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Abstract – We have designed a new class of public key algorithms based on quasigroup string trans-
formations using a specific class of quasigroups called multivariate quadratic quasigroups (MQQ). Our
public key algorithm is a bijective mapping, it does not perform message expansions and can be used
both for encryption and signatures. The public key consist of n quadratic polynomials with n variables
where n = 140, 160, . . .. A particular characteristic of our public key algorithm is that it is very fast and
highly parallelizable. More concretely, it has the speed of a typical modern symmetric block cipher – the
reason for the phrase ”A Public Key Block Cipher” in the title of this paper. Namely the reference C
code for the 160–bit variant of the algorithm performs decryption in less than 11,000 cycles (on Intel
Core 2 Duo – using only one processor core), and around 6,000 cycles using two CPU cores and OpenMP
2.0 library. However, implemented in Xilinx Virtex-5 FPGA that is running on 249.4 MHz it achieves
decryption throughput of 399 Mbps, and implemented on four Xilinx Virtex-5 chips that are running on
276.7 MHz it achieves encryption throughput of 44.27 Gbps. Compared to fastest RSA implementations
on similar FPGA platforms, MQQ algorithm is more than 10,000 times faster.

Keywords – Public Key Cryptosystems, Fast signature generation, Multivariate Quadratic Polyno-
mials, Quasigroup String Transformations, Multivariate Quadratic Quasigroup

1 Introduction

The public key paradigm initially described in the seminal paper of Diffie and Hellman [10], have com-
pletely changed and re-shaped modern cryptography. The fruits of that change are noticeable now, 30
years after, with the boom of the Internet, digital telecommunications, the convergence of information
and communication technologies and the onset of the modern e-society. Most of the security protocols in
these fields in one way or the other use the Public Key paradigm.

The most popular Public Key Cryptosystem (PKC) schemes are the Diffie and Hellman (DH) key
exchange scheme based on the hardness of discrete logarithm problem [10], the Rivest, Shamir and
Adleman (RSA) scheme based on the difficulty of integer factorization [41], and the Koblitz and Miller
(ECC – Elliptic Curve Cryptography) scheme based on the discrete logarithm problem in an additive
group of points defined by elliptic curves over finite fields [27, 32]. There are two common characteristics
of these well known PKCs (DH, RSA and ECC): 1. their speed – which frequently is a thousand times
lower than the symmetric cryptographic schemes, 2. their security – which relies on one of two hard
mathematical problems: efficient computation of discrete logarithms and factorization of integers.

Several other ideas have been proposed during the last 30 years, such as McEliece PKC based on error
correcting codes [31], Rabin’s digital signature method [40], PKCs based on lattice reduction problems
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[1, 19] and on lattice problems over rings such as NTRU [22], PKCs based on braid groups [2] by Anshel
et al., and by Ko et al., [26] and PKCs based on Multivariate Quadratic (MQ) polynomials.

The main spiritus movens for proposing new PKCs is the following wide-spread cryptographic folklore
wisdom: “it is not wise to keep all the eggs in one basket”. However, from the performance point of view,
there is always another practical motivation: “to design secure public key cryptosystems that has better
speed performance”.

1.1 Public key schemes based on MQ polynomials

There are 4 basic trapdoor functions that are based on multivariate quadratic polynomials. An excellent
survey for those four classes of multivariate quadratic public key cryptosystems has been made by Wolf
and Preneel in [48]. Here we give a brief summary.

The first MQ scheme called MIA is that of Matsumoto and Imai [23] from 1985. That scheme was
broken in 1995 by Patarin [34].

The second MQ scheme called STS (Stepwise Triangular Scheme) was first introduced in 1993 by
Shamir [42] in the variant called Birational Permutation Schemes and was successfully broken by Cop-
persmith, Stern and Vaudenay in the same year [7]. In 1999 a MQ scheme which is a variant of STS
called TTM was proposed by Moh [33]. That scheme was broken in 2000 by Goubin and Courtois [20].
They generalized the STS into the scheme TPM (Triangle Plus Minus) for which the TTM of Moh is a
special case. The whole STS class has been broken by Wolf, Braeken and Preneel in 2004 [45].

The third MQ scheme called HFE (Hidden Field Equations) was designed by Patarin [35, 36] in 1996.
It is a sort of generalization of the MIA scheme. Basic HFE was broken by solving instances of the
MinRank problem, by Kipnis and Shamir [25] in 1999. Several modifications of the scheme have been
proposed [46] but also several new successful attacks have been published [47, 49].

The forth scheme called UOV (Unbalanced Oil and Vinegar) was proposed in 1999 by Kipnis, Patarin,
and Goubin [24] and is a generalization of the original Oil and Vinegar scheme of Patarin [37] from
1997. Some basic variants of UOV have been successfully broken in [5, 49]. The main design flaw of this
scheme is the fact that one set of variables (vinegar variables) are combined quadratically, but the other
complementary set of variables (oil variables) are combined with only vinegar variables in a quadratic way.
This design characteristic was the source of some successful attacks on this scheme. Also, this algorithm
can only be used for signature schemes. However, for some carefully chosen parameters the scheme is
considered still not broken.

Wolf and Preneel [48] have also indicated numerous ways how to tweak all those MQ systems.

1.2 Our results

We have designed a new class of MQ trapdoor functions. The generation of our trapdoor functions is
based on the theory of quasigroups and quasigroup string transformations. In Section 2 we give a brief
introduction to quasigroups and quasigroup string transformations. In the same section we define a new
special class of so called Multivariate Quadratic Quasigroups (MQQ). In Section 3 we describe a public-
key cryptosystem based on MQQs. Its operating characteristics are given in Section 4. We discuss the
security of our PKC in Section 5. Conclusions are given in Section 6.

The results about our PKC can be briefly summarized as:
• it is a deterministic one-to-one mapping;
• there is no message expansion;
• it has one parameter n (= 140, 160, 180, 200 . . .) – the bit length of the encrypted block;
• its conjectured security level when n ≥ 140 bits is 2

n
2 ;

• its encryption speed is comparable to the speed of other multivariate quadratic PKCs;
• its decryption/signature speed is as a typical symmetric block cipher (i.e., in the range of 500–1000

times faster than the most popular public key schemes);
• it is well suited for short signatures.



2 Preliminaries

In this section we will briefly introduce quasigroup string transformations in 2.1, representation of the
quasigroups as vector valued Boolean functions in 2.2, we will discuss the class of multivariate quadratic
quasigroups in 2.3, and the bijection of Dobbertin in 2.4.

2.1 Quasigroup string transformations

Here we give a brief overview of quasigroups and quasigroup string transformations. A more detailed
explanation is found in [4, 9, 29, 30, 43].

Definition 1. A quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q) u ∗ x = v & y ∗ u = v. (1)

It follows from (1) that for each a, b ∈ Q there is a unique x ∈ Q such that a ∗ x = b. Then we denote
x = a \∗ b where \∗ is a binary operation in Q (called a left parastrophe of ∗) and the groupoid (Q, \∗)
is a quasigroup too. The algebra (Q, ∗, \∗) satisfies the identities

x \∗ (x ∗ y) = y, x ∗ (x \∗ y) = y. (2)

Consider an alphabet (i.e., a finite set) Q, and denote by Q+ the set of all nonempty words (i.e.,
finite strings) formed by the elements of Q. In this paper, depending on the context, we will use two
notifications for the elements of Q+: a1a2 . . . an and (a1, a2, . . . , an), where ai ∈ Q. Let ∗ be a quasigroup
operation on the set Q. For each l ∈ Q we define two functions el,∗, dl,∗ : Q+ → Q+ as follows:

Definition 2. Let ai ∈ Q, M = a1a2 . . . an. Then

el,∗(M) = b1b2 . . . bn ⇐⇒
b1 = l ∗ a1, b2 = b1 ∗ a2, . . . , bn = bn−1 ∗ an,

dl,∗(M) = c1c2 . . . cn ⇐⇒
c1 = l ∗ a1, c2 = a1 ∗ a2, . . . , cn = an−1 ∗ an,

i.e., bi+1 = bi ∗ ai+1 and ci+1 = ai ∗ ai+1 for each i = 0, 1, . . . , n− 1, where b0 = a0 = l.

The functions el,∗ and dl,∗ are called the e–transformation and the d–transformation of Q+ based
on the operation ∗ with leader l respectively. Graphical representations of e–transformation and d–
transformation are shown in Fig. 1.

a1 a2 . . . an−1 an

l b1 b2 . . . bn−1 bn
¡

¡¡µ
¡

¡¡µ
¡

¡¡µ
¡

¡¡µ
¡

¡¡µ? ? ? ?

l a1 a2 . . . an−1 an

c1 c2 . . . cn−1 cn

- - - - -

? ? ? ?

Fig. 1. Graphical representations of the el,∗ and dl,∗ transformations

Theorem 1. If (Q, ∗) is a finite quasigroup, then el,∗ and dl,\∗ are mutually inverse permutations of
Q+, i.e.,

dl,\∗(el,∗(M)) = M = el,∗(dl,\∗(M))

for each leader l ∈ Q and for every string M ∈ Q+. ¥



2.2 Quasigroups as vector valued Boolean functions

To define a multivariate quadratic PKC for our purpose, we will use the presentation of finite quasigroups
(Q, ∗) of order 2d by vector valued Boolean functions (v.v.b.f.). Consequently, we choose a bijection
β : Q → {0, 1, . . . , 2d − 1} and represent a ∈ Q by the d-bit representation β(a). Hence, for each a ∈ Q
there are uniquely determined bits x1, x2, . . . , xd ∈ {0, 1} (which depend on the choice of the bijection β)
such that a is represented by the string x1x2 . . . xd. Then we identify a and its d-bit representation and
write a = x1x2 . . . xd or, sometimes, a = (x1, x2, . . . , xd). Now, the binary operation ∗ on Q can be seen
as a vector valued operation ∗vv : {0, 1}2d → {0, 1}d defined as:

a ∗ b = c ⇐⇒
∗vv(x1, x2, . . . , xd, y1, y2, . . . , yd) = (z1, z2, . . . , zd),

where x1 . . . xd, y1 . . . yd, z1 . . . zd are binary representations of a, b, c respectively.
Each zi depends of the bits x1, x2, . . . , xd, y1, y2, . . . , yd and is uniquely determined by them. So, each zi

can be seen as a 2d-ary Boolean function zi = fi(x1, x2, . . . , xd, y1, y2, . . . , yd), where fi : {0, 1}2d → {0, 1}
strictly depends on, and is uniquely determined by, ∗. Thus, we have the following:

Lemma 1. For every quasigroup (Q, ∗) of order 2d and for each bijection Q → {0, 1 . . . , 2d − 1} there
are a uniquely determined v.v.b.f. ∗vv and d uniquely determined 2d-ary Boolean functions f1, f2, . . . , fd

such that for each a, b, c ∈ Q

a ∗ b = c ⇐⇒ ∗vv(x1, . . . , xd, y1, . . . , yd) =
= (f1(x1, . . . , xd, y1, . . . , yd), ..., fd(x1, . . . , xd, y1, . . . , yd)). ¥

Recall that each k-ary Boolean function f(x1, . . . , xk) can be represented in a unique way by its
algebraic normal form (ANF), i.e., as a sum of products

ANF (f) = α0 +
k∑

i=1

αixi +
∑

1≤i<j≤k

αi,jxixj +
∑

1≤i<j<s≤k

αi,j,sxixjxs + . . . , (3)

where the coefficients α0, αi, αi,j , . . . are in the set {0, 1} and the addition and multiplication are in the
field GF (2). In the rest of the text we will abuse the notation and identify the Boolean function f and its
ANF, i.e., we will take f = ANF (f). We say a polynomial f(x1, . . . , xk) when we consider the arguments
of f to be indeterminate variables x1, x2, . . . , xk.

The ANFs of the functions fi give us information about the complexity of the quasigroup (Q, ∗) via
the degrees of the Boolean functions fi. It can be observed that the degrees of the polynomials ANF (fi)
rise with the order of the quasigroup. In general, for a randomly generated quasigroup of order 2d, d ≥ 4,
the degrees are higher than 2. Such quasigroups are not suitable for our construction of multivariate
quadratic PKC.

2.3 Multivariate Quadratic Quasigroups

In this subsection we define a special class of quasigroups, called multivariate quadratic quasigroups
(MQQs) that can be of different types.

Definition 3. A quasigroup (Q, ∗) of order 2d is called Multivariate Quadratic Quasigroup (MQQ) of
type Quadd−kLink if exactly d − k of the polynomials fi are of degree 2 (i.e., are quadratic) and k of
them are of degree 1 (i.e., are linear), where 0 ≤ k < d.

Theorem 2 below gives us sufficient conditions for a quasigroup (Q, ∗) to be MQQ.

Theorem 2. Let A1 = [fij ]d×d and A2 = [gij ]d×d be two d× d matrices of linear Boolean expressions,
and let b1 = [ui]d×1 and b2 = [vi]d×1 be two d × 1 vectors of linear or quadratic Boolean expressions.



Let the functions fij and ui depend only on variables x1, . . . , xd, and let the functions gij and vi depend
only on variables xd+1, . . . , x2d. If

Det(A1) = Det(A2) = 1 in GF (2) (4)

and if
A1 · (xd+1, . . . , x2d)T + b1 ≡ A2 · (x1, . . . , xd)T + b2 (5)

then the vector valued operation ∗vv(x1, . . . , x2d) = A1 · (xd+1, . . . , x2d)T +b1 defines a quasigroup (Q, ∗)
of order 2d that is MQQ.

Proof. Consider the equation

∗vv(a1, . . . , ad, xd+1, . . . , x2d) = (c1, . . . , cd)

where xd+1, . . . , x2d are unknown bits, while ai, ci are given bits. We have the linear system in GF (2) of
kind

A′
1 · (xd+1, . . . , x2d)T + b′1 = (c1, . . . , cd)T , (6)

where A′
1 and b′1 are the valuations of A1 and b1 over the vector (a1, . . . , ad). Since Det(A1) = 1,

it follows that Det(A′
1) = 1 too, so the linear system (6) has a unique solution (xd+1, . . . , x2d)T =

(A′
1)−1 · ((c1, . . . , cd)T − b′1). In the same manner a unique solution of the equation

∗vv(x1, . . . , xd, ad+1, . . . , a2d) = (c1, . . . , cd)

can be found, and ∗vv is a v.v.b.f. of a quasigroup operation ∗ on the set Q = {0, 1, . . . , 2d − 1}. The
quasigroup (Q, ∗) is MQQ since the vector A1 · (xd+1, . . . , x2d)T has as elements multivariate quadratic
polynomials.

Example 1. Let the quasigroup (Q, ∗) of order 23 = 8 be given by the multiplication scheme in Table 1.

∗ 0 1 2 3 4 5 6 7
0 3 2 6 7 1 0 4 5
1 5 3 7 1 0 6 2 4
2 0 6 3 5 4 2 7 1
3 6 7 2 3 5 4 1 0
4 7 1 4 2 3 5 0 6
5 1 0 5 4 2 3 6 7
6 4 5 1 0 6 7 3 2
7 2 4 0 6 7 1 5 3

\ 0 1 2 3 4 5 6 7
0 5 4 1 0 6 7 2 3
1 4 3 6 1 7 0 5 2
2 0 7 5 2 4 3 1 6
3 7 6 2 3 5 4 0 1
4 6 1 3 4 2 5 7 0
5 1 0 4 5 3 2 6 7
6 3 2 7 6 0 1 4 5
7 2 5 0 7 1 6 3 4

Table 1. A quasigroup (Q, ∗) and its left parastrophe (Q, \) of order 8.

The corresponding ANF representation of the operation ∗ as a vector valued Boolean function is the
following:

∗vv(x1, x2, x3, x4, x5, x6) = (f1, f2, f3),

where
f1 = x1 + x3 + x1x4 + x2x4 + x3x4 + x5 + x1x5 + x2x5 + x3x5 + x1x6 + x2x6 + x3x6,
f2 = 1 + x2 + x3 + x4 + x1x4 + x2x4 + x3x4 + x1 + x5 + x2x5 + x3x5 + x1x6 + x2x6 + x3x6,
f3 = 1 + x2 + x3x4 + x5 + x3x5 + x6 + x1x6 + x2x6 + x3x6.

The corresponding matrix-vector representations of ∗ by A1, b1, and A2,b2, are the following:

∗vv(x1, x2, x3, x4, x5, x6) = A1(x4, x5, x6)T + b1,



where A1 =
[

x1 + x2 + x3 1 + x1 + x2 + x3 x1 + x2 + x3
1 + x1 + x2 + x3 x1 + x2 + x3 x1 + x2 + x3

x3 1 + x3 1 + x1 + x2 + x3

]
and b1 =

[
x1 + x3
1 + x2 + x3
1 + x2

]
;

∗vv(x1, x2, x3, x4, x5, x6) = A2(x1, x2, x3)T + b2,

where A2 =
[

1 + x4 + x5 + x6 x4 + x5 + x6 1 + x4 + x5 + x6
x4 + x5 + x6 1 + x4 + x5 + x6 1 + x4 + x5 + x6

x6 1 + x6 x4 + x5 + x6

]
and b2 =

[
x5
1 + x4
1 + x5 + x6

]
.

Indeed in GF (2), Det(A1) = Det(A2) = 1.

While in this example the quasigroup (Q, ∗) is multivariate quadratic, its corresponding left parastro-
phe (Q, \) is of higher degree (the degree is 3). Actually it is a typical behavior for the set of all MQQs.
Their corresponding left parastrophes have ANF representation that has higher degree than 2. The ANF
representation for (Q, \) in this example is the following:

\vv(x1, x2, x3, x4, x5, x6) = (g1, g2, g3)

where

g1 = 1 + x2 + x1x3 + x2x3 + x1x4 + x2x4 + x1x3x4 + x2x3x4 + x5 + x3x5 + x1x3x5 + x2x3x5 + x1x6 +
x2x6 + x3x6,

g2 = x1+x1x3+x2x3+x4+x1x4+x2x4+x1x3x4+x2x3x4+x3x5+x1x3x5+x2x3x5+x1x6+x2x6+x3x6,

g3 = 1 + x1 + x2 + x3 + x4 + x1x4 + x2x4 + x1x5 + x2x5 + x6.

By using Theorem 2 we define the procedure MQQ(d, k) for producing MQQs of order 2d and of type
Quadd−kLink (see the Table 2).

MQQ(d, k)

Input: Integer d and integer k, 0 ≤ k < d

Output: a quasigroup of order 2d and of type Quadd−kLink

1. Randomly generate a d× d matrix A1 of linear Boolean expressions of variables x1, . . . , xd, such
that Det(A1) = 1 in GF (2) and the number #Const of constants 0 or 1 in the matrix A1 satisfies
the inequality kd ≤ #Const < (k + 1)d .

2. Randomly generate a d× 1 vector b1 of linear Boolean expressions of variables x1, . . . , xd.
3. Compute the vector ∗vv = A1 · x2 + b1, where x2 = (xd+1, . . . , x2d)T .
4. Represent ∗vv as ∗vv = A2 · x1 + b2, where x1 = (x1, . . . , xd)T .
5. if (Det(A2) = 1 in GF (2)) and (∗vv is of type Quadd−kLink)

then Return(∗vv),
else GoTo 1;

Table 2. Heuristic algorithm for finding MQQs of order 25

Note that the procedure MQQ(d, k) is a randomized algorithm for finding MQQs of order 2d and of
type Quadd−kLink. For d = 5 the average number of attempts for finding MQQs of type Quad4Lin1 is
around 215 and for finding MQQs of type Quad5Lin0 is around 216. However, MQQ(6, 0) did not give us
any MQQ of order 26. Finding MQQs of orders 2d, d ≥ 6, we consider as an open research problem.

The definition of MQQs implies the following theorem:

Theorem 3. Let x1 = (f1, f2, . . . , fd) and x2 = (fd+1, fd+2, . . . , f2d) be two d–dimensional vectors of
linear Boolean functions of variables x1, . . . , xd. Let (Q, ∗) be a multivariate quadratic quasigroup of type
Quadd−kLink. If x1∗x2 = (g1, . . . , gd) then at most d−k of the polynomials gi are multivariate quadratic
and at least k polynomials are linear. ¥



We want to emphasize that in a process of a random generation of MQQs of type Quadd−kLink,
usually the number of quadratic polynomials is exactly d − k, and the number of linear polynomials is
exactly k. However, there are rare cases when all quadratic terms can cancel each other, and the number
of linear polynomials will be bigger than k while the number of quadratic polynomials will be less than
d−k. Nevertheless, these cases, if they occur, can be easily detected, and quasigroups with such properties
can be omitted from consideration as a candidates for the private key.

2.4 The bijection of Dobbertin

In our construction of the multivariate quadratic trapdoor bijective functions we mostly use the quasi-
groups defined in the previous subsections with properties given in Theorem 1 and Theorem 3. However,
by using only MQQs some of the coordinate functions will remain linear. In order to make a trapdoor
bijective function {0, 1}n → {0, 1}n that is multivariate quadratic in all of its coordinates we use the
bijection of Dobbertin.

Dobbertin has proved [12] that the function Dob(X) = X2m+1+1+X3+X is a bijection in GF (22m+1).
Moreover it is multivariate quadratic too.

In our design of MQQ public key cryptosystem we use the bijection of Dobbertin for m = 6.

3 Description of the algorithm

A generic description for our scheme can be expressed as a typical multivariate quadratic system: T ◦P ′◦S :
{0, 1}n → {0, 1}n where T and S are two nonsingular linear transformations, and P ′ is a bijective
multivariate quadratic mapping on {0, 1}n.

First we will describe how the mapping P ′ : {0, 1}n → {0, 1}n is defined by the algorithm described
in Table 3.

P ′(n)

Input: Integer n, where n = 5k, k ≥ 28, and a vector x = (f1, . . . , fn) of n linear Boolean functions of n variables.

Output: Eight quasigroups ∗1, . . . , ∗8 and n multivariate quadratic polynomials P ′i (x1, . . . , xn), i = 1, . . . , n

Preprocessing phase
By calling the procedure MQQ(4,1) and MQQ(5,0) generate two large sets Quad4Lin1 and Quad5Lin0

(with more than 220 elements each) of MQQs of type Quad4Lin1 and of type Quad5Lin0 such that
the minimal rank of their quadratic polynomials when represented in matrix form is at least 8;

Transform (by permuting the coordinates) all quasigroups in the set Quad4Lin1 such that
their first coordinate is linear.

1. Represent a vector x = (f1, . . . , fn) of n linear Boolean functions of n variables x1, . . . , xn, as a string
x = X1 . . . Xk where Xi are vectors of dimension 5;

2. Pick randomly different quasigroups ∗1, ∗2 ∈ Quad4Lin1 and different quasigroups
∗3, ∗4, ∗5, ∗6, ∗7, ∗8 ∈ Quad5Lin0.

3. Define a (k − 1)–tuple I = (i1, i2, . . . , ik−1) where ij ∈ {1, 2, . . . , 8}, that will used as an index
set (sequence) to determine which quasigroup will be used in the nonlinear transformation of y.
The requirement for this index set is that the total number of indexes that are refereing to a quasigroup
from the class Quad4Lin1 is 8.

4. Compute y = Y1 . . . Yk where: Y1 = X1, Yj+1 = Xj ∗ij Xj+1, for j = 1, 2, . . . , k − 1
5. Set a 13-dimensional vector Z = Y1||Yµ1,1||Yµ2,1|| . . . ||Yµ8,1 that has all 13 components as linear Boolean

functions. Here the notation Yµj ,1 means the first coordinate of the vector Yµj .
6. Transform Z by the bijection of Dobbertin: W = Dob(Z).
7. Set Y1 = (W1, W2, W3, W4, W5), Yµ1,1 = W6, Yµ2,1 = W7, Yµ3,1 = W8, Yµ4,1 = W9, Yµ5,1 = W10,

Yµ6,1 = W11, Yµ7,1 = W12, Yµ8,1 = W13.
8. Output: Quasigroups ∗1, . . . , ∗8 and y as n multivariate quadratic polynomials P ′i (x1, . . . , xn), i = 1, . . . , n.

Table 3. Definition of the nonlinear mapping P ′ : {0, 1}n → {0, 1}n



For the reasons why in the “Preprocessing phase” we demand that “minimal rank of their quadratic
polynomials when represented in matrix form is at least 8” please see the Subsection 5.4.

Additionally, note that the definition of the index set I = (i1, i2, . . . , ik−1) where ij ∈ {1, 2, . . . , 8} can
be either public or private. The security of the algorithm does not depend on the secrecy of that set.

The algorithm for generating the public and private key is defined in the Table 4. We give in the

Algorithm for generating Public and Private key for the MQQ scheme

Input: Integer n, where n = 5k and k ≥ 28.

Output: Public key P: n multivariate quadratic polynomials Pi(x1, . . . , xn), i = 1, . . . , n,
Private key: Two nonsingular Boolean matrices T and S of order n× n and eight quasigroups ∗1, . . . , ∗8

1. Generate two nonsingular n× n Boolean matrices T and S (uniformly at random).
2. Call the procedure for definition of P ′(n) : {0, 1}n → {0, 1}n and from there also obtain the quasigroups ∗1, . . . , ∗8.
3. Compute y = T (P ′(S(x))) where x = (x1, . . . , xn).
4. Output: The public key is y as n multivariate quadratic polynomials Pi(x1, . . . , xn), i = 1, . . . , n,

and the private key is the tuple (T, S, ∗1, . . . , ∗8).
Table 4. Algorithm for generating the public and private key

Appendix a detailed example of the process of generating the public and private key with small number
of variables n = 20.

The algorithm for decryption/signing by the private key (T, S, ∗1, . . . , ∗8) is defined in Table 5.

Algorithm for decryption/signing with the private key (T, S, ∗1, . . . , ∗8)
Input: A vector y = (y1, . . . , yn).

Output: A vector x = (x1, . . . , xn) such that P(x) = y.

1. Set y′ = T−1(y).
2. Set W = (y′1, y′2, y′3, y′4, y′5, y′6, y′11, y′16, y′21, y′26, y′31, y′36, y′41).
3. Compute Z = (Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, Z12, Z13) = Dob−1(W ).
4. Set y′1 ← Z1, y′2 ← Z2, y′3 ← Z3, y′4 ← Z4, y′5 ← Z5, y′6 ← Z6, y′11 ← Z7 y′16 ← Z8, y′21 ← Z9,

y′26 ← Z10, y′31 ← Z11 y′36 ← Z12, y′41 ← Z13.
5. Represent y′ as y′ = Y1 . . . Yk where Yi are vectors of dimension 5.
6. By using the left parastrophes \i of the quasigroups ∗i, i = 1, . . . , 8, obtain x′ = X1 . . . Xk, such that:

X1 = Y1, X2 = X1 \1 Y2, X3 = X2 \2 Y3 and Xi = Xi−1 \3+((i+2)mod 6)
Yi.

7. Compute x = S−1(x′).
Table 5. Algorithm for decryption or signing

The algorithm for encryption with the public key is straightforward application of the set of n multi-
variate polynomials P = {Pi(x1, . . . , xn) | i = 1, . . . , n} over a vector x = (x1, . . . , xn), i.e., y = P(x).

4 Operating characteristics

In this section we will discuss the size of the private and the public key as well as the number of operations
per byte for encryption and decryption.

4.1 The size of the public and the private key

Since the public key consists of n multivariate quadratic equations, and they appear to be randomly
generated, the size of the public key follows the rules given in [48]. So, for n bit blocks the size of the public



n
Size of the

public key (KBytes)
Size of the

private key (KBytes)

140 168.69 9.79
160 251.58 11.25
180 357.96 12.91
200 490.75 14.77

Table 6. Memory size in KBytes for the public key and the private key

key is n× (1 + n(n+1)
2 ) bits. In the Table 6 we give the size of the public key for n ∈ {140, 160, 180, 200}

in KBytes.
The private key of our scheme is the tuple (T, P, ∗1, . . . , ∗8). The corresponding memory size needed

for storage of T and P is 2n2 bits. The memory size for the quasigroups (∗1, . . . , ∗8), (actually for their
parastrophes), is 8×32×32×5 = 40960 bits. For the storage of particular quasigroups in memory we note
that it is not necessary to store 32× 32× 5 bits for every quasigroup, since that type of the storage has
redundancy (the last row of the Latin Square is uniquely determined by the rest of the table), but in order
to achieve efficient speed in the decryption process we store the full information about the parastrophes.
In total, the size of the private key expressed in Kb is 1

213 (2n2 + 40960). In the second column of the
Table 6 we give the size of the private key for n ∈ {140, 160, 180, 200} in KB (kilo bytes).

For the storage of the inverse table of the bijection of Dobbertin we need additional 213×13 = 106496
bits which is exactly 13KB, but those 13KB do not belong to the private key.

4.2 The number of operations for encryption and decryption

In order to obtain an independent measure for the operating speed of our scheme, we will express the
speed of encryption and decryption/signing as the number of operations per processed byte. We will also
take into account three widespread microprocessor architectures: 8-bit, 32-bit and 64-bit architectures.

Since the public part of our scheme follows the typical paradigm of the MQ public key cryptosystems,
its speed of encryption is the same as (or similar to) the speed of other MQ systems. That means that
the encryption is done after O(n3) logical AND and logical XOR operations.

The actual speed of any multivariate quadratic PKC when encryption is performed on 32-bit or 64-bit
microprocessor architectures, using internal parallelism of the modern CPUs, as well as techniques of bit
slicing, can result in an encryption process which is significantly faster than RSA/DH or ECC encryption
for systems with equivalent security levels.

If we assume that AND or XOR operations can be executed in one cycle (without taking into account
that modern 32-bit and 64-bit CPUs actually can perform several such operations in parallel), then non-
optimized encryption of any general n-bit variant of any multivariate quadratic PKC scheme have a speed
of 16

n d n
Arche(1 + n(n+1)

2 ) operations per byte where Arch = 8, 32 or 64.
The speed of decryption/signing in the class of multivariate quadratic PKCs is not so uniformly dis-

tributed as it is for encryption. The number of operations for particular parts of the process of decryption
of our scheme can be summarized in the following list:

– Two linear operations by the matrices S−1 and T−1 that take 2nd n
Arche operations;

– One lookup operation at the table of the bijection of Dobbertin;
– Exactly k − 1 lookup operations at the quasigroup parastrophes.

The total number of operations per byte can be computed by the expression 8
n (2nd n

Arche+ 1 + k− 1)
and are given in the Table 7.



Operations per encrypted byte

n Arch = 8-bit Arch = 32-bit Arch = 64-bit

140 20306 5640 3384
160 25762 6440 3864
180 33306 8688 4344
200 40202 11257 6432

Operations per decrypted byte

n Arch = 8-bit Arch = 32-bit Arch = 64-bit

140 289.65 81.66 49.66
160 321.65 81.65 49.65
180 369.64 97.64 49.64
200 401.64 113.64 65.64

Table 7. Estimated operations per encrypted/decrypted byte, for different n and 8, 32 or 64 bit architectures.

4.3 Performance of the software and hardware implementation of the MQQ algorithm

We have implemented the MQQ public key algorithm in C and in VHDL, and have measured its perfor-
mance both on a PC with Intel Core 2 Duo processor in 64–bit mode of operation, as well as on a Xilinx
FPGA.

For comparative purposes, in Table 8 we give the speed of encryption/verification and decryp-
tion/signing for a basic block of data specific for several public key algorithms, performed on a PC with
Intel Core 2 Duo processor. The measurements for DSA, RSA, and ECDSA are taken from “eBATS:
ECRYPT Benchmarking of Asymmetric Systems”[14]. From Table 8 one can obtain an impression that

Algorithm name
Encrypt
(cycles)

Decrypt
(cycles)

Sign
(cycles)

Verify
(cycles)

DSA signatures using a
1024-bit prime

N/A N/A 1,041,400 1,246,312

ECDSA signatures
using NIST B-163

elliptic curve
N/A N/A 2,147,128 4,220,480

1024-bit RSA, 17 bits
public exponent

119,800 2,952,752 2,938,632 98,712

160–bit MQQ, one
processor

140,485 10,705 10,309 140,209

160–bit MQQ, two
processors

80,105 6,212 6,155 79,903

Table 8. Software speeds (in number of cycles) of several most popular public key algorithms on Intel Core 2
Duo processor in 64–bit mode of operation

MQQ with 160–bits blocks is faster only in decryption (signatures), but is even slower than 1024–bit RSA
in encryption (verification). However, we must emphasize the property that MQQ is highly parallelizable,
and on systems with multiple CPU cores the speedup can go linearly with the number of CPU cores.
That is shown in the last row of the Table 8, where 160–bit MQQ was implemented in C, using OpenMP
2.0 under Microsoft Visual Studio 2008. It is clear that further increasing of the number of CPU cores
can speed up MQQ algorithm almost linearly with the number of cores. The next challenging task will
be to implement MQQ in modern graphic cards (like TeslaTM many-core processor from NVIDIA).



The parallelizable nature of MQQ can be evidently shown in its hardware realization. Implemented
in FPGA, MQQ is 10,000 times faster than DSA, RSA or ECDSA, and is comparable or even faster than
the symmetric block cipher AES.

In Table 9 we compare the speed of 160–bit MQQ with the speed of 1024–bit RSA realized in Xilinx
Virtex-5 FPGA chip by the company “Helion Technology Limited” [21]. In the same table we also give
the speed of AES (128–bit key) realized in Xilinx FPGA chip in the same Virtex-5 family and by the
same company. We have to mention that our FPGA realization of 160–bit MQQ is fully pipelined, and
actually needs two Xilinx Virtex-5 chips of the type: XC5VFX70T-2.

Algorithm name
1024-bit RSA,

encrypt/decrypt
160–bit MQQ,

encrypt/decrypt
128–bit AES,

encrypt/decrypt

FPGA type
Virtex-5,

XC5VLX30-3
Virtex-5,

XC5VFX70T-2
Virtex-5

Frequency 251 MHz
276.7 / 249.4

MHz
325 MHz

Throughput 40 Kbps
44.27 Gbps /
399.04 Mbps

3.78 Gbps

Table 9. Hardware performances of 1024–bit RSA, 160–bit MQQ and 128–bit AES on Xilinx Virtex-5 FPGAs

4.4 Speed of key generation for MQQ

In the Section 3 we have given a randomized algorithm for generating MQQs which is based on the
heuristic algorithm for finding MQQs of order 25 described in subsection 2.3. The whole process of public
and private key is extremely time-consuming. So, from the speed of the key generation point of view, we
can say that our MQQ algorithm has much worse characteristics compared to other public key algorithms.

5 Security analysis of the algorithm

5.1 The size of the pool of MQQs of order 25

It is very important to address the question of the size of the set of MQQs of order 25 and of types
Quad5Lin0 and Quad4Lin1. We have to note that the number of MQQs of different types is an open
research question and that we do not know the exact number of such quasigroups, nor an approximation
for the lower bound for that number. In fact, a more thorough analysis and experiments with smaller
quasigroups (of orders 22 and 23) can lead to the initial conjectures that their number is much larger than
240. However, we are sure that their number is certainly larger than 220 since, by using Mathematica as
a package for symbolic computations on a modest Pentium 4 machine (2GHz, with 512MB RAM), we
have generated more than 220 MQQs of type Quad4Lin1 and more than 220 MQQs of type Quad5Lin0.
So, in total, the size of the pool set for 8 MQQs of order 25 is at least of order 2149.

5.2 Chosen plaintext attack

The chosen plaintext attack against some MQ scheme first was successfully applied by Patarin in [34]
to break the MIA scheme [23]. The idea is very simple: given a system of MQ polynomial equations
{yi = Pi(x1, . . . , xn) |i = 1, . . . , n} as a public key, try to find relations in the x and y coordinates, by
using plaintext/ciphertext pairs (x, y).

It turned out that if the multivariate quadratic function is defined as F : x 7→ xql+1, then the relations
between x and y coordinates can be expressed as a system of n bilinear equations

∑n
i=1

∑n
j=1 βi,jxiyj +



∑n
i=1 βi,0xi +

∑n
j=1 β0,jyj + β0,0 = 0 where βi,j are (n + 1)2 unknown coefficients. By computing at least

(n+1)2 plaintext/ciphertext pairs (x, y) a linear system of equations on unknowns βi,j can be established
and solved.

Our MQ PKC scheme is not defined by any particular F : x 7→ xql+1. Moreover, if someone try to
establish relations in the x and y coordinates in a similar way as Patarin did for MIA scheme, then those
relations have to include all possible terms (not just bilinear terms) between x and y coordinates, thus
rising the number of unknown terms to O(2n).

5.3 Isomorphism of polynomials

The isomorphism of polynomials with one secret was initially introduced by Patarin [35], and can be briefly
formulated as: for two given sets of multivariate mappings P ′ : {0, 1}n → {0, 1}n and P : {0, 1}n → {0, 1}n

by their polynomials (P ′1(x1, . . . , xn), . . . , P ′n(x1, . . . , xn)) and (P1(x1, . . . , xn), . . ., Pn(x1, . . . , xn)) find
(if any) an invertible affine mapping S : {0, 1}n → {0, 1}n such that P ′ = S ◦ P , where the operation ◦
is a composition of mappings.

Several algorithms for the solution of the problem have been published in recent years. The first one
was the algorithm proposed by Geiselmann, Meier and Steinwandt [18], and the second was the algorithm
by Levy-dit-Vehel and Perret [28]. Finally, in 2005 Perret presented an algorithm for efficient solving of
this problem which proved that the scheme of Patarin is not secure [39].

The main difficulty for applying the techniques developed by Perret for attacking our scheme is that
our scheme differs from that of Patarin in the sense that it can be generally described as P = T ◦P ′ ◦T ≡
T (P ′(T (x))) where T : {0, 1}n → {0, 1}n is a nonsingular matrix and where the knowledge for P ′ is hidden
from the attacker. The bijection P ′ : {0, 1}n → {0, 1}n is constructed by an application of quasigroup
transformations, and is not initially generated by some initial polynomial that will give information to
the attacker.

5.4 The MinRank problem and its solutions as tools for attack

The MinRank problem can be described as follows: For a given sequence of matrices (M1, . . . , Mn) over
some field and a given integer r < n, find a linear combination of the matrices such that Rank(

∑n
i=1 λiMi) ≤

r. The MinRank problem has been shown to be NP-complete over finite fields [6].
The attacks that involve solution of the MinRank problem, when r is relatively small, work like

this: represent a given public key of n polynomials P1(x1, . . . , xn), . . ., Pn(x1, . . . , xn) in the form
Pi(x1, . . . , xn) = xT Mix where Mi are n × n matrices in a field. If the private key is constructed by
polynomials P ′i (x1, . . . , xn) such that they can be described as P ′i (x1, . . . , xn) = xT Aix, and if the mini-
mal rank r of Ai is much smaller than n (r = 0, 1, 2), then there are efficient algorithms for finding linear
combination of the matrices Mi such that Rank(

∑n
i=1 λiMi) ≤ r. The information for those linear com-

binations, combined with the particular design principles is then used to break the system. For example,
Goubin and Courtois [20] have broken the TTM system of Moh [33] in this way.

The main difference between our PKC and systems where the solution of MinRank problems works
is that the minimal rank r of the matrices Ai for the nonlinear part of our scheme are taken to be r ≥ 8.

Kipnis and Shamir [25] have used an instance of the solution of MinRank problems to attack the HFE
scheme. They used the fact that HFE polynomials can be described as P (X) =

∑r−1
i=0

∑r−1
j=0 pijX

2i+2j

,
and the value of r is kept small (r ≤ 13) in order to implement efficient decryption.

This attack does not work on our scheme since we do not use any particular polynomial. In fact,
if our nonlinear part P ′ is represented as a polynomial then the values for r are ≈ n. Namely, the
P ′ is obtained by several applications of different nonlinear quasigroup string transformation, which
are leaving some parts still linear. Then those linear leftovers are transformed by another nonlinear
transformation. The resulting quadratic bijection P ′ : {0, 1}n → {0, 1}n can be represented in the form
P ′(X) =

∑n−1
i=0

∑n−1
j=0 p′ijX

2i+2j

only for r ≈ n.



5.5 Attacks with differential cryptanalysis

A few years ago, Fouque, Granboulan and Stern [17] have come to the idea to use the concept of differential
cryptanalysis, that has been used successfully mostly against symmetric cryptographic algorithms, for
multivariate schemes too. The basic idea is that for any finite field Fq of characteristic q and for any
multivariate quadratic function G : (Fq)n → (Fq)m the differential operator between any two points
x, k ∈ (Fq)n can be expressed as LG,k = G(x + k)−G(x)−G(k) + G(0) and in fact that operator is a
bilinear function.

By knowing the public key of a given multivariate quadratic scheme, and by knowing the information
about the nonlinear part of that multivariate scheme (the function F : x 7→ xql+1), they showed that for
certain parameters of some multivariate schemes it is possible to successfully recover the kernel of LG,k.

This attack was successfully applied on Ding’s scheme [11], and afterwards, using the same technique,
Dubois, Fouque, Shamir and Stern in [13] have completely broken all versions of the SFLASH signature
scheme proposed by Patarin, Courtois, and Goubin in [38].

Although the generic part of the differential attack is applicable on our multivariate quadratic scheme,
the crucial part that is different is the fact that the nonlinear part in our scheme is not a function of a
type F : x 7→ xql+1. In our scheme, the nonlinear part is unknown to the attacker, since it is a part of
the private key, and this renders the differential attack impoverished.

5.6 XL attack and Gröbner basis attacks

The XL [8] procedure for solving MQ polynomials was proposed by Courtois, Klimov, Patarin, and Shamir
in 2000 as an extension of an initial attack by Kipnis and Shamir [25] called relinearization. When the
number of equations m is equal to the number of variables n, then the complexity of the algorithm is 2n.
Since our PKC scheme has exactly that property, we can claim that an XL attack is not efficient on our
PKC.

Recently XL algorithm has been proven ([3, 44]) to be equivalent to F4 algorithm, a fast Gröbner basis
computation algorithm developed by Faugere [15]. Since the Gröbner basis attack solves a multivariate
polynomial system directly, any PKC based on multivariate polynomials is potentially vulnerable to this
attack. In the case of HFE, Joux and Faugere [16] successfully attacked a system of 80 MQ polynomials in
80 variables in 2003 using Faugere’s F5 algorithm specialized for the binary field. The successful breaking
of HFE by F5 algorithm is due to the fact that the secret polynomial in the HFE has a degree of only
96. A HFE scheme need to have a polynomial of relatively low degree because it’s performance depends
on the algorithms for finding roots of that polynomial in GF (2n). The authors of [16] even give a table
where they project the upper bound for the efficiency of the Gröbner basis attacks. The degree of the
polynomials that can give HFE instances still feasible to be broken by the F5 algorithm goes up to 4096.

By performing numerous attacks by Faugere’s algorithms on our PKC scheme we came to the following
conclusions:

1. Faugere’s algorithms successfully break our scheme up to n = 95 variables.
2. For n ≥ 100, Faugere’s algorithms rapidly lose their efficiency against our scheme.

We want to stress here that our decision to propose the security parameter for our PKC scheme (the
number of Boolean variables n) to be: n ≥ 140, was based both on the experimental experience that we
gained during the design-break-tweak-design process and on the arguments that make our multivariate
quadratic scheme different from all other such schemes developed so far. An important part in that design
process were attacks based on Gröbner bases and Faugere’s algorithms. However, as it is the case with
many public-key schemes, we do not have an ultimate security proof for our scheme.

To summarize: as a general claim for our MQQ scheme with n variables we say that its strength is
2

n
2 . We base our claims on the analysis of the power of the methods using Gröbner basis to solve random

multivariate quadratic systems of equations.



Namely, the authors of [16] give a formula for computing the upper bound for the efficiency of the
Gröbner basis attacks. Based on that analysis we are giving here the Table 10 with the projected com-
plexity for solving random multivariate quadratic systems of equations by Gröbner basis algorithms for
different number of variables n. Based on that projection in the second row we are giving the projection
for the strength of our PKC scheme.

n 140 160 180 200

Complexity
of Gröbner basis attacks

287 299 2112 2125

Strength
of our MQQ PKC

270 280 290 2100

Table 10. Complexity of the Gröbner basis attacks for different number of variables n and the strength of MQQ
against Gröbner basis attacks.

5.7 Attack by an anonymous PKC-2008 reviewer

In this subsection we will describe an attack that has been proposed by an anonymous reviewer of the
11th International Workshop on Practice and Theory in Public Key Cryptography – PKC 2008, held in
Barcelona, Spain in March 2008.

Let us take a simplified version of the algorithm where P = T ◦P ′ ◦T (only one linear transformation
T is used) and in this subsection let us denote by S the set of all n–bit Boolean vectors, i.e., S ≡ {0, 1}n.
Thus, P , P ′ and T are now maps from S to S, and elements of S are the n–tuples (x1, x2, ..., xn), where
xi ∈ {0, 1}.

The first step in the attack will be to identify an element s of S, that under the linear transformation
T has the form:

T (s) = (0, 0, . . . , 0, xk+1, xk+2, . . . , xn),

that is, such that its first k coordinates are zero. Let Sk be the space of elements of S whose first k entries
are 0.

Selecting elements of S at random, the probability of finding s ∈ Sk is 2−k, so finding an element of
Sk reduces to being able to know that such an element has been found. To do this, notice that since the
first k coordinates of T (s) are all zero, then for every element r ∈ S, the first k coordinates of

P ′ ◦ T (r)

and the first k coordinates of
P ′ ◦ T (r + s)

are equal, so the vector space generated by elements

{P (r + s)− P (r)|r ∈ S}

has co-dimension k in S. This last condition can be easily verified.
The attack is as follows.

1. Pick a random s ∈ S.
2. Check if s is an element of T−1(Sk) using the previous test.
3. Repeat until a basis for T−1(Sk) is found.



The reasons why we bolded the Step 2, the phrase “for every element” and several other phrases in
the forthcoming text, will become clear at the end of this subsection.

If T (s) ∈ Sk, then we have seen that the first k coordinates of P ′ ◦ T (s + r) coincide with the first k
coordinates of P ′ ◦T (r) for every r, hence P ′ ◦T (s+r)−P ′ ◦T (r) is an element of Sk (this is actually
how one identifies that T (s) ∈ Sk). Since T is linear, T (P ′ ◦ T (s + r)− P ′ ◦ T (r)) = P (s + r)− P (r).
Notice that this is T (s′) for s′ an element of Sk. In other words, when one picks a random s and checks
if T (s) is an element of Sk by checking that the co-dimension of {P (s + r) − P (r) | r ∈ S} is k, this
space of co-dimension k is the same as T (Sk).

Using a modification of the previous argument one can recursively identify T−1 of the subspaces of S
such that first k coordinates are zero. Again, as a by-product of this attack, the image of such subspaces
under T is recovered.

The attack described above is based on a very nice idea, namely to apply linear algebra theory in
order to recover one part of the private key (the linear transformation T ). However, the complexity of the
attack is much worse than the projected security of our scheme that is 2

n
2 . The parts that we have bolded

are clearly showing the complexity of the attack. Namely, in the first part of the attack (the Step 2) the
attacker needs to find out an element s such that it belongs to T−1(Sk). In order to do that, he pics a
random s and then he have to check for every r ∈ S that {P (r + s)−P (r) | r ∈ S} has co-dimension
k in S. The number of elements in S is 2n. Thus, finding only one vector s ∈ Sk needs 2n operations, and
recovering the whole basis of the discussed subspaces under T will need many more operations. Moreover,
the arguments that the attacker does not need to check all elements r ∈ S, but just a small number of
random elements r ∈ S that satisfy the condition that the first k coordinates of P (r + s) and P (r) are
equal is completely wrong and has no mathematical merit.

6 Conclusions

We have constructed a public key cryptosystem MQQ by using quasigroups. The main idea is to represent
quasigroups as vector valued Boolean functions, to find a class of quasigroups that have degree at most 2,
and then to use quasigroup string transformations to construct bijective trapdoor multivariate quadratic
polynomials.

The speed of encryption/verification of our scheme is similar to other MQ schemes, and the speed of
decryption/signing is in the range of 500–1000 times faster than the most popular public key schemes.
Moreover, the algorithm offers flexibility in its implementation from parallelization point of view.

By learning about the weaknesses of all existing MQ schemas, we have designed a scheme that combines
several known structures to create secure multivariate quadratic trapdoor functions.

Our scheme is resistant against known successful attacks on other MQ schemes, since its design
principles does not include the known design weaknesses of other MQ schemes, one of which is that there
exists a given multivariate quadratic polynomial (or a set of MQ polynomials) with relatively low degree,
on top of which the whole PKC scheme is constructed. That design principle has been the necessary crib
for successful attacks of many MQ schemes. In our PKC scheme, there is a fundamental difference in that
we have defined a huge class of quasigroups called Multivariate Quadratic Quasigroups which gives MQ
polynomials after certain types of operations.

It is an open research problem to count the number of MQQs of order 25 and to find ways to construct
MQQs of higher order (for example of order 28). Finding such quasigroups will increase the security and
will speed up the process of decryption/signing even more.
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APPENDIX

an example of the creation of a private and
a public key with n = 20 bits

This example is for n = 20. Since even with such a small example, the number of terms in some
expressions will increase to more than 100, in the notation we will use horizontal lines to make a distinction
between different coordinates.

We will use the simplified version of the algorithm where P = T ◦P ′ ◦ T . Let x = (x1, x2, . . . , x20) be
a vector of 20 Boolean variables. The private and the public key is created by the following procedure:

1) Set T =



0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 1
1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1
1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0
0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0
1 1 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1
0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0
0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1
0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1
0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0
0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 1
0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 0 0
0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1
0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1
1 1 0 0 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 1
0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 1




,

where T is a nonsingular 20× 20 Boolean matrix generated uniformly at random;

2) Set

∗1(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) =




1 + x1 + x2 + x3 + x7 + x9 + x10
1 + x6x1 + x8x1 + x10x1 + x1 + x2 + x4 + x2x7 + x3x7 + x4x7+
+x5x7 + x2x8 + x3x8 + x4x8 + x2x9 + x3x9 + x5x9 + x9 + x5x10+
+x10
1 + x6x1 + x9x1 + x1 + x2x6 + x3x6 + x6 + x4x7 + x7 + x4x8+
+x8 + x2x9 + x3x9 + x4x10
1 + x8x4 + x9x4 + x4 + x5 + x1x6 + x2x6 + x3x6 + x1x7 + x2x7+
+x3x7 + x1x8 + x2x8 + x3x8 + x8 + x9 + x1x10 + x2x10 + x3x10+
+x10
1 + x7x1 + x10x1 + x1 + x2 + x3 + x4 + x2x7 + x3x7 + x8 + x9+
+x2x10 + x3x10




T

,

∗2(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) =




x1 + x2 + x6 + x9 + x10
x8x2 + x2 + x3 + x3x6 + x5x6 + x6 + x3x7 + x4x7 + x5x7+
+x1x8 + x3x8 + x4x8 + x5x8 + x8 + x3x9 + x5x9 + x3x10+
+x5x10 + x10
1 + x9x1 + x10x1 + x1 + x2 + x4 + x5 + x3x7 + x4x7 + x8 + x2x9+
+x2x10
x7x3 + x9x3 + x10x3 + x3 + x4 + x5 + x1x6 + x2x6 + x4x7 + x7+
+x1x8 + x2x8 + x4x9 + x4x10
x3 + x4 + x1x6 + x2x6 + x7 + x8 + x1x9 + x2x9 + x10




T

,

∗3(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) =






x7x1 + x9x1 + x1 + x2 + x4 + x3x6 + x4x6 + x5x6 + x2x7+
+x3x7 + x4x7 + x5x7 + x2x8 + x3x8 + x4x8 + x5x8 + x3x9+
+x4x9 + x5x9 + x9 + x2x10 + x10
x6x1 + x7x1 + x9x1 + x1 + x3 + x5 + x2x6 + x6 + x2x7+
+x2x8 + x2x10 + x3x10 + x4x10 + x5x10 + x10
1 + x6x1 + x7x1 + x9x1 + x10x1 + x1 + x4 + x2x6 + x2x7+
+x7 + x2x8 + x8 + x9 + x3x10 + x4x10 + x5x10 + x10
1 + x9x1 + x10x1 + x1 + x4 + x5 + x2x6 + x6 + x3x7 + x4x7+
+x5x7 + x2x10 + x3x10 + x4x10 + x5x10
1 + x6x2 + x10x2 + x2 + x4 + x5 + x3x7 + x4x7 + x5x7+
+x7 + x1x9 + x9 + x1x10 + x3x10 + x4x10 + x5x10 + x10




T

;

3) The tuple (T, ∗1, ∗2, ∗3) is the private key;

4) Set x′ = T · xT =


x4 + x5 + x7 + x11 + x14 + x15 + x16 + x20
x1 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12+
+x13 + x14 + x15 + x19 + x20
x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x10+
+x13 + x14 + x15 + x16 + x17 + x18 + x19
x3 + x4 + x5 + x9 + x10 + x11 + x12 + x14 + x17 + x19
x1 + x2 + x3 + x7 + x8 + x10 + x15 + x17 + x19 + x20
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11+
+x13 + x14 + x16 + x17 + x18 + x19 + x20
x2 + x4 + x5 + x6 + x9 + x10 + x11 + x12 + x15
x6 + x7 + x8 + x10 + x12 + x13 + x14 + x18
x2 + x7 + x8 + x9 + x10 + x11 + x12 + x14 + x15+
+x16 + x17 + x20
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x9 + x13+
+x17 + x18 + x20
x2 + x4 + x6 + x7 + x8 + x9 + x10 + x18 + x20
x3 + x4 + x6 + x8 + x10 + x13 + x16 + x17 + x19
x2 + x3 + x4 + x10 + x14 + x16 + x18
x1 + x3 + x7 + x10 + x11 + x12 + x13 + x15 + x16+
+x17 + x19 + x20
x3 + x4 + x5 + x6 + x10 + x11 + x12 + x13 + x14+
+x15 + x18
x2 + x3 + x4 + x5 + x10 + x14 + x18 + x19 + x20
x6 + x8 + x10 + x12 + x14 + x15 + x16 + x20
x4 + x5 + x7 + x10 + x12 + x14 + x15 + x17 + x18+
+x19 + x20
x1 + x2 + x6 + x8 + x12 + x13 + x15 + x17 + x18+
+x19 + x20
x2 + x4 + x5 + x6 + x7 + x8 + x9 + x11 + x15+
+x17 + x18 + x20




T

;

5) Represent the vector x′ by chunks of 5 bits, i.e. x′ = X1X2X3X4;

6) Compute y′ = Y1Y2Y3Y4 such that Y1 = X1, Y2 = X1 ∗1 X2, Y3 = X2 ∗2 X3 and Y4 = X3 ∗3 X4. The
following relations will be obtained:

Y1 = (y11, y12, y13, y14, y15), where
y11 = x4 + x5 + x7 + x11 + x14 + x15 + x16 + x20,
y12 = x1 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12 + +x13 + x14 + x15 + x19 + x20,
y13 = x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x10 + +x13 + x14 + x15 + x16 + x17 + x18 + x19,
y14 = x3 + x4 + x5 + x9 + x10 + x11 + x12 + x14 + x17 + x19,
y15 = x1 + x2 + x3 + x7 + x8 + x10 + x15 + x17 + x19 + x20,

Y2 = (y21, y22, y23, y24, y25), where
y21 = 1 + x1 + x4 + x7 + x8 + x12 + x13 + x15 + x16 + x17,
y22 = 1 + x7x1 + x9x1 + x10x1 + x13x1 + x14x1 + x15x1 + x16x1 + x17x1 + x18x1 + x19x1 + x20x1 + x1 + x2 + x2x3 + x3 + x4 + x4x5 +

x4x6 + x5x6 + x2x7 + x6x7 + x7 + x3x8 + x4x8 + x5x8 + x7x8 + x8 + x4x9 + x5x9 + x2x10 + x4x10 + x7x10 + x9x10 + x10 + x2x11 + x3x11 +
x6x11 + x7x11 + x8x11 + x3x12 + x4x12 + x8x12 + x10x12 + x11x12 + x3x13 + x5x13 + x8x13 + x11x13 + x6x14 + x7x14 + x11x14 + x14 + x2x15 +
x4x15 + x5x15 + x6x15 + x7x15 + x8x15 + x10x15 + x15 + x5x16 + x6x16 + x7x16 + x8x16 + x9x16 + x11x16 + x12x16 + x14x16 + x2x17 + x5x17 +
x7x17 + x9x17 + x10x17 + x13x17 + x15x17 + x16x17 + x3x18 + +x4x18 + x8x18 + x10x18 + x11x18 + x12x18 + x13x18 + x16x18 + x3x19 +
x14x19 + x4x20 + x6x20 + x7x20 + x8x20 + x10x20 + x12x20 + x13x20 + x14x20 + x19x20 + x20,

y23 = 1+ x2x1 + x5x1 + x7x1 + x10x1 + x11x1 + x15x1 + x18x1 + x19x1 + x1 + x2x3 + x3 + x2x4 + x3x4 + x2x5 + x4x5 + x5 + x2x6 + x5x6 +
x6 + x3x7 + x4x7 + x5x7 + x6x7 + x7 + x3x8 + x4x8 + x5x8 + x4x9 + x5x9 + x8x9 + x3x10 + x6x10 + x8x10 + x10 + x4x11 + x5x11 + x6x11 +
x8x11 + x9x11 + x10x11 + x2x12 + x3x12 + x5x12 + x7x12 + x8x12 + x9x12 + x11x12 + x12 + x2x13 + x3x13 + x4x13 + x7x13 + x9x13 + x12x13 +
x3x14 + x8x14 + x9x14 + x10x14 + x13x14 + x2x15 + x3x15 + x4x15 + x6x15 + x7x15 + x10x15 + x11x15 + x12x15 + x13x15 + x15 + x3x17 +
x8x17 + x9x17 + x10x17 + x13x17 + x2x18 + x5x18 + x6x18 + x7x18 + x9x18 + x13x18 + x14x18 + x17x18 + x18 + x2x19 + x4x19 + x6x19 + x7x19 +
x8x19 + x9x19 + x11x19 + x12x19 + x18x19 + x19 + x3x20 + x4x20 + x5x20 + x9x20 + x10x20 + x11x20 + x12x20 + x14x20 + x17x20 + x19x20,

y24 = 1+x4x3+x5x3+x6x3+x7x3+x10x3+x11x3+x17x3+x19x3+x20x3+x3+x2x4+x4+x4x5+x4x6+x5x6+x5x7+x7+x8+x2x9+x4x9+
x6x9+x9+x4x10+x6x10+x7x10+x2x11+x4x11+x5x11+x6x11+x10x11+x11+x4x12+x5x12+x6x12+x7x12+x10x12+x11x12+x12+x2x13+
x5x13+x7x13+x10x13+x11x13+x4x14+x5x14+x6x14+x7x14+x10x14+x11x14+x14+x4x15+x9x15+x11x15+x13x15+x15+x2x16+x5x16+
x7x16+x10x16+x11x16+x15x16+x16+x6x17+x7x17+x9x17+x12x17+x14x17+x17+x4x18+x9x18+x11x18+x13x18+x16x18+x18+x4x19+
x6x19+x7x19+x11x19+x12x19+x13x19+x14x19+x16x19+x4x20+x5x20+x9x20+x10x20+x11x20+x12x20+x14x20+x17x20+x19x20+x20,

y25 = 1 + x1x2 + x3x2 + x7x2 + x10x2 + x11x2 + x12x2 + x13x2 + x15x2 + x17x2 + x18x2 + x20x2 + x1x3 + x3 + x1x4 + x3x4 + x5 + x6 +
x1x7 + x4x7 + x1x9 + x3x9 + x7x9 + x9 + x3x10 + x4x10 + x7x10 + x9x10 + x10 + x3x11 + x4x11 + x7x11 + x9x11 + x1x12 + x4x12 + x9x12 +
x10x12 + x11x12 + x12 + x3x13 + x4x13 + x7x13 + x9x13 + x12x13 + x13 + x1x14 + x3x14 + x7x14 + x10x14 + x11x14 + x12x14 + x13x14 + x1x15 +
x4x15 +x9x15 +x10x15 +x11x15 +x13x15 +x14x15 +x15 +x16 +x1x17 +x4x17 +x9x17 +x10x17 +x11x17 +x13x17 +x14x17 +x1x18 +x4x18 +
x9x18 + x10x18 + x11x18 + x13x18 + x14x18 + x18 + x19 + x3x20 + x4x20 + x7x20 + x9x20 + x12x20 + x14x20 + x15x20 + x17x20 + x18x20 + x20,

Y3 = (y31, y32, y33, y34, y35), where
y31 = x2 + x3 + x5 + x7 + x9 + x10 + x12 + x13 + x15 + x18 + x20,
y32 = x6x1+x8x1+x10x1+x12x1+x13x1+x17x1+x20x1+x1+x2x3+x3+x3x4+x2x5+x3x5+x4x5+x5+x3x6+x4x6+x5x6+x3x7+x4x7+

x6x7+x2x8+x3x8+x4x8+x5x8+x7x8+x8+x3x9+x4x9+x9+x4x10+x7x10+x8x10+x2x11+x6x11+x8x11+x3x12+x4x12+x5x12+x8x12+
x9x12+x12+x2x13+x5x13+x7x13+x10x13+x11x13+x2x14+x4x14+x5x14+x8x14+x10x14+x11x14+x13x14+x14+x3x15+x4x15+x6x15+
x8x15+x10x15+x13x15+x2x16+x3x16+x5x16+x6x16+x7x16+x8x16+x9x16+x15x16+x2x17+x3x17+x4x17+x5x17+x7x17+x10x17+x11x17+
x12x17+x14x17+x15x17+x16x17+x17+x2x18+x3x18+x5x18+x8x18+x10x18+x11x18+x12x18+x13x18+x16x18+x17x18+x18+x3x19+x4x19+
x7x19+x8x19+x9x19+x11x19+x12x19+x15x19+x17x19+x18x19+x3x20+x4x20+x5x20+x8x20+x9x20+x17+x20+x18x20+x19x20+x20,



y33 = 1+x3x1+x4x1+x5x1+x6x1+x8x1+x12x1+x13x1+x15x1+x1+x2+x2x3+x3+x2x4+x3x4+x3x5+x5+x2x6+x4x6+x3x7+x4x7+
x5x7+x6x7+x2x8+x4x8+x5x8+x7x8+x3x9+x4x9+x6x9+x8x9+x2x10+x6x10+x9x10+x3x11+x4x11+x6x11+x8x11+x10x11+x11+x4x12+
x5x12+x6x12+x7x12+x2x13+x3x13+x5x13+x6x13+x7x13+x8x13+x9x13+x10x13+x11x13+x13+x3x14+x4x14+x5x14+x6x14+x8x14+
x12x14+x13x14+x3x15+x5x15+x7x15+x8x15+x10x15+x13x15+x14x15+x2x16+x5x16+x6x16+x9x16+x10x16+x11x16+x12x16+x13x16+
x16 +x2x17 +x5x17 +x6x17 +x9x17 +x10x17 +x11x17 +x12x17 +x13x17 +x17 +x5x18 +x10x18 +x12x18 +x15x18 +x16x18 +x17x18 +x2x19 +
x3x19+x4x19+x5x19+x8x19+x9x19+x11x19+x12x19+x16x19+x17x19+x18x19+x5x20+x10x20+x12x20+x15x20+x16x20+x17x20+x19x20,

y34 = x2x1 + x3x1 + x7x1 + x8x1 + x11x1 + x13x1 + x14x1 + x15x1 + x17x1 + x18x1 + x1 + x2x3 + x3 + x2x5 + x5 + x5x6 + x6 + x2x7 +
x2x8 + x5x9 + x2x10 + x6x10 + x9x10 + x10 + x3x11 + x5x11 + x7x11 + x8x11 + x10x11 + x11 + x3x12 + x6x12 + x7x12 + x8x12 + x9x12 +
x2x13 + x5x13 + x10x13 + x11x13 + x2x14 + x11x14 + x12x14 + x14 + x5x15 + x6x15 + x9x15 + x10x15 + x13x15 + x15 + x3x16 + x5x16 + x6x16 +
x7x16 + x8x16 + x9x16 + x10x16 + x12x16 + x14x16 + x15x16 + x16 + x5x17 + x6x17 + x9x17 + x10x17 + x13x17 + x16x17 + x17 + x2x18 +
x5x18 + x10x18 + x11x18 + x15x18 + x17x18 + x18 + x3x19 + x6x19 + x7x19 + x8x19 + x9x19 + x14x19 + x16x19 + x19 + x2x20 + x3x20 + x5x20 +
x7x20 + x8x20 + x10x20 + x11x20 + x12x20 + x13x20 + x14x20 + x16x20 + x18x20 + x19x20,

y35 = x2x1 + x4x1 + x6x1 + x7x1 + x9x1 + x11x1 + x14x1 + x20x1 + x1 + x2x3 + x3x4 + x4 + x5 + x3x6 + x6 + x2x7 + x3x7 + x4x7 + x6x7 +
x2x8 +x4x8 +x6x8 +x7x8 +x3x9 +x7x9 +x8x9 +x9 +x10 +x3x11 +x7x11 +x8x11 +x2x12 +x4x12 +x6x12 +x7x12 +x9x12 +x11x12 +x2x13 +
x4x13 + x6x13 + x7x13 + x9x13 + x11x13 + x2x14 + x3x14 + x4x14 + x6x14 + x8x14 + x9x14 + x11x14 + x12x14 + x13x14 + x2x15 + x4x15 +
x6x15 + x7x15 + x9x15 + x11x15 + x14x15 + x15 + x2x16 + x4x16 + x6x16 + x7x16 + x9x16 + x11x16 + x14x16 + x2x17 + x4x17 + x6x17 + x7x17 +
x9x17 + x11x17 + x14x17 + x17 + x2x18 + x4x18 + x6x18 + x7x18 + x9x18 + x11x18 + x14x18 + x2x19 + x4x19 + x6x19 + x7x19 + x9x19 + x11x19 +
x14x19 + x2x20 + x3x20 + x4x20 + x6x20 + x8x20 + x9x20 + x11x20 + x12x20 + x13x20 + x15x20 + x16x20 + x17x20 + x18x20 + x19x20 + x20,

Y4 = (y41, y42, y43, y44, y45), where
y41 = x4x1 +x5x1 +x7x1 +x8x1 +x9x1 +x10x1 +x12x1 +x13x1 +x14x1 +x15x1 +x16x1 +x17x1 +x1 +x3 +x4 +x3x5 +x5 +x3x6 +x5x7 +

x6x7+x2x9+x3x9+x4x9+x6x9+x8x9+x4x10+x5x10+x7x10+x8x10+x10+x3x11+x4x11+x6x11+x8x11+x10x11+x2x12+x3x12+x5x12+
x6x12+x7x12+x10x12+x2x13+x3x13+x4x13+x5x13+x8x13+x11x13+x13+x3x14+x4x14+x5x14+x8x14+x9x14+x2x15+x4x15+x5x15+
x7x15 + x8x15 + x13x15 + x15 + x2x16 + x5x16 + x6x16 + x10x16 + x11x16 + x13x16 + x15x16 + x16 + x3x17 + x4x17 + x6x17 + x8x17 + x11x17 +
x12x17+x13x17+x14x17+x2x18+x3x18+x4x18+x5x18+x8x18+x9x18+x10x18+x13x18+x14x18+x16x18+x2x19+x3x19+x5x19+x6x19+
x7x19+x11x19+x12x19+x14x19+x16x19+x19+x2x20+x4x20+x6x20+x7x20+x8x20+x10x20+x12x20+x13x20+x15x20+x16x20+x19x20,

y42 = x5x2 + x8x2 + x9x2 + x10x2 + x11x2 + x13x2 + x15x2 + x16x2 + x17x2 + x18x2 + x19x2 + x20x2 + x2 + x4 + x1x5 + x4x5 + x3x6 +
x4x6 + x5x7 + x7 + x3x8 + x5x8 + x6x8 + x7x8 + x3x9 + x7x9 + x8x9 + x1x10 + x3x10 + x5x10 + x7x10 + x10 + x1x11 + x4x11 + x5x11 + x7x11 +
x8x11 + x12 + x3x13 + x5x13 + x6x13 + x7x13 + x8x13 + x11x13 + x13 + x3x14 + x4x14 + x6x14 + x8x14 + x10x14 + x13x14 + x14 + x1x15 +
x4x15 + x5x15 + x7x15 + x8x15 + x13x15 + x4x16 + x5x16 + x7x16 + x10x16 + x11x16 + x13x16 + x14x16 + x15x16 + x1x17 + x4x17 + x5x17 +
x6x17 + x7x17 + x9x17 + x10x17 + x14x17 + x16x17 + x3x18 + x7x18 + x8x18 + x17x18 + x18 + x3x19 + x6x19 + x7x19 + x8x19 + x10x19 +
x14x19 + x16x19 + x17x19 + x19 + x4x20 + x5x20 + x6x20 + x7x20 + x11x20 + x13x20 + x15x20 + x16x20 + x17x20 + x19x20 + x20,

y43 = 1 + x3x2 + x4x2 + x6x2 + x9x2 + x10x2 + x17x2 + x18x2 + x20x2 + x2 + x3x4 + x4 + x1x5 + x3x5 + x4x5 + x5 + x4x6 + x6 + x3x7 +
x4x7 + x6x7 + x5x8 + x6x8 + x4x9 + x5x9 + x6x9 + x7x9 + x9 + x1x10 + x3x10 + x5x10 + x7x10 + x10 + x1x11 + x3x11 + x4x11 + x5x11 + x8x11 +
x9x11 + x3x13 + x4x13 + x9x13 + x3x14 + x4x14 + x6x14 + x8x14 + x10x14 + x13x14 + x1x15 + x3x15 + x4x15 + x5x15 + x8x15 + x9x15 + x15 +
x6x16 + x8x16 + x9x16 + x10x16 + x13x16 + x14x16 + x16 + x1x17 + x3x17 + x7x17 + x8x17 + x9x17 + x10x17 + x11x17 + x13x17 + x14x17 +
x15x17 + x4x18 + x5x18 + x6x18 + x7x18 + x11x18 + x13x18 + x15x18 + x16x18 + x17x18 + x18 + x3x19 + x4x19 + x5x19 + x9x19 + x10x19 +
x11x19 + x14x19 + x15x19 + x16x19 + x18x19 + x19 + x3x20 + x7x20 + x8x20 + x17x20 + x20,

y44 = 1 + x5x1 + x6x1 + x8x1 + x11x1 + x12x1 + x14x1 + x16x1 + x17x1 + x20x1 + x1 + x2 + x2x3 + x2x5 + x3x5 + x5 + x2x6 + x4x6 +
x6 + x2x7 + x5x7 + x6x7 + x5x8 + x4x9 + x6x9 + x7x9 + x3x10 + x4x10 + x5x10 + x6x10 + x9x10 + x5x11 + x6x11 + x9x11 + x10x11 + x3x12 +
x4x12 + x5x12 + x8x12 + x9x12 + x2x13 + x3x13 + x4x13 + x11x13 + x2x14 + x4x14 + x5x14 + x7x14 + x8x14 + x13x14 + x3x15 + x4x15 + x6x15 +
x8x15 + x10x15 + x13x15 + x2x16 + x5x16 + x8x16 + x9x16 + x11x16 + x14x16 + x15x16 + x16 + x3x17 + x6x17 + x7x17 + x12x17 + x13x17 +
x15x17 + x17 + x2x18 + x3x18 + x4x18 + x6x18 + x9x18 + x10x18 + x11x18 + x12x18 + x13x18 + x17x18 + x18 + x4x19 + x5x19 + x6x19 + x7x19 +
x8x19 + x9x19 + x12x19 + x13x19 + x15x19 + x17x19 + x19 + x2x20 + x10x20 + x13x20 + x14x20 + x16x20 + x17x20 + x18x20 + x19x20 + x20,

y45 = 1 + x3x2 + x5x2 + x6x2 + x7x2 + x13x2 + x14x2 + x16x2 + x18x2 + x20x2 + x2 + x1x5 + x3x5 + x5 + x1x6 + x4x6 + x5x7 + x6x7 +
x1x8 + x5x8 + x8 + x4x9 + x6x9 + x7x9 + x3x10 + x4x10 + x5x10 + x6x10 + x9x10 + x1x11 + x5x11 + x6x11 + x9x11 + x10x11 + x11 + x1x12 +
x3x12 + x4x12 + x5x12 + x8x12 + x9x12 + x3x13 + x4x13 + x11x13 + x1x14 + x4x14 + x5x14 + x7x14 + x8x14 + x13x14 + x3x15 + x4x15 +
x6x15 + x8x15 + x10x15 + x13x15 + x15 + x1x16 + x5x16 + x8x16 + x9x16 + x11x16 + x14x16 + x15x16 + x16 + x1x17 + x3x17 + x6x17 + x7x17 +
x12x17 + x13x17 + x15x17 + x3x18 + x4x18 + x6x18 + x9x18 + x10x18 + x11x18 + x12x18 + x13x18 + x17x18 + x18 + x4x19 + x5x19 + x6x19 +
x7x19 + x8x19 + x9x19 + x12x19 + x13x19 + x15x19 + x17x19 + x1x20 + x10x20 + x13x20 + x14x20 + x16x20 + x17x20 + x18x20 + x19x20;

7) Set a 7-dimensional vector Z that has all 7 coordinates as Boolean linear functions:

Z = Y1||Y2,1||Y3,1 =



x4 + x5 + x7 + x11 + x14 + x15 + x16 + x20
x1 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x12+
+x13 + x14 + x15 + x19 + x20
x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 + x10+
+x13 + x14 + x15 + x16 + x17 + x18 + x19
x3 + x4 + x5 + x9 + x10 + x11 + x12 + x14 + x17 + x19
x1 + x2 + x3 + x7 + x8 + x10 + x15 + x17 + x19 + x20
1 + x1 + x4 + x7 + x8 + x12 + x13 + x15 + x16 + x17
x2 + x3 + x5 + x7 + x9 + x10 + x12 + x13 + x15 + x18 + x20




T

;

8) Transform Z by the bijection of Dobbertin:
W = Dob(Z) = (W1, W2, W3, W4, W5, W6, W7),

where
W1 = 1 + x2x1 + x3x1 + x5x1 + x7x1 + x10x1 + x11x1 + x12x1 + x13x1 + x14x1 + x15x1 + x19x1 + x1 + x3 + x3x4 + x4 + x2x5 + x6 +

x2x7 + x3x7 + x4x7 + x5x7 + x2x8 + x3x8 + x5x8 + x7x8 + x8 + x5x9 + x6x9 + x2x10 + x4x10 + x5x10 + x7x10 + x8x10 + x9x10 + x10 + x4x11 +
x5x11 + x6x11 + x7x11 + x8x11 + x9x11 + x10x11 + x2x12 + x3x12 + x4x12 + x5x12 + x8x12 + x10x12 + x11x12 + x12 + x3x13 + x5x13 + x8x13 +
x11x13 + x2x14 + x4x14 + x6x14 + x7x14 + x8x14 + x9x14 + x10x14 + x12x14 + x14 + x2x15 + x3x15 + x4x15 + x5x15 + x8x15 + x10x15 + x11x15 +
x14x15 + x2x16 + x3x16 + x4x16 + x7x16 + x9x16 + x12x16 + x14x16 + x15x16 + x3x17 + x4x17 + x5x17 + x7x17 + x9x17 + x12x17 + x13x17 +
x14x17 + x15x17 + x16x17 + x17 + x4x18 + x6x18 + x11x18 + x13x18 + x16x18 + x18 + x6x19 + x7x19 + x8x19 + x9x19 + x12x19 + x14x19 +
x15x19 + x17x19 + x18x19 + x2x20 + x6x20 + x9x20 + x10x20 + x13x20 + x19x20,

W2 = 1+x7x1 +x10x1 +x11x1 +x13x1 +x15x1 +x16x1 +x17x1 +x1 +x2 +x2x3 +x2x4 +x4 +x2x5 +x3x5 +x5 +x4x6 +x5x6 +x3x7 +x4x7 +
x5x7 +x6x7 +x7x8 +x8 +x3x9 +x4x9 +x6x9 +x7x9 +x2x10 +x3x10 + x8x10 +x9x10 +x4x11 +x7x11 +x8x11 +x11 +x2x12 +x5x12 +x9x12 +
x11x12 +x12 +x5x13 +x7x13 +x8x13 +x9x13 +x10x13 +x11x13 +x12x13 +x3x14 +x7x14 +x9x14 +x10x14 +x12x14 +x3x15 +x4x15 +x5x15 +
x6x15 + x8x15 + x9x15 + x11x15 + x13x15 + x14x15 + x4x16 + x5x16 + x6x16 + x7x16 + x8x16 + x10x16 + x11x16 + x12x16 + x13x16 + x14x16 +
x15x16 + x2x17 + x4x17 + x5x17 + x7x17 + x8x17 + x9x17 + x11x17 + x12x17 + x14x17 + x15x17 + x2x18 + x6x18 + x9x18 + x10x18 + x13x18 +
x18 +x4x19 +x6x19 +x9x19 +x13x19 +x14x19 +x16x19 +x18x19 +x2x20 +x3x20 +x5x20 +x12x20 +x14x20 +x16x20 +x17x20 +x19x20 +x20,

W3 = x2x1 + x4x1 + x5x1 + x6x1 + x11x1 + x17x1 + x18x1 + x1 + x3 + x2x4 + x3x4 + x4 + x2x5 + x3x5 + x2x6 + x6 + x2x7 + x4x7 + x5x7 +
x6x7 +x7 +x2x8 +x4x8 +x5x8 +x6x8 +x8 +x3x9 +x7x9 +x9 +x2x10 +x3x10 +x4x10 +x5x10 +x6x10 +x9x10 +x10 +x2x11 +x3x11 +x8x11 +
x9x11 + x11 + x2x12 + x6x12 + x9x12 + x10x12 + x2x13 + x3x13 + x6x13 + x10x13 + x11x13 + x12x13 + x2x14 + x6x14 + x7x14 + x9x14 + x11x14 +
x14 +x2x15 +x4x15 +x5x15 +x6x15 +x9x15 +x14x15 +x15 +x9x16 +x11x16 +x14x16 +x16 +x3x17 +x4x17 +x5x17 +x6x17 +x7x17 +x8x17 +
x9x17 +x10x17 +x14x17 +x15x17 +x3x18 +x6x18 +x8x18 +x9x18 +x10x18 +x11x18 +x16x18 +x18 +x2x19 +x3x19 +x4x19 +x5x19 +x6x19 +
x7x19+x10x19+x12x19+x14x19+x15x19+x16x19+x19+x2x20+x4x20+x5x20+x6x20+x7x20+x10x20+x13x20+x15x20+x16x20+x18x20,

W4 = x7x1 + x9x1 + x10x1 + x13x1 + x14x1 + x15x1 + x16x1 + x17x1 + x18x1 + x19x1 + x20x1 + x1 + x2x3 + x3 + x2x4 + x2x5 + x3x5 + x5 +
x4x6 +x5x6 +x2x7 +x3x7 +x5x7 +x6x7 +x7 +x7x8 +x8 +x3x9 +x5x9 +x7x9 +x8x9 +x3x10 +x4x10 +x7x10 +x8x10 +x9x10 +x10 +x2x11 +
x4x11 +x5x11 +x6x11 +x7x11 +x10x11 +x2x12 +x5x12 +x2x13 +x4x13 +x5x13 +x7x13 +x8x13 +x9x13 +x11x13 +x12x13 +x3x14 +x4x14 +
x5x14+x6x14+x8x14+x13x14+x14+x2x15+x3x15+x5x15+x6x15+x8x15+x9x15+x10x15+x11x15+x13x15+x15+x2x16+x5x16+x6x16+
x8x16 +x9x16 +x10x16 +x11x16 +x12x16 +x14x16 +x16 +x5x17 +x7x17 +x8x17 +x10x17 +x12x17 +x14x17 +x15x17 +x16x17 +x17 +x2x18 +
x4x18 +x5x18 +x7x18 +x8x18 +x9x18 +x11x18 +x12x18 +x14x18 +x15x18 +x18 +x5x19 +x7x19 +x8x19 +x10x19 +x12x19 +x14x19 +x15x19 +
x16x19 +x2x20 +x3x20 +x4x20 +x6x20 +x7x20 +x8x20 +x9x20 +x10x20 +x13x20 +x14x20 +x15x20 +x16x20 +x17x20 +x18x20 +x19x20 +x20,

W5 = x4x2 + x6x2 + x11x2 + x13x2 + x16x2 + x19x2 + x2 + x3 + x1x4 + x4 + x1x5 + x5x6 + x6 + x1x7 + x6x7 + x7 + x4x8 + x5x8 + x7x8 +
x1x9 + x5x9 + x7x9 + x8x9 + x9 + x5x10 + x6x10 + x7x10 + x9x10 + x4x11 + x5x11 + x6x11 + x7x11 + x10x11 + x11 + x4x12 + x5x12 + x7x12 +



x9x12 + x12 + x5x13 + x7x13 + x10x13 + x11x13 + x13 + x4x14 + x5x14 + x7x14 + x9x14 + x1x15 + x6x15 + x8x15 + x9x15 + x10x15 + x11x15 +
x12x15 + x13x15 + x14x15 + x15 + x1x16 + x4x16 + x5x16 + x7x16 + x8x16 + x9x16 + x11x16 + x12x16 + x14x16 + x15x16 + x16 + x17 + x1x18 +
x4x18 + x5x18 + x6x18 + x7x18 + x8x18 + x10x18 + x11x18 + x12x18 + x13x18 + x14x18 + x15x18 + x18 + x1x19 + x4x19 + x6x19 + x8x19 +
x12x19 + x13x19 + x14x19 + x18x19 + x4x20 + x5x20 + x7x20 + x9x20 + x15x20 + x16x20 + x18x20 + x19x20 + x20,

W6 = 1 + x1x2 + x5x2 + x8x2 + x11x2 + x12x2 + x13x2 + x14x2 + x17x2 + x20x2 + x1x3 + x3 + x1x4 + x3x4 + x4 + x4x5 + x5 + x1x7 +
x3x7 + x4x7 + x5x7 + x6x7 + x7 + x3x8 + x4x8 + x7x8 + x3x9 + x4x9 + x5x9 + x4x10 + x6x10 + x9x10 + x1x11 + x3x11 + x4x11 + x6x11 +
x8x11 + x11 + x1x12 + x3x12 + x8x12 + x9x12 + x3x13 + x4x13 + x5x13 + x6x13 + x7x13 + x10x13 + x12x13 + x3x14 + x4x14 + x10x14 + x12x14 +
x13x14 + x14 + x1x15 + x3x15 + x4x15 + x5x15 + x6x15 + x8x15 + x13x15 + x15 + x3x16 + x4x16 + x6x16 + x7x16 + x10x16 + x12x16 + x13x16 +
x14x16 + x15x16 + x1x17 + x3x17 + x5x17 + x6x17 + x7x17 + x8x17 + x9x17 + x15x17 + x16x17 + x17 + x3x18 + x7x18 + x9x18 + x10x18 +
x12x18 + x15x18 + x16x18 + x17x18 + x1x19 + x3x19 + x4x19 + x7x19 + x8x19 + x14x19 + x15x19 + x16x19 + x17x19 + x18x19 + x1x20 + x3x20 +
x7x20 + x8x20 + x9x20 + x10x20 + x11x20 + x14x20 + x15x20 + x17x20 + x18x20 + x20,

W7 = x1x2 + x3x2 + x5x2 + x7x2 + x8x2 + x10x2 + x13x2 + x15x2 + x16x2 + x18x2 + x20x2 + x3 + x3x5 + x1x6 + x5x6 + x1x7 + x4x7 +
x5x7 + x6x8 + x7x8 + x1x9 + x4x9 + x7x9 + x8x9 + x9 + x4x10 + x7x10 + x10 + x1x11 + x6x11 + x8x11 + x10x11 + x11 + x5x12 + x6x12 + x7x12 +
x9x12 + x11x12 + x12 + x3x13 + x4x13 + x5x13 + x6x13 + x7x13 + x9x13 + x10x13 + x11x13 + x12x13 + x4x14 + x6x14 + x7x14 + x10x14 + x14 +
x1x15 + x4x15 + x5x15 + x8x15 + x9x15 + x10x15 + x12x15 + x13x15 + x14x15 + x1x16 + x3x16 + x4x16 + x5x16 + x7x16 + x8x16 + x9x16 +
x11x16 + x13x16 + x15x16 + x16 + x1x17 + x3x17 + x4x17 + x5x17 + x6x17 + x7x17 + x8x17 + x9x17 + x10x17 + x14x17 + x15x17 + x17 + x3x18 +
x4x18 + x10x18 + x12x18 + x13x18 + x16x18 + x18 + x1x19 + x3x19 + x4x19 + x8x19 + x10x19 + x11x19 + x13x19 + x14x19 + x18x19 + x19 +
x4x20 + x5x20 + x6x20 + x7x20 + x10x20 + x13x20 + x15x20 + x16x20 + x18x20;

9) Set Y1 = (W1, W2, W3, W4, W5), Y2,1 = W6, Y3,1 = W7;

10) Compute y = T · y′T ;

11) The public key is y, given by the system of 20 equations of 20 unknowns:

y1 = P1(x1, x2, . . . , x20),
y2 = P2(x1, x2, . . . , x20),
. . .
y20 = P20(x1, x2, . . . , x20),

where Pi are multivariate quadratic polynomials of 20 Boolean variables.

In developed form, they look like these:

y1 = P1(x) = x1+x2+x2x1+x3x1+x4x1+x5x1+x6x1+x7x1+x8x1+x10x1+x3x4+x4x5+x5+x4x6+x5x6+x6+x7+x2x8+x3x8+x4x8+
x5x8+x7x8+x8+x2x9+x3x9+x7x9+x8x9+x9+x2x10+x4x10+x5x10+x6x10+x7x10+x9x10+x2x11+x4x11+x7x11+x8x11+x9x11+x2x12+
x5x12 +x7x12 +x8x12 +x9x12 +x11x12 +x2x13 +x4x13 +x8x13 +x9x13 +x10x13 +x2x14 +x3x14 +x9x14 +x10x14 +x11x14 +x13x14 +x2x15 +
x4x15+x5x15+x7x15+x9x15+x11x15+x14x15+x15+x4x16+x5x16+x6x16+x7x16+x9x16+x10x16+x11x16+x15x16+x3x17+x4x17+x6x17+
x7x17+x8x17+x12x17+x16x17+x17+x4x18+x6x18+x7x18+x12x18+x13x18+x15x18+x16x18+x18+x2x19+x5x19+x6x19+x7x19+x8x19+
x9x19+x11x19+x13x19+x14x19+x16x19+x17x19+x19+x3x20+x5x20+x6x20+x8x20+x9x20+x13x20+x15x20+x16x20+x17x20+x19x20,

y2 = P2(x) = x2x1 + x3x1 + x4x1 + x8x1 + x10x1 + x12x1 + x17x1 + x19x1 + x20x1 + x1 + x2 + x2x3 + x3 + x3x4 + x4 + x2x5 + x2x6 +
x5x6 + x6 + x2x7 + x3x7 + x7 + x2x8 + x3x8 + x4x8 + x7x8 + x8 + x5x9 + x7x9 + x9 + x3x10 + x4x10 + x6x10 + x7x10 + x4x11 + x5x11 + x6x11 +
x7x11 + x8x11 + x9x11 + x10x11 + x4x12 + x5x12 + x10x12 + x3x13 + x5x13 + x7x13 + x11x13 + x12x13 + x13 + x2x14 + x7x14 + x11x14 +
x13x14 + x14 + x2x15 + x5x15 + x12x15 + x13x15 + x15 + x2x16 + x3x16 + x4x16 + x5x16 + x6x16 + x9x16 + x12x16 + x13x16 + x14x16 + x3x17 +
x4x17 + x6x17 + x7x17 + x9x17 + x2x18 + x4x18 + x7x18 + x9x18 + x12x18 + x13x18 + x14x18 + x15x18 + x17x18 + x4x19 + x6x19 + x7x19 +
x8x19 + x11x19 + x18x19 + x19 + x2x20 + x3x20 + x6x20 + x7x20 + x15x20 + x17x20 + x19x20,

y3 = P3(x) = x2x1 +x3x1 +x9x1 +x13x1 +x16x1 +x17x1 +x19x1 +x20x1 +x1 +x3 +x2x4 +x3x4 +x2x5 +x5 +x2x6 +x3x7 +x4x7 +x5x7 +
x6x7+x7+x2x8+x3x8+x3x9+x4x9+x5x9+x6x9+x9+x2x10+x3x10+x4x10+x6x10+x8x10+x10+x2x11+x4x11+x6x11+x2x12+x3x12+
x4x12 +x11x12 +x3x13 +x6x13 +x7x13 +x8x13 +x9x13 +x5x14 +x6x14 +x7x14 +x8x14 +x12x14 +x13x14 +x2x15 +x4x15 +x5x15 +x6x15 +
x11x15 + x12x15 + x13x15 + x15 + x3x16 + x4x16 + x5x16 + x6x16 + x9x16 + x10x16 + x12x16 + x14x16 + x16 + x4x17 + x5x17 + x6x17 + x7x17 +
x8x17+x9x17+x10x17+x12x17+x13x17+x4x18+x6x18+x8x18+x10x18+x12x18+x13x18+x14x18+x15x18+x17x18+x18+x3x19+x4x19+
x7x19+x13x19+x17x19+x3x20+x4x20+x5x20+x6x20+x7x20+x8x20+x9x20+x10x20+x12x20+x13x20+x14x20+x16x20+x17x20+x18x20,

y4 = P4(x) = x4x1 + x7x1 + x8x1 + x10x1 + x11x1 + x12x1 + x13x1 + x18x1 + x19x1 + x20x1 + x1 + x2 + x2x5 + x4x5 + x5 + x2x6 + x3x6 +
x4x6 +x6 +x3x7 +x6x7 +x7 +x2x8 +x4x8 +x5x8 +x6x8 +x7x8 +x3x9 +x5x9 +x7x9 +x2x10 +x4x10 +x6x10 +x7x10 +x2x11 +x4x11 +x7x11 +
x8x11 + x9x11 + x11 + x2x12 + x3x12 + x4x12 + x8x12 + x9x12 + x10x12 + x11x12 + x3x13 + x5x13 + x6x13 + x7x13 + x9x13 + x11x13 + x13 +
x3x14 + x4x14 + x5x14 + x6x14 + x10x14 + x11x14 + x13x14 + x14 + x2x15 + x3x15 + x4x15 + x5x15 + x7x15 + x9x15 + x10x15 + x13x15 + x2x16 +
x3x16 + x4x16 + x6x16 + x9x16 + x11x16 + x12x16 + x15x16 + x2x17 + x3x17 + x4x17 + x7x17 + x8x17 + x10x17 + x13x17 + x14x17 + x15x17 +
x17 + x2x18 + x3x18 + x6x18 + x7x18 + x8x18 + x9x18 + x10x18 + x12x18 + x14x18 + x15x18 + x2x19 + x5x19 + x7x19 + x8x19 + x9x19 + x11x19 +
x14x19 + x16x19 + x17x19 + x18x19 + x2x20 + x3x20 + x5x20 + x7x20 + x8x20 + x9x20 + x11x20 + x12x20 + x14x20 + x16x20 + x19x20 + x20 + 1,

y5 = P5(x) = x2x1 +x4x1 +x9x1 +x10x1 +x13x1 +x17x1 +x19x1 +x1 +x2 +x2x3 +x3 +x2x4 +x3x4 +x2x5 +x4x5 +x4x6 +x5x6 +x2x7 +
x5x7+x6x7+x5x8+x6x8+x7x8+x8+x2x9+x3x9+x4x9+x5x9+x7x9+x8x9+x9+x3x10+x5x10+x8x10+x9x10+x10+x4x11+x5x11+x6x11+
x8x11 +x11 +x3x12 +x5x12 +x8x12 +x9x12 +x12 +x2x13 +x4x13 +x6x13 +x7x13 +x2x14 +x3x14 +x4x14 +x6x14 +x7x14 +x9x14 +x10x14 +
x2x15+x3x15+x5x15+x6x15+x11x15 +x12x15+x14x15+x2x16+x3x16+x5x16 +x6x16 +x7x16+x11x16+x12x16+x15x16 +x2x17 +x3x17+
x5x17 +x6x17 +x8x17 +x10x17 +x11x17 +x16x17 +x17 +x2x18 +x3x18 +x5x18 +x6x18 +x7x18 +x8x18 +x9x18 +x11x18 +x12x18 +x13x18 +
x14x18+x16x18+x3x19+x5x19+x7x19+x8x19+x12x19+x13x19+x16x19+x18x19+x19+x6x20+x11x20+x12x20+x13x20+x17x20+x18x20+1,

y6 = P6(x) = x1x2 + x3x2 + x5x2 + x6x2 + x7x2 + x8x2 + x15x2 + x17x2 + x18x2 + x20x2 + x1x3 + x3 + x5 + x1x6 + x3x6 + x4x6 + x1x7 +
x4x7 + x5x7 + x1x8 + x3x8 + x7x8 + x8 + x4x9 + x8x9 + x4x10 + x6x10 + x8x10 + x10 + x1x11 + x3x11 + x9x11 + x10x11 + x11 + x1x12 + x5x12 +
x7x12 + x8x12 + x11x12 + x1x13 + x3x13 + x4x13 + x6x13 + x8x13 + x9x13 + x12x13 + x13 + x3x14 + x5x14 + x6x14 + x8x14 + x10x14 + x11x14 +
x13x14 + x14 + x3x15 + x7x15 + x8x15 + x9x15 + x10x15 + x11x15 + x12x15 + x14x15 + x7x16 + x8x16 + x9x16 + x10x16 + x13x16 + x15x16 +
x1x17 + x4x17 + x9x17 + x11x17 + x17 + x1x18 + x4x18 + x5x18 + x11x18 + x14x18 + x16x18 + x1x19 + x4x19 + x5x19 + x6x19 + x7x19 + x8x19 +
x10x19 + x14x19 + x15x19 + x19 + x1x20 + x5x20 + x6x20 + x7x20 + x9x20 + x10x20 + x11x20 + x15x20 + x16x20 + x17x20 + x18x20 + x19x20 +1,

y7 = P7(x) = x4x3 +x5x3 +x6x3 +x13x3 +x14x3 +x16x3 +x18x3 +x20x3 +x3 +x4 +x1x5 +x2x5 +x4x5 +x1x6 +x2x6 +x6 +x1x7 +x5x7 +
x1x8+x7x8+x1x9+x2x9+x4x9+x5x9+x1x10+x2x10+x5x10+x6x10+x8x10+x9x10+x5x11+x7x11+x8x11+x9x11+x11+x1x12+x2x12+
x4x12 +x6x12 +x9x12 +x11x12 +x1x13 +x4x13 +x5x13 +x6x13 +x7x13 +x9x13 +x11x13 +x12x13 +x1x14 +x2x14 +x4x14 +x7x14 +x8x14 +
x9x14+x13x14+x14+x4x15+x7x15+x9x15+x10x15+x14x15+x4x16+x6x16+x7x16+x8x16+x9x16+x13x16+x14x16+x16+x2x17+x4x17+
x5x17 + x7x17 + x13x17 + x14x17 + x15x17 + x16x17 + x17 + x1x18 + x5x18 + x6x18 + x8x18 + x12x18 + x15x18 + x18 + x4x19 + x5x19 + x7x19 +
x8x19 + x9x19 + x14x19 + x15x19 + x18x19 + x4x20 + x5x20 + x6x20 + x7x20 + x9x20 + x11x20 + x13x20 + x14x20 + x16x20 + x17x20 + x18x20,

y8 = P8(x) = x4x1 + x5x1 + x7x1 + x8x1 + x14x1 + x15x1 + x16x1 + x19x1 + x20x1 + x1 + x2 + x2x3 + x3 + x2x4 + x4 + x3x5 + x4x5 + x5 +
x2x6 +x3x6 +x2x7 +x3x7 +x5x7 +x7 +x4x8 +x5x8 +x6x8 +x2x9 +x5x9 +x9 +x2x10 +x3x10 +x5x10 +x9x10 +x10 +x4x11 +x5x11 +x6x11 +
x7x11 +x8x11 +x9x11 +x10x11 +x11 +x2x12 +x3x12 +x5x12 +x7x12 +x8x12 +x9x12 +x11x12 +x12 +x5x13 +x7x13 +x12x13 +x2x14 +x3x14 +
x6x14 +x9x14 +x10x14 +x2x15 +x3x15 +x5x15 +x6x15 +x7x15 +x8x15 +x9x15 +x12x15 +x3x16 +x4x16 +x9x16 +x13x16 +x15x16 +x5x17 +
x6x17 + x8x17 + x9x17 + x10x17 + x14x17 + x2x18 + x3x18 + x4x18 + x5x18 + x7x18 + x9x18 + x11x18 + x13x18 + x16x18 + x18 + x4x19 + x8x19 +
x9x19 + x10x19 + x12x19 + x15x19 + x17x19 + x18x19 + x6x20 + x7x20 + x8x20 + x10x20 + x11x20 + x12x20 + x14x20 + x15x20 + x19x20 + x20,

y9 = P9(x) = x2x1 + x4x1 + x9x1 + x11x1 + x13x1 + x16x1 + x17x1 + x19x1 + x1 + x2x3 + x2x4 + x3x4 + x2x5 + x4x5 + x3x6 + x5x6 +
x3x7 + x5x7 + x6x7 + x2x8 + x5x8 + x6x8 + x8 + x2x9 + x5x9 + x8x9 + x9 + x4x10 + x5x10 + x7x10 + x9x10 + x2x11 + x5x11 + x6x11 + x8x11 +
x9x11 + x11 + x2x12 + x5x12 + x6x12 + x8x12 + x11x12 + x12 + x3x13 + x6x13 + x9x13 + x10x13 + x13 + x4x14 + x6x14 + x10x14 + x2x15 +
x4x15 + x6x15 + x7x15 + x8x15 + x10x15 + x11x15 + x2x16 + x3x16 + x5x16 + x10x16 + x12x16 + x4x17 + x6x17 + x9x17 + x10x17 + x11x17 +
x12x17 + x15x17 + x17 + x4x18 + x7x18 + x9x18 + x11x18 + x13x18 + x15x18 + x16x18 + x17x18 + x18 + x3x19 + x4x19 + x12x19 + x16x19 +
x17x19 + x3x20 + x4x20 + x5x20 + x6x20 + x8x20 + x9x20 + x10x20 + x11x20 + x13x20 + x14x20 + x15x20 + x16x20 + x20,



y10 = P10(x) = x1x2 +x4x2 +x5x2 +x6x2 +x7x2 +x8x2 +x9x2 +x10x2 +x11x2 +x12x2 +x15x2 +x16x2 +x18x2 +x2 +x1x3 +x4 +x1x5 +
x3x5 +x4x5 +x1x6 +x5x6 +x3x7 +x5x7 +x6x7 +x7 +x4x8 +x6x8 +x8 +x1x9 +x4x9 +x7x9 +x3x10 +x4x10 +x7x10 +x8x10 +x9x10 +x1x11 +
x4x11+x5x11+x11+x5x12+x6x12+x7x12+x9x12+x12+x1x13+x5x13+x7x13+x13+x4x14+x5x14+x7x14+x11x14+x14+x1x15+x3x15+
x4x15 +x5x15 +x6x15 +x7x15 +x11x15 +x12x15 +x14x15 +x1x16 +x4x16 +x7x16 +x10x16 +x11x16 +x12x16 +x13x16 +x15x16 +x16 +x8x17 +
x9x17+x11x17+x13x17+x14x17+x16x17+x3x18+x4x18+x7x18+x8x18+x10x18+x13x18+x15x18+x16x18+x17x18+x18+x1x19+x3x19+
x5x19 +x6x19 +x7x19 +x8x19 +x9x19 +x11x19 +x12x19 +x17x19 +x19 +x3x20 +x6x20 +x7x20 +x9x20 +x11x20 +x16x20 +x18x20 +x19x20,

y11 = P11(x) = x1x2 + x3x2 + x4x2 + x5x2 + x6x2 + x8x2 + x11x2 + x12x2 + x16x2 + x17x2 + x19x2 + x3x4 + x4 + x1x5 + x3x5 + x4x5 +
x5 + x1x6 + x3x6 + x5x6 + x6 + x4x7 + x6x7 + x7 + x1x8 + x3x8 + x4x8 + x6x8 + x8 + x1x9 + x4x9 + x5x9 + x7x9 + x9 + x1x10 + x3x10 +
x7x10 + x8x10 + x10 + x1x11 + x3x11 + x4x11 + x5x11 + x8x11 + x1x12 + x5x12 + x6x12 + x9x12 + x10x12 + x11x12 + x1x13 + x5x13 + x6x13 +
x8x13 + x9x13 + x10x13 + x11x13 + x12x13 + x13 + x4x14 + x5x14 + x7x14 + x11x14 + x12x14 + x1x15 + x5x15 + x9x15 + x10x15 + x11x15 +
x12x15 + x13x15 + x3x16 + x5x16 + x6x16 + x8x16 + x10x16 + x11x16 + x13x16 + x16 + x1x17 + x3x17 + x6x17 + x7x17 + x8x17 + x9x17 +
x10x17 + x11x17 + x13x17 + x14x17 + x16x17 + x17 + x3x18 + x5x18 + x9x18 + x10x18 + x13x18 + x14x18 + x15x18 + x18 + x5x19 + x7x19 +
x11x19 + x13x19 + x16x19 + x19 + x3x20 + x4x20 + x5x20 + x7x20 + x9x20 + x11x20 + x12x20 + x13x20 + x15x20 + x16x20 + x20,

y12 = P12(x) = x3x2+x11x2+x13x2+x14x2+x16x2+x19x2+x20x2+x2+x1x3+x3+x1x4+x3x4+x3x5+x4x5+x5+x1x6+x1x7+x4x7+
x6x7+x7+x1x8+x3x8+x5x8+x1x9+x3x9+x4x9+x5x9+x6x9+x7x9+x8x9+x6x10+x8x10+x1x11+x3x11+x4x11+x7x11+x10x11+x11+
x1x12+x4x12+x5x12+x6x12+x7x12+x8x12+x9x12+x10x12+x12+x1x13+x5x13+x10x13+x12x13+x3x14+x7x14+x9x14+x12x14+x13x14+
x1x15+x3x15+x4x15+x6x15+x9x15+x10x15+x11x15+x12x15+x14x15+x1x16+x3x16+x5x16+x10x16+x12x16+x14x16+x1x17+x3x17+
x5x17+x7x17+x8x17+x11x17+x13x17 +x14x17+x16x17+x3x18+x6x18+x9x18 +x15x18+x17x18+x1x19+x3x19+x4x19 +x5x19 +x6x19+
x7x19+x9x19+x10x19+x11x19+x13x19+x14x19+x18x19+x1x20+x8x20+x10x20+x11x20+x13x20+x14x20+x15x20+x17x20+x18x20+x20+1,

y13 = P13(x) = x2x1 + x4x1 + x5x1 + x6x1 + x7x1 + x9x1 + x16x1 + x17x1 + x19x1 + x20x1 + x1 + x2x3 + x3 + x3x4 + x3x5 + x4x5 +
x3x6 + x4x6 + x5x6 + x3x7 + x6x7 + x4x8 + x8 + x3x9 + x4x9 + x5x9 + x6x9 + x7x9 + x9 + x2x10 + x3x10 + x5x10 + x8x10 + x9x10 + x2x11 +
x3x11 + x4x11 + x5x11 + x8x11 + x9x11 + x10x11 + x11 + x2x12 + x4x12 + x5x12 + x6x12 + x8x12 + x10x12 + x2x13 + x6x13 + x7x13 + x8x13 +
x10x13 + x11x13 + x3x14 + x4x14 + x6x14 + x7x14 + x8x14 + x9x14 + x10x14 + x11x14 + x12x14 + x13x14 + x14 + x3x15 + x4x15 + x7x15 +
x10x15 + x11x15 + x13x15 + x14x15 + x3x16 + x4x16 + x6x16 + x10x16 + x12x16 + x13x16 + x14x16 + x15x16 + x2x17 + x3x17 + x6x17 + x8x17 +
x9x17 + x10x17 + x12x17 + x6x18 + x8x18 + x9x18 + x10x18 + x11x18 + x12x18 + x14x18 + x15x18 + x16x18 + x4x19 + x9x19 + x10x19 + x12x19 +
x13x19 + x15x19 + x19 + x2x20 + x3x20 + x5x20 + x6x20 + x11x20 + x16x20 + 1,

y14 = P14(x) = x1x2+x5x2+x8x2+x10x2+x11x2+x12x2+x16x2+x19x2+x20x2+x2+x1x3+x1x4+x1x5+x3x5+x4x5+x5+x1x6+x5x6+
x6+x4x7+x7+x1x8+x4x8+x7x8+x8+x1x9+x3x9+x4x9+x6x9+x7x9+x8x9+x9+x1x10+x3x10+x4x10+x7x10+x8x10+x9x10+x1x11+
x4x11+x7x11+x8x11+x9x11+x1x12+x5x12+x6x12+x8x12+x9x12+x10x12+x11x12+x12+x1x13+x5x13+x6x13+x8x13+x11x13+x12x13+
x1x14 +x3x14 +x4x14 +x5x14 +x6x14 +x7x14 +x10x14 +x11x14 +x13x14 +x1x15 +x3x15 +x4x15 +x5x15 +x7x15 +x8x15 +x11x15 +x12x15 +
x1x16 +x3x16 +x6x16 +x8x16 +x9x16 +x10x16 +x11x16 +x12x16 +x14x16 +x15x16 +x16 +x1x17 +x3x17 +x5x17 +x7x17 +x8x17 +x10x17 +
x11x17+x13x17+x15x17+x1x18+x5x18+x6x18+x8x18+x10x18+x14x18+x15x18+x16x18+x17x18+x1x19+x3x19+x4x19+x5x19+x6x19+
x8x19+x10x19+x11x19+x12x19+x13x19+x14x19+x15x19+x1x20+x3x20+x5x20+x6x20+x12x20+x13x20+x15x20+x17x20+x18x20+x19x20,

y15 = P15(x) = x4x2 + x8x2 + x9x2 + x12x2 + x14x2 + x15x2 + x18x2 + x2 + x3 + x3x4 + x4 + x4x5 + x1x6 + x5x6 + x1x7 + x5x7 + x1x8 +
x5x8 + x7x8 + x8 + x1x9 + x3x9 + x4x9 + x5x9 + x7x9 + x8x9 + x9 + x1x10 + x5x10 + x6x10 + x9x10 + x10 + x3x11 + x7x11 + x9x11 + x10x11 +
x3x12 + x4x12 + x5x12 + x6x12 + x7x12 + x8x12 + x11x12 + x5x13 + x6x13 + x10x13 + x12x13 + x13 + x8x14 + x9x14 + x10x14 + x11x14 +
x12x14 + x13x14 + x3x15 + x4x15 + x5x15 + x6x15 + x8x15 + x10x15 + x1x16 + x6x16 + x9x16 + x10x16 + x12x16 + x14x16 + x15x16 + x3x17 +
x4x17 + x5x17 + x7x17 + x8x17 + x11x17 + x12x17 + x14x17 + x1x18 + x7x18 + x9x18 + x13x18 + x17x18 + x3x19 + x8x19 + x9x19 + x11x19 +
x12x19 + x15x19 + x17x19 + x19 + x3x20 + x4x20 + x11x20 + x13x20 + x16x20 + x17x20 + x18x20 + x20,

y16 = P16(x) = x2x1+x4x1+x5x1+x6x1+x7x1+x8x1+x9x1+x10x1+x12x1+x13x1+x14x1+x16x1+x18x1+x20x1+x1+x2+x2x3+x3+
x2x4+x3x4+x4x5+x5+x2x6+x4x6+x3x7+x5x7+x6x7+x7+x5x8+x7x8+x2x9+x2x10+x3x10+x4x10+x5x10+x6x10+x10+x4x11+x7x11+
x9x11+x10x11+x11+x3x12+x5x12+x8x12+x9x12+x12+x2x13+x3x13+x4x13+x6x13+x11x13+x4x14+x6x14+x9x14+x10x14+x11x14+
x12x14+x13x14+x14+x2x15+x3x15+x5x15+x6x15+x9x15+x12x15+x13x15+x15+x3x16+x7x16+x8x16+x9x16+x15x16+x2x17+x4x17+
x9x17 +x10x17 +x11x17 +x13x17 +x14x17 +x2x18 +x3x18 +x7x18 +x8x18 +x10x18 +x14x18 +x18 +x3x19 +x5x19 +x7x19 +x8x19 +x9x19 +
x10x19 +x11x19 +x12x19 +x15x19 +x16x19 +x18x19 +x19 +x3x20 +x8x20 +x9x20 +x10x20 +x11x20 +x12x20 +x13x20 +x16x20 +x18x20 +1,

y17 = P17(x) = x2x1 + x3x1 + x5x1 + x6x1 + x9x1 + x10x1 + x11x1 + x12x1 + x13x1 + x14x1 + x15x1 + x18x1 + x1 + x2 + x2x4 + x3x4 +
x4 + x2x5 + x3x5 + x4x5 + x3x6 + x5x6 + x4x7 + x3x8 + x5x8 + x6x8 + x7x8 + x2x9 + x3x9 + x4x9 + x5x9 + x7x9 + x8x9 + x9 + x3x10 + x4x10 +
x7x10 + x8x10 + x10 + x2x11 + x3x11 + x5x11 + x6x11 + x7x11 + x9x11 + x11 + x2x12 + x6x12 + x8x12 + x9x12 + x11x12 + x12 + x3x13 + x7x13 +
x8x13 + x9x13 + x10x13 + x11x13 + x12x13 + x2x14 + x3x14 + x4x14 + x5x14 + x6x14 + x8x14 + x9x14 + x14 + x4x15 + x5x15 + x7x15 + x9x15 +
x10x15 + x11x15 + x12x15 + x13x15 + x15 + x3x16 + x6x16 + x8x16 + x10x16 + x11x16 + x15x16 + x3x17 + x5x17 + x6x17 + x8x17 + x9x17 +
x12x17 + x13x17 + x15x17 + x16x17 + x2x18 + x6x18 + x7x18 + x11x18 + x12x18 + x13x18 + x16x18 + x17x18 + x18 + x2x19 + x4x19 + x6x19 +
x7x19 + x8x19 + x9x19 + x13x19 + x15x19 + x16x19 + x17x19 + x18x19 + x4x20 + x5x20 + x8x20 + x9x20 + x10x20 + x12x20 + x14x20,

y18 = P18(x) = x1x2 + x3x2 + x4x2 + x7x2 + x10x2 + x12x2 + x13x2 + x14x2 + x15x2 + x16x2 + x18x2 + x19x2 + x1x4 + x4 + x1x5 +
x3x5 + x3x6 + x4x6 + x5x6 + x3x8 + x5x8 + x6x8 + x1x9 + x3x9 + x4x9 + x5x9 + x6x9 + x9 + x1x10 + x5x10 + x7x10 + x9x10 + x10 + x3x11 +
x4x11 + x5x11 + x7x11 + x10x11 + x11 + x3x12 + x4x12 + x5x12 + x7x12 + x8x12 + x9x12 + x11x12 + x8x13 + x10x13 + x11x13 + x13 + x1x14 +
x3x14 + x5x14 + x6x14 + x7x14 + x8x14 + x11x14 + x12x14 + x14 + x1x15 + x3x15 + x5x15 + x7x15 + x12x15 + x14x15 + x1x16 + x4x16 + x9x16 +
x11x16 + x14x16 + x16 + x1x17 + x5x17 + x6x17 + x10x17 + x16x17 + x1x18 + x3x18 + x5x18 + x6x18 + x7x18 + x8x18 + x9x18 + x10x18 +
x13x18 + x16x18 + x18 + x1x19 + x3x19 + x7x19 + x8x19 + x10x19 + x11x19 + x12x19 + x13x19 + x14x19 + x15x19 + x18x19 + x19 + x4x20 +
x7x20 + x9x20 + x10x20 + x11x20 + x13x20 + x15x20 + x16x20 + x19x20 + x20 + 1,

y19 = P19(x) = x3x1 +x4x1 +x5x1 +x6x1 +x7x1 +x9x1 +x11x1 +x15x1 +x16x1 +x17x1 +x18x1 +x19x1 +x20x1 +x1 +x3 +x3x4 +x4x5 +
x5 +x2x6 +x3x6 +x4x6 +x5x6 +x6 +x6x7 +x7 +x3x8 +x4x8 +x6x8 +x7x8 +x9 +x2x10 +x4x10 +x5x10 +x6x10 +x10 +x2x11 +x4x11 +x6x11 +
x8x11 + x9x11 + x10x11 + x2x12 + x5x12 + x7x12 + x9x12 + x10x12 + x12 + x7x13 + x9x13 + x12x13 + x3x14 + x4x14 + x6x14 + x8x14 + x10x14 +
x12x14 +x13x14 +x3x15 +x6x15 +x8x15 +x9x15 +x12x15 +x15 +x2x16 +x3x16 +x4x16 +x8x16 +x9x16 +x10x16 +x13x16 +x15x16 +x2x17 +
x3x17 + x4x17 + x7x17 + x10x17 + x11x17 + x15x17 + x3x18 + x4x18 + x6x18 + x7x18 + x12x18 + x13x18 + x15x18 + x16x18 + x3x19 + x4x19 +
x6x19 + x9x19 + x11x19 + x13x19 + x16x19 + x17x19 + x18x19 + x5x20 + x6x20 + x7x20 + x9x20 + x13x20 + x14x20 + x18x20 + x19x20 + x20,

y20 = P20(x) = x3x1 + x4x1 + x5x1 + x6x1 + x8x1 + x9x1 + x13x1 + x15x1 + x20x1 + x1 + x3 + x3x4 + x2x5 + x5 + x3x6 + x4x6 + x5x6 +
x2x7 +x3x7 +x6x7 +x7 +x4x8 +x8 +x2x9 +x3x9 +x9 +x2x10 +x3x10 +x6x10 +x7x10 +x8x10 +x10 +x3x11 +x5x11 +x9x11 +x2x12 +x4x12 +
x5x12 +x6x12 +x7x12 +x9x12 +x2x13 +x3x13 +x4x13 +x7x13 +x10x13 +x11x13 +x12x13 +x2x14 +x3x14 +x4x14 +x6x14 +x10x14 +x11x14 +
x12x14 + x13x14 + x5x15 + x8x15 + x9x15 + x12x15 + x13x15 + x15 + x2x16 + x8x16 + x9x16 + x11x16 + x12x16 + x13x16 + x14x16 + x15x16 +
x9x17 +x11x17 +x14x17 +x15x17 +x3x18 +x7x18 +x9x18 +x11x18 +x16x18 +x17x18 +x18 +x4x19 +x5x19 +x6x19 +x7x19 +x8x19 +x9x19 +
x11x19 +x12x19 +x13x19 +x17x19 +x3x20 +x6x20 +x7x20 +x8x20 +x10x20 +x11x20 +x12x20 +x14x20 +x16x20 +x17x20 +x19x20 +x20 +1.


