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Abstract

A sensor network key distribution scheme for hierarchical sensor networks was recently pro-
posed by Cheng and Agrawal. A feature of their scheme is that pairwise keys exist between
any pair of high-level nodes (which are called cluster heads) and between any (low-level) sensor
node and the nearest cluster head. We present two attacks on their scheme. The first attack
can be applied for certain parameter sets. If it is applicable, then this attack can result in the
compromise of most if not all of the sensor node keys after a small number of cluster heads are
compromised. The second attack can always be applied, though it is weaker.

1 Introduction

There has been considerable recent interest in sensor networks that have a hierarchical architecture.
A commonly-studied model (see, for example, [10, 5]) is to assume the existence of a powerful base
station, a number of m high-level nodes (called cluster heads) and a larger number, n, of (low level)
sensor nodes. Typical values for these parameters are n = 10000 and m = 100.

After deployment, any two cluster heads are assumed to be able to communicate directly. A
sensor node is only required to communicate with the nearest cluster head. It is assumed that these
communications can all be done directly (no intermediate nodes required). It is also assumed that
n/m sensor nodes are deployed in the vicinity of each cluster head. Additional details of this model
can be found in [10, 5].

It is not assumed that cluster heads are tamperproof, and therefore there is the possibility that
cluster heads might be compromised. The attack model is the standard “node capture” model.
The adversary can observe all communications that take place between nodes in the network, and
the adversary can capture a number of nodes and extract all the keys that are stored in them. We
will mainly focus on a special attack where the adversary compromises s out of the m cluster heads.
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There have been many proposals for key distribution protocols for sensor networks. See [3, 4, 7,
9, 12, 13] for several different approaches to this problem. The special case of hierarchical networks
has also received considerable attention, and key distribution schemes for hierarchical networks
have been presented in [5, 6, 8, 10, 14, 16, 17].

In this paper, we present an attack on the scheme proposed by Cheng and Agrawal [5]. This
scheme can be viewed as a generalization of the scheme due to Jolly et al ([10]). First, we summarize
how the Cheng-Agrawal scheme works. Denote the cluster heads by C1, . . . , Cm and the sensor nodes
by S1, . . . , Sn. [5] assumes that there is a predeployed pairwise key between the base station and
every other node (a pairwise key is a key that is held by exactly two nodes). The main objective
of [5] is to describe how pairwise keys are created between

1. any two cluster heads (we call these cluster head keys), and

2. any sensor node and the closest cluster head (we will refer to these keys as sensor node keys).

The first objective is accomplished by using a Blom scheme [1, 2], though this seems to be
unnecessary. The resilience of the Blom scheme, t, is set higher than the number of cluster nodes,
m, so it would be simpler and more efficient just to predeploy pairwise keys between any two cluster
heads. We will denote by KC

i,j the cluster head key that is held by Ci and Cj . This is a pairwise
key, and its value cannot be determined, even if all the other m− 2 cluster heads are compromised.
(This modification does not affect the security of the scheme, nor does it affect our attack.)

The second objective is realized using an “improved key distribution mechanism” (IKDM)
described in [5, §3]. Each sensor node Si is given one key, say Ki, before deployment. Si is also
given a list of ℓ identifiers of cluster heads, say Bi ⊆ {1, . . . ,m}1. Ki is computed as the sum of ℓ
shares, each of which can be computed by one of the cluster heads identified in Bi (recall that the
number of cluster heads is m, so we assume that m ≥ ℓ).

A different Blom scheme is associated with each cluster head. However, the bivariate polynomial
associated with any cluster head always has the first variable set equal to the ID of that cluster
head. So there is no point in using bivariate polynomials for the cluster heads. In any event, there
is a different degree t univariate polynomial assigned to each cluster head. These polynomials,
which will have coefficients defined over some finite field Fq, will be termed CH-polynomials. The
CH-polynomial assigned to Cj will be denoted by gj(x).

Now, each share of a key Ki is computed by evaluating a CH-polynomial at the point i. To be
precise, Ki is defined as follows:

Ki =
∑

j∈Bi

gj(i), (1)

where the terms gj(i) are the shares of Ki. The shares and the keys are all elements of Fq.
After deployment, a protocol is carried out so the nearest cluster head to Si, say Cp, can learn

the value of the key Ki. Si sends the list Bi to Cp (it is possible, but not required that p ∈ Bi). For
every j ∈ Bi, j 6= p, Cp obtains an encrypted share from Cj. That is, Cj computes sj = eKC

j,p
(gj(i))

and sends sj to Cp (observe that share sj is encrypted with the cluster head key KC
j,p). If p ∈ Bi,

then Cp computes the share gp(i) by itself. Then Cp decrypts all the encrypted shares and computes
the sum (1) to get Ki. Now Si and Cp have a pairwise key.

1We assume for simplicity that the IDs of the m cluster heads are 1, . . . , m. This is irrelevant to the attack we
will describe.
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The scheme in [10] is basically the case ℓ = 1 of the Cheng-Agrawal scheme. In this situation,
each sensor node key has only one share, namely the key itself.

The authors of [5] argue that because all the keys in their scheme are pairwise keys, the network
is resilient to node compromise (even when allowing compromise of cluster heads). They say “Even
if all the 100 cluster heads are compromised, none of the keys preloaded in the sensor nodes could
be compromised in the network”. This is true before the IKDM process takes place; however,
[5] does not really discuss the security of the IKDM process. Therefore, it is not clearly stated
what kind of security guarantees are provided by their protocol. Das and Sengupta [6] observe
that the compromise of s cluster heads, after the IKDM process has terminated, will result in the
compromise of 100s of the sensor node keys.

1.1 Our Contributions

We describe two attacks on the Cheng-Agrawal scheme in this paper. In Section 2, we present an
attack that we call the “interpolation attack”. In this attack, the compromise of a small number of
cluster heads (after the IKDM process is completed) can result in the compromise of all or almost
all of the sensor node keys in the network. The interpolation attack can possibly be thwarted by a
careful choice of the parameters of the scheme. However, we describe another attack in Section 3;
this attack is called the “reconstruction attack”. The reconstruction attack can always be applied,
though it is usually a weaker attack than the interpolation attack, in the sense that it will not
result in the compromise of all the keys in the network.

2 Interpolation Attack

Suppose an adversary records the communications that take place during the IKDM. Then the
adversary compromises s out of the m cluster heads (we will assume that s < m, because the
compromise of all m cluster heads clearly reveals all the sensor node keys). This allows the adver-
sary to decrypt all the messages that were sent to these s cluster heads during the IKDM. After
their decryption, the adversary has information pertaining to various CH-polynomials evaluated at
various points. If any CH-polynomial has been evaluated at at least t + 1 points, then the polyno-
mial can be reconstructed using Lagrange interpolation, e.g., as is done in Shamir secret sharing
(see, for example [15, Ch. 13]). So the adversary can potentially recover many CH-polynomials by
compromising a small number of cluster heads.

We now present an attack that we call the “interpolation attack”. The attack has two phases,
as follows:

Phase I

Capture s cluster heads and recover the keys stored in them. Use these keys to decrypt all the
encrypted shares sent to these s cluster heads during the IKDM process. Then interpolate
the obtained shares (using Lagrange interpolation) to recover CH-polynomials .

Phase II

Use the recovered CH-polynomials to compute sensor node keys.
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2.1 Phase I of the Attack

In this section, we discuss phase I of the interpolation attack. Recall that each sensor node Si

contains a list Bi consisting of ℓ of the m cluster heads. This list is sent in the clear to a cluster
head, so it is known to the adversary. We assume each list is a random ℓ-subset (which we will
call a block) of the m points in the set {1, . . . ,m} (i.e., cluster head IDs). By compromising s
cluster heads, the adversary gets sn/m such blocks. The average number of occurrences of a point
x ∈ {1, . . . ,m} in the sn/m blocks is snℓ/m2. If

snℓ

m2
= 1.25t, (2)

then we can show that almost every point will occur more than t times2. This is proven by using
a standard tail inequality for binomial distributions. This inequality can be found in [11, p. 502 ],
for example.

Lemma 2.1. Suppose X1, . . . ,XN are independent random variables such that Pr[Xi = 1] = p and
Pr[Xi = 0] = 1 − p for all i. Define X = X1 + · · · + XN . Then

Pr[X ≤ N(p − ǫ)] ≤ e−ǫ2N/(2p). (3)

Note that Np is the expected value of X, so this estimate gives an upper bound on the proba-
bility that X is somewhat below its expectation.

We will apply the inequality (3), setting N = sn/m, p = ℓ/m, and ǫ = .2ℓ/m. Simplifying and
using (2), we get

Pr[X ≤ t] ≤ e−.025t.

Define a point to be good if it occurs at least t + 1 times in s random ℓ-subsets of {1, . . . ,m}.
We have shown that, if s = 1.25tm2/(nℓ), then any given point is good with probability at least
1.0 − e−.025t. By linearity of expectation, it follows that the expected number of good points is at
least m(1.0−e−.025t) under these assumptions. For each good point j, the adversary can reconstruct
the polynomial gj(x). Therefore, we have the following theorem.

Theorem 2.2. Suppose the hierarchical sensor network has m cluster heads, n sensor nodes, each
sensor node is given ℓ random IDs of cluster heads, and sensor node keys are defined using CH-
polynomials of degree t. If an adversary compromises s = 1.25tm2/(nℓ) cluster heads after the
IKDM process, then the expected number of CH-polynomials that can be reconstructed using the
interpolation attack is at least m(1.0 − e−.025t).

We present an example to illustrate the application of Theorem 2.2.

Example 2.1. The parameters suggested in [5] are m = 100, n = 10000 and t = 128. [5] does not
discuss appropriate values for ℓ except to say that “To achieve sufficient security, large ℓ is desired”
([5, p. 42]). In order to apply Theorem 2.2, we choose s = 160/ℓ. Then

Pr[X ≤ 128] ≤ e−3.2 ≈ .04076.

Therefore the interpolation attack recovers (on average) at least 96 of the 100 CH-polynomials by
compromising 160/ℓ cluster heads.

2Because we require s < m and we also want (2) to be satisfied, it must be the case that ℓ > 1.25mt/n.
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Note that phase I of the interpolation attack becomes easier as ℓ gets bigger. If ℓ = 10, then
we take s = 16; if ℓ = 20, then we take s = 8, etc. That is, as ℓ is increased, the number of
compromised cluster heads required by the attack decreases.

In practice, the interpolation attack will probably work better than the estimates derived above
would indicate. This is because the inequality (2) overestimates the tail probability in the relevant
binomial distribution. For specified values of the parameters, it is a simple matter to compute the
tail probability exactly. This is illustrated in the next example.

Example 2.2. We use the same parameters as in the previous example: m = 100, n = 10000 and
t = 128. Then we can compute Pr[X ≤ 128] exactly using the following formula:

Pr[X ≤ 128] =

128
∑

j=0

(

100s

j

)(

ℓ

100

)j (

1 −
ℓ

100

)100s−j

. (4)

For example, when ℓ = 20 and s = 8, the formula (4) yields .00218, as compared to the estimate (3)
of .04076. When ℓ = 10 and s = 16, the exact value is about .00349, as compared to the estimate
of .04076. The expected number of reconstructable CH-polynomials in the interpolation attack is
100(1.0 − Pr[X ≤ 128]).

2.2 Phase II

Now we turn to the second phase of the interpolation attack. Suppose the adversary has recovered
r of the m CH-polynomials. Then the adversary can compute the key for a particular sensor node
if the block corresponding to that node is a subset of the r points corresponding to the recovered
polynomials. This probability is easily seen to be

(r
ℓ

)

(m
ℓ

) . (5)

The following theorem is an immediate consequence of (5).

Theorem 2.3. Suppose the hierarchical sensor network has m cluster heads, n sensor nodes, and
each sensor node is given ℓ random IDs of cluster heads. Suppose that r CH-polynomials are
reconstructed during phase I of the interpolation attack. Then the expected number of sensor node
keys that can be computed in phase II of the interpolation attack is

n
(r
ℓ

)

(m
ℓ

) .

If r < m, then it is clear that there will (probably) be some keys that are not compromised. In
phase II of the interpolation attack, the number of uncompromised keys increases as ℓ increases.
However, it is very likely that phase I will recover all m of the CH-polynomials (i.e., r = m), in
which case all n sensor node keys can be compromised. We show some computations in the next
example.

Example 2.3. We use the same parameters as in the previous examples: m = 100, n = 10000 and
t = 128.
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Table 1: Expected number of sensor node keys that can be compromised

number of recovered CH-polynomials (r) ℓ = 10 ℓ = 20 ℓ = 40

expected value of r 99.65 99.78 99.94

95 5837 3193 725
96 6516 4033 1243
97 7265 5081 2116
98 8090 6383 3575
99 9000 8000 6000
100 10000 10000 10000

In Table 1, we determine the expected number of sensor node keys that can be compromised,
for ℓ = 10, 20 and 40, computed as a function of the number of CH-polynomials, denoted by r,
that are reconstructed during the first phase of the attack. We also indicate the expected number
of reconstructed CH-polynomials when s = 160/ℓ cluster heads are compromised during phase I.
These values are computed using the formula (4), as in Example 2.2.

3 The Reconstruction Attack

We have already noted that the interpolation attack described in the previous section can be
mounted only when ℓ > 1.25mt/n. It is of interest to point out a weaker attack that can be carried
out for any values of the parameters. We call this the “reconstruction attack”. The interpolation
attack only used the information received by the compromised cluster heads. In the reconstruction
attack, we make use of the information transmitted by the compromised cluster heads.

As before, we assume that s of the m cluster heads are compromised after the IKDM process
has completed. We mentioned in Section 1 that [6] observed that the adversary can immediately
obtain the sn/m sensor node keys that are stored in the s compromised cluster heads. We say that
these sensor keys have been directly compromised.

In this section, we point out that some additional sensor node keys can be (possibly) be compro-
mise by reconstructing them from compromised shares. Let J = {j1, . . . , js} denote the set of IDs
of the s compromised cluster heads. Suppose Si is a sensor node whose nearest cluster head, say
Cp, has not been compromised (hence p 6∈ J ). Suppose it happens that Bi ⊆ J . Then all ℓ shares
that were used to compute Ki were encrypted with cluster head keys that have been compromised.
Therefore the adversary can compute Ki. In this situation, we say that the sensor node key Ki has
been reconstructed.

Now, the probability that Bi ⊆ J is
(s
ℓ

)

(m
ℓ

) .

There are n− sn/m = n(m− s)/m sensor nodes whose nearest cluster head has not been compro-
mised. Therefore, the expected number of reconstructed sensor node keys is

n(m − s)
(s
ℓ

)

m
(

m
ℓ

) .
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The following theorem is now obvious.

Theorem 3.1. Suppose the hierarchical sensor network has m cluster heads, n sensor nodes,
and each sensor node is given ℓ random IDs of cluster heads. Suppose that s cluster heads are
compromised. Then the expected number of sensor node keys that can be compromised as a result
of a reconstruction attack is

n

m

(

s +
(m − s)

(s
ℓ

)

(

m
ℓ

)

)

. (6)

When we set ℓ = 1 and simplify (6), the total number of compromised sensor node keys is

sn

m

(

2 −
s

m

)

. (7)

Remark: Because the scheme in [10] is essentially the case ℓ = 1 of the Cheng-Agrawal scheme, it
follows that this attack can also be applied to the scheme in [10].

Example 3.1. Suppose that n = 10000, m = 100 and t = 160. The interpolation attack is
applicable only if ℓ > 2, However, when ℓ = 1 or 2, then we can use the reconstruction attack.

From (7), the expected number of compromised sensor node keys when ℓ = 1 is 100s(2− s/100).
If s = 10, for example, then we expect to compromise 1900 sensor node keys. That is, compromising
10% of the cluster heads results in 19% of the sensor node keys being compromised.

When ℓ = 2, the expected number of compromised sensor node keys can be computed from (6);
it is 100s + (100− s)s(s− 1)/99. If we again take s = 10, then we expect to be able to compromise
1082 sensor node keys. So compromising 10% of the cluster heads results in 10.8% of the sensor
node keys being compromised.

4 Analysis and Discussion

The interpolation and reconstruction attacks can be mitigated by a careful choice of parameters.
It is clear from Example 3.1 that the reconstruction attack is much less effective when ℓ ≥ 2 than
it is when ℓ = 1. So an appropriate strategy might be to choose ℓ = 2 and t = 1.6n/m. This would
prevent the interpolation attack from being applied.

To measure the effectiveness of the reconstruction attack when ℓ = 2, we consider the ratio of
the number of reconstructed sensor node keys to the number of directly compromised sensor node
keys. This ratio is easily computed to be

(m − s)(s − 1)

m(m − 1)
.

This ratio is maximized by setting s = (m + 1)/2, in which case the ratio is approximately 1/4.
For this value of s, about n/2 sensor node keys are directly compromised, and an additional n/8
sensor node keys (approximately) are reconstructed.

In the communication model studied in [5], each sensor node communicates with only one cluster
head. So it is unavoidable that the compromise of s cluster heads will result in the compromise of
sn/m sensor node keys. Therefore the best we can hope for is to ensure that no additional sensor
node keys are compromised. There is a straightforward way to ensure this if cluster heads are
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permitted to communicate with the base station during the key establishment phase. Each sensor
node Si will send its ID to the nearest cluster head. Then the cluster head forwards the sensor
node ID to the base station and the base station encrypts the key Ki and sends it to the cluster
head. Finally, the cluster head decrypts Ki.

This approach might not be acceptable in some application scenarios. For example, the base
station might not be available during the key establishment phase for some reason. In such a
situation, we would be required to use a protocol where cluster heads communicate with each
other, such as the Cheng-Agrawal scheme. If this scheme is to be used, then it is important to
choose parameters in such a way that the consequences of the possible attacks are minimized.
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