
Yet Another Secure Distance-Bounding Protocol

Ventzislav Nikov and Marc Vauclair

NXP Semiconductors, Leuven, Belgium,
ventzislav.nikov@nxp.com, marc.vauclair@nxp.com

Abstract. Distance-bounding protocols have been proposed by Brands and Chaum in
1993 in order to detect relay attacks, also known as mafia fraud. Although the idea has
been introduced fifteen years ago, only recently distance-bounding protocols attracted
the attention of the researchers. Several new protocols have been proposed the last five
years.
In this paper, a new secure distance-bounding protocol is presented. It is self-contained
and composable with other protocols for example for authentication or key-negotiation.
It allows periodically execution and achieves better use of the communication channels
by exchanging authenticated nonces. The proposed protocol becomes suitable for wider
class of devices, since the resource requirements to the prover are relaxed.

Keywords: Distance-Bounding protocols, Relay Attacks, Mafia-Fraud.

1 Introduction

Consider a model in which a party known as verifier V is interested in learning the
proximity to a second party known as prover P . The prover can be a trusted de-
vice (e.g. the trust can be assured by the tamper-resistance of the device) or un-
trusted. In both cases, the prover is surrounded by an un-trusted environment. Many
practical situations motivate this model, e.g. RFID, content protection systems (digi-
tal rights management systems), ad-hoc wireless networks, sensor networks etc., see
[1,2,3,4,5,6,7,8,9,10,11,12,13,14]. To motivate our research we will describe some of
them.

Almost all existing RFID authentication schemes (tag/reader) are vulnerable to
mafia attacks, because of their inability to estimate the distance to the tag. Such
attacks are usually identified by the signal strength, but a resourceful adversary can
easily thwarts this. Several positioning and distance measuring techniques for ad-hoc
networks or wireless location-based access control has been proposed, but most of
them consider just non-adversarial settings and rely on signal strength or (signal) noise
analysis.

Location-based access control is based on the rule bigger distance implies dis-
trust, i.e. a device which refuses to respond to the distance estimation request or which
appears to be not close enough is simply denied access. So we assume that the goal
of a malicious device is to be localized in a place other than its true location so it

participates in the protocol but tries to mislead the verifiers. For example in DRM the
content owner (known as source) can refuse to deploy it to the sink (the receiver) if he
is too far from the source.

Distance-bounding protocols provide secure proximity control, i.e. they prevent the
so-called distance fraud attacks. Brands and Chaum [3] were the first who proposed a
secure solution for this problem. The distance-bounding protocols measure the delays
between the sending out of a challenge and the reception of the response. To be feasible,
this approach requires nearly no computation during each challenge-response operation.
Two types of attacks against such secure protocols are considered in the literature:
mafia fraud or mafia attack [6] (or Mig-in-the-middle [1]) and terrorist fraud [6]. In the
mafia fraud attack, the attacker does not perform any cryptographic operations based
on the security protocol, and only forwards the challenges and the responses between
the honest prover and the honest verifier. While in the terrorist fraud attack the prover
is not honest and he collaborates with the attacker.

In this paper, we present an efficient secure distance-bounding protocol suitable for
wide range of devices. Note that all protocols measure the round-trip time which is
twice the one-way propagation time plus the processing delay at the prover. But for
heterogeneous systems the processing delay can vary a lot, e.g. an RFID tag versus a
PC. Our contribution can be summarized as follows:

Our distance-bounding protocol is self-contained and can be combined with other
protocols (e.g. authentication protocols), i.e. it can be plugged into any protocol pro-
vided the assumptions are satisfied. Recall that Brands and Chaum introduced the
rapid bit exchange techniques in order to measure the round-trip time. Most of the
known protocols use the idea of rapid bit exchange. But this approach has a drawback
as pointed out in [11] that most of the today used communication channels have a
bandwidth much bigger than a bit. Having this in mind we extend the approach of
Waters and Felten, so that the authenticated nonces are sent out and hence the over-
all efficiency of the protocol is improved. A combination of symmetric cryptographic
algorithms with preprocessing reduces the resource requirements for the participants
especially for the prover. In addition, our protocol does not require the prover to gener-
ate any random data which diminishes the requirements to the devices and hence makes
the protocol suitable for wide range of devices. Because we measure the proximity to
a mobile device the proposed protocol allows periodical execution. Because of this the
preprocessing phase is non-interactive and lighter.

The paper is organized as follows: Section 2 describes all known distance-bounding
protocols. A new distance-bounding protocol is proposed in Section 3. We conclude in
Section 4.

2 Related Work

For all protocols described in this section a security parameter k is chosen, the security
levels for the protocols can be described as a function of k. In all of these protocols
it is assumed that the prover and the verifier have agreed in advance to use dedicated
common primitives, e.g. asymmetric or symmetric encryption, signature scheme, com-
mitment scheme, pseudo random function, one-way and collision resistant function,
zero-knowledge protocol, message authentication codes, etc. and they both have access
to secure random number generators. For each protocol we will indicate which keys the
parties have in advance. All protocols have a phase of “rapid exchange”, i.e. the verifier
starts its timer and sends a challenge to which the prover replies, upon receiving the
reply the verifier stops its timer. In most of the protocols the challenge and the reply
are bits and then this rapid exchange is repeated k times. There are also few examples
in which the challenge and the reply are strings of length derived from k and the rapid
exchange is executed just ones.

Brands and Chaum [3] are the pioneers of distance-bounding protocols, they have
designed several protocols secure against mafia fraud. In their settings it is assumed that
the prover possesses a signature key-pair. Ksign

P denotes the prover’s private signature
key. At the beginning the prover and the verifier randomly generate βi ∈R {0, 1} and
αi ∈R {0, 1} for i = 1, . . . , k. After this preparation a phase of k rapid bit exchanges
starts. The verifier sends αi to the prover, who replies with βi. At last the prover
concatenates the 2k bits αi and βi, signs the result and sends it to the verifier. The
verifier verifies the received signature. Note that this basic protocol (see Fig. 1) prevents
the mafia frauds, but the prover can still cheat by sending out the bits βi before receiving
αi.

1. The prover randomly generates βi ∈R {0, 1} for i = 1, . . . , k, where k is determined by a
chosen security parameter.

2. Analogously the verifier randomly generates αi ∈R {0, 1} for i = 1, . . . , k.
3. After this preparation a phase of k rapid bit exchanges starts.

– The verifier starts its timer and sends αi to the prover.
– The prover replies with βi.
– Upon receiving the bit the verifier stops its timer.

4. The prover concatenates the 2k bits αi and βi, signs the result i.e.
Sign(Ksign

P ;α1|β1| . . . |αk|βk) (where | denotes the bit string concatenation opera-
tor) and sends it to the verifier

5. The verifier concatenates the used 2k bits αi and βi and verifies the received signature.

Fig. 1. Brands and Chaum [3] - Basic Protocol

The authors propose also a modification which prevents the prover from sending out
the bits βi before receiving αi (see Fig. 2). Again the prover and the verifier randomly
generate mi ∈R {0, 1} and αi ∈R {0, 1} for i = 1, . . . , k. But the prover also commits to
m1| . . . |mk and sends this commitment to the verifier. After this the phase of k rapid
bit exchanges starts: the prover replies with βi = αi ⊕ mi to the received αi. Again
the prover signs the concatenation of αi and βi, but he also sends the opening of the
commitment to m1| . . . |mk. The verifier verifies the received signature and using the
opened commitment checks whether βi = αi ⊕mi for i = 1, . . . , k.

1. The prover randomly generates mi ∈R {0, 1} for i = 1, . . . , k, where k is determined by a
chosen security parameter.

2. Analogously the verifier randomly generates αi ∈R {0, 1} for i = 1, . . . , k.
3. The prover commits to m1| . . . |mk and sends this commitment to the verifier.
4. After this preparation a phase of k rapid bit exchanges starts.

– The verifier starts its timer and sends αi to the prover.
– The prover replies with βi = αi ⊕mi.
– Upon receiving the bit the verifier stops its timer.

5. The prover concatenates the 2k bits αi and βi, signs the result i.e.
Sign(Ksign

P ;α1|β1| . . . |αk|βk) and sends it to the verifier together with the opening
of the commitment to m1| . . . |mk.

6. The verifier concatenates the used 2k bits αi and βi and verifies the received signature.
Next he verifies the commitment and checks whether βi = αi ⊕mi for i = 1, . . . , k.

Fig. 2. Brands and Chaum [3]

Another solution in [3] which prevents the prover to send out bits too soon is to use
random delays in the rapid bits exchange phase. This approach has the advantage from
a practical point of view that it does not require the commitment scheme. The authors
also have pointed out that their protocols are not secure against terrorist fraud.

Waters and Felten [14] have designed a proximity-proving protocol with the ex-
tension that it protects the privacy of the prover and that the measured latency is
afterwards transmitted to a third party which can reveal the identity of the prover. We
outline just a part of the protocol related to the proximity control (see Fig. 3). It is
assumed that the verifier has an asymmetric encryption key-pair and that the prover
possesses a signature key-pair. Kenc

V denotes the verifier’s public encryption key and
Ksign

P denotes the prover’s private signature key.

The prover randomly generates two nonces start and reply. The length of the nonces
is determined by a chosen security parameter. Next the prover sings its ID and then he
encrypts start, reply and the signature and sends it to the verifier. The verifier decrypts
the received message, extracts the nonces and checks the signature. Next he generates a
random nonce echo with length determined by the security parameter. Then the rapid
exchange starts - he sends (start, echo) to the prover, after verifying that the first part
of the message is the nonce start the prover replies with (reply, echo). The verifier
verifies that the received message consists of two parts: first part is the nonce reply and
second part is the nonce echo.

1. The prover randomly generates two nonces start and reply. The length of the nonces is
determined by a chosen security parameter.

2. Next the prover sings its ID, i.e. Sign(Ksign
P ; ID). Then he sends

Enc(Kenc
V ; start, reply, Sign(Ksign

P ; ID)) to the verifier.
3. The verifier decrypts the received message, extracts the nonces and checks the signature.
4. Next he generates a random nonce echo with length determined by the security parameter.
5. After this preparation the phase of rapid exchange starts:

– The verifier starts its timer and sends (start, echo) to the prover.
– The prover verifies that the first part of the message is the nonce start, then he replies

with (reply, echo).
– Upon receiving the message back the verifier stops its timer and records the round-trip

latency.
6. The verifier checks that the received message consists of two parts: first part is the nonce

reply and second part is the nonce echo.

Fig. 3. Waters and Felten [14]

This protocol is secure against mafia fraud but not against terrorist fraud, since
after preparing the first message a dishonest prover can delegate the execution of the
protocol to an attacker.

Probably the simplest distance bounding protocol was proposed by Sastry, Shankar
and Wagner [10]. The verifier sends a randomly generated nonce (with length deter-
mined by a chosen security parameter) to the prover, who returns it back to the verifier.
The use of random nonce prevents the prover to respond in advance, however without
any authentication this protocol is vulnerable to the mafia attack. The authors have
proposed a modification in which the parties share a common secret key s. Again the
verifier sends a nonce r to the verifier who uses a pseudorandom function h (e.g. AES,
HMAC-SHA1) to compute the reply h(s; r). However, the time spend for computing
the reply can be so large with respect to the travel time as to make it difficult to com-
pute the distance except for relatively slow mediums like sound (for which Sastry et al.
protocol is designed).

Hancke and Kuhn [7] proposed a modification to the challenge-response scheme
which improves the overall efficiency of the distance-bounding protocol. In their proto-
col (see Fig. 4) both parties share a common secret key s.

The prover and the verifier randomly generate nonces rP and rV then exchange
them. Both parties use (one-way and collision resistant) function h to derive two k-bit
strings m and r from the shared key s and the exchanged nonces, i.e. m|r = h(s; rP |rV).
The verifier randomly generates αi for i = 1, . . . , k, after this preparation a phase of k
rapid bit exchanges starts. The verifier sends αi to the prover, who computes the reply
βi as follows: if αi = 1 then βi = mi otherwise (i.e. if αi = 0) set βi = ri. The verifier
verifies the value of βi, if a value of βi is wrong the protocol is stopped.

1. The prover randomly generates a nonce rP and sends it to the verifier.
2. The verifier randomly generates a nonce rV and sends it to the prover.
3. Both parties use (one-way and collision resistant) function h to derive two k-bit strings

m and r from the shared key s and the exchanged nonces, i.e. m|r = h(s; rP |rV).
4. The verifier randomly generates αi for i = 1, . . . , k.
5. After this preparation a phase of k rapid bit exchanges starts.

– The verifier starts its timer and sends αi to the prover.
– The prover computes the reply βi as follows: if αi = 1 then βi = mi otherwise (i.e. if
αi = 0) set βi = ri.

– Upon receiving the bit the verifier stops its timer and verifies the value of βi.
6. If a value of βi is wrong the protocol is stopped.

Fig. 4. Hancke and Kuhn [7]

Bussard and Bagga [2] proposed the first, to our knowledge, protocol secure against
terrorist fraud. Their protocol (see Fig. 5) is public-key based and uses zero-knowledge
techniques, i.e. it is assumed that the prover owns a private key x and the verifier has
the corresponding public key y.

The prover randomly generates a k-bit key s. Then he encrypts his private key
using a symmetric key encryption method, i.e. e = enc(s;x). Let x, y and e have length
k. For i = 1, . . . , k the prover commits to si and ei and sends these commitments to
the verifier. As usual the verifier randomly generates αi for i = 1, . . . , k, after this the
phase of k rapid bit exchanges starts. The verifier sends αi to the prover, who computes
the reply βi as follows: if αi = 1 then βi = si otherwise (i.e. if αi = 0) set βi = ei. The
prover opens the commitments which correspond to the values βi, i.e. he opens either
the commitment to si (if αi = 1) or the commitment to ei (if αi = 0) for i = 1, . . . , k.
At last the prover executes a zero-knowledge protocol in order to prove that he possess
a private-key x (corresponding to the public-key y) and that e is a ciphertext (with key
s) of this private-key.

1. The prover randomly generates a k-bit key s, where k is determined by a chosen security
parameter.

2. Then he encrypts his private key using a symmetric key encryption method (e.g. one-time
pad), i.e. e = enc(s;x). Let x, y and e have length k.

3. For i = 1, . . . , k the prover commits to si and ei and sends these commitments to the
verifier.

4. The verifier randomly generates αi for i = 1, . . . , k.
5. After this preparation a phase of k rapid bit exchanges starts.

– The verifier starts its timer and sends αi to the prover.
– The prover computes the reply βi as follows: if αi = 1 then βi = si otherwise (i.e. if
αi = 0) set βi = ei.

– Upon receiving the bit the verifier stops its timer.
6. The prover opens the commitments which correspond to the values βi, i.e. he opens either

the commitment to si (if αi = 1) or the commitment to ei (if αi = 0) for i = 1, . . . , k.
7. The prover executes a zero-knowledge protocol in order to prove that he possess a private-

key x (corresponding to the public-key y) and that e is a ciphertext (with key s) of this
private-key.

Fig. 5. Bussard and Bagga [2]

Thus the idea of Bussard and Bagga is to force the prover to give away his pri-
vate key if he wants to mount a terrorist attack, since the attacker should own both
e and s and hence x. On the other hand, the proposed protocol is not feasible be-
cause of the asymmetric techniques and especially the zero-knowledge protocol - both
computationally demanding.

Recently Reid et al. [9] tried to combine the efficiency of the Hancke and Kuhn
[7] protocol with the idea of Bussard and Bagga [2] for preventing terrorist attacks. In
their protocol (see Fig. 6), it is assumed that both parties share a common secret key
s.

Again the prover and the verifier randomly generate nonces rP and rV then exchange
them. Both parties use (pseudo-random) function h to derive a k-bit strings m from
the shared key s and the exchanged nonces, i.e. m = h(s; rP |rV). Both parties encrypt
the shared key s using a symmetric key encryption method (e.g. one-time pad), i.e.
e = enc(m; s). Let both s and e have length k. As usual the verifier randomly generates
αi for i = 1, . . . , k, after this the phase of k rapid bit exchanges starts. The verifier
sends αi to the prover, who replies βi as follows: if αi = 1 then βi = mi otherwise (i.e.
if αi = 0) set βi = ei. The verifier verifies the value of βi, if a value of βi is wrong the
protocol is stopped.

1. The prover randomly generates a nonce rP and sends it to the verifier.
2. The verifier randomly generates a nonce rV and sends it to the prover.
3. Both parties use (pseudo-random) function h to derive a k-bit strings m from the shared

key s and the exchanged nonces, i.e. m = h(s; rP |rV).
4. Both parties encrypt the shared key s using a symmetric key encryption method (e.g.

one-time pad), i.e. e = enc(m; s). Let s and e have length k.
5. The verifier randomly generates αi for i = 1, . . . , k.
6. After this preparation a phase of k rapid bit exchanges starts.

– The verifier starts its timer and sends αi to the prover.
– The prover computes the reply βi as follows: if αi = 1 then βi = mi otherwise (i.e. if
αi = 0) set βi = ei.

– Upon receiving the bit the verifier stops its timer and verifies the value of βi.
7. If a value of βi is wrong the protocol is stopped.

Fig. 6. Reid et al. [9]

Note that the knowledge of m and e is equivalent to revealing the shared secret s.
The authors of [9] claim that this will prevent a terrorist attack, but since the key s is
less valuable for the prover than his private key and since it is used only for distance-
bounding, a corrupt prover may still mount a terrorist attack against the verifier.

Capkun and Hubaux [5] have proposed the following protocol (see Fig. 7). It is
assumed that both parties share a common secret key s. The verifier and the prover
simultaneously generate random nonces start and reply. Their length is determined
by a chosen security parameter. Then the prover commits to his nonce and sends the
commitment to the verifier. The verifier starts the rapid exchange by sending start
to the prover, who replies with start ⊕ reply. Then the prover computes a message
authentication code (MAC) over both nonces, i.e. MAC(s; start|reply). He sends the
MAC together with the opening of the commitment to reply nonce. The verifier verifies
the MAC and verify that the committed value indeed corresponds to the used one.

As it has been pointed out by Singelee and Preneel [11], all known protocols except
Waters, Felten and Capkun, Hubaux are using the idea of Brands and Chaum to
measure the proximity by a rapid bit exchange. In order to measure the round trip
time with accuracy special hardware is required. Moreover most of the today used
communication channels have a bandwidth much bigger than a bit. Another observation
made in [11] is that any protocol secure against mafia attacks can be made secure
against terrorist attacks when trusted hardware is used. The trusted hardware has the
following properties: it is impossible to change the protocol that it has to perform and
it is impossible to derive any value out of it. Thus it can only be used as a black-box.

1. The prover randomly generates a nonce reply, commits to it and sends both to the verifier.
2. The verifier randomly generates a nonce start and sends it to the prover.
3. After this preparation the rapid exchange starts.

– The verifier starts its timer and sends start to the prover.
– The prover replies with start⊕ reply.
– Upon receiving it the verifier stops its timer.

4. The prover computes a MAC over both nonces, i.e. MAC(s; start|reply). Then he sends
the MAC together with the opening of the commitment to the reply nonce.

5. The verifier verifies: the MAC, the commitment and that the committed value indeed
corresponds to the used one.

Fig. 7. Capkun and Hubaux [5]

3 The New Protocol

Design principles
There should be as few resource demands as possible on both parties but especially

on the prover. Since our real goal is to enable proximity control for a large class of
devices we would like to limit the computation power and hardware resources nec-
essary to participate in such protocol to minimum. This requirement excludes many
cryptographic solutions like public-key encryption and signature, commitment schemes,
zero-knowledge protocols.

The setup requirement should be minimal. To participate in the protocol both par-
ties must share one or two common secrets. How these secrets are set up is out of scope
for the considered protocol, for example they could be derived from an authentication
protocol executed beforehand or distributed via separate protocol or build in during
the production phase of the devices.

As pointed out most of the today used communication channels have a bandwidth
much bigger than a bit. Moreover even when the protocol specifies that a bit is sent
because of the communication packeting this bit is encapsulated to much bigger packet
which is then sent over the communication medium. This observation shows that the
standard cryptographic approach of rapid bit exchange is not efficient in practice. Here
we don’t consider the time needed for the message to pass through the communication
stack.

The protocol should be easily composable with other protocols and because of
the nature of distance measuring protocol to evaluate proximity of a mobile device
we may need periodical execution of the protocol. In this case certain phases of the
protocol (except the rapid exchange phase) should be made lighter (e.g. avoiding any
redundancy) and if possible non-interactive.
Threat Model

The protocol should be secure against both cheating verifier and mafia attacks.
The reason why we don’t consider terrorists attacks is twofold, first as noted by using

trusted hardware this attack is prevented (as this is the case for DRM). Secondly, as
we discussed the only way a cryptographic proximity protocol to be secure against
terrorists attacks is to force the prover to give away to the terrorists his private secrets
(private-asymmetric or shared-symmetric key). In some cases this will prevent such an
attack from a potential cheater. But depending on the application terrorists attacks
are still a possible threat (e.g. DRM or sensor networks cases - if the device has been
compromised by an attacker).

Since we would like the prover to belong to a large class of devices some of them
with very limited resources, e.g. RFID, it is reasonable to assume that he either has
no source of randomness or it is limited and thus insecure (predictable). Note that
all existing protocols are subject to mafia attacks if the prover has insecure random
number generator.
The Protocol

The purpose of the protocol is to prove to the verifier that the prover is within a
given distance, without using any source of randomness. We assume that the prover P
and the verifier V share some common secrets. Namely, a distance-authentication key
and denoted by K and a seed by R, both with a fixed length k̃. These two secrets may
be derived from the authentication protocol executed in advance by both parties, if
the parties have already established a secure authenticated channel, or distributed via
other means. We stress here that the distance-authentication key K must be different
for different sessions, otherwise an attacker can use previously exchanged tags com-
puted with K for the current session. Thus we separate the phase when the distance is
measured from the phase when the authentication takes place. A pseudo-random func-
tion is used for the calculation of the verifier’s challenge and prover’s response. Since
we don’t consider the terrorist attacks the attacker has no access to the shared key. We
will denote by h(s;m) the pseudo-random function which has as inputs a secret key
s and a public string m and outputs a string with a fixed length k̃, computationally
indistinguishable from a uniformly random string. In practice, h can be HMAC or AES.

In order to make the distance-bounding protocol applicable for a wide range of
environments (e.g. from low power RFID tags and embedded devices, to PCs) the
protocol should not use “heavy” public key cryptographic schemes (signature, commit-
ments, etc.). Indeed symmetric cryptographic algorithms are more suitable taking into
account constraints like time, energy and computations.

Another goal when designing the protocol was to allow the periodical execution of
it once a secure channel is established between the parties. In other words, the protocol
can be executed several times at unspecified time intervals in order to ensure that the
communicating parties are still in the same proximity. We assume that in case distance-
bounding protocol fails then the secure authenticated channel is terminated. Note that
all of the known protocols are not designed for periodical execution. Of course they
can be executed periodically but using them in such a way will be not efficient. One
way to improve the efficiency is to design a protocol which has suitable preparation
(preprocessing) phase.

Brands and Chaum [3] have introduced the “classical” structure of distance bound-
ing protocol: preprocessing phase in which some values are exchanged and the prover
performs binding (like commitment) to some of them; then the phase of the rapid ex-
change; followed with a phase in which the bindings are opened and verified. Waters
and Felten [14] slightly modified this design approach by making the last phase lighter
and non-interactive. This approach was further used in [7,9], while the authors of [2,5]
followed the classical model.

Since the proposed protocol should allow the periodical execution we adopted the
approach of Waters and Felten by making the last phase lighter and non-interactive.
But the proposed protocol differs from all known protocols on the fact that also the
preprocessing phase is non-interactive and lighter. Moreover since all computations are
performed in a preprocessing phase when the time is measured the processing delay is
negligible.

Thus in the preprocessing phase both parties compute two sequences say {ai} and
{bi} (for i = j+ 1, ..., j+ k), where j is a counter known for both parties (initialized to
zero when the protocol is executed for the first time). For example, by using dedicated h
and the seed R, i.e. ai = h(R; i|V) and bi = h(R; i|P). Note that the sequences {ai} and
{bi} may also be public and not pseudo-random. For example, a recurrence relation like
the Fibonacci sequence (ai is i+ 5-th Fibonacci number and bi = ai + 1) can be used.
We stress here that the sequences {ai} and {bi} should satisfy the following condition:
the probabilities Prob(ai = bj), P rob(bi = bj) and Prob(ai = aj) are negligible. In case
the sequences are public the seed R is either made public (thus anybody can compute
ai = h(R; i|V) and bi = h(R; i|P)) or the seed is not used in the computation (in the
recurrence relation case). By using these sequences we avoid the need of random source
for the prover. Our protocol is described in Fig. 8.

Now we will show that the described protocol is secure against distance and mafia
frauds. In order to mount a distance fraud attack the prover must respond to the
challenge mai in advance (i.e. before getting the challenge). Hence he should choose
at random one of his possible replies mbi for i = j + 1, ..., j + k and send it out.
The probability that prover’s guess for i is correct is 1/k (since the verifier chooses i
uniformly at random), but the repetition of the protocol will make the probability of
the prover’s correct guess negligible.

Consider an attacker in the maffia fraud setting. The attacker can run the distance-
bounding protocol, pretending to be either prover or verifier, with a legitimate verifier
or prover respectively. But then he should choose i and guess mbi or respectively mai

which he sends out. The probability that his guess of mbi or mai is correct is negligible
since these are the tags produced from a pseudo-random function and the attacker
doesn’t know the distance-authentication key. The probability that a random guess of
mbi or mai to be correct is 2−k̃, the same as guessing the distance-authentication key
K. The attacker also can’t use any of the previously exchanged authenticated nonces
since by design the probabilities of Prob(ai = bj), P rob(bi = bj) and Prob(ai = aj)
are negligible and hence the probabilities of Prob(mai = mbj), P rob(mbi = mbj) and

1. Let’s assume that the prover P and verifier V share a common secret (distance-
authentication key K) and another common secret (seed R) both with a fixed length
k̃.

2. Let k be a security parameter and j be a counter known for both parties (initialized to
zero when the protocol is executed for the first time). In the preprocessing phase both
parties first compute fixed parts of the two sequences {ai} and {bi} (for i = j+1, ..., j+k).

3. The second step in the preprocessing phase for both parties is to compute the tags mai =
h(K; ai) and mbi = (K; bi) (for i = j + 1, ..., j + k).

4. The interactive (rapid exchange) phase starts:
– The verifier V chooses at random i ∈R [j + 1, j + k].
– Then V starts his timer and sends the tuple i,mai to P .
– The prover P compares the received value mai with his pre-computed one and if they

are the same returns the tuple i,mbi to V .
– Upon receiving the reply the verifier stops his timer.

5. The verifier compares the received values i and mbi with his pre-computed one and if the
comparison is ok, computes the round-trip time.

6. Both parties P and V increase the counter j with k.

Fig. 8. The Proposed Protocol

Prob(mai = maj) are negligible again because of the pseudo-randomness of the used
function and the choice of the security parameter k̃.

We stress here that the protocol can be made secure against terrorist attacks when
trusted hardware is used. Note that the trusted hardware also prevents the distance
fraud. Hence from a practical point of view, the prevention from mafia fraud is more
important than the prevention from the distance fraud.

4 Conclusions

This paper presents a new secure distance-bounding protocol. It is self-contained and
composable with other protocols for example authentication or key-negotiation. The
protocol allows periodical execution, which is in accordance with the nature of the mea-
suring proximity to mobile devices. Moreover the preprocessing phase of the protocol is
non-interactive and lighter. Better usage of the communication channels is achieved by
exchanging authenticated nonces, which also improves the overall efficiency of the pro-
tocol. Since the resource requirements to the prover are relaxed the proposed protocol
is suitable for wider class of devices.

Acknowledgements

This work has been done during the design and development of Display Port Content
Protection system. The authors would like to thank Michael Epstein and Raymond
Krasinski for the valuable discussions.

References

1. R. Anderson, Security Engineering: A Guide to building dependable distributed systems, John
Wiley and Sons, 2001.

2. L. Bussard, W. Bagga, Distance-bounding proof of knowledge to avoid real-time attacks,
IFIP/SEC, 2005.

3. S. Brands, D. Chaum, Distance-Bounding Protocols, EUROCRYPT’93, LNCS 765, 1993, pp. 344–
359.

4. S. Capkun, L. Buttyan, J.-P. Hubaux, SECTOR: Secure Tracking of Node Encounters in Multi-Hop
Wireless Networks, SASN 2003, pp. 21–32.

5. S. Capkun, J.-P. Hubaux, Secure positioning in wireless networks, IEEE Selected Areas in Com-
munications, vol.24, no.2, pp. 221-232, 2006.

6. Y. Desmedt, Major security problems with “unforgeable” (feige)- at- shamir proofs of identity and
how to overcome them, SecuriCom, 1988.

7. G. Hancke, M. Kuhn, An RFID Distance Bounding Protocol, IEEE SecureComm, 2005, pp. 67–73.
8. J. Munilla, A. Peinado, Attacks on Singelee and Preneel’s protocol, Cryptology ePrint Archive:

Report 2008/283.
9. J. Reid, J. Neito, T. Tang, B. Senadji, Detecting Relay Attacks with Timing Based Protocols,

ACM ASIACCS, 2007, pp. 204–213.
10. N. Sastry, U. Shankar, D. Wagner, Secure Verification of Location Claims, ACM Workshop on

Wireless Security, 2003, pp. 48–61.
11. D. Singelee, B. Preneel, Location Verification using Secure Distance Bounding Protocols, IEEE

Computer Society, 2005, pp. 834-840.
12. D. Singelee, B. Preneel, Distance Bounding in Noisy Environments, ESAS 2007, LNCS 4572, 2007,

pp. 101–115.
13. D. Singelee, B. Preneel, Key Establishment Using Secure Distance Bounding Protocols, IEEE-

MobiQuitous 2007.
14. B. Waters, E. Felten, Secure, Private Proofs of Location, Princeton Computer Science TR-667-03,

2003.

	Yet Another Secure Distance-Bounding Protocol
	Ventzislav Nikov and Marc Vauclair

