
RSA Cryptanalysis with Increased Bounds on the

Secret Exponent using Less Lattice Dimension

Santanu Sarkar, Subhamoy Maitra and Sumanta Sarkar

Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India
{santanu r, subho, sumanta r}@isical.ac.in

Abstract. We consider RSA with N = pq, q < p < 2q, public encryption exponent e and private
decryption exponent d. Boneh and Durfee (Eurocrypt 1999, IEEE-IT 2000) used Coppersmith’s method
(Journal of Cryptology, 1997) to factorize N using e when d < N0.292, the theoretical bound. Related
works have also been presented by Blömer and May (CaLC 2001). However, the experimental bound for d
that has been reached so far is only N0.280 for 1000 bits N (the upper bound on d less for higher number
of bits). The basic idea relied on LLL algorithm, but the experimental bounds were constrained by large
lattice dimensions. In this paper we present theoretical results as well as experimental evidences to extend
the bound of d for which RSA is weak. This requires the knowledge of a few most significant bits of p
(alternatively these bits need to be searched exhaustively). We provide experimental results to highlight
that the problem can be solved with low lattice dimensions in practice. Our strategy outperforms the
existing experimental results by increasing the bounds of d. We provide clear evidence that RSA, with
d of the order of N0.3 for 1000 bit N , can be cryptanalysed in practice from the knowledge of N, e.

Keywords: Cryptanalysis, Factorization, Lattice, LLL Algorithm, RSA, Weak Keys.

1 Introduction

RSA [12] is one of the most popular cryptosystems in the history of cryptology. Here, we
use the standard notations in RSA as follows: primes p, q, with q < p < 2q; N = pq,
φ(N) = (p− 1)(q− 1); e, d are such that ed = 1 + kφ(N), k ≥ 1; N, e are available in public
and the message M is encrypted as C = M e mod N ; the secret key d is required to decrypt
the message as M = Cd mod N .

Wiener [16] showed that if one uses d < 1
3
N0.25, then RSA is insecure. Boneh and Dur-

fee [3] extended this bound up to d < N0.292 using Coppersmith’s technique [6]. There exist
considerable amount of references in the literature where the bound on d is increased till
O(N0.5) depending on different constraints on the differences of primes or the values of d, e
(see [11, 2, 17] and the references therein). However, there is no general result and experimen-
tal evidence where the bound for d can be increased exceeding O(N δ), where for example
δ = 0.3. Here we present ideas to achieve better bounds on δ such that N can be factorized
from the knowledge of e when d is O(N δ). This is to note that in [13], it has been clearly
pointed out that Wiener’s method cannot be extended with good efficiency beyond d of the
order of N0.25. In [8], RSA cryptanalysis has been studied following the idea of [6], where it
was considered that some bits of d are known.

In this paper we concentrate on the existing techniques [3, 4, 1] with the idea that a few
MSBs of the prime p is known. We consider that some estimate p0 of p is known such that

|p − p0| < Nγ, γ ≤ 1
2
. That is (1

2
− γ) log2 N many MSBs of p are known. The other way

of interpreting it is that one may need to try for N
1
2
−γ many possible options to guess the

MSBs of p. With this idea, we find that it is possible to exceed the bound of d over the works
of Boneh-Durfee [3, 4] and Blömer-May [1] with low lattice dimensions as used in [3, 4, 1].
Our theoretical results can be summarized as follows. Let N = pq, where p and q are primes
of same bitsize. Let d = N δ. Suppose, p0 ≥

√
N be an approximation of p with |p−p0| < Nγ,

γ ≤ 1
2
. We show that, RSA is insecure if

– δ <
γ+3−2

√
γ(γ+3)

3
(Theorem 3),

– δ < 1−√
γ (Theorem 4), and

– δ <

√
16γ2−4γ+4−(6γ−2)

5
(Theorem 5),

modifying the ideas of [3, 4, 1] respectively.
The idea of [3] uses the full rank lattice for attacking this problem. Later in [4], sub-lattices

have been used for better results. This idea has been further extended in [1]. The main idea
used in [3, 4, 1] and in this work relies on three important parts: (i) reduction of lattice or
sub-lattice, (ii) calculation of resultant, (iii) finding roots of the resultant polynomial. The
idea of using sub-lattices (with lesser lattice dimension than the full rank lattice) instead of
full rank lattice provides improvements in time complexity during the first step, i.e., if sub-
lattice is used instead of lattice the requirement of time is less. This we detail in experimental
results. However, we have observed that the calculation of resultant needs significantly more
time than the first step irrespective of using lattice or sub-lattice. This shows that though
the idea of sub-lattices [4, 1] improved the bound on d than in [3] theoretically, there is not
much improvement in experimental results due to the overhead in calculating the resultant.
This has been pointed out in [1, Section 6] too.

The outline of the paper is as follows. In Section 1.1, we briefly discuss some background
materials. Next, in Section 2 we present our strategy on a theoretical framework which is in
the line of [3, 4, 1]. Section 3 describes the complete experimental details with comparison of
existing works.

1.1 Preliminaries

Now we briefly present some basics on basis reduction in lattice (see [3, 6] and the references
therein for more details). Consider that u1, . . . , uw ∈ Zn are linearly independent vectors
with w ≤ n. A Lattice, spanned by < u1, . . . , uw >, is the set of all linear combinations of
u1, . . . , uw, i.e., w is the dimension of the lattice. A lattice is called full rank when w = n. Let
L be a lattice spanned by linearly independent vectors u1, . . . , uw, where u1, . . . , uw ∈ Zn.
By u∗1, . . . , u

∗
w, we denote the vectors obtained by applying the Gram-Schmidt process to the

vectors u1, . . . , uw. It is known that given a basis u1, . . . , uw of a lattice L, LLL algorithm
can find a new basis b1, . . . , bw of L with the following properties.

– ‖ b∗i ‖2≤ 2 ‖ b∗i+1 ‖2, for 1 ≤ i < w

– For all i, if bi = b∗i +
∑i−1

j=1 µi,jb
∗
j then |µi,j| ≤ 1

2
for all j.

– ‖ b1 ‖≤ 2
w
2 det(L)

1
w , ‖ b2 ‖≤ 2

w
2 det(L)

1
w−1 .

The determinant of L is defined as det(L) =
∏w

i=1 ||u∗i ||, where ||.|| denotes the Euclidean
norm on vectors.

Let us now explain the issue of solving the small inverse problem as presented in [3]. Let
d < N δ. We assume e is same order of magnitude as N . As e gets reduced, the Boneh-Durfee
technique [3] works better. Thus for the worst case scenario, one can assume d < eδ. It has

been noticed that ed = 1 mod φ(N)
2

. So ed + k(N+1
2

+ s) = 1, where k ∈ Z, s = −p+q
2

, i.e.,
k(N+1

2
+ s) − 1 = 0 mod e. Let f(x, y) = x(N + 1 − y) − 1. We have to find x0, y0 such

that f(x0, y0) ≡ 0(mode), where, |x0| < eδ and |y0| < e0.5. To find the roots, the modular
equation is transformed to an equation over integers by the idea of Coppersmith [6]. Given
a polynomial g(x, y) =

∑
ai,jx

iyj, we define the norm as ‖ g(x, y) ‖2=
∑

a2
i,j.

Theorem 1. [9] Let g(x, y) be a polynomial which is a sum of ω many monomials. Suppose
g(x0, y0) = 0 mod em for some positive integer m, where |x0| < X and |y0| < Y . If ‖
g(xX, yY) ‖< em

√
ω
, then g(x0, y0) = 0 holds over integers.

Following [3], one can define the polynomials gi,k(x, y) = xifk(x, y)em−k and hj,k(x, y) =
yjfk(x, y)em−k for a given positive integer m and k = 0, . . . ,m, i = 0, . . . ,m − k and
j = 0, . . . , t for some positive integer t. Now consider the lattice LB spanned by the coefficient
vectors of the polynomials gi,k(xX, yY) and hj,k(xX, yY). One can check that the basis
vectors B(m, t) of the lattice LB form a triangular matrix MB.

Now we present the definition of geometrically progressive matrices following [4].

Definition 1. Let M be an (a+1)b×(a+1)b matrix. The pair (i, j) corresponds to (bi+j)-th
column of M . Similarly a pair (k, l) can be used to index (bk + l)-th row of M .

Let C, D, c0, c1, c2, c3, c4, β be real numbers with C, D, β ≥ 1. A matrix M is said to be
geometrically progressive with parameters (C, D, c0, c1, c2, c3, c4, β) if the following conditions
hold for all i, k in [0, . . . , a] and for all j, l in [1, . . . , b]:

– |M(i, j, k, l)| ≤ C ·Dc0+c1i+c2j+c3k+c4l,
– M(k, l, k, l) = Dc0+c1k+c2l+c3k+c4l,
– M(i, j, k, l) = 0 whenever i > k or j > l.
– βc1 + c3 ≥ 0 and βc2 + c4 ≥ 0.

Theorem 2. [4, Theorem 5.1] Let M be an (a + 1)b × (a + 1)b geometrically progressive
matrix with parameters (C, D, c0, c1, c2, c3, c4, β), and let B be a real number. Define

SB = {(k, l) ∈ {0, . . . a} × {1, . . . b}|M(k, l, k, l) ≤ B}

and set w = |SB|. If L is the lattice defined by rows (k, l) ∈ SB of M , then

det(L) ≤ ((a + 1)b)w/2(1 + C)w2
∏

(k,l)∈SB

M(k, l, k, l).

Blömer-May [1] referred to the coefficient vectors of the polynomials gi,k(xX, yY) as the X
block. The X block is further divided into (m+1) many blocks named as Xl for l = 0, . . . ,m,
where the block Xl consists of the l +1 many coefficient vectors of gi,k with i+ k = l. Fixing
l, each of these l + 1 vectors is denoted as Xl,k, 0 ≤ k ≤ l (the k-th vector in the Xl block).
That is, Xl,k is the coefficient vector of gl−k,k.

Further, a Yj block is defined as the block of all m+1 coefficient vectors of the polynomials
that are shifted by yj. The k-th vector in Yj block is called Yj,k, which is the coefficient vector
of hj,k.

All column vectors with label xlyj, l ≥ j form a column block named X(l). Similarly the
column block Y (l) contains all column vectors labeled with xiyi+l. Then a new lattice LM is
presented in [1] as follows.

– Lattice parameters m and t are chosen to build a lattice basis B(m, t).

– In the block Yt of B(m, t), every vector is removed except for the last vector Yt,m.
In the block Y(t−1) of B(m, t), every vector is removed except for the last two vectors
Yt−1,m, Yt−1,m−1. This continues upto the block Y1, where every vector is removed except
the last t vectors Y1,m, Y1,m−1, . . . , Y1,m−t+1.

– Every vector in the block X is removed except for the vectors in the t + 1 many blocks
Xm−t, . . . , Xm.

– The columns need to be deleted in such a manner that the resulting basis is again trian-
gular. All column blocks X(0), X(1), . . . , X(m−t−1) are removed. Moreover, in the column
block Y (l), 1 ≤ l ≤ t, the columns labeled with xiyi+1, 0 ≤ i < m− t + l, are removed.

Below, we give an example of the lattice basis for the parameter choice m = 3, t = 1. For
this m, t, the basis vectors B(3, 1) of the lattice LB form a triangular matrix MB as follows.
In case of [3], the product of the diagonal elements gives det(MB).

↓ ↓ ↓ ↓ ↓ ↓
1 | x xy | x2 x2y x2y2 | x3 x3y x3y2 x3y3 | y xy2 x2y3 x3y4

→ e3 e3

→ xe3 e3X
→ fe2 − − e2XY

x2e3 e3X2

xfe2 − − e2X2Y
f2e − − − − − eX2Y 2

x3e3 e3X3

x2fe2 − − e2x3Y
xf2e − − − − − eX3Y 2

f3 − − − − − − − − − X3Y 3

⇒ ye3 e3Y
⇒ yfe2 − − e2XY 2

⇒ yf2e − − − − − eX2Y 3

yf3 − − − − − − − − X3Y 4

In case of [4], the rows marked by ⇒ are removed. In that case, the sub-matrix of MB is
not a square matrix and the determinant is calculated following [4, Theorem 5.1] (presented
above in Theorem 2 also). The work of [1] removes the rows marked by ⇒ a well as →. This

sub-matrix of MB is again not a square one, but the columns marked by ↓ are also removed
to get a square matrix (see [1, Theorems 2, 3] for more details).

It has been demonstrated in [3] that for δ < 0.284, one can find m, t such that N can be
factored using the LLL algorithm. Further the idea was improved to extend this bound upto
0.292 by using non-triangular lattice bases [4]. Improvements towards implementation have
been studied in [1] by significantly reducing the lattice dimension for same m, t. They could
achieve the bound of δ till N0.290 theoretically which is less than the Boneh-Durfee bound of
N0.292, but the results of [1] were more efficient in practice.

Our idea in this paper is to extend the bounds of [3, 4, 1] further with small lattice
dimension given a few MSBs of p (which can also be searched exhaustively). One may
note that given the constraint q < p < 2q, a few MSBs of p can be known efficiently (see
Section 3.3). This will indeed reduce the search effort further.

It is time consuming to handle large lattice dimensions and that is the constraint in
extending the value of δ using Boneh-Durfee [3] and related techniques [4, 1]. Also it is not
very clear how large lattice dimensions can be handled efficiently in a parallel environment.
In our case, it is very easy to distribute the work in different machines independently for
different choices of the MSBs, given the small lattice dimension to work with. Advantage of
our ideas in comparison with [3, 4, 1] is presented in Section 3.

2 Achieving higher upper bounds on d

We start working in the direction of [3, Section 4].

Theorem 3. Let N = pq, where p and q are primes of same bitsize. Let d = N δ. Suppose,
p0 ≥

√
N be an approximation of p with |p−p0| < Nγ, γ ≤ 1

2
. We show that, RSA is insecure

if δ <
γ+3−2

√
γ(γ+3)

3
.

Proof. We assume e = N as for e < N one can get better upper bound on δ (similar to the
approach of [3, Page 9]).

Let q0 = N
p0

. We have ed = 1+kφ(N) = 1+k(N+1−p−q) = 1+k(N+1−p0−q0−(p+q−
p0−q0)) = 1+x(A+y), where x = k < d = N δ = eδ, A = N+1−p0−q0, y = −(p+q−p0−q0).
As p >

√
N and as we assume p0 ≥

√
N too, we have |y| < Nγ = eγ.

We have to find x0, y0 such that 1 + x0(A + y0) ≡ 0 mod e, where |x0| < eδ and |y0| < eγ.
Let X = eδ, Y = eγ. Note that we consider the same X as in [3, Section 4], but our Y is

generalized as Y has been taken as e
1
2 in [3, Section 4].

One may refer to [3, Section 4] for detx = em(m+1)(m+2)/3Xm(m+1)(m+2)/3Y m(m+1)(m+2)/6

and dety = etm(m+1)/2X tm(m+1)/2Y t(m+1)(m+t+1)/2. Plugging in the values of X and Y (note

that our Y is different than [3, Section 4]), we obtain, detx = em3(1
3
+ δ

3
+ γ

6
)+o(m3), dety =

etm2(1
2
+ δ

2
+ γ

2
)+t2m γ

2
+o(tm2). Now det(L) = detxdety and we need to satisfy det(L) < emw, where

w = (m + 1)(m + 2)/2 + t(m + 1), the dimension of L. To satisfy det(L) < emw, we need
m3(1

3
+ δ

3
+ γ

6
)+tm2(1

2
+ δ

2
+ γ

2
)+t2mγ

2
< (tm+ m2

2
)m. This leads to m2(−1

6
+ δ

3
+ γ

6
)+tm(−1

2
+

δ
2
+ γ

2
)+ t2 γ

2
< 0. After fixing an m, the left hand side is minimized at t =

1
2
− δ

2
− γ

2

γ
m. Putting

this value we have, m2(−1
6

+ δ
3

+ γ
6
) +

m2(− 1
2
+ δ

2
+ γ

2
)(1

2
− δ

2
− γ

2
)

γ
+

(1
2
− δ

2
− γ

2
)2m2

γ2
γ
2

< 0, simplying

(−1
6
+ δ

3
+ γ

6
) +

(− 1
2
+ δ

2
+ γ

2
)(1

2
− δ

2
− γ

2
)

γ
+

(1
2
− δ

2
− γ

2
)2

γ2
γ
2

< 0. Hence, δ <
2γ+6−

√
(2γ+6)2+12(γ2+2γ−3)

6
and

simplifying we get δ <
γ+3−2

√
γ(γ+3)

3
.

Similar to the idea presented in [3, Section 4], if the first two elements (polynomials
P1(x, y), P2(x, y)) of the reduced basis out of the LLL algorithm are algebraically indepen-
dent (i.e., nonzero resultant res(P1, P2) which is a polynomial of y, say), then we will get
x0, y0 correctly which will in turn provide the factorization of N making RSA insecure. (This
actually happens with a high probability in practice as we have also checked by experimen-
tation.) ut

First note that the result presented in Theorem 3 gives the same upper bound 0.284
presented in [3] when γ = 1

2
. In the above theorem we use lattice of full rank. We can

improve the bounds on δ if we use the techniques based on sub-lattice [4, 1]. These ideas are
discussed in Section 2.1.

Based on Theorem 3, one can design

– a probabilistic polynomial time algorithm A, which will take
– N, e, p0 as inputs
– and will provide correct p if

• |p− p0| < Nγ,

• δ <
γ+3−2

√
γ(γ+3)

3
,

• and the resultant polynomial res(P1, P2) on y is nonzero with integer solution (in
practice the integer solution is correct with a high probability).

It is important to study the performance of the algorithm A, based on different values of
m, t. Our main improvement is achieved due to the lesser bound on Y . Once again, we like
to reiterate that we consider the same X as in [3, Section 4], but our Y = eγ is smaller than

the Y considered as e
1
2 in [3, Section 4].

The knowledge of MSBs of p can be interpreted as following also. One can use A for
p0 =

√
N to

√
2N (as for q < p < 2q, we have

√
N < p <

√
2N) at an interval of Nγ, i.e.,

one needs to try for (
√

2− 1)N
1
2
−γ many steps. Each step will require π(N) time complexity

when π(N) is the running time for A. It is important to mention here that proper choice
of m, t are required to get the results and we will compare this with [3, Section 6, Page 9]
and [1, Table 1, Section 6, Page 18].

For γ = 0.477, we find that δ < 0.30044, and for γ = 0.478, we find that δ < 0.29975.
Thus, for δ = 0.3, it is enough to consider γ = 0.477, which gives 1

2
− γ = 0.023. Hence,

theoretically speaking, we either need to know (1
2
−γ)×log2 N many bits of p0 or N

1
2
−γ many

invocations of A are required. Thus, N can be factorized in O(N0.023π(N)) time complexity
with the knowledge of e when d is O(N0.3). For 1000 bit integers, our strategy will require
either the knowledge of 23 bits or 223 invocations of A. See Table 1 later in Section 2.1 for
more detailed results. However, these are only theoretical estimates and we will present the
exact experimental details in Section 3.

Remark 1. If we do not neglect the lower order terms in the proof of Theorem 3, then to satisfy
det(L) < emw we need

m(m+1)(
m + 2

3
+

t

2
)δ +(m+1)(

m(m + 2)

6
+

t(m + t + 1)

2
)γ < m(m+1)(

m + 2

6
+

t

2
). (1)

The value of γ is always 1
2

in the analysis of [3]. However, due to the knowledge of a few bits, we
can have γ < 1

2
, and thus it is possible to get extended bound on δ in our case for the same m, t.

This is the reason we get improved bounds on d from Theorem 3 than the idea of [3], for same
lattice dimension. Later, in Section 2.1, we exploit the ideas related to sub-lattice. In such cases
also, without neglecting the lower order terms in the proofs of Theorems 4, 5, one can get better
bounds on d than what presented in [4, 1] respectively. Experimental results supporting this idea
is presented in Section 3.

2.1 Exploiting the Sub-lattice based Techniques

Boneh and Durfee showed how they improve their result δ < 0.284 [3] to δ < 0.292 [4] using
the sub-lattice technique. We will now follow the idea of [4]. This idea has also been followed
in [17, Section 6].

Theorem 4. Let N = pq, where p and q are primes of same bitsize. Let d = N δ. Suppose,
p0 ≥

√
N be an approximation of p with |p−p0| < Nγ, γ ≤ 1

2
. We show that, RSA is insecure

if 1− 2γ < δ < 1−√
γ.

Proof. This proof is similar to the proof of Theorem 3, till the calculation of detx. However,
dety will be different here than in the proof of Theorem 3.

Let MBy be the portion of the matrix MB with rows corresponding to the y shifts and
columns corresponding to the variables of the form xuyv, for v > u. In this case, MBy is a
geometrically progressive matrix with parameter choice (m2m, e, m, δ + γ, γ − 1,−1, 1, b) for
some b. One may note that the first three conditions of Definition 1 hold. To satisfy the fourth
condition, the parameter b should satisfy b(δ + γ)− 1 ≥ 0 and b(γ− 1) + 1 ≥ 0 together and
thus we get the constraint δ > 1− 2γ, which in turn gives a possible value of b as b = 2

2−2γ
.

Similar to the idea of [4], we also get the optimal choice for t as twice the value of t in
Theorem 3, i.e., t = 1−δ−γ

γ
m. Following Definition 1, we have MBy(k, l, k, l) = em+(δ+γ−1)k+γl.

Denote SB (as in Theorem 2) by S when B = em. By our choice of t, we have (k, l) ∈ S iff

l ≤ 1−δ−γ
γ

k. Neglecting the lower order terms, |S| = 1−δ−γ
2γ

m2. Thus w = (m+1)(m+2)
2

+ |S| =
m2

2
+ |S| = (1

2
+ 1−δ−γ

2γ
)m2 (neglecting lower order terms) = 1−δ

2γ
m2. Following the similar

idea as in [4] and going through similar calculation in [17, Section 6] for the sub-lattice, we

get dety = e
1
12

9−4(δ+1
2+γ)2

2γ
m3

. Then the condition det(L) = detxdety < emw gives the bound
δ < 1−√

γ. ut

The result presented in Theorem 4 gives the same upper bound 0.292 presented in [4] when
γ = 1

2
.

Next we present an approach following [1, Section 4].

Theorem 5. Let N = pq, where p and q are primes of same bitsize. Let d = N δ. Suppose,
p0 ≥

√
N be an approximation of p with |p−p0| < Nγ, γ ≤ 1

2
. We show that, RSA is insecure

if δ <

√
16γ2−4γ+4−(6γ−2)

5
.

Proof. This proof is again similar to the proof of Theorem 3, but both detx and dety will be
different here than in the proof of Theorem 3. Given that certain rows and columns of MB

will be removed following the idea of [1], the diagonal elements of the new matrix will be
Xmem, XmY em−1, . . . , XmY m,
Xm−1em, Xm−1Y em−1, . . . , Xm−1Y m−1e,
. . .,
Xm−tem, Xm−tY em−1, . . . , Xm−tY m−tet

for x-shifts (i.e., they will contribute to detx) and
XmY m+t,
XmY m+t−1, Xm−1Y m+t−2e,
. . .,
XmY m+1, Xm−1Y me, . . . Xm−t+1Y m−t+2et−1,
for y-shifts (i.e., they will contribute to dety).
Multiplying the diagonal elements and neglecting the lower order terms, we need the

condition

X tm2−mt2

2
+ t3

6 Y
tm2

2
+ t3

6 < e
tm2

2 .

Putting the values of X = eδ, Y = eγ, t = τm, we have the required condition

(
δ

6
+

γ

6
)τ 2 − 1

2
δτ + (δ +

γ

2
− 1

2
) < 0.

The left hand side is minimum when τ = δ
2
3
(δ+γ)

. Putting this value of τ , in the previous

inequality we get the bound on δ. ut

The result presented in Theorem 5 gives the same upper bound 0.290 presented in [1]
when γ = 1

2
.

In Table 1 we present the corresponding values of γ for which the values of δ can be
reached. The value of 1

2
−γ gives the proportion of bits we need to know or search exhaustively.

We start listing the results from δ = 0.285, as already there is theoretical result available for
δ = 0.284 using full rank lattice [3] (the theoretical result achieving δ = 0.292 is presented
using sub-lattice in [4]).

δ γ γ γ
Theorem 3 Theorem 4 Theorem 5

0.285 0.49962 0.5 0.5
0.290 0.49224 0.5 0.49985
0.295 0.48491 0.49703 0.49284
0.300 0.47763 0.48999 0.48589

Table 1. Theoretical estimates of γ following Theorems 3, 4, 5 to reach the corresponding bounds on δ.

It is clear from the Table 1, that from theoretical point of view, the best efficiency is
achieved in Theorem 4, followed by Theorem 5 and Theorem 3.

3 Complete Experimental Details

We have implemented the program in SAGE 2.10.1 over Linux Ubuntu 7.04 on a computer
with Dual CORE Intel(R) Pentium(R) D CPU 2.80GHz, 1 GB RAM and 2 MB Cache.
While comparing our results to the existing results [3, 4, 1], we will present higher bounds on
d indeed.

In Section 3.1, we present the results related to the algorithms in [3, 4, 1] on our platform.
Then we discuss the implementation results in Section 3.2 related to Theorems 3, 4, 5.

3.1 Existing experimental results

First we restate the results of [4, 1] in Table 2 (left) to give an idea of lattice dimensions
required for certain δ values. The time estimates are presented as in the corresponding
papers [4, 1].

N δ m t lattice dimension running time Reference
1000 bits 0.270 6 2 21 19 minutes [1]
1000 bits 0.274 8 3 36 300 minutes [1]
1000 bits 0.2765 10 4 55 26 hours [1]
1000 bits 0.278 11 5 72 6 days [1]
1000 bits 0.280 7 3 45 14 hours [4]
2000 bits 0.265 4 2 15 6 minutes [1]
2000 bits 0.275 7 3 45 65 hours [4]
4000 bits 0.265 5 2 25 14 hours [4]
6000 bits 0.265 4 2 15 100 minutes [1]
6000 bits 0.269 5 2 18 8 hours [1]
10000 bits 0.255 3 1 11 90 minutes [4]

N m t w Reference Tl Tr Ts

1000 bits 7 3 60 [3] 76.29 411.42 3.90
1000 bits 7 3 45 [4] 61.17 410.72 4.20
1000 bits 7 3 32 [1] 29.58 333.76 2.46
2000 bits 7 3 60 [3] 347.56 1139.58 11.03
2000 bits 7 3 45 [4] 283.69 1147.34 13.17
2000 bits 7 3 32 [1] 148.71 938.79 8.02
4000 bits 7 3 60 [3] 1358.30 2461.80 37.89
4000 bits 7 3 45 [4] 1041.47 2465.66 58.23
4000 bits 7 3 32 [1] 605.03 2028.11 32.96
6000 bits 5 3 39 [3] 129.82 213.68 7.81
6000 bits 5 3 25 [4] 83.27 211.49 6.70
6000 bits 5 3 24 [1] 78.13 218.98 6.88
10000 bits 3 1 14 [3] 1.95 5.35 0.83
10000 bits 3 1 11 [4] 1.60 5.34 0.82
10000 bits 3 1 8 [1] 1.53 5.38 0.82

Table 2. Left: Results from [4, 1]. Right: Experimental Results for execution of the algorithms presented in [3, 4, 1]
on our platform for δ = 0.26.

We have already pointed out in the introduction (Section 1) that for practical experi-
ments, the resultant calculation takes more time than lattice reduction. It is not clear from
the experimental results in [3, 4] whether the resultant calculation time has been considered.
In [1, Section 6], it has been clearly commented that only lattice reduction time has been
presented.

Let us denote the lattice reduction time by T l
i , the resultant calculation time by T r

i and the
solution time by T s

i (in seconds) for the i-th run.
We have implemented the algorithms of [3, 4, 1] to study all the time requirements in

detail. Below we present the running time for 1000, 2000, 4000, 6000 and 10000 bits N and
for δ = 0.26. The experiments are executed for a single run in each case. It is clear from
the experimental results in Table 2 (right) that the lattice reduction takes minimum time

for [1] and the works of [3, 4] take little more time, but the resultant calculation takes more
time than lattice reduction in all the cases and thus the improvements in lattice reduction
techniques do not have significant effects for experimental purposes.

Note that, given m, t, the lattice dimension w can be calculated directly as w = (m +
1)(m + 2)/2 + t(m + 1) for [3] (Theorem 3 in our approach) and w = (m + 1)(t + 1) for [1]
(Theorem 5 in our approach). However, there is no exact formula for calculating w from
m, t for the case of [4] (Theorem 4 in our approach). Thus, in this section, the value of w is
presented as found experimentally following Theorem 4 in our approach and we present the
maximum value of w, when more than one runs are executed.

3.2 Experimental results based on our approach

In this section we concentrate on the experimental results following our Theorems 3, 4, 5.
In Table 3, we present our results for 1000-bit N that shows that the bound on δ can be
increased much further than the work of [3, 4, 1] as listed in Table 2 (left).

m = 3, t = 1, w = 14 (Theorem 3)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 30 32 31.2 0.60 0.072 0.167 0.016
0.285 38 40 39.2 0.60 0.077 0.242 0.038
0.290 46 48 47.0 0.89 0.077 0.241 0.039
0.295 53 56 53.9 1.04 0.080 0.240 0.038
0.300 59 63 61.3 1.11 0.081 0.242 0.038

m = 5, t = 2, w = 33 (Theorem 3)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 15 17 16.6 0.48 2.17 21.50 0.57
0.285 23 25 24.2 0.74 2.39 21.59 0.57
0.290 32 33 32.2 0.39 2.51 22.32 0.61
0.295 37 39 38.2 0.74 2.68 22.33 0.56
0.300 45 47 46.6 1.01 2.84 22.45 0.67

m = 3, t = 1, w = 12 (Theorem 4)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 31 34 32.1 1.14 0.056 0.164 0.016
0.285 38 40 39.1 0.83 0.057 0.242 0.038
0.290 45 47 46.3 0.64 0.056 0.231 0.037
0.295 53 55 54.1 0.70 0.059 0.244 0.041
0.300 60 62 61.4 0.80 0.061 0.242 0.038

m = 5, t = 2, w = 27 (Theorem 4)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 16 17 16.4 0.48 1.42 21.34 0.65
0.285 23 25 24.4 1.02 1.45 21.67 0.54
0.290 30 32 31.6 0.79 1.84 22.45 0.51
0.295 39 40 39.2 0.39 2.02 22.48 0.66
0.300 45 48 46.6 1.01 2.14 22.42 0.50

m = 3, t = 1, w = 8 (Theorem 5)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 27 31 29.9 0.86 0.037 0.165 0.016
0.285 36 40 38.0 0.84 0.038 0.166 0.016
0.290 43 48 45.8 0.94 0.039 0.166 0.016
0.295 52 56 54.1 0.84 0.040 0.166 0.015
0.300 59 64 62.1 0.99 0.041 0.166 0.015

m = 5, t = 2, w = 18 (Theorem 5)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 16 18 17.0 0.89 1.22 16.97 0.33
0.285 24 26 25.4 0.80 1.28 16.94 0.28
0.290 31 33 32.2 0.74 1.31 16.76 0.32
0.295 39 41 40.0 0.63 1.74 16.81 0.29
0.300 47 49 48.0 0.48 1.48 16.86 0.28

m = 5, t = 3, w = 39 (Theorem 3)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 16 18 16.9 0.83 2.59 21.54 0.58
0.285 23 26 24.8 0.87 2.93 22.08 0.56
0.290 31 33 31.9 0.70 3.06 22.36 0.58
0.295 38 40 38.8 0.60 3.28 22.46 0.56
0.300 45 47 45.6 0.66 3.41 22.42 0.59

m = 7, t = 3, w = 60 (Theorem 3)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 8 10 8.9 0.70 34.33 449.42 5.74
0.285 16 19 17.0 0.89 36.99 449.31 5.66
0.290 23 26 24.1 0.83 39.02 450.50 5.96
0.295 31 33 31.4 0.66 46.070 456.99 5.87
0.300 37 41 38.7 1.19 47.91 475.73 5.81

m = 5, t = 3, w = 27 (Theorem 4)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 16 18 16.7 0.64 1.42 21.59 0.59
0.285 23 26 24.7 0.90 1.76 21.95 0.60
0.290 30 33 31.5 0.81 1.89 22.26 0.62
0.295 38 40 38.6 0.66 2.00 22.44 0.60
0.300 45 48 46.5 0.67 2.11 22.45 0.57

m = 7, t = 3, w = 48 (Theorem 4)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 8 10 9.0 0.89 26.22 450.46 6.12
0.285 15 18 16.4 0.80 28.48 449.73 5.59
0.290 23 24 23.8 0.40 32.23 449.79 5.55
0.295 30 33 31.8 0.97 36.93 465.58 5.96
0.300 38 40 38.6 0.66 42.44 476.71 6.09

m = 5, t = 3, w = 24 (Theorem 5)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 15 17 15.9 0.70 1.56 21.50 0.59
0.285 23 24 23.4 0.49 1.66 21.62 0.57
0.290 30 32 30.7 0.64 1.81 22.40 0.62
0.295 36 38 37.8 0.60 1.93 22.36 0.59
0.300 44 46 44.8 0.75 2.03 22.40 0.57

m = 7, t = 3, w = 32 (Theorem 5)

δ min(vi) max(vi) v σ(v) T l T r T s

0.280 9 11 10.2 0.60 14.91 334.51 2.37
0.285 16 19 17.5 0.90 16.04 335.38 2.41
0.290 25 26 25.4 0.49 16.68 333.98 2.44
0.295 32 34 32.9 0.54 16.93 333.98 2.41
0.300 39 41 40.3 0.64 18.10 334.23 2.33

Table 3. Comparison of Experimental results following Theorems 3, 4, 5

While considering the primes, we take q < p < 2q, i.e., p, q are of same bit size. Further
we select p, q randomly with the constraint that p− q > n0.45 and 2q − p > n0.45 so that the
ideas in the direction of [11, 17] do not work efficiently. The cryptanalytic strategy of [17]
works well when p− q is bounded and in the same direction, the method of [11] works well
when 2q − p is bounded.

By τ -bit N we mean that p, q are of τ
2

bits each. The column with δ provides that
we consider the first d which is greater than or equal to dN δe such that d is coprime to
φ(N). After fixing δ, the size of N (which is 1000 bits for the Table 3) and the lattice
parameters (m, t, w), we go for 100 runs for each case (except for m = 7, t = 3, when we
go for 10 runs). For each run, we calculate the minimum number of bits (for i-th run, call
this variable vi) that need to be known to factorize N from the knowledge of N, e using the
ideas of Theorems 3, 4, 5. We present the minimum min(vi), maximum max(vi), average v
and standard deviation σ(v) of the data set vi, for i = 1, . . . , 100, (for m = 7, t = 3, when we
go for 10 runs, i = 1, . . . , 10). Further, the time requirement is also presented in detail. The
data in Table 3 clearly presents the improvements over the works of [3, 4, 1] for achieving
higher bounds on δ for 1000 bits N .

We also present the results using the lattice parameters m = 11, t = 5. Using the tech-
nique of Theorem 3, we get the lattice dimension w = 138 and exploiting the strategy
using sub-lattice following Theorem 4, we get w = 105 at maximum. Among the techniques
we discuss in this paper, the minimum sub-lattice dimension is w = 72, using the idea of
Theorem 5. We present the implementation results for this in Table 4. Due to longer time
requirement, we present the result of one run in each case.

m = 11, t = 5, w = 72 (Theorem 5)
δ vi Tl Tr Ts

0.280 3 1185.81 16741.77 46.92
0.285 10 1425.12 16954.72 39.11
0.290 18 1630.63 17107.79 40.23
0.295 25 1687.21 17135.02 59.61
0.300 33 1770.66 17222.95 59.38

Table 4. Experimental results following Theorem 5 for 1000-bit N .

A few results are provided for 2000, 4000 and 6000 bits N in Table 5. We consider the δ
values which are higher than the results achieved in [4, 1] (see also Table 2, left). To have a
comparison, we take same or lower values of m, t as used in the highest values for δ in [3, 4,
1]. For each δ value, we take an average of 10 runs.

Next we present our experimental results for 10000 bits N in Table 6. For each δ value,
we take an average of 3 runs.

In [8], RSA cryptanalysis has been studied following the idea of [7], where it was consid-
ered that some bits of d are known. The result of [8], that can be compared with this effort
is for small values of d. We show that the requirement of knowledge of bits in d as in [8,
MSB1 attack, Section 5] is much higher than our requirement of the knowledge of bits in p.
Referring [8, Section 5], one may note that for MSB1 attack, 30% of bits need to be known
for d of the order of N0.3, when N is 1024 bits. Note that d is of 308 bits and 30% of the

N δ m t w Theorem No. min(vi) max(vi) v T l T r T s

2000 bits 0.280 7 3 60 3 16 18 17.1 116.24 1233.02 18.44
2000 bits 0.280 7 3 45 4 15 18 16.9 103.36 1235.72 19.81
2000 bits 0.280 7 3 32 5 18 20 19.1 59.88 933.90 8.39
4000 bits 0.270 5 2 33 3 0 1 0.2 16.66 166.75 6.45
4000 bits 0.270 5 2 25 4 0 1 0.3 13.32 166.89 6.35
4000 bits 0.270 5 2 18 5 2 4 3 12.45 132.68 3.39
6000 bits 0.270 5 2 33 3 0 0 0 34.94 279.05 13.57
6000 bits 0.270 5 2 25 4 0 1 0.2 28.90 268.91 14.16
6000 bits 0.270 5 2 18 5 3 4 3.5 26.11 212.93 7.49

Table 5. Our Results for 2000, 4000 and 6000 bits N .

Following Theorem 3, m = 3, t = 1, w = 14

δ min(vi) max(vi) v σ(v) T l T r T s

0.260 0 0 0 0 1.95 5.37 .82
0.261 0 0 0 0 1.61 5.32 .82
0.262 3 4 3.33 0.47 1.64 5.44 .84
0.263 19 21 20.0 0.82 1.70 5.43 .84
0.265 52 54 53.0 0.82 1.74 5.35 .81
0.270 133 134 133.33 0.47 2.16 5.40 .82

δ min(vi) max(vi) v σ(v) T l T r T s

0.275 213 215 214.33 0.94 2.32 5.35 .80
0.280 293 295 294.0 0.81 2.48 5.40 1.75
0.285 369 371 370.0 0.82 2.62 5.39 1.92
0.290 442 446 443.66 1.70 2.69 7.92 1.92
0.295 517 519 518.0 0.81 2.74 7.94 1.88
0.300 590 590 590.0 0.0 2.76 7.96 1.92

Following Theorem 4, m = 3, t = 1, w = 12

δ min(vi) max(vi) v σ(v) T l T r T s

0.260 0 0 0 0 1.60 5.34 .82
0.261 0 0 0 0 1.40 5.36 .82
0.262 3 5 4.0 0.82 1.42 5.29 .84
0.263 20 21 20.33 0.47 1.44 5.37 .81
0.265 52 53 52.66 0.47 1.49 5.38 .80
0.270 133 134 133.33 0.47 2.07 5.40 .84

δ min(vi) max(vi) v σ(v) T l T r T s

0.275 213 216 215.0 1.41 2.22 5.44 .82
0.280 294 295 294.66 0.47 2.38 7.86 1.88
0.285 369 370 369.33 0.45 2.42 7.93 1.94
0.290 443 444 443.6 0.48 2.47 7.90 1.85
0.295 517 519 518.0 0.81 2.52 7.92 1.87
0.300 590 592 591.0 0.81 2.72 7.89 1.98

Following Theorem 5, m = 3, t = 1, w = 8

δ min(vi) max(vi) v σ(v) T l T r T s

0.260 0 0 0 0 1.53 5.35 .83
0.261 0 0 0 0 1.36 5.38 .82
0.262 1 3 2 0.82 1.32 5.35 .84
0.263 17 20 18.33 1.24 1.35 5.40 .83
0.265 50 52 51.00 0.82 1.36 5.41 .82
0.270 131 132 131.33 0.47 1.42 5.36 .82

δ min(vi) max(vi) v σ(v) T l T r T s

0.275 211 214 213.0 1.41 1.48 5.48 .82
0.280 291 294 292.33 1.25 1.49 5.39 .82
0.285 373 375 374.33 0.94 1.56 5.40 .82
0.290 453 455 454.0 0.82 1.58 5.39 .80
0.295 534 536 535.0 0.81 1.64 5.43 .81
0.300 616 617 616.33 0.49 1.69 5.38 .81

Table 6. Our results for 10000 bits N .

bits of d is 94 bits. The result of [8] involved a reduction of 30-dimensional lattice. Instead
of going for the knowledge of some bits in d, we consider the knowledge of a few bits of p.
For 1024 bits N and 308 bits d, considering lattice dimensions 39 (m = 5, t = 3) and 27
(m = 5, t = 1) which need around 27, 23 seconds to resolve respectively, we require only
around 50, 57 bits (much less than 94 bits required in [8] for d) of p to be known respectively.

3.3 Time requirement for the complete attack

When the information about a few of the MSBs of the prime p is not known, exhaustive
search is the only option to try for those bits. Thus it is advantageous for the complete attack
if one can find out a few MSBs of p by some basic techniques.

In [15], some heuristics have been proposed to estimate a few MSBs of p from N , by
studying the Continued Fraction (CF) expression of 1√

N
. Empirical results have been pre-

sented to show that for 1024-bit N , one can find out around 7 MSBs of p. However, the
method requires to test approximately 25 many values for good probability of success. One
may refer to [15, Page 122], where the experimental results suggest a standard deviation of
12 and hence approximately 12 + 1 + 12 = 25 values need to be searched around the mean
value. As, 24 < 25 < 25, the actual advantage is approximately 7− 5 = 2 bits.

As the MSB of p is 1, the search effort is always reduced by 1 bit, when the bit size of
p is known. Since q < p < 2q, we have 2

√
N < p + q < 3√

2

√
N . One simple approach is to

divide the range (2
√

N, 3√
2

√
N) in 2r many values to get an estimate of p + q. Then solving

N = pq, and the estimate of p + q, the MSBs of p can be estimated. Clearly, the estimation
of MSBs will be better in case of p + q than that of p.

For experimental evidence, we considered 1000 bits N and tried to estimate a few MSBs
of p. We divided the range (2

√
N, 3√

2

√
N) in 25 many values and then considering the best

of all the 32 options for the MSBs of p, we find that around 7.75 many MSBs can be known
considering the average of 10,000 runs. This gives an advantage of 7.75 − 5 = 2.75 bits in
search. Further, 8 to 14 MSBs of p are available in the proportions 0.54, 0.27, 0.14, 0.07,
0.04, 0.02, 0.01 respectively. This gives a reduction of 14 − 5 = 9 bits in search, when the
probability of success is 0.01, i.e., 1%.

Based on these observations, we estimate the time required for actual attack on our platform.
Note that we present results with the δ values greater than those reported in [3, 4, 1]. The best
experimental δ values of [3, 4, 1] are presented in Table 2 (left). Thus, the δ values, we present
here, have never been reported in published materials.

– Let us first consider δ = 0.285 for 1000 bit N . Using m = 7, t = 3, w = 48, we find
from Table 3 that around 16 MSBs of p need to be known to cryptanalyze RSA. Thus,
we need 215 many attempts (the MSB is always known). Given each run requires around
484 seconds following the idea of Theorem 4, we need only a week with a cluster of
26 machines. Given that 9 MSBs of p will be known with success probability 1%, this
requires around 17 hours on a single machine.

– Now we consider δ = 0.3 for 1000 bit N . Using m = 7, t = 3, w = 48, we find from Table 3
that around 38 MSBs of p need to be known to cryptanalyze RSA. Thus, we need 237

many attempts (the MSB is always known). Given each run requires around 524 seconds
following the idea of Theorem 4, we need around 398 days with a cluster of 221 machines.
Given that 9 MSBs of p will be known with success probability 1%, this requires a cluster
of 213 machines for little more than a year.

– Now we consider δ = 0.3 for m = 11, t = 5 following Table 4. Here the lattice dimension
is 72 only. Our results in Table 4 identifies that we need around 6 hours following the
idea of Theorem 5 to get the result in a machine we have referred (i.e. around 4 runs in
a day). The requirements of bits will be around 33 for δ = 0.3. The search effort will be
232 as the MSB of p is always 1. Thus we need a cluster of 221 many CPUs to complete
the task in 512 days. Given that 9 MSBs of p will be known with success probability 1%,
this requires 256 days with 213 machines.

– For 2000 bits N , we present experimental results when δ = 0.280. We need to search 17
bits on an average. Following Table 5, we find that around 64 many runs can be completed
in a day using the ides of Theorem 4. Thus, the total work can be completed in a day
with 210 computers with our specifications.

– We could reach the bound δ = 0.270 for 4000 and 6000 bits N , with the knowledge of
very few bits (in some cases without the knowledge of any bit) in p.

– For 10000 bits N , we could reach the bound δ = 0.261 without the knowledge of any bit
in p. Moreover, from the results in Table 6, it is clear that the bound of δ = 0.263 can be
achieved in practice by searching around 20 MSBs of p.

A closer look at Tables 3, 4, 5, 6 points out that the idea of Theorem 4 provides the most
efficient results during implementation among Theorems 3, 4, 5, i.e., the technique presented
in [4] works most efficiently among the ideas of [3, 4, 1] when taken into our paradigm of guessing
a few MSBs of p.

4 Conclusion

In this paper we show that the techniques of [3, 4, 1] can be modified to have higher bounds
on d with low lattice dimensions. First of all, our idea provides theoretical extension of the
bound of N0.292 given the knowledge of some MSBs of p, which can also be managed by
exhaustive search. We use the same lattice dimensions as presented in [3, 4, 1] to have larger
values of d for which RSA can be attacked given N, e. Our experimental results outperform
the state of the art results of [3, 4, 1] for 1000, 2000, 4000, 6000 and 10000 bits N . We justify
that for 1000 bits N , RSA can be crypanalyzed in practice when d is of the order of N0.3.

References

1. J. Blömer and A. May. Low secret exponent RSA revisited. CaLC 2001, LNCS 2146, pp. 4–19, 2001.
2. J. Blömer and A. May. A generalized Wiener attack on RSA. PKC 2004, LNCS 2947, pp. 1–13, 2004.
3. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292. Eurocrypt 1999, LNCS

1592, pp. 1–11, 1999.
4. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292. IEEE Trans. on Information

Theory, 46(4):1339–1349, 2000.
5. H. Cohen. A Course in Computational Algebraic Number Theory. Springer Verlag, 1996.
6. D. Coppersmith. Small solutions to polynomial equations and low exponent vulnerabilities. Journal of Cryp-

tology, 10(4):223–260, 1997.
7. J. S. Coron. Finding Small Roots of Bivariate Integer Equations Revisited. Proc. of Eurocrypt 2004, LNCS

3027, pp. 492–505.
8. M. Ernst, E. Jochemsz, A. May and B. de Weger. Partial key exposure attacks on RSA up to full size exponents.

Eurocrypt 2005, LNCS 3494, pp. 371–386, 2005.
9. N. Howgrave-Graham. Finding small roots of univariate modular equations revisited. Proceedings of Cryptog-

raphy and Coding, LNCS 1355, pp. 131-142, 1997.
10. A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische An-

nalen, vol. 261, pp. 515-534, 1982.
11. S. Maitra and S. Sarkar. Revisiting Wiener’s Attack – New Weak Keys in RSA. 11th International Conference,

ISC 2008, LNCS 5222, 2008.
12. R. L. Rivest, A. Shamir and L. Adleman. A method for obtaining digital signatures and public key cryptosys-

tems. Communications of ACM, 21(2):158–164, Feb. 1978.
13. R. Steinfeld, S. Contini, J. Pieprzyk and H. Wang. Converse results to the Wiener attack on RSA. PKC 2005,

LNCS 3386, pp. 184–198, 2005.
14. D. R. Stinson. Cryptography – Theory and Practice. 2nd Edition, Chapman & Hall/CRC, 2002.
15. H. -M. Sun, M. -E. Wu and Y. -H. Chen. Estimating the prime-factors of an RSA modulus and an extension

of the Wiener attack. ACNS 2007, LNCS 4521, pp. 116–128, 2007.
16. M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory, 36(3):553–

558, 1990.
17. B. de Weger. Cryptanalysis of RSA with small prime difference. Applicable Algebra in Engineering, Commu-

nication and Computing, 13(1):17–28, 2002.

