reduces the need for 
public key certificates and for certificate authorities to distribute public key certificates. This can 
simplify public key and certificate management in a public key infrastructure (PKI). Shamir [23] 
proposed the concept of IBE in 1984, and the first IBE systems were demonstrated by Boneh and 
Franklin [5] and Cocks [12], which could be proven secure in the random oracle model. Ever since then, 
a rapid development of IBE has taken place, and a series of papers [3][4][6][7][9][15][20][24] have 
reported progress in achieving stronger notions of security in the standard model. In 2007, Boneh et al. 
[2] presented a space-efficient Identity Based Encryption without pairings. 

However, a unique string identifier does not necessarily exist for each person. Instead, people are 
more often identified by their attributes. To fulfill this task, the concept of Fuzzy-IBE recently 
introduced by Sahai and Waters [22] in 2005 is to provide an error-tolerance property for IBE which 
could be used for encryption using biometrics and attribute based encryption (ABE). Namely, in 
Fuzzy-IBE, a user with the secret key for the identity ω  can decrypt a ciphertext encrypted with the 
public key 'ω  if ω  and 'ω  are within a certain distance of each other. Since Sahai and Waters' 
first work, Fuzzy-IBE has been discussed in the context of the ABE. Instead of allowing decryption 
conditionally on the satisfaction of a single threshold gate (whose inputs are the matching attributes in 
the ciphertext and the key), Goyal et al. [16] proposed an ABE scheme that provides fine-grained 
sharing of encrypted data. In this model, when a user requests a private key, the authority determines 
what combinations of attributes must be present in order for this user to decrypt and gives the user the 
corresponding private key. In 2006, Piretti et al. [21] used Sahai and Waters' "large universe" 
construction of Fuzzy-IBE to realize their secure information management architecture. In 2007, Baek 
et al. [1] presented two new Fuzzy-IBE schemes in the random oracle model in which their public 
parameter's size is independent of the number of attributes in each identity. Recently, Chase [10] 
presented a scheme which allows any polynomial number of independent authorities to monitor 
attributes and distribute secret keys. Boyen[6] showed the exponent inversion IBE with parallel 
semantic security against selective-ID chosen-plaintext attacks, that has an appropriate linear structure, 



can extension to the Fuzzy IBE. But the ambiguity of Gentry's IBE as an exponent inversion candidate 
presents an intriguing open problem.  

Recently, Fang [13] used hybrid encryption [17][18][19] with Fuzzy Identity-Based Encryption 
(Fuzzy-IBE) schemes and presented the first and efficient fuzzy identity-based key encapsulation 
mechanism (Fuzzy-IB-KEM) schemes which are CCA-secure without random oracle in the 
selective-identity model.  
1.1 Related Work 
To the best of our knowledge, all of the results reported in [1][10][13][16][21][22] are in the 
selective-ID model (Note that the selective-ID attack [3] refers to the attack in which an attacker 
commits ahead of time an identity that it intends to attack). It is easy to show that any selective-ID 
secure Fuzzy IBE is readily converted into a full-identity secure Fuzzy IBE by artificially restricting 
the space of identities, but the proof uses an inefficient security reduction [4]. Suppose all identities are 
composed of n attributes and we have a universe of attributes, u . Sahai and Waters' scheme is secure in 

the full-identity model with a factor of 
u
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

in the reduction. As mentioned in [22]: "Therefore, we 

conjecture that a scheme that has a non-exponential loss of security in the full-identity model will 
require significantly different methods than those seen in prior work". 

In IBE schemes, there are two major techniques to achieve IBE in the full model with 
non-exponential reductions. One is used in commutative blinding IBE which introduced by Boneh and 
Boyen [4] and later Waters [24] to devise IBE systems fully secure without random oracles, the 
methods achieve fully secure by essentially removing the relationships between nearby identities. 
Unfortunately, it is essential that there exists a relationship between nearby identities in Fuzzy-IBE. 
Another is introduced by Gentry [15] to get practical IBE in full-identity model, we observed that this 
technique can be extend to achieve a fully secure Fuzzy IBE scheme. Boyen [6] also showed exponent 
inversion IBE can extension to the Fuzzy IBE, they use different setup algorithm for each identity to 
achieve parallel IBE security, the result is the public key is different for each identity except generators. 
Being different as [6], our scheme have the same part of public key for each identity, so is more 
efficient. 
1.2 Our contributions 
In this paper, we use the CPA secure Gentry's IBE (exponent inversion IBE) to construct a Fuzzy IBE 
that is fully secure without random oracles and present a CPA secure scheme which gives comparable 
generalization performance as that of Sahai and Waters' "large universe" construction and a tightness 
reduction. We give a standard-model security proof reducing the intractability of decisional augmented 
bilinear Diffie-Hellman exponent ( q ABDHE− ) problem to breaking the CPA security of our scheme 

in full-identity model. We remark that the proof technique is significantly different from the one used 
for Gentry's IBE scheme.  

In addition, the same technique is used to the modification of CCA secure Gentry's IBE [15] which 
introduced by Kiltz and Vahlis [20] to get the CCA secure Fuzzy IBE in the full-identity model.  
1.3 Organization 
The rest of the paper is organized as follows. In Section 2, we formally define the Fuzzy Identity-Based 
Encryption scheme and the symmetric encryption scheme. Then, the intractability assumptions are 
described in Section 3, and a description of our CPA secure Fuzzy IBE follows in Section 4. In Section 
5, we present a CCA secure Fuzzy IBE. We compare our schemes with known Fuzzy IBE schemes 



without random oracles from the literature in Section 6. Finally, we conclude in Section 7. 
2 Preliminaries 
We begin by presenting our definition of security, and then we follow with a brief review of symmetric 
encryption. 
2.1 Notation 

If x is a string, then x  denotes its length, while if S is a set then S denotes its size. If k N∈  
then 1k denotes the string of k ones. If S is a set then Rs S←  denotes the operation of picking an 
element s  of S uniformly at random. Unless indicated specifically, algorithms are randomized and 
polynomial time. By 1 2, ( , , )o o

Rz A x y⋅⋅⋅← ⋅⋅ ⋅ we denote the operation of running algorithm A  with 
inputs , ,x y ⋅ ⋅ ⋅ and access to oracles 1 2, ,O O ⋅ ⋅ ⋅ , and letting z be the output. An adversary is an 
algorithm or a tuple of algorithms. 
2.2 Security Model for Fuzzy Identity-Based Encryption 
A Fuzzy-IBE system consists of four algorithms [22].  
Setup: Setup establishes the PKG's parameter pk (public key) and mk (master key).  
KeyGen: KeyGen applies the master key to an identity to generate the private key for that identity.  
Enc: Enc uses the public key to encrypt a message to a given identity.  
Dec: Dec decrypts a ciphertext for an identity by using a private key of that identity to get back the 
message.  

Similar to the Fuzzy-sID-CPA game [22], a Fuzzy-full-identity-CCA game is captured by defining 

the following advantage function for an adversary 1 2( , )A A A= : 

, ,
1( ) Pr[ ( ) 1] 2

CCA CCA
FIBE A FIBE AAdv k Exp k≡ = −  

Where ( )CCA
FIBEExp k  is defined by the following experiment. Identities will be element subsets of some 

universeu . 

Experiment  ( )CCA
FIBEExp k  

( , ) ( , ,1 )k
Rpk mk setup u d←  

* ( ), ( , )
0 1 1 1( , , , ) ( )keygen Dec

Rm m St A pkα ⋅ ⋅ ⋅←  

{0,1}Rb ← ; * *( , , )R bE Enc pk mα←  

' ( ), ( , ) *
2 1( , )keygen Dec

Rb A E St⋅ ⋅ ⋅←  

If 'b b= Return 1 else return 0 

 1A choose the challenge identity *α where *
iγ α∩ < d . 

The oracle KeyGen( iγ ): 2A  can not request a KeyGen( iγ ) where *
iγ α∩ < d : The 

challenger runs KeyGen on iγ  and forwards the resulting private key to the adversary. 
The oracle Dec( ,i iEγ ): 2A  can not request a Dec query ,i iEγ< >where *

iγ α∩ ≥ d  and 
*

iE E= . Otherwise, the challenger runs KeyGen on iγ , decrypts iE  using the private key, and sends 
the result to the adversary. 
Definition 2.1  A Fuzzy-IBE system is ( , , , )ID Ct q q ε Fuzzy full-identity CCA secure if all t -time 
Fuzzy-full-identity-CCA adversaries making at most IDq  Key generation queries and at most 



Cq chosen ciphertext queries have advantage at most ε  in winning the above game. 
Definition 2.2  A Fuzzy-IBE system is ( , ,0, )IDt q ε Fuzzy-full-identity-CPA secure if all t -time 
Fuzzy-full-identity-CCA adversaries making at most IDq  Key generation queries and no chosen 
ciphertext queries have advantage at most ε  in winning the above game. 

Note that in contrast to the definition of Fuzzy selective-identity CPA game [22], we consider a 
full identity model instead of the selective-identity model, this is mean the adversary should not declare 
the challenge identity firstly in the full-identity model. 
2.3 Symmetric Encryption 

A symmetric encryption scheme [20] ( , )SE E D=  is specified by its encryption algorithm 
E (encrypting ( )m MsgSp k∈ with key ( )K kκ∈ ) and decryption algorithm D (returning 

( )m MsgSp k∈ or reject). Here we restrict ourselves to deterministic algorithms E and D . 
 The most common notion of security for symmetric encryption is formalized as following: 
CIPHERTEXT INDISTINGUISHABILITY. Let ( , )SE E D=  be a symmetric encryption scheme, 
and let 1 2( , )A A A= be an adversary. We define the following experiment: 

Experiment , ( )IND
SE AExp k  

( )RK kκ←  

0 1 1( , , ) (1 )k
Rm m St A←  

*{0,1}; ( )R R K bb c E m← ←  
*

2' (1 , , )k
Rb A St c←  

If 'b b= Return 1 else return 0 
The advantage of A in breaking the ciphertext indistinguishability security of SE is: 

, ,
1( ) Pr[ ( ) 1] 2

IND IND
SE A SE AAdv k Exp k= = −  

Definition 2.3 The symmetric encryption scheme SE has indistinguishable ciphertexts if for every 

adversary A the advantage , ( )IND
SE AAdv ⋅ is negligible. 

CIPHERTEXT AUTHENTICITY. In this work we are only interested in one-time authenticated schemes. 
These schemes are that no efficient adversary can produce a new valid ciphertext after seeing the 
encryption of a single message. 

Let ( , )SE E D= be a symmetric encryption scheme, and let 1 2( , )A A A= be an algorithm. We 
define the following experiment: 

Experiment , ( )CT IND
SE AAdv k−  

( )RK kκ←  

1( , ) (1 )k
Rm St A←  

( )Kc E m←  

2' (1 , , )k
Rc A St c←  

If 'c c≠ and ( ')kD C ≠⊥ return 1 else return 0 

The advantage of A in breaking the ciphertext integrity of SE is: 

, ,( ) Pr[ ( ) 1]CT IND CT IND
SE A SE AAdv k Exp k− −= =  

Definition 2.4 The symmetric encryption scheme SE has ciphertext integrity, if for every adversary A , 

the advantage , ( )CT IND
SE AAdv − ⋅ is negligible. 



AUTHENTICATED ENCRYPTION. A symmetric encryption scheme which is secure according to both 

Definition 2.3 and Definition 2.4 is secure in the sense of one time authenticated encryption (of 

AE-OT). 
CONSTRUCTIONS. In our IBE constructions we will require an abstract notion of algebraic symmetric 
encryption where the key-space κ consists of a cyclic group 2G . How to build such symmetric 
encryption schemes satisfying all required functionality and security is well known (following the 
encrypt-then-mac approach) from the following basic primitives: 

A (computationally secure) one-time symmetric encryption scheme with binary κ -bit keys (such 
as AES or padding with a PRNG) 
A (computationally secure) MAC (existentially unforgeable) with κ -bit keys 
A (computationally secure) key-derivation function that maps elements from 2G into 2κ -bit 
strings (such as SHA-1). 
We refer the reader to previous literature [17][20] for more details. 

3 Intractability assumptions 

3.1 Bilinear Maps 

We briefly review the facts about groups with efficiently computable bilinear maps. We refer the 

reader to previous literature [5] for more details. Let 1 2,G G  be groups of prime order p , and let g be 

a generator of 1G . We say 1G  has an admissible bilinear map, 1 1 2:e G G G× → , into 2G , if the 

following two conditions hold.  

The map is bilinear; for all ,a b we have ( , ) ( , )a b abe g g e g g= . 

The map is non-degenerate; we must have ( , ) 1e g g ≠ . 

3.2 The Truncated q ABDHE−  Assumption  

Let 1 1 2:e G G G× → is a bilinear map, we define the advantage function 
1 , ( )q abdhe

G BAdv k−  of an 

adversary B as 
2 1 2

Pr[ ( , , , , , ( , ) ) 1] Pr[ ( , , , , , ( , ) ) 1]
q q q q qx x z zx zx x x z zx rB g g g g e g g B g g g g e g g

+ + +

⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ =  

where , , , R px y z r ← ] . We say that the truncated q ABDHE−  assumption relative to generator 1G  

holds if 
1 , ( )q abdhe

G BAdv k−  is negligible for all B. 
4 CPA Secure Fuzzy IBE  
In this section we present our CPA secure Fuzzy IBE scheme from the q ABDHE−  assumption. It is 

based on the exponent inversion IBE scheme [3] in its full-identity secure variant of Gentry [15]. 
An important security requirement for a fuzzy IBE scheme which used for biometric applications 

and attribute-based encryption is the security against collusion attack, which implies that no group of 
users should be able to combine their keys in such a way that they can decrypt a ciphertext that none of 
them alone could [22]. In Sahai and Waters' scheme [22], each user's keys are generated using different 
random sharing of a secret, so keys generated for different users cannot be combined. We use the same 

technique to the Gentry's CPA secure IBE, let xu g← ; 1
1 ( , ) yv e g g← be the public key in Gentry's 

scheme, x is the master key; the private key for identity iid is
1

( , )
idi

i

i i

y s
x id

id ids d g
−

−= ; the ciphertext for 

identity iid  is 1 ( )iid rC ug −← , 2
r
TC g← ; 3 1( )rC v m← ⋅ . To prevent collusion in Fuzzy IBE, a 



private key for a user we will associate a random 1d − degree polynomial, 1( )q x , with each user with 

the restriction that each polynomial have the same valuation at point 0 , that is 1 1(0)q y= . The result 

is a user is able to perform decryption as long as he is able to match at least d  components of the 
ciphertext with their private key components. This may cause a new problem for a fuzzy 

identity 1{ , , }Iid idω = ⋅⋅ ⋅ , when using the same randomness r to encrypt the attribute part of fuzzy 

identity ω : 1, ( ) ;i

i

id r
id iC ug id ω−= ∈ , the adversary can easily from two attribute part of 

ciphertext 1

11, ( )id r
idC ug −= 2

21, ( )id r
idC ug −= to construct a new attribute part of ciphertext 

3

31, ( )id r
idC ug −= by 

1 3
2 11

3 1
2

( )
( )1,

1, 1,
1,

( )
id id

id idid
id id

id

C
C C C

−
−= . To solving this problem we use the 

different 
iidu for each attribute iid . A description of our CPA secure Fuzzy IBE follows in below. 

4.1 The Fuzzy IBEⅠ 

As in [22], let  1G  be bilinear group of prime order P , and let g be a generator of 1G . Additionally, 

let bilinear map 1 1 2:e G G G× → . We restrict the length of identities to be some fixed n. We also define 

the Lagrange coefficient Δi,S for Pi∈] and a set, S , as elements in P] :
,

( )
j S j i

x
∈ ≠

Δ = ∏i,S

x-j

i-j
. 

Identities will be sets of N  elements of *
P] . Let *

1: pTCR G →]  be a target collision-resistant 

hash function. Our construction follows: 

Setup( , ,1 )ku d  

 Parse u as 1{ , , }Nid id⋅ ⋅ ⋅  

1 2, , ,i R px x y y ← ] ; xu g← ; idi

i

x
idu g← ; 1

1
y
Tv g←  

1 1( , , , )
Nid idpk u u v← ⋅⋅⋅  

1 1( , , , , )
Nid idmk x x x y← ⋅⋅⋅  

Return ( , )pk mk  

KeyGen( , )mk ω  

Two 1d − degree polynomials 1( )q x  and 3 ( )q x  are randomly chosen. 

Parse ω as 1{ , , }Iid id⋅ ⋅ ⋅  

For iid ω∈  do 1, 3 ( )
iid is q id← ;

1 1,( )

1,

i idi

id ii

i

q id s
x id

idd g
−

−←  

do 0 R ps ← ] ;
1 1 0(0)

0

y q s
xd g

− −

←  



1, 1,{( , )  }
i i iid id idsk s dω ω∈←  

Return skω  

Enc( , ', )pk mω  

Parse 'ω as 1{ , , }Lid id⋅ ⋅ ⋅  

R pr ← ] ; 0
rC u← ; 1, ( ) ; 'i

i i

id r
id id iC u g id ω−← ∈  

2
r
TC g← ; 1( )rK v← ; 3C m K← ⋅  

11, 1, 2 3( ', , , , , )
Lid idE C C C Cω← ⋅⋅⋅  

Return E  

Dec( , )Eω  

Parse E as 
11, 1, 2 3( ', , , , , )

Lid idC C C Cω ⋅⋅ ⋅  

Parseω as 1{ , , }Iid id⋅ ⋅ ⋅  

Parse skω as 1, 1, 2, 2,{( , , , ) }
i i i i iid id id id ids d s d ω∈  

Randomly choose '&S S dω ω⊆ ∩ =  

1, , 0(0)
1, 1, 2 0 0 2( ( , ) ) ( , )id id Si i

i i

i

s s
id id

id S

K e C d C e C d CΔ

∈

←∏ ; 3Cm K←  

Return m  
We now demonstrate the accuracy of the scheme, i.e. that the m  computed in the encryption 

algorithm matches the m computed in the decryption algorithm. 
Correctness: 

1, , 0

1 1,
1 1 0

1, , 0

1 1,

3
(0)

1, 1, 2 0 0 2

3
( ) (0)

(0)

3
( )

( ( ( , ) ) ( , ) )

( ( (( ) , ) ( , ) ) ( , ) ( , ) )

( ( (( ) ,

id id Si i

i i

i

i idi

id i id id Si i i i

i

i

i idi

id i idi i

s s
id id

id S

q id s y q s
x id rsid rsr r x

id
id S

q id s

x id xr

Cm
e C d C e C d C

C

e u g g e g g e u g e g g

C

e g g

Δ

∈

−
− −

− Δ−

∈

−

−

=

=

=

∏

∏

1 1 0
1, , 0

, 1 1 11 1 1

1

(0)
(0)

3 3
(0) (0) ( (0))( ) ( (0))

3

) ( , ) ) ( , ) ( , ) )

( ( , ) ( , ) )( ( ( , ) ) ( , ) )

( , )

i id id Si i

i

id Si i

i

y q s
id rs rsxr x

id S

rq r y qrq id r y q

id S

ry

e g g e g g e g g

C C
e g g e g ge g g e g g

C me g g

− −
− Δ

∈

Δ −−

∈

= =

= =

∏

∏

 

4.2 Security 

Theorem 4.1 Assume TCR is a target collision resistant hash function. Let IDq  is the number of key 

generation queries for identity iγ . Under the truncated q ABDHE−  assumption relative to 



generator 1G , the above Fuzzy IBE scheme is IND-CPA secure in the full-identity model. In particular, 

we have
1 1, ,( ) ( )CPA q abdhe

FIBE t G tAdv k Adv k−≤ � , exp( max )ID i it t q q tο γ= − ⋅ ⋅ ⋅� where expt is the time 

required to exponentiate in 1G . 
First we give some main points of intuition behind the reduction. Then we follow with a more 

formal proof in Appendix A. 
We will show that we can reduce the q ABDHE−  problem to the problem of breaking our 

encryption scheme. That means we are given 
2

( , , , , , , )
q qx x z zxg g g g g T

+

⋅ ⋅ ⋅ and asked to distinguish 

1

( , )
qz xT e g g
+

=  from a random element in 2G . We assume there exists an adversary that can break 

the security properties of our Fuzzy IBE system (as defined in Section 2) and we show that we could 
use such an adversary to solve this problem.  

The difficult is to answer the key generation query and simulate the challenge ciphertext 

using
2

( , , , , , , )
q qx x z zxg g g g g T

+

⋅ ⋅ ⋅ . We picks a random degree q polynomial 1( )f X  and defines 

xu g= , 1 ( )
1 ( , ) f xv e g g= . idi i

i

e id
idu u g= where idi

e is randomly chosen from *
p] . 

KeyGen( , )mk γ for identity  γ< > : 'Γ can be any set such that ' γΓ ⊆ , ' 1dΓ = − , 

and ' {0}S = Γ ∪ . 

1) For 'iid ∈Γ : we choose a random element 1, iid R ps ← ] , and pick a random 

degree q polynomial 1, ( )
iidf X  such that 1, 1,(0)

i iid idf s= , then define a degree 1q −  polynomial 

1, 1,
1,

( )
( ) i i

i

id id
id

f X s
F X

X
−

= . Let 1,

1
( )

1, ( )id idi i

i

F x e
idd g← . The intuition behind these assignments is that 

we are implicitly choosing two random 1d − degree polynomials 1( )q Y and 3 ( )q Y  by choosing its 

value for the 1d −  points in 'Γ  randomly by setting 

1 1,( ) ( )
ii idq id f x= and 3 1, 1,( ) (0)

i ii id idq id f s= = , In addition to having 

1 1 1(0) ( )q y f x= = and 3 1(0) (0)q f= . 

2) We also need to calculate the decryption key values for all ' 'iid γ∈ −Γ . We calculate these 

points to be consistent with our implicit choice of 1( )q Y and 3 ( )q Y . 

For generation of the challenge ciphertext for *α , we proceed as follows. It define a q degree 

polynomial
2

* 1( )
q

qXF X X
X

+
+= = , let * *( )r zF x= , 

2 *

*
*

1,
( )

q
idi

i

ezx
id

C g
+

= , *
2C T= , 



*
* *1, ,

* *
*

(0)* * * *
21, 1,

( ( , )( ) )id id Si i

i i
i

s

id id
id S

K e C d C
Δ

∈

= ∏ , * *
3 bC M K= ⋅ where b is a random bit.  

We refer the reader to Appendix A for more details. 
5 CCA Secure Fuzzy IBE 

We now present an efficient Fuzzy IBE system that is full-identity CCA secure without random 
oracles under the truncated decision q ABDHE−  assumption. It is based on modification of CCA 

secure Gentry's IBE which introduced by Kiltz and Vahlis [20].  
5.1 The Fuzzy IBE Ⅱ 

As in [22], let  1G  be bilinear group of prime order P , and let g be a generator of 1G . 

Additionally, let bilinear map 1 1 2:e G G G× → . We restrict the length of identities to be some fixed n. 

We also define the Lagrange coefficient Δi,S  [22] for Pi∈] and a set, S , as elements in 

P] :
,

( )
j S j i

x
∈ ≠

Δ = ∏i,S

x-j

i-j
. Identities will be sets of N  elements of *

P] . Let *
1: pTCR G →]  be a 

target collision-resistant hash function. Our construction follows: 

Setup( , ,1 )ku d  

 Parse u as 1{ , , }Nid id⋅ ⋅ ⋅  

1 2, ,i R px y y ← ] ; idi

i

x
idu g← ; 1

1
y
Tv g← ; 2

2
y
Tv g←  

1 1 2( , , , , )
Nid idpk u u v v← ⋅⋅⋅  

1 1 2( , , , , )
Nid idmk x x y y← ⋅⋅⋅  

Return ( , )pk mk  

KeyGen( , )mk ω  

Four 1d − degree polynomials 1( )q x , 2 ( )q x , 3 ( )q x and 4 ( )q x are randomly chosen such that 

1 1(0)q y=  and 2 2(0)q y= . 

Parse ω as 1{ , , }Iid id⋅ ⋅ ⋅  

For iid ω∈  do 1, 3 ( )
iid is q id← , 2, 4 ( )

iid is q id←  
1 1,( )

1,

i idi

id ii

i

q id s
x id

idd g
−

−← ; 
2 2,( )

2,

i idi

id ii

i

q id s
x id

idd g
−

−←  

1, 1, 2, 2,{( , , , ) }
i i i i iid id id id idsk s d s dω ω∈←  

Return skω  

Enc( , ', )pk mω  

Parse 'ω as 1{ , , }Lid id⋅ ⋅ ⋅  

R pr ← ] ; 1, ( ) : 'i

i i

id r
id id iC u g for id ω−← ∈ , 2

r
TC g←  

11, 1, 2( , , , )
Lid idt TCR C C C← ⋅⋅⋅ , 1 2( )t rK v v← , 3 ( )kC E m←  



11, 1, 2 3( ', , , , , )
Lid idE C C C Cω← ⋅⋅⋅  

Return E  

Dec( , )Eω  

Parse E as 
11, 1, 2 3( ', , , , , )

Lid idC C C Cω ⋅⋅ ⋅ where 1' ( , , )Lid idω = ⋅⋅ ⋅  

Parse ω as 1{ , , }Iid id⋅ ⋅ ⋅  

Parse skω as 1, 1, 2, 2,{( , , , ) }
i i i i iid id id id ids d s d ω∈  

Randomly choose '&S S dω ω⊆ ∩ =  

11, 1, 2( , , , )
Lid idt TCR C C C← ⋅⋅⋅  

,1, 2,

1,

(0)

1, 2, 2( ( , ) ) id Siid idi i

i id ii
i

s t st
id id

id S

K e C d d C
Δ+

∈

←∏  

3( )Km D C←  

Return m  

We now demonstrate the accuracy of the scheme, i.e. that the symmetric key K computed in the 
encryption algorithm matches the key K computed in the decryption algorithm. 

Correctness: 

1, 2, ,

1,

1 1, 2 2,

1, 2, ,

1 1, 2 2

(0)
1, 2, 2

( ) ( )
( ) (0)

( ) ( )

( ( , ) )

( (( ) ,( ) ) ( , ) )

( ( ,( )

id id id Si i i

i id ii
i

i id i idi i

id i id i id id id Si i i i i i

i

i

i id ii

s t st
id id

id S

q id s q id s
x id x id s t s rid r t

id
id S

q id s q id sr t

K e C d d C

e u g g g e g g

e g g g

+ Δ

∈

− −

− − + Δ−

∈

− −

=

=

=

∏

∏
, 1, 2, ,

1, 2 , 1, 2, ,1 2

, 1
,1 2

( ) (0)

( ) (0)( ) ( )

( (0) ( )
(0)( ) ( )

) ( , ) )

( ( ,( ) ) ( ,( ) ) ( , ) )

( , ) ( ,

id id id id Si i i i

i

id id id id id Si i i i i i i

i

id S ii
id Si i i

i

s t s r

id S

s s s t s rq id q idr t r t

id S

q id t
q id t q idr r

id S

e g g

e g g g e g g g e g g

e g g e g g

+ Δ

∈

− − + Δ

∈

Δ +
Δ+

∈

=

= =

∏

∏

∏
, 2

1 2

(0) ( ))

1 2

)

( , ) ( )

id S ii
id Si

q id

y t yr t re g g v v

∈

Δ

+

∑

= =

 

 
5.2 Security 
Theorem 5.1 Assume TCR is a target collision resistant hash function and ( , )SE E D=  is an 

AE-OT-secure symmetric scheme. Let IDq  is the number of key generation queries for 

identity iγ and Cq  is the number of decryption queries. Under the truncated q ABDHE−  assumption 

relative to generator 1G , the above Fuzzy IBE scheme is IND-CCA secure in the full-identity model. In 

particular, we have 

2 1, , , , ,( ) ( ) ( ) 2 ( ) ( )CCA q abdhe TCR CT INT IND C
FIBE t CG t TCR t SE t SE t

qAdv k Adv k Adv k q Adv k Adv k p
− −≤ + + ⋅ ⋅ + +� � � �  



exp( max )ID i it t q q tο γ= − ⋅ ⋅ ⋅� where expt is the time required to exponentiate in 1G . 

The proof of Theorem 5.1 will be given in Appendix B. We give some intuition why the scheme is 
IND-CCA secure. The idea comes from [20]. As we can known, the proof of Gentry[15] can be used to 

show that consistent decryption queries (well-formed ciphertexts) for the challenge identity *α are 
basically useless for an adversary attacking the scheme (unless it can efficiently solve the 
q ABDHE−  problem). However, inconsistent decryption queries (ill-formed ciphertexts) with 

respect to the challenge identity *α  may leak information about the hidden bit b . As the same 
argument as Cramer-Shoup, the notion of linear independence. More specifically, when one expresses 
the adversary’s knowledge (from the public key, queries, etc.) as equations in the simulator’s private 
key variables, one may ask whether a target equation that the adversary is trying to solve is linearly 
independent to the equations in its knowledge base; if so, then in certain circumstances, the adversary 
can be said to have an unconditionally negligible probability of finding a solution to the target equation. 

This will be come clearer below, the user secret-key * * * * * * *
* * * *
1, 1, 2, 2,

{( , , , ) }
i i i i iid id id id id

sk s d s d
α α∈
= come 

from the internal random polynomials 3 ( )q Y and 4 ( )q Y  that is initially hidden from the adversary’s 

view. During the simulation of the IND-CCA environment the challenge ciphertext will leak (in an 

information-theoretic sense) one linear equation on the hidden random polynomials 3 ( )q Y and 4 ( )q Y . 

Decryption queries of inconsistent ciphertexts will use a key K  for symmetric decryption that is 

computed as a linear equation in 3 ( )q Y and 4 ( )q Y , which is linearly independent from the equation 

the adversary knows. Hence, one single key K is uniformly distributed over 2G . By the ciphertext 

authenticity property of SE  the adversary will not be able to come up with an inconsistent 

ciphertext
11, 1, 2 3( ', , , , , )

Lid idE C C C Cω= ⋅⋅ ⋅  where * ' dα ω∩ ≥ such that 3( )KD C  does not reject. 

Consequently, all inconsistent ciphertext will get rejected by the scheme. 
 
6 Comparison 
In this section we compare our schemes with known Fuzzy IBE schemes without random oracles from 
the literature.  
6.1 Efficiency 

Table1 summarizes the size of various parameters and the cost of computing sub-algorithms of the 

proposed fuzzy IBE schemes and the Sahai and Waters' construction[22]. 

1SW : Sahai and Waters' simple (basic) construction. 

2SW : Sahai and Waters' "large universe" construction. 

1Our : Our CPA secure fuzzy IBE scheme from Section 4. 

2Our : Our CCA secure fuzzy IBE scheme from Section 5. 
From the table 1 it is observed that our CPA secure fuzzy IBE scheme from Section 4 gives 

comparable generalization performance as that of Sahai and Waters' "large universe" construction at 
full identity model. Further, the results show that our fuzzy IBE scheme from Section 5 gives full 



identity CCA secure than the Sahai and Waters' construction which is selective identity CPA secure 
albeit to a more private key size. 
 

 Public key size Ciphertext size Private key size Encryption cost Decryption cost model

1SW  1 2u G G⋅ +  1 2n G G+  1n G  
1 2G GnT T+  ed T⋅  

sID 

2SW  1( 2)u G+  1 2( 1)n G G+ +  12n G  
1 2

( 1) G G en T T T+ + +  2 ed T⋅  
sID 

1Our  1 2u G G⋅ +  1 22n G G+  1( )pn G + ]   
1 2

2G GnT T′ +  2
( )G ed T T+  full 

2Our  1 22u G G⋅ +  1 2( 1)n G G+ +  12 ( )pn G + ]  
1 2G GnT T′ +  

1 2
( )G G ed T T T′ + +

full 

 

Table1: Comparisons of Various Fuzzy IBE Schemes without random oracles. Identities will be 

element subsets of some universe u . Abbreviations: S - the bit-length of an element in set (or group) 

S ; n -the number of elements in an identity; 
1GT and

2GT -the computation time for a single 

exponentiation in 1G and 2G ; 
1GT ′ and

2GT ′ -the computation time for a single multiplication 

in 1G and 2G ; eT -the computation time for a single pairing operation; d -an error tolerance parameter. 
6.2 Remarks on the Tightness of the Reduction 
In the reduction, B's success probability and time complexity are the same as A's, except for additive 

factors exp( max )ID i iq q tγ⋅ ⋅ ⋅ . Note that in our scheme there is no restriction that 1IDq q+ ≤ . Due 

to the recent attacks by Cheon [11] it seems reasonable that the q ABDHE− assumption is q  

times less secure than the BDDH assumption. So, we stress that our IBE system has a tight security 
reduction in the full identity model. Being compared with Sahai and Waters' scheme which is secure 

in the full-identity model with a factor of 
u
n

⎛ ⎞
⎜ ⎟
⎝ ⎠

in the reduction, our scheme provides a 

non-exponential loss of security in the full model. 
7 Conclusions 
In this paper, we present the first and efficient CPA secure Fuzzy IBE scheme in the full identity model 
which gives comparable generalization performance as that of Sahai and Waters' "large universe" 
construction and a tightness reduction. We give a standard-model security proof reducing the 
intractability of decisional augmented bilinear Diffie-Hellman exponent ( q ABDHE− ) problem to 

breaking the CPA security of our scheme without random oracles .  
In addition, the same technique is used to the modification of CCA secure Gentry's IBE which 

introduced by Kiltz and Vahlis to get the CCA secure Fuzzy IBE in the full-identity model. 
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A Proof of Theorem 4.1 
Proof: Suppose there exists a polynomial-time adversary, A, that can attack our scheme in the full-ID 
model. We build a simulator B that can play a truncated q ABDHE−  game. 

The simulation proceeds as follows: We first let the challenger set the groups 1G and 2G with an 

efficient bilinear map e  and a generator g  of 1G . Adversary B inputs a truncated q ABDHE−  

instance
2

( , , , , , , )
q qx x z zxg g g g g T

+

⋅ ⋅ ⋅ , and has to distinguish 
1

( , )
qz xT e g g
+

=  from a random element 

in 2G . We assume adversary A makes exactly IDq key generation queries, all with distinct identities. 

Setup: B picks a random degree q polynomial 1( )f X  and defines xu g= , 1 ( )
1 ( , ) f xv e g g= . 

idi i

i

e id
idu u g=  where

iide is randomly chosen from *
p] , using the values , , ,

qx xg g g⋅ ⋅ ⋅ . Note that 

this does not change the distribution of the public-key
1 1( , , , )

Nid idpk u u v← ⋅⋅⋅ . This implicitly defines 

the secret key values as 1 1( )y f x= .  

Phase 1: KeyGen( , )mk γ for identity  γ< > :  

Suppose A requests a private key γ . Firstly, B chooses a random element 0 R ps ← ] . B picks a 

random degree q polynomial 1 '( )f X  such that 1 1 0'(0) (0)f f s= − , then defines a degree 1q −  

polynomial 1 1 0
1

( ) '( )( ) f X f X sF X
X

− −
= and let 1 ( )

0
F xd g← . 

Secondly, we define three sets ', SΓ  in the following manner: 'Γ can be any set such 

that ' γΓ ⊆ , ' 1dΓ = − , and ' {0}S = Γ ∪ . Next, we define the decryption key 

components 1, 1,( , )
i iid ids d . 

For 'iid ∈Γ as: B chooses a random elements 1, iid R ps ← ] , and picks a random 

degree q polynomial 1, ( )
iidf X  such that 1, 1,(0)

i iid idf s= , then defines a degree 1q −  

polynomial 1, 1,
1,

( )
( ) i i

i

id id
id

f X s
F X

X
−

= and let 1,

1
( )

1, ( )id idi i

i

F x e
idd g← . 



Correctness:
1, 1, 1, 1, 1, 1,1, 1,

1,

( ) ( ) ( )1 1( )
( )

1, ( ) ( )
id id id id id idi i i i i iid idi i

id id id id id i i id ii i i i i i

i

f x s f x s f x sf x s
F x e e e x e x id id x idx

idd g g g g g
− − −−

+ − −= = = = = . 

The intuition behind these assignments is that we are implicitly choosing two random 1d − degree 

polynomials 1( )q Y and 3 ( )q Y  by choosing its value for the 1d −  points in 'Γ  randomly by setting 

1 1,( ) ( )
ii idq id f x= and 3 1, 1,( ) (0)

i ii id idq id f s= = , In addition to having 

1 1(0) '( )q f x= and 3 1(0) '(0)q f= . 

The simulator also needs to calculate the decryption key values for all ' 'iid γ∈ −Γ . We calculate 

these points to be consistent with our implicit choice of 1( )q Y and 3 ( )q Y .  

We define a degree 1q −  polynomial: 

 
1 1 0, 1, 1, ,

'
1, '

( ( ) (0)) ( ') ( ( ) (0)) ( ')
( )

i i i

i

i

S i id id id S i
id

id

f X f id f X f id
F X

X
∈Γ

− Δ + − Δ
=

∑
  

The key components for ' 'iid γ∈ −Γ are calculated as:  

1, ' 1 0, 1, , 1 0, 1, ,
' '

(0) ( ') ( ') (0) ( ') (0) ( ')
i i i i i

i i

id S i id id S i S i id id S i
id id

s f id s id f id f id
∈Γ ∈Γ

= Δ + Δ = Δ + Δ∑ ∑  

1, ' '

1
( )

1, ' ( )id idi i

i

F x e
idd g= . 

Correctness: 

1 1 0, 1, 1, ,
'

1, ' ' '

1 0 , 1, , 1 0, 1, ,
' '

( ( ) (0)) ( ') ( ( ) (0)) ( ')
1 1

( )
1, '

{ ( ) ( ') ( ) ( ')} { (0) ( ') (0) ( ')}

( ) ( )

( )

S i id id id S ii i i
idi

id id idi i i

i

S i id id S i S i id id S ii i i i
id idi i

f x f id f x f id

F x e ex
id

f x id f x id f id f id

x

d g g

g

∈Γ

∈Γ ∈Γ

− Δ + − Δ

Δ + Δ − Δ + Δ

∑

= =

∑ ∑

= '

1, ' 1, ' 1, 1, ' 1, ' 1, '1, ' 1, '

' ' ' '

1

( ) ( ) ( )1( )
' ' '( )

idi

id id id id id idi i i i i iid idi i
id id id i i id ii i i i

e

f x s f x s f x sf x s
e e x e x id id x idxg g g g

− − −−
+ − −= = = =

 

Therefore, the simulator is able to construct a private key for the identityγ . Furthermore, the 

distribution of the private key for  γ  is identical to that of original scheme since our choices of 

1 1,( ) ( )
ii idq id f x= and 3 1, 1,( ) (0)

i ii id idq id f s= = induce two random 1d − degree 

polynomials 1( )q Y and 3 ( )q Y  and our construction of the private key components 1, 1,( , )
i iid ids d . 

Challenge: A outputs challenge identity *α  where *
iγ α∩ < d for all KeyGen query for iγ in 

1A and two messages 0m and 1m , B generates a random bit {0,1}b∈ . For generation of the challenge 



ciphertext for *α , B proceeds as follows. Parse *α as * *
1{ , , }Jid id⋅ ⋅ ⋅ .The experiment first internally 

generates a random instance of the user secret key * * * * *
* * *
1, 1,

{( , ) } KeyGen( , )
i i i

Rid id id
sk s d mk

α α
α

∈
= ← .  

It define a q degree polynomial
2

* 1( )
q

qXF X X
X

+
+= = , let * *( )r zF x= , 

2*
0

qzxC g
+

= ,
2 *

*
*

1,
( )

q
idi

i

ezx
id

C g
+

= , *
2C T← , The symmetric key *K is then computed as in decryption 

as: 
*

** *1, , 0
* *

*

(0)* * * * * * *
2 0 0 21, 1,

( ( , )( ) ) ( , )( )id id Si i

i i
i

s s
id id

id S

K e C d C e C d C
Δ

∈

= ∏ . Finally, *
3C is computed as 

* *
3 bC m K← ⋅ and b is a random bit.  

Return the ciphertext * *
1 *

* * * * * *
2 31, 1,

( , , , , , )
id id

E C C C C
α

α= ⋅ ⋅ ⋅ . 

Correctness:  

* * 2* ( ) ( )
0 ( )

qzF x x zF x zxC u g g
+

= = =  

2
* *

* * * * 2* * * *

* *
* ( ) ( ) ( )
1,

( ) ( ) ( ) (( ) ) ( )
q

qi iid id id idi i i i i

i i

xze x id id e x e eid zF x zF x zF x x zxx
id id

C u g g g g g
+

++ −−= = = = =  

2
* * 1* ( )

2 ( , ) ( , ) ( , )
q

q
xzr zF x zxx

TC g e g g e g g e g g T
+

+

← = = = =  

Note that the challenge ciphertext can be entirely computed from B’s input values from 

2

( , , , , , , )
q qx x z zxg g g g g T

+

⋅ ⋅ ⋅ .  

Phase 2: A makes key generation queries, A  can not request a KeyGen( iγ ) where *
iγ α∩ < d , 

and B responds as in Phase 1. 

Guess: Finally, the adversary outputs a bit 'b , B outputs 1 if 'b b=  and 0, otherwise. 

 
B Proof of Theorem 5.1 
A be an adversary on the IND-CCA security of Fuzzy IBE in the full identity model. We will consider a 

sequence of games, Game 1, Game 2, ⋅ ⋅ ⋅ , each game involving A. Let iX be the event that the 

adversary succeeds in Game i, it holds that 'b b= . 

Let Dec( , )Eω is a decryption query, Parse E as 
11, 1, 2 3( ', , , , , )

Lid idC C C Cω ⋅⋅ ⋅  

where 1' ( , , )Lid idω = ⋅⋅ ⋅ , parse ω as 1{ , , }Iid id⋅ ⋅ ⋅ , parse skω as 1, 1, 2, 2,{( , , , ) }
i i i i iid id id id ids d s d ω∈ . 

'&S S dω ω⊆ ∩ = is randomly chosen for decryption. For a tuple
11, 1, 2( , , , )

Lid idC C C⋅ ⋅ ⋅ , we 



consider 1, 1,log idii iidi
id idu g

r C−= , 2 2log
Tgr C= , where 

11, 1, 2( , , , )
Lid idt TCR C C C← ⋅⋅⋅ . We 

say
11, 1, 2( , , , )

Lid idC C C⋅ ⋅ ⋅ relative to S  is consistent where &S S dω⊆ = if 1, 2{ }
i iid id Sr r ∈= and 

inconsistent otherwise.  

We assume adversary A makes exactly IDq key generation queries, all with distinct identities. 

We further assume that A makes exactly Cq  decryption queries Dec( , )Eω . 

Game1. Let Game1 be the CCA security experiment run with adversary A. Our goal is to put an upper 

bound on , , 1
1( ) Pr[ ]
2

CCA
Fuzzy IBE A tAdv k X− ≡ −  

Game 2. We now change the generation of the challenge ciphertext * *, Eα< >  as follows. Parse 

*α as * *
1{ , , }Jid id⋅ ⋅ ⋅ where *J α= . The experiment first internally generates a random instance of the 

user secret key * * * * * * *
* * * * *
1, 1, 2, 2,

{( , , , ) } KeyGen( , )
i i i i i

Rid id id id id
sk s d s d mk

α α
α

∈
= ← . Then it picks a random 

1 pr ∈] and for * *
iid α∈ computes 

*
1

* *
*
1,

( )i

i i

id r
id id

C u g −← ; 1*
2 ( , )rC e g g← .                                 (1) 

The symmetric key *K is then computed as in decryption as: 
* * *

* * * *1, 2, ,
* * *

*

(0)* * * * *
21, 1, 2,

( ( , ( ) )( ) )id id id Si i i

i i i
i

s t st
id id id

id S

K e C d d C
+ Δ

∈

= ∏                     (2) 

where * *
1

* * * *
21, 1,

( , , , )
Jid id

t TCR C C C← ⋅⋅⋅ . Finally, *
3C is computed as *

*
3 ( )bk

C E m← . Since this 

change is purely conceptual, 

2 1Pr[ ] Pr[ ]X X= . 

Game 3. In this game the experiment stops if the adversary queries the challenge ciphertext in the first 

phase. Since *
2C is generated as 1*

2 ( , )rC e g g← , independently from A’s view until it sees the challenge 

ciphertext, we have 

3 2Pr[ ] Pr[ ] CqX X p− ≤  

Game 4. For generation of the challenge ciphertext the experiment proceeds as follows. The 

experiment now generates  *
2C  from Equation (1) by picking 2 1/{ }pr r∈] and computing 

2*
2 ( , )rC e g g← . 

Lemma B.1 3 4 ,Pr[ ] Pr[ ] ( )q abdhe
G tX X Adv k−− ≤ �  



Proof: We show that there exists an adversary B with  B At t≈  such 

that 2 4, ( ) Pr[ ] Pr[ ]q abdhe
G tAdv k X X− = −� . Adversary B inputs a truncated q ABDHE−  instance 

2

( , , , , , , )
q qx x z zxg g g g g T

+

⋅ ⋅ ⋅ ,                                       (3) 

and has to distinguish 
1

( , )
qz xT e g g
+

=  from a random element in 2G . For key generation B 

picks two random degree q polynomial   1( )f X  , 2 ( )f X and defines 

xu g= , idi i

i

e id
idu u g= , 1 ( )

1 ( , ) f xv e g g= , 2 ( )
2 ( , ) f xv e g g=  

Using the values , , ,
qx xg g g⋅ ⋅ ⋅ from Equation (3). Note that this does not change the distribution 

of the public-key
1 1 2( , , , , )

Nid idpk u u v v← ⋅⋅⋅ . This implicitly defines the secret key values as 

1 1( )y f x= and 2 2 ( )y f x= .  

KeyGen( , )mk γ for identity  γ :  

We generate the private key components 1, 1,( , )
i iid ids d correctly as the same as the CPA game, using 

the same technique we also get the private key components 2, 2,( , )
i iid ids d . So, using the values 

, , ,
qx xg g g⋅ ⋅ ⋅ from Equation (3), we can construction of the private key 

components 1, 1, 2, 2,( , , , )
i i i iid id id ids d s d where iid γ∈ . 

For generation of the challenge ciphertext for *α : B proceeds as follows. It defines the q degree 

polynomial 
2

* 1( )
q

qXF X X
X

+
+= = , let * * ( )r zF x= , 

2 *

*
*

1,
( )

q
idi

i

ezx
id

C g
+

=  

*
2C T← , *

*
3 ( )R bK

C E M← , 

where the challenge key *K is computed from * *
2 3,C C  as in Equation (2) and  b is a random bit.  

* *
1 *

* * * * * *
2 31, 1,

( , , , , , )
id id

E C C C C
α

α= ⋅ ⋅ ⋅ ; Return *E . 

Correctness: 
2

* *
* * * * 2* * * *

* *
* ( ) ( ) ( )
1,

( ) ( ) ( ) (( ) ) ( )
q

qi iid id id idi i i i i

i i

xze x id id e x e eid zF x zF x zF x x zxx
id id

C u g g g g g
+

++ −−= = = = =  

2
* * 1* ( )

2 ( , ) ( , ) ( , )
q

q
xzr zF x zxx

TC g e g g e g g e g g T
+

+

← = = = =  

Note that the challenge ciphertext can be entirely computed from B’s input values from Equation 



(3). Adversary B runs 2A  on input *( , )E St , answering all oracle queries as above, and inputting a bit 

'b , Finally, B outputs1 if 'b b=  and 0, otherwise. 

We make the following claim that completes the proof of the lemma: if 
1

( , )
qz xT e g g
+

=  then A’s 

view is the same as in Game 2. If 2T G∈ , then A’s view is the same as in Game 4. 

To prove the claim we have to consider the distribution of the challenge ciphertext in Games 2 and 

4. Note that the element 2T G∈  only leaks through B’s simulation in the element *
2C from the 

challenge as ciphertext. We write *
*
1, iid

C : 

* *
* *2 * * ** * *

1
* * *

* ( ) ( ) ( )
1,

( ) ( ) ( ) ( ) ( )
q i iid id idi i i i i

i i i

e e x e x id id id id rzx zF x zF x zF x
id id id

C g g g u g u g
+ + − − −= = = = = , for 

*
1 ( )r zF x= . If

1

( , )
qz xT e g g
+

= , then 

1 *
1* ( )

2 ( , ) ( , ) ( , )
q rzx zF xC T e g g e g g e g g
+

= = = = . 

Game 5. Let * *
1

* * * * * *
2 31, 1,

( , , , , , )
Jid id

E C C C Cα= ⋅⋅ ⋅  be the challenge ciphertext for *α  and let 

* *
1

* * * *
21, 1,

( , , , )
Jid id

t TCR C C C← ⋅⋅⋅ . In this game the experiment changes the answers to the decryption 

oracle as follows. If, for a decryption query Dec( , )Eω  

where
11, 1, 2 3( ', , , , , ); '

Lid idE C C C C Lω ω= ⋅⋅ ⋅ = it holds 

that * * 11

* * *
2 1, 1, 21, 1,

( , , , ) ( , , , )
LJ

id idid id
C C C C C C⋅ ⋅ ⋅ ≠ ⋅ ⋅ ⋅  but 

* * 11

* * * *
2 1, 1, 21, 1,

( , , , ) ( , , , )
LJ

id idid id
TCR C C C t t TCR C C C⋅ ⋅ ⋅ = = = ⋅⋅ ⋅  then the experiment aborts. We claim 

that there exists an adversary F with F At t≈  such that 

 5 4 ,Pr[ ] Pr[ ] ( )TCR
TCR FX X Adv k− ≤  

Game 6. Game 6 is like Game 5 with the difference that all decryption queries 

1

*
1, 1, 2 3Dec( , ( ', , , , , ))

Lid idE C C C Cα ω= ⋅⋅ ⋅  for which 
1 ,1 ,1 2( , , , )

Lid idC C C⋅ ⋅ ⋅  relative to S  is 

inconsistent where * &S S dω α⊆ ∩ =  is randomly chosen get rejected. 

Lemma B.2 6 5 ,Pr[ ] Pr[ ] ( )IND
C SE tX X q Adv k− ≤ �  

Proof: Let * * * * * * *
* * * *
1, 1, 2, 2,

{( , , , ) }
i i i i iid id id id id

sk s d s d
α α∈
=  be the uniquely defined and fixed user 

secret-key for *α . We first claim that in the view of adversary A, one single decryption query 

1

*
1, 1, 2 3, ( ', , , , , )

Lid idE C C C Cα ω< = ⋅⋅ ⋅ >  for which 
11, 1, 2( , , , )

Lid idC C C⋅ ⋅ ⋅ is inconsistent relative to 



S where *' &S S dω α⊆ ∩ =  yields a uniform symmetric key 2K G∈ . We say
11, 1, 2( , , , )

Lid idC C C⋅ ⋅ ⋅  

relative to S  is consistent if 1, 2{ }
i iid id Sr r ∈= and inconsistent otherwise. The consequence is as 

follows. In Game 5 the decryption oracle returns ⊥ (reject) if 3( )KD C =⊥ . Since K  is uniform 

in 2G , this happens exactly with probability 
2' ' 3Pr [ ( ) ]

RK G KD C← =⊥ which equals the advantage of a 

suitable adversary in the ciphertext integrity experiment of the symmetric ciphertext SE . On the other 
hand, in Game 6 such a query gets always rejected. A standard argument (Kiltz 2008) shows that 

considering all Cq decryption queries one obtains 

6 5 ,Pr[ ] Pr[ ] ( )CT INT
C SE tX X q Adv k−− ≤ �  

To prove the above claim, consider the hidden random polynomials 3 ( )q Y and 4 ( )q Y  for 

generating the user secret key * * * * * * *
* * * *
1, 1, 2, 2,

{( , , , ) }
i i i i iid id id id id

sk s d s d
α α∈
= that is used by the experiment 

when generating the challenge ciphertext. Consider the symmetric key *K  which is obtained from the 

inconsistent challenge ciphertext (
* *

1
* *

*
1,

( )i

i i

id r
id id

C u g −= ,
*
2*

2 ( , )rC e g g= ) by computing 

* * *
* * * *1, 2, ,

* * *
*

* * * * * * *
1 1 2 * 2 1 3 4,

*

* * * * *
1 1 2 2 1 3 4

(0)* * * * *
21, 1, 2,

( ) ( (0)( )( ( ) ( )))

( ) ( )( (0) (0))

( ( , ( ) )( ) )

( , )

( , )

id id id Si i i

i i i
i

i iid Si
id Si

s t st
id id id

id S

r y t y r r q id t q id

r y t y r r q t q

K e C d d C

e g g

e g g

∈

+ Δ

∈

+ + Δ − +

+ + − +

=

∑
=

=

∏

 

Let * *
3 4(0) (0)l q t q= + , 1

3 3,0 3,1 3, 1( ) d
dq Y q q Y q Y −
−= + + ⋅⋅ ⋅ + ,

1
4 4,0 4,1 4, 1( ) d

dq Y q q Y q Y −
−= + + ⋅⋅ ⋅ + . 

Now consider the virtual key K  that is computed from a ciphertext 

1

*
1, 1, 2 3, ( ', , , , , )

Lid idE C C C Cα ω< = ⋅⋅ ⋅ >  of a decapsulation query such that
11, 1, 2( , , , )

Lid idC C C⋅ ⋅ ⋅  

relative to S is inconsistent with *α . We claim that in the view of A, K  is a uniform element in 2G . 

* *
* * *1, 2, ,

* * *
*

* * * * *
1 1 2 * 2 1 3 4,

*

* * * *
* 1 * 2 *1, 1, 2,

(0)* *
21, 1, 2,

( ) ( (0)( )( ( ) ( )))

( ) ( ) (

( ( ,( ) )( ) )

( , )

( ( , ( ) ) ( , )

id id id Si i i

i i i
i

i iid Si
id Si

i iid id idi i i

s t st
id id id

id S

r y t y r r q id t q id

r q id s q id st

K e C d d C

e g g

e g g g e g g

∈

+ Δ

∈

+ + Δ − +

− −

=

∑
=

=

∏

* *
* * 2 *1, 2, ,

*

* * * *
* * 1 2 * 2 * 3 4, 1, , 1,

* *

) (0)

( (0) ( ( ) ( ))) ( (0)( )( ( ) ( )))

)

( , )

id id id Si i i

i

i i i iid S id id S idi i i i
id S id Si i

s t s r

id S

r q id t q id r r q id t q id

e g g ∈ ∈

+ Δ

∈

Δ + + Δ − +∑ ∑
=

∏
 



Let *
*

* *
3 4( ( ) ( )))

i
i

i iid
id S

l b q id t q id
∈

= +∑ where * * *2, 1,
(0)( )

i i iid id S id
b r r= Δ − . 

Claim B.1 l  is linearly independent to the equation *l in adversary A's knowledge base. 

Proof: Let * * *
3 4 3,0 4,0(0) (0)l q t q q t q= + = + , we have * *

4,0 3,0q l q t= − , so 

*
*

* * *
* *

* * 1 * * 1
3,0 3,1 3, 1 4,0 4,1 4, 1

* 0 * 1 * 1
3,0 4,0 3,1 4,0 3, 1 4, 1

( (( ( ) ( ) ) ( ) ( ) ))

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

i
i

i i i
i i i

d d
i d i i d iid

id S

d
i i i d did id id

id S id S id

l b q q id q id t q q id q id

b id q t q b id q t q b id q t q

− −
− −

∈

−
− −

∈ ∈

= + + ⋅⋅ ⋅ + + + + ⋅⋅ ⋅ +

= + + + + ⋅⋅ ⋅ + +

∑

∑ ∑
*

* *
* *

*
*

* * *
* *

* 0 * * * 1
3,0 3,0 3,1 4,0

* 1
3, 1 4, 1

* 0 * * 0 * * 1
3,0 3,1 4

( ( ) ( )) ( ( ) ( ))

( ( ) ( ))

( ( ) ) ( ( ) ( )) ( ( ) (

i i
i i

i
i

i i i
i i

S

i iid id
id S id S

d
i d did

id S

i i iid id id
id S id S

b id q t l q t b id q t q

b id q t q

b id l b id q t t b id q t q

∈

∈ ∈

−
− −

∈

∈ ∈

= + − + + + ⋅⋅ ⋅

+ +

= + − + +

∑

∑ ∑

∑

∑ ∑
*

*
*

,1

* 1
3, 1 4, 1

))

( ( ) ( ))
i

i
i

id S

d
i d did

id S

b id q t q
∈

−
− −

∈

+ ⋅ ⋅ ⋅

+ +

∑

∑

if l  is linearly dependent to the equation *l , then we have: 

* * *
* * *

* 0 * 1 * 1( ( ) ) 0, ( ( ) ) 0, , ( ( ) ) 0
i i i

i i i

d
i i iid id id

id S id S id S

b id b id b id −

∈ ∈ ∈

= = ⋅ ⋅ ⋅ =∑ ∑ ∑ , 

so
*
1

*

* 0 * 0
1

* 1 * 1
1 11

( ) ( ) 0

( ) ( ) 0
d

idd

d d
d didd d d

bid id

id id b− −
×× ×

⎡ ⎤⎛ ⎞ ⎡ ⎤
⎢ ⎥⎜ ⎟ ⎢ ⎥=⎢ ⎥⎜ ⎟ ⎢ ⎥
⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎣ ⎦

…
# % # # #

"

, the matrix on the left contains a d d× Vandermonde 

matrice, so the only solution is * *
1

0, , 0
did id

b b= =" , then *2 1, iid
r r= for *

iid S∈ and this is in 

contradiction to 
11, 1, 2( , , , )

Lid idC C C⋅ ⋅ ⋅  relative to S  is inconsistent. 

Game 7. The challenge key *K is replaced with the random challenge key K  (instead of computing 
*K as in Equation (2)). The proof of Lemma B.2 essentially shows that from the adversary’s point of 

view, *K  looks like a uniform element in 
2G and hence 

 7 6Pr[ ] Pr[ ]X X=  

Finally, in Game7 the adversary A basically carries out a chosen-ciphertext attack on the 
symmetric cipher since A is still allowed to query ciphertext of the 

form
11, 1, 2, ( ', , , , ,*)

Lid idE C C Cω ω< = ⋅⋅ ⋅ >  for which *S α⊆   and 

* *
1, 1, 2 2( ) &i i i SC C C C∈= = which are answered using a uniform key *K . Consequently, using the fact 

that chosen-ciphertext security is implied by AE-OT security we obtain 

   7 , ,
1Pr[ ] ( ) ( )
2

CT INT IND
C SE t SE tX q Adv k Adv k−− ≤ +� �  

Summary.  We now summarize the above statements into a bound on the advantage of the adversary 
in the CCA game:  



2 1, , , , ,( ) ( ) ( ) 2 ( ) ( )CCA q abdhe TCR CT INT IND C
FIBE t CG t TCR t SE t SE t

qAdv k Adv k Adv k q Adv k Adv k p
− −≤ + + ⋅ ⋅ + +� � � �  

 


