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Abstract

We explicitly describe and analyse blind hierachical identity-based encryption (blind
HIBE) schemes, which are natural generalizations of blind IBE schemes [20]. We then
uses the blind HIBE schemes to construct: (1) An identity-based blind signature scheme
secure in the standard model, under the computational Diffie-Hellman (CDH) assump-
tion, and with much shorter signature size and lesser communication cost, compared
to existing proposals. (2) A new mechanism supporting a user to buy digital informa-
tion over the Internet without revealing what he/she has bought, while protecting the
providers from cheating users.

1 Introduction

Blind identity-based encryption (blind IBE) is a concept introduced in [20]. It is essen-
tially the same as an IBE scheme, except that a user can obtain his/her private key
in a blind manner (namely, without revealing his/her identity). The paper [20] used
blind IBE for constructing some oblivious transfer (OT) protocols.

Blind hierarchical IBE (blind HIBE) is a natural generalization of blind IBE. In a
blind HIBE, identities are now vectors, and the structure of blind HIBE is now like a
hierarchical tree. In a blind HIBE, a child node obtains his/her private key from the
corresponding parent’s node in a blind manner, like blind IBE. We explicitly describe
two concrete constructions of blind HIBE, based on the HIBEs of Boneh-Boyen [2] and
Chatterjee-Sakar [17].

Bind HIBE was also realized (without explicit constructions) by Green and Ho-
henberger [20], but they showed no applications of them. We note that, in contrast
with IBE and HIBE, the blind versions themselves may be of no direct use in practice.
However, deploying it as a building block for other constructions would be useful, and
that is what we provide in this paper.

In this paper, we consider two applications which needs blind HIBE as a building
block. In the first application of blind HIBE, we use it to construct an identity-
based blind signature (IBBS) scheme enjoying several merits over previous works in
the literature. In the second application, we use blind HIBE to build a new mechanism
called hierachical blind decryption protocol (HBDP), which is useful for anonymously
trading over the Internet. Let us now explain them in more details in the following
subsections.
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1.1 The first application: Shorter IBBS scheme in the
standard model

The concept of blind signature was firstly suggested in [6] for Internet banking. It
was later used in E-voting schemes. In a blind signature scheme, a user can obtain a
signature on a message m without revealing m to the signer. In identity-based blind
signature (IBBS), signers are associated with identities (e.g., e-mail addresses, instead
of public keys as in standard blind signature schemes). Most of works on IBBS was
in the random oracle model [35], [36], [13] (with its well-known limitations [10]), so we
exclude them from the following discussion. The first work in the standard model is
attributed to Galindo, Herranz, and Kiltz [21]. An important result from that paper
is that IBBS can be constructed from any one-way function, in the standard model.
One shortcoming of the result is that it gives long signatures (say, 6 · 170 = 1020 bits).

Our first contribution. We propose an IBBS scheme with the following properties:
– It is secure under the well-studied CDH assumption, in the standard model.
– The signature is shorter than that of [21], with almost the same security level.

Specifically, it is about 3·170 = 510 bits, which is half in size compared to the cdh-based
IBBS derived from [21].

– The communication cost between the signer and user is about eight times lesser
than that of the cdh-based IBBS derived from [21].

Our construction, given in Section 4, is based on the blind HIBE derived from
Chatterjee-Sakar HIBE of level 2.

1.2 The second application: Hierarchical Blind Decryp-
tion Protocol

We first consider the following scenario.

Scenario. Consider the following situation in trading encrypted information: over
the Internet, a company owns a chain of retailers who sell digital information (e.g.,
music, magazine) using their websites. The information is available in encrypted form,
namely ciphertexts, on the websites. A buyer, after browsing the summaries attached
to the ciphertexts, must pay some money to have its choice of ciphertexts decrypted
by the corresponding retailers. The problem is: the buyer wishes to hide its choice of
purchases, namely he/she wants to have his/her choice of ciphertexts decrypted by the
retailers in a blind manner; while the company and retailers want to make sure that the
buyer cannot get more than what he/she pays. For example, the buyer cannot obtain
v + 1 plaintexts while only paying for v ones. We will however formalize a stronger
security notion, ensuring that even one bit of the (v + 1)-th ciphertext is not leaked.

On a higher view, the above problem can be rephrased as follows: a buyer holds
ciphertexts which will be decrypted by some decrypters. The buyer wants to hide his
choice of ciphertexts while the decrypters want to make sure that the buyer gains noth-
ing more beside the plaintexts the buyer requests. When there is only one decrypter,
this problem was known as blind decryption (aka, blind decoding) in the literature
[32],[24], [31]. The case of many decrypters (controlled by a company), to the best of
our knowledge, has not been examined yet before this work.

Even in the case of one decrypter, the blind decryption problem apparently has not
had a satisfied solution in standard model yet. (We will explain more about this later.)

2



Solving the problem, in standard model, in the case of many decrypters also settles a
solution for the case of one decrypter, since the latter is a special case of the former.
These are what we provides in this paper.

Our second contribution. We propose a novel mechanism to solve the above prob-
lem. We call the mechanism Hierarchical Blind Decryption Protocol, or HBDP for
short. The description and some highlighted functionalities of HBDP are as follows:

(1) It has a hierarchical structure (like HIBE).
(2) Only leaf identities1, which represent the retailers, support blind decryption

protocols (with buyers).
(3) Everyone can create ciphertexts the retailers will sell. This capability can cap-

ture situations where the retailers are not producers.2

(4) A current retailer, a leaf identity, can give up selling and freely set up new “child
retailers”. We expect this flexibility is extremely welcome once a retailer is overloaded
with what needs to sell.

We formalize syntax and security notions for HBDP in Section 5. Our security
notions are stronger than those of previous works on blind decryption. We stress that
forming the decrypters security is non-trivial, and is novel to this work. In particular,
we develop the notion of one-more indistinguishability for blind decryption, which
is symmetric to the well-known one-more unforgeability security for blind signature.
Details are in Subsection 5.1. Our construction of HBDP uses as its building block
blind HIBE. The construction is generic (namely, from any blind HIBE) and is secure
if the building block is secure.

As already observed in [31], in the case of trading encrypted information as above,
all the prices of plaintexts must be the same; or otherwise blindness for buyers may
be trivially lost since the company can guess what the buyer purchases based on the
prices. We stress that although we discuss HBDP in the situation of trading encrypted
information anonymously, HBDP (or BDP as a special case) may also be used in other
contexts as a building block as well, including the work of [33], [28]. Another interesting
idea is in [29], where BDP is used to create a mechanism making data disappear3.

Previous and related works. As mentioned, the problem of blind decryption has
appeared in the literature [32], [24], [31]. These works considered only one retailer
(decrypter). No work in the literature has considered the problem when it comes to
a chain of retailers instead of one. The work of [31] is in the random oracle model.
The work of Mambo, Sakurai, and Okamoto [24], improving [32], is in standard model,
but whether the scheme in [24] is secure or not is suggested as an open problem [27].
Specifically, in the Concluding Remarks section of [27], Ohta wrote: “It is an open
question whether the scheme proposed in [24] is secure ...”. Seemingly, the authors
of [24] also realized some trouble in their scheme by writing: “(From this viewpoint)

1Here and hereafter, we use the term leaf identities to indicate identities who are not a parent identity of
any one.

2This functionality would be also welcome in the following situation: the reliability of the producers
is higher than that of the sellers, and the buyers would like to check whether the ciphertexts were from
the producers. This can be done by having the producers sign on the ciphertexts using a digital signature
scheme. The ciphertexts, together with their signatures, will be on the the sellers’ websites so that everyone
is able to check their validity before purchasing them.

3We however comment that the work of [29] is apparently not in the area of provable cryptography. The
claim “blind decryption is novel” in that paper is not right.
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the proposed blind decoding scheme is not existentially unforgeable.”([24], line 1, page
329). This is why we previously stated that the problem of blind decryption in the
standard model, even in the case of one decrypter, was not settled yet before this work.

One may argue that if the blind decryption problem for one decrypter is solved,
then the case of many decrypters is also settled, since one just needs to set up many of
independent decrypters in parallel. We agree. However, we expect that this approach
is costly, compared to the HBDP approach, since one has to set up independent sys-
tem parameters for each decrypter in the former. Moreover, the functionality (4) as
mentioned above would be lost.

A related concept is oblivious transfer (OT), typically considering two players, i.e.,
one receiver (user) and one sender (database), which totally differs from HBDP. In
particular, the functionalities (3) and (4) above of HBDP are not supported by OT.
Setting up many OTs in parallel may solve the problem HBDP considers, but suffers
from the same weakness as many BDPs in parallel. OT itself is costly in general due to
many zero-knowledge proofs of knowledge, in constrast to our HBDP, which uses only
one. Moreover, as will be seen later, our security notions for HBDP are also different
from those of OT, while sufficient enough for use.

Organization. We begin with some technical preliminaries in Section 2. We then
recall HIBE and examine blind HIBE in section 3. Next, we move to our main contri-
butions in Section 4 (about IBBS) and Section 5 (about HBDP). Finally, we conclude
this paper in Section 6.

2 Technical Preliminaries

We will use essentially the same presentation and wording as [20] in this section and
Section 3. Let BMsetup (bilinear map setup) be an algorithm that, on input a security
parameter κ, outputs the parameters for a bilinear mapping as γ = (q, g,G,GT , e),
where g generates G, e : G×G→ GT , and q is the order of G and GT . We will need
the following complexity assumptions made in these groups.
Decisional Bilinear Diffie-Hellman (DBDH) [3]. Let BMsetup(κ) → (q, g, G,
GT , e). For all p.p.t adversaries A, the value |Pr[b′ = b] − 1/2| is negligible in the
following experiment: x, y, z, t $← Zq; x0 ← e(g, g)xyz; x1 ← e(g, g)t; b $←{0, 1}; b′ ←
A(g, gx, gy, gz, xb).
Computational Diffie-Hellman. For all p.p.t adversaries A, its advantage defined
as Adv(A) = Pr[g $←G;x, y $← Zq : A(g, gx, gy) = gxy] is negligible.
Known Discrete-Logarithm-Based, Zero Knowledge Proofs. We use known
techniques for proving statements about discrete logarithms, such as (1) proof of
knowledge of an element representation in a prime order group [25], (2) proof that
a committed value lies in a given integer interval [8], [14], [1], and also (3) proof of
conjunction of any of the previous [7]. These protocols are secure under the discrete
logarithm assumption, although some implementation of (2) requires the Strong RSA
assumption [4], [18].

When referring to the proofs above, we use the notation of Camenisch and Stadler
[16]. For instance, PoK{(x, r): y = gxhr ∧ 1 ≤ x ≤ n} denotes a zero-knowledge proof
of knowledge of integers x and r such that y = gxhr and 1 ≤ x ≤ n. All values not

4



enclosed in ()’s are assumed to be known to the verifier. We can apply Fiat-Shamir
heuristic [19] to make such proofs non-interactive in the random oracle model.

3 HIBE and blind HIBE

We will use essentially the same presentation as in [20], which might help readers easily
realize the differences between blind HIBE and blind IBE [20].

3.1 Definitions

Hierarchical Identity-based Encryption Scheme (HIBE) [22], [23]. A HIBE
consists of four algorithms: Setup, Extract, Encrypt, Decrypt. In a HIBE, identities
are vectors. A vector of dimension j represents an identity at depth j, denoted as
ID|j = (I1, . . . , Ij) where the components I1, . . . , Ij ∈ I for some set I. The detailed
description and functionality of the algorithms are as follows:

– In the Setup(κ, l)→ (params,msk) algorithm, on input a security parameter κ and
the maximum depth l of the HIBE, the master authority outputs master parameters
and a master secret key (params,msk). params is also the input of all algorithms
below, but we omit writing it for the sake of clarity.

– In the Extract(PID|j−1(skID|j−1),U(ID|j)) → (ID|j , skID|j) protocol4, an honest
user U with identity ID|j = (I1, . . . , Ij) obtains the corresponding secret key skID|j
from the parent identity ID|j−1 = (I1, . . . , Ij−1) or outputs an error message. The
parent identity output is the identity ID|j or an error message.

– In the Encrypt(params, ID|j ,m)→ C algorithm, on input identity ID|j ∈ Ij and
a message m ∈M, any party can output a ciphertext C.

– In the Decrypt(skID|j , C)→ m, on input a ciphertext C, the user with skID|j can
output a message m ∈M or an error message.

Definition 1 (IND-sID-CPA security for HIBE [11], [12]). Let κ, l be the security
parameter and maximum depth of HIBE, and M the message space. The HIBE is
IND-sID-CPA-secure if every p.p.t adversary A has an advantage negligible in κ, l for
the following game with a challenger: (1) A outputs a target identity ID∗. (2) The
challenger runs Setup(κ, l) to obtain (params,msk) and gives params to A. (3) A
may make polynomially-many key extraction queries ID. In response, the challenger
runs the Extract algorithm on input ID to obtain the corresponding private key skID
and gives it to A. The only restrictions are: ID is not ID∗ and is not a prefix of ID∗.
(4) A outputs two equal-length messages m0, m1. The challenger chooses a random bit
b, and gives A the challenge ciphertext C∗ ← Encrypt(params, ID∗,mb). (5) A may
continue to make key extraction queries under the same conditions as before. (6) A
outputs b′ ∈ {0, 1}. The advantage of A in the game is defined as |Pr[b′ = b]− 1/2|.

On IND-ID-CPA security for HIBE. This notion of security is stronger than the
above notion, allowing the adversary to choose a target identity at Step 4 in the above
game.

4We will use the words “algorithm” and “protocol” interchangeably in some contexts.
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Blind HIBE. A blind HIBE scheme consists the same algorithms Setup, Encrypt,
Decrypt as in a traditional HIBE one, but the protocol Extract is replaced by a new
protocol BlindExtract:

– In the BlindExtract(PID|j−1(skID|j−1), U(ID|j)) → (nothing, skID|j) protocol, an
honest user U with identity ID|j = (I1, . . . , Ij) obtains the corresponding secret key
skID|j from the parent identity ID|j−1 = (I1, . . . , Ij−1) or outputs an error message.
The parent identity output is nothing or an error message.

We now define security for blind HIBE, which is informally any IND-sID-CPA HIBE
scheme with a BlindExtract protocol satisfying two below properties:

1. Leak-free Extract [20]: a potentially malicious user cannot learn anything by
executing the BlindExtract protocol with a parent identity which she could not have
learned by executing the Extract protocol with the parent identity; moreover, as in
Extract the user must know the identity for which she is extracting the key.
2. Selective-failure Blindness [15]: a potentially malicious parent identity cannot
learn anything about the user’s choice of identity during the BlindExtract protocol (more
than what it has already known before BlindExtract); moreover, the parent identity
cannot cause the BlindExtract protocol to fail in a manner dependent on the user’s
choice of identity.

The formal definitions of leak-freeness and selective-failure blindness are in A. We
finally arrive at the following definition.

Definition 2 (Secure Blind HIBE). A blind HIBE Π = (Setup, BlindExtract, Encrypt,
Decrypt) is IND-sID-CPA-secure if and only if: (1) its corresponding HIBE is IND-
sID-CPA secure, and (2) BlindExtract is leak-free and selective-failure blind.

3.2 HIBE Schemes with Efficient BlindExtract Protocols

In this section, we describe efficient BlindExtract protocols for: (1) the IND-sID-CPA-
secure HIBE due to Boneh and Boyen [2] and (2) the IND-ID-CPA-secure HIBE pro-
posed by Chatterjee and Sakar [17]. Since these schemes share a similar structure, we
begin by describing their common parts.

– Setup(κ, l): Let γ = (q, g,G,GT , e) be the output of BMsetup(κ). Choose α $← Zq,
and set g1 ← gα. Choose g2, h1, . . . , hl

$←G. Select functions Fk : I → G for 1 ≤ k ≤
l. (The descriptions of Fk will be defined specific to the schemes below.) Output
params = (γ, g1, g2, h1, . . . , hl, Fk) and msk = gα2 .

– Extract(Pj−1(skID|j−1),U(ID|j)) → (ID|j , skID|j): The private key of identity
ID|j = (I1, . . . , Ij) is of the form skID|j = (gα2 Πj

k=1Fk(Ik)
rk , gr1 , . . . , grj ). Such a

private key can be generated by Pj−1 as follows: let skID|j−1 = (d0, . . . , dj−1). Pj−1

picks random rj
$← Zq and sets

skID|j = (d0Fj(Ij)rj , d1, . . . , dj−1, g
rj ).

– Encrypt(params, ID = (I1, . . . , Ij),m)→ C: t $← Zq, C ← (C0 = m×e(g1, g2)t, C1 =
gt, B1 = F1(I1)t, . . . , Bj = Fj(Ij)t)
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Pj−1(skID|j−1 = (d0, . . . , dj−1)) U(ID = (I1, . . . , Ij))

1. y
$← Zq.

2. Compute h′ ← gyg
Ij
1 and send h′ to Pj−1.

3. Execute PoK{(y, Ij): h′ = gyg
Ij
1 }.

4. If the proof fails to verify, abort.

5. Choose rj
$← Zq.

6. Compute d′0 ← d0(h′hj)
rj and d′j ← grj

7. Send (d′0, d1, . . . , dj−1, d
′
j) to U .

8. Check

e(d′0, g) = e(g2, g1)e(h′hj, d
′
j)Π

j−1
k=1e(Fk(Ik), dk).

9. If the check passes, choose z
$← Zq;

otherwise output ⊥ and abort.
10. Output

skID|j ← (d′0(d′j)
−yFj(Ij)

z, d1, . . . , dj−1, d
′
jg
z).

Figure 1: BlindExtract protocol for Boneh-Boyen HIBE. For Chatterjee-Sakar HIBE, modify

as follows: Parse Ij as Ij = Ij[1] · · · Ij[n]. In line 2, compute h′ ← gyΠn
i=1u

Ij [i]
i . In line 3,

execute PoK{(y, Ij = Ij[1] . . . Ij[n]) : h′ = gyΠn
i=1u

Ij [i]
i ∧ 0 ≤ Ij[i] < 2n

′∀1 ≤ i ≤ n}.

– Decrypt(skID|j , C)→ m: To decrypt a given ciphertext C = (C0, C1, B1, . . . , Bj)
using the private key skID|j = (d0, . . . , dj), output

m = C0
Πj
k=1e(Bk, dk)
e(d0, C1)

We proceed to describe the precise format of the private keys and corresponding
BlindExtract protocols for particular HIBEs.

3.2.1 A BlindExtract Protocol for Boneh-Boyen HIBE

In the Boneh-Boyen HIBE [2], I = Zq and the function Fk : I → G is defined as
Fk(I) = hk · gI1 for I ∈ I and 1 ≤ k ≤ l. The private key for identity ID|j is thus

skID|j = (gα2 ·Π
j
k=1(hk · gIk1 )rk , gr1 , . . . , grj ).

The protocol BlindExtract for this HIBE is described in Figure 1.
Let Π1 be the blind HIBE that combines the algorithms Setup, Encrypt, Decrypt

and the protocol BlindExtract in Figure 1.

Theorem 3. The protocol BlindExtract in Figure 1 is both leak-free and selective-failure
blind. As a result, the blind HIBE Π1 is IND-sID-CPA-secure (according to Definition
2) under the DBDH assumption.

The proof of this theorem, which is similar to its IBE counterpart in [20], is given
in Appendix B.1.
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3.2.2 A BlindExtract Protocol for Chatterjee-Sakar HIBE

In the HIBE proposed by Chatterjee and Sakar [17], the set I is the set of bit strings
of length N , where N(= n · n′) is polynomial in κ, represented by n blocks of n′ bits.
Define the function Fk(I) = hk · Πn

i=1u
I[i]
i for 1 ≤ k ≤ l, where I[1], . . . , I[n] are n′-bit

segments of I ∈ I, and u1, . . . , un ∈ G are randomly chosen by the master authority
in Setup algorithm. The private key for identity ID|j is thus

skID|j = (gα2 ·Π
j
k=1(hk ·Πn

i=1u
Ik[i]
i )rk , gr1 , . . . , grj ).

The protocol BlindExtract is described in Figure 1, with the following alterations.
Parse Ij as Ij = Ij [1] · · · Ij [n]. In line 2, compute h′ ← gyΠn

i=1u
Ij [i]
i . In line 3, execute

PoK{(y, Ij = Ij [1] . . . Ij [n]) : h′ = gyΠn
i=1u

Ij [i]
i ∧ 0 ≤ Ij [i] < 2n

′∀1 ≤ i ≤ n}. Follows
the rest of the protocol as it is.

Let Π2 the blind HIBE that combines Setup, Encrypt, Decrypt with the BlindExtract
protocol described above.

Theorem 4. The protocol BlindExtract in this subsection is both leak-free and selective-
failure blind. As a result, the blind HIBE Π2 is IND-ID-CPA-secure (according to
Definition 2) under the DBDH assumption.

The proof of this theorem, which is similar to its IBE counterpart in [20], is given
in Appendix B.2.

4 The first application: Shorter IBBS scheme

in the standard model

We first recap syntax and security notions for IBBS, and then move to our construction.

4.1 Syntax and security notions

Syntax. An IBBS scheme IBBS = (IBBS.Setup, IBBS.Extract, IBBS.Sign, IBBS.Vrf) is
described as follows.

– IBBS.Setup(κ) → (params,msk): The master authority uses this algorithm to
produce system-wide parameters params and master-secret key msk. params is also
the input of all algorithms below, but we omit writing it for the sake of clarity.

– IBBS.Extract(P(msk), S(I ∈ I)) → (I, skI): The master authority P and the
signer S of identity I interact so that, at the end, S receives the private key skI , while
P knows S identity.

– IBBS.Sign(S(skI), U(I,m))→ (nothing, σ): the signer S with identity I interacts
with the user U who wants to obtain a blind signature on the message m. At the end,
S knows nothing about m, while U gets the blind signature σ.

– IBBS.Vrf(I, m, σ) → 0/1: Everyone can check a message-signature pair (m,σ)
under identity I is valid or not, using this algorithm.
Security notions. There are two security notions for an IBBS scheme: blindness and
one-more unforgeability, which are informally discussed as follows.

Blindness ensures that the signer know nothing about the message of the user
even after the signing process. We will consider selective-failure blindness for IBBS,
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which furthermore captures the idea that the signer cannot cause IBBS.Sign to fail in
a manner dependent on the message. This notion is stronger than that of [21]. The
precise formulation of selective-failure blindness is very similar to that of blind HIBE
in A. We omit that formulation, since the selective-failure of our below construction
comes directly from that of the corresponding blind HIBE.

One-more unforgeability ensures that the forger F (malicious user), after qs signing
queries, cannot obtain strictly more than qs valid signatures (say, qs + 1 signatures).
In the identity-based setting, F can have access for different qe times to a key extract
oracle. We also omit the details, and refer the readers to [21] for the formal definition,
since we will not directly use it.

4.2 Our construction

Intuition. A well-known fact, attributed to Naor by Boneh and Franklin5, is that
one can construct a standard signature scheme from an IBE. By the same token, from
level-2 (IND-ID-CPA) HIBE, identity-based signature (IBS) can be built [22]. This
idea was used by Paterson and Schuldt in [30] to construct an efficient cdh-based IBS
in the standard model from Chatterjee-Sakar HIBE of level 2. Our observation is that
from level-2 (IND-ID-CPA) blind HIBE, we can have a secure IBBS scheme. We will
use the IND-ID-CPA blind HIBE in subsubsection 3.2.2.6

Our construction. Our IBBS = (IBBS.Setup, IBBS.Extract, IBBS.Sign, IBBS.Vrf) is
construct as follows.

– IBBS.Setup(κ): We run Π2.Setup(κ, 2). Note that we take the level l = 2. The
outputs are system-wide parameter params = (γ, g1, g2, h1, h2, F1, F2) and the master-
secret key msk = gα2 . Recall that F1, F2 : I → G, and I = {0, 1}n·n′ . The signing
space of our IBBS is also I.

– IBBS.Extract(P(msk), S(I ∈ I)): We run the Extract(P(msk),S(I)) algorithm
related to Π2 described in Subsection 3.2. The signer S with the identity I will receive
skI = (gα2F1(I)r, gr) as his private key.

– IBBS.Sign(S(skI), U(I,m)): We run the interactive protocol Π2.BlindExtract(S(skI),
U(ID = (I,m)∈ I2)). Note that m is treated as a part of the identity ID. As
the results of the protocol, S outputs nothing, while U receives a value of the form
(gα2F1(I)rF2(m)s, gr, gs), which is his signature on m.

– IBBS.Vrf(I, m, σ = (σ1, σ2, σ3)): Using the pairing e, check that e(σ1, g) =
e(g1, g2) · e(F1(I), σ2) · e(F2(m), σ3). Return 1 if the check passes, else return 0.

We proceed to examine securities of the above construction. Selective-failure blindness
of our IBBS comes directly from that of Π2.BlindExtract, since in the IBBS.Sign protocol,
only BlindExtract is executed. We formally state this fact in the following theorem.

Theorem 5. The above construction of IBBS satisfies selective-failure blindness.

We next consider one-more unforgeability, which is ensured by the following theo-
rem.

5See [9] for a careful treatment.
6Note that the blind HIBE in subsubsection 3.2.1 is irrelevant in this case since we need IND-ID-CPA

security.
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IBBS scheme sig. size fac. loss, assum. com. cost

[21] + [26] + [5] 6 · |q| O(qeqs), cdh 161 var.
Ours 3 · |q| O((qe + qs)qs), cdh 21 var.

Figure 2: Comparisons between our IBBS and the cdh-based IBBS derived from [21], using
concrete constructions in [26], [5]. In the figure, sig.= signature, fac.= factor, assum.=
assumption, com.= communication, var.= variables.

Theorem 6. The IBBS given above satisfies one-more unforgeability. Specifically,
given a forger F against the IBBS, then there exist adversaries A1 (against leak-
freeness) and A2 (against the CDH assumption) whose running times are essentially
the same as that of F , and

Advom−forgeIBBS (F) ≤ qsAdvleak−freeΠ2
(A1) + 16(2n

′−1n+1)2(qe+qs)qsAdvcdhG (A2),

where qe is the number of extract queries and qs is the number of signing queries F
makes.

The proof is intuitively as follows. From the viewpoint of F , the protocol BlindEx-
tract in IBBS.Sign is essentially identical to the corresponding Extract protocol, thank
to the leak-freeness of Π2. Consequently, in simulating the environment for F , we
can safely replace the protocol BlindExtract in IBBS.Sign by the protocol Extract. This
change induces the first term on the right hand-side of the above inequality. Now that
F can be seen as a forger of an IBS (not blind), the rest of the simulation for F will
be the same as that of Paterson and Schuldt [30], who in turn use Waters’ technique
[34]. We omit further details.

The comparison between our IBBS and the (only known) cdh-based one in the
standard model is depicted in Fig. 2. Below is the explanation for that figure.

Concrete parameters. Typically, the signing and identity space I = {0, 1}160, which
is also the output range of SHA-1. Thus we take n · n′ = 160. Due to the term 2n

′−1

in security reduction, we suggest to take n′ − 1 ≈ log2(n · n′) so that 2n
′−1(= n · n′) is

polynomial. Thus we recommend n′ = 8 and n = 20. The reduction loss in the above
theorem is considered as O((qe + qs)qs).

The communication cost between signer and user in IBBS.Sign is mainly incurred
by the following zero-knowledge proof of knowledge: PoK{(y,m = m[1] . . .m[20]) :
(h′ = gyΠ20

i=1u
m[i]
i ) ∧ (0 ≤ m[i] < 28)∀1 ≤ i ≤ 20}. Namely, the user has to make a

proof of knowledge for 21 variables (y,m[1] . . .m[20]).
The signature size of our IBBS is three elements of G, so the size is 3 · |q|. (Here, |q|

is the bit length of q.) Typical value for |q| is 170. The discussion thus far illustrates
our IBBS in Fig. 2.

We now explain the second line of Fig. 2, which is about the cdh-based IBBS
resulted from [21], [26], [5]. The paper [21] gave a generic construction in the standard
model of IBBS from any ordinary blind signature BS and strongly-secure signature S.
Thus, to build a cdh-based IBBS, both BS and S must be cdh-based secure. The only
known cdh-based S strongly secure in the standard model is in [5], and the cdh-based
secure BS is in [26] (Section 10). Both results in [5] and [26] are based on the cdh-based
Waters’ signature scheme [34]. The signature size of S in [5] is 3 · |q|, and that of BS
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in [26] is 2 · |q|. The signature size of the generic construction [21] is that of S, and
BS, and one group element of length |q|, so that 6 · |q| is the total signature size of the
IBBS. The loss factors in security reduction to the CDH assumption of S and BS are
O(qs). The loss in the generic construction is of O(qe), and hence the total loss factor
for the IBBS is O(qeqs), which is a bit better than ours. The communication cost of
BS is about 161 variables7, so is the derived IBBS.

5 The second application: Hierarchical Blind

Decryption Protocol

In this section, we first formalize the syntax and security for HBDP, and then present
our construction (from blind HIBE) of HBDP. This section is considered as the second
main contribution of this paper.

5.1 Syntax and Security Definitions

Syntax. A HBDP is specified by three algorithms Setup, Extract, Enc, and a protocol
BlindDec. The description and functionality of Setup and Extract are the same as those
of HIBE. Namely, Setup is used to create system-wide parameters params and master
secret key msk; while Extract is used by a parent identity to create private key for its
child identities. The algorithm Extract supports all identities in the HBDP. The formal
syntax descriptions of Setup and Extract are the same as those of HIBE, so we omit
them here.

Denote Leaves the set of leaf identities, which depends on the (current) structure
of the HBDP. The protocol BlindDec supports only leaf identities of the HBDP. The
algorithm Enc requires as one of its input a leaf identity. The formal description and
functionality of the two new algorithms are as follows:

– Enc(params, ID ∈ Leaves,m) → C: On inputs params, a leaf identity ID, and
a message m, Enc produces a ciphertext C. The purpose of this algorithm is to create
ciphertexts which the retailers (leaf identities) will decrypt. We note that not only the
retailers but also any party can use this algorithm.

– BlindDec(PID(skID),U(C)) → (nothing,m): When an honest buyer U wants to
buy the content inside a ciphertext C which is available from PID where ID ∈ Leaves,
she engages PID in a BlindDec protocol. At the end, U receives the content m while
PID knows nothing about the choice of the ciphertext. We emphasize that only leaf
identities of the HBDP supports BlindDec (with buyers).

In the Introduction section, we stated that we also solved the problem of blind decryp-
tion with one decrypter. We now elaborate on that statement. Consider a special case
of HBDP where the set Leaves contains only one element – the root identity. (Note
that the algorithm Extract is not used at all in this case, or otherwise the root identity
will not be a leaf identity any more.) Recall that a leaf identity represents a decrypter
(retailer), so that we have only one decrypter in this case. This is exactly the case that
previous works on blind decryption considered.

7Note that here we consider the message length of BS [26] is 160 bits, which is typical.
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We proceed to define security notions for HBDP. There are two issues to be considered:
the privacy of buyer (namely, blindness), and the security of retailers.
1. Blindness. Blindness of HBDP ensures the privacy of the buyer. Intuitively, it
ensures that the retailers cannot know more about the buyer’s choice of ciphertexts after
the BlindDec protocol than what it has already known before the BlindDec protocol.
We will not provide the formal definition for blindness here, since the blindness of
our construction of HBDP comes directly and obviously from the blindness of the
underlying blind HIBE. We believe that doing so makes our presentation clearer.
2. One-More Indistinguishability (IND-OM). IND-OM security intuitively en-
sures that it is impossible for a (potentially malicious) buyer to get more than what
he/she paid. We will use the one-more security approach, and yet, in an indistin-
guishability style. This notion itself is new to this paper. Let us first present some
intuitions behind the notion, and then move to the precise description. Recall that a
malicious user, an adversary, can collect ciphertexts available from the websites of the
retailers. We capture this ability by providing the adversary an encryption algorithm,
in a left-or-right style. The adversary can also engage the retailers in BlindDec pro-
tocols, so that BlindDec oracles are given. At the end, the adversary wins if after v
times of querying the BlindDec oracles, it knows one-more bit used in the left-or-right
encryption oracles; namely, it knows non-negligible information about the content of
some ciphertext for which it did not pay. Conversely, a HBDP is ind-om-secure if no
p.p.t adversary can win. Note that ind-om security also implies that the adversary can-
not decrypt a (v + 1)-th ciphertext after v times of accessing to the BlindDec oracles.
In other words, ind-om security implies one-way one-more (OW-OM) security, which
was considered in [24] under the name “existential unforgeability8”. We do not give a
formal definition of OW-OM security here because our construction meets the stronger
security notion, IND-OM. The formal definition of IND-OM security is as follows.

Definition 7 (IND-OM security for HBDP). Let Πbdp = (Setup, Extract, Enc, Blind-
Dec) be a HBDP. Consider the following game between a challenger and an adversary
A.

Setup: The challenger runs Setup(κ, l) to obtain params and msk, and gives params
to A.
Denote Leaves = {ID1, . . . , IDk}(k ≥ 1) the set of leaf identities of the HBDP, which
is given to A.

Queries: the adversary is allowed to make the following types of queries:
– Encryption query9 (IDj ∈ Leaves, m(i)

0 ,m
(i)
1 ): the challenger chooses a random bit,

denoted as b(j,i)
$←{0, 1}, computes C(j,i) ← Enc(params, IDj, m

(i)
b(j,i)

), and then re-
turns C(j,i) to A. The adversary is permitted to make uj encryption queries to IDj,
thus 1 ≤ i ≤ uj.
– Blind decryption query: the adversary A engages PID(skID) in a BlindDec(PID(skID),
A(C)) protocol for some ID ∈ Leaves and some ciphertext C. A can engage many
BlindDec protocols with the leaf nodes in an arbitrary manner. The total number of
permitted blind decryption queries is denoted as v (< u1 + · · ·+ uk).

8This is originally used for signature security. We think that OW-OM is a more proper name.
9Note that the adversary A can also obtain the ciphertext of a message m under a leaf identity IDj by

making an encryption query of the form (IDj , m, m).
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Output: A outputs v + 1 bits b′1, . . . , b
′
v+1 and an injective map π : {1, . . . , v + 1} →

{1, . . . , k} × {1, . . . , u}, where u = max{u1, . . . , uk}. Denote the above adversary as
A(u1, . . . , uk, v).

We say that A wins if b′i is the right guess of bπ(i) for all 1 ≤ i ≤ v + 1. Define the
advantage of A as

Advind−omHBDP (A) = Pr[b′i = bπ(i)∀1 ≤ i ≤ v + 1]− 1
2
.

If the advantage is either negligible or negative for all p.p.t adversaries A, we say that
the HBDP is ind-om-secure.

Remarks and Discussions about IND-OM. Firstly, we emphasize that, unusually,
the absolute value cannot be taken when defining the above advantage function, and
one has to consider adversaries with negative advantage. In fact, if the absolute value is
taken, then an adversary just returning random bits has advantage |1/2v+1−1/2| ≈ 1/2
for large v, which is not negligible at all.

Secondly, consider again the situation between the retailers and the buyer as in
Section 1. We note that, in practice, some summaries and/or keywords of the contents
inside the ciphertexts should also be available on the websites so that the buyer can
make choices. The IND-OM security, like other ind-securities (e.g., ind-cca), ensures
that even so, the adversary still has negligible knowledge about the other parts of the
contents. Furthermore, our IND-OM notion is stronger than the one-more decryp-
tion security considered in [31]. In fact, our notion allows the adversary to adaptively
encrypt messages of its own choice, while that of [31] does not. All messages in the no-
tion of [31] are randomly chosen, and the corresponding ciphertexts are non-adaptively
given to the adversary at the beginning.

Thirdly, as in HIBE schemes, one may want to think of a situation where there
is a coalition among some identities in HBDP in order to compromise the privacy of
the other. This issue can be addressed by additionally giving the above adversary
A oracle calls to Extract with a natural restriction that the target leaf identity (and
its parent identities) is not queried to that oracle. However, for the time being, we
will not consider this security model, although our construction of HBDP (in the next
subsection) would also remain secure. We believe that the current security model, as
formally described above, is sufficient enough to reflect situations as mentioned in the
motivation of this work.

5.2 The construction of HBDP

In this section, we show how to turn any HIBE supporting blind key extract (namely,
blind HIBE), into a HBDP. Let Π = (Setup, Extract, Encrypt, Decrypt) be a HIBE
and Π′ = (Setup, BlindExtract, Encrypt, Decrypt) its corresponding blind HIBE. Our
construction of HBDP reuses the algorithms Setup and Extract of Π without any change.
Thus to build the HBDP Πbdp = (Setup, Extract, Enc, BlindDec), we just have to
construct the Enc algorithm and the BlindDec protocol. The constructions of the
algorithms are as follows.

The Constructions of Enc and BlindDec
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— Enc(params, ID ∈ Leaves,m): I
$←I,10 ID′ ← (ID, I), Ĉ $← En-

crypt(params, ID′, m). Output C ← (ID′, Ĉ).
— BlindDec(PID(skID),U(C)): U first parses C as (ID′, Ĉ). U then runs

(with PID) the protocol BlindExtract(PID(skID),U(ID′))→ (nothing, skID′).
U finally outputs Decrypt(skID′ , Ĉ).

In the construction, one can intuitively imagine a leaf identity (a retailer) as a “parent
identity” of its ciphertexts, and a user bought a ciphertext (namely, bought a private
key as seen in our construction) becomes a “child identity” of the leaf identity. The
privacy of the buyer is ensured via the blindness of BlindExtract protocol. The IND-
OM security for the retailers comes from the security of the underlying HIBE and blind
HIBE schemes: the coalition of the “child identities” (the private keys the user bought)
cannot compromise the privacy of the others.

We proceed to formally consider the securities of the above construction. We first
consider blindness. A user only engages a retailer in BlindExtract protocols, so that
blindness of Πbdp is obvious from the blindness property of BlindExtract. We formally
state this fact in the following theorem.

Theorem 8. Πbdp satisfies selective-failure blindness.

We now move to the ind-om security, which is ensured by the following theorem.

Theorem 9. Let A(u1, . . . , uk, v) be an ind-om adversary against the HBDP Πbdp.
Then there exist a distinguisher A1 (against the leak-freeness of Π′) and an adversary
A2 (against the IND-sID-CPA security of Π), whose resources are essentially the same
as that of A such that

Advind−omΠbdp
(A) ≤ Advleak−freeΠ′ (A1) + kuAdvind−sid−cpaΠ (A2),

where u = max{u1, . . . , uk}.

As mentioned, the intuition behind its proof is as follows: the coalition of some
child identities of the leaf identities cannot affect other child identities. The formal
proof, which is quite technical, is in C.

6 Conclusion

We have considered blind HIBE schemes and used them to construct IBBS and HBDP.
Our IBBS scheme enjoys many merits over existing proposals such as: cdh-based se-
curity in the standard model, shorter signature, and lesser communication cost. Our
second contribution, which is the HBDP schemes, is useful in the situations where a
party holds some ciphertexts which will be decrypted by some decrypters in a blind
manner. An example of its use is trading encrypted information anonymously, but
HBDP can serve as a building block for other applications as well, as in [33], [28], [29].
We expect further applications of HBDP as well as blind HIBE in the future.

10We assume that I is big enough so that collision probability in choosing the value I is negligible.
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A Formal definitions of leak-freeness and selective-

failure blindness

Definition 10 (Leak-Free Extract [20]). A protocol BlindExtract(P,U) associated with
an HIBE scheme Π=(Setup, Extract, Encrypt, Decrypt) is leak-free if for all efficient
adversaries A, there exists an efficient simulator S such that for every value κ and l,
no efficient distinguisher D can distinguish whether A is playing with Game Real or
Game Ideal with non-negligible advantage:

Game Real: Run (params,msk)← Setup(κ, l). As many time as D wants, A chooses
an identity ID|j = (I1, . . . , Ij) and executes the BlindExtract protocol with PID|j−1:

BlindExtract(PID|j−1(skID|j−1),A(ID|j)).

Game Ideal: Run (params,msk)← Setup(κ, l). As many time as D wants, S chooses
an identity ID|j = (I1, . . . , Ij) and queries the trusted party PID|j−1 to obtain its output
in

Extract(PID|j−1(skID|j−1),S(ID|j)).

Here, D and A (or S) may communicate at any time.

This definition implies that the identity ID|j for the key being extracted must be
known by S. The simulator must be able to interact with A to learn which identities
to submit to corresponding parent identities. This observation will be used in proving
leak-freeness later.

Another nice feature of the above definition is that any key extraction protocol with
leak-freeness (regardless of whether blindness holds or not) composes into the existing
security definitions for HIBE, which is formally stated in the following lemma, which
is an obvious generalization of its counterpart for IBE in [20].

Lemma 11. If Π =(Setup, Extract, Encrypt, Decrypt) is an IND-sID-CPA-secure
(resp., IND-ID-CPA) HIBE scheme and BlindExtract protocol associated with Π is leak-
free, then Π′ =(Setup, BlindExtract, Encrypt, Decrypt) is also an IND-sID-CPA-secure
(resp., IND-ID-CPA) HIBE scheme.
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We next define selective-failure blindness. This is the strongest notion of blindness,
recently proposed by Camenisch et al. [15], ensuring that even a malicious parent
identity is unable to induce BlindExtract protocol failures that are dependent on the
identity being extracted.

Definition 12 (Blindness of Blind HIBE [15]). A protocol P (AID|j−1(·),U(·, ·)) is said
to be selective-failure blind if every p.p.t adversary AID|j−1 has a negligible advantage in
the following game: First, (params,msk)← Setup(κ, l). The master key msk is used
to generate the private key skID|j−1 for AID|j−1 while params is given to U . AID|j−1

first outputs two values I0, I1 ∈ I. A random b ∈ {0, 1} is chosen and let IDb|j =
(ID|j−1, Ib). AID|j−1 is given a black-box access to two oracles U(params, IDb|j) and
U(params, ID1−b|j). The U algorithms produce local outputs skb and sk1−b respectively.
If skb 6= ⊥ and sk1−b 6= ⊥, then AID|j−1 is given (sk0, sk1). If skb = ⊥ and sk1−b 6= ⊥,
then AID|j−1 is given (⊥, ε). If skb 6= ⊥ and sk1−b = ⊥, then AID|j−1 is given (ε,⊥).
If skb = ⊥ and sk1−b = ⊥, then AID|j−1 is given (⊥,⊥). Finally, AID|j−1 outputs its
guess b′. We define the advantage of AID|j−1 in this game as |Pr[b′ = b]− 1/2|.

B Security Proof for blind HIBE schemes

B.1 Proof of Theorem 3

We will show that the BlindExtract protocol for Boneh-Boyen HIBE is both leak-free
and selective-failure blind.

We first begin with leak-freeness. Let A be a p.p.t adversary interacting with PID|j−1

in a BlindExtract protocol. We will show that there exists a simulator S interacting with
PID|j−1 in an Extract protocol such that Game Real and Game Ideal as in Definition
10 are indistinguishable. The simulator S is built as follows:

1. S hands its input params to A, which is run internally by S.
2. S simulates the BlindExtract protocol for A as follows: in the first message of

the protocol, A must send to S a value h′ and prove knowledge of values (y, Ij) such
that h′ = gyg

Ij
1 . If the proof fails to verify, S aborts. Otherwise, notice that S runs

A so that S can efficiently extract y and Ij by rewinding A. (This is the well-known
rewind technique.)

3. S queries (ID|j−1, Ij) to its own Extract oracle to obtain (d0Fj(Ij)rj , d1, . . . ,
dj−1, grj ) where rj is random chosen and the private key of PID|j−1 is (d0, . . . , dj−1).

4. Finally, S returns to A the following values:

(d0Fj(Ij)rj · (grj )y, d1, . . . , dj−1, g
rj ).

Note that S knows y, so the above values are either known or computable by S.
Also note d0Fj(Ij)rj · (grj )y = d0(Fj(Ij)gy)rj = d0(h′hj)rj , so that what S returns to A
has exactly the same distribution as what A can obtain from the BlindExtract protocol
in Game Real. Thus Game Real and Game Ideal are indistinguishable and hence the
BlindExtract protocol for Boneh-Boyen HIBE is leak-free.

We proceed to prove selective-failure blindness. Recall that AID|j−1 first outputs
two values I0, I1 ∈ I. Then a random bit b is chosen and let IDb|j = (ID|j−1,
Ib). Next, AID|j−1 is given a black-box access to two oracles U(params, IDb|j) and
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U(params, ID1−b|j). The U algorithms produce local outputs skb and sk1−b respec-
tively. If skb 6= ⊥ and sk1−b 6= ⊥, then AID|j−1 is given (sk0, sk1). If skb = ⊥ and
sk1−b 6= ⊥, then AID|j−1 is given (⊥, ε). If skb 6= ⊥ and sk1−b = ⊥, then AID|j−1 is
given (ε,⊥). If skb = ⊥ and sk1−b = ⊥, then AID|j−1 is given (⊥,⊥).

We observe that in the BlindExtract protocol, the user (and hence the oracles
U(params, ID0|j), U(params, ID1|j)) speaks first, sending to AID|j−1 a uniformly-
distributed value h′ in G, and then performs a zero-knowledge proof of representation
PoK{(y, Ib): h′ = gygIb1 }. Now it is AID|j−1’s turn to speak, and at this point, his views
so far are computationally indistinguishable, since AID|j−1 only received uniformly-
distributed values in G and proofs of representation in zero-knowledge. AID|j−1 must
now returns (d′0, d1, . . . , dj−1, d′j) ∈ Gj+1 to the first oracle. AID|j−1 can choose these
values in an arbitrary manner. We will show that accessing to oracles U(params, ID0|j)
and U(params, ID1|j)) is useless to AID|j−1. In other words, we will show that AID|j−1

can predict the outputs of these oracles without accessing to them. To achieve that,
AID|j−1 does the following:

1. AID|j−1 checks if

e(d′0, g) = e(g2, g1)e(h′hj , d′j)Π
j−1
k=1e(Fk(idk), dk),

where ID|j−1 = (id1, . . . , idj−1). If the check fails, AID|j−1 temporarily records sk0 =
⊥. Otherwise, it (owning skID|j−1) records sk0 = Extract(skID|j−1, ID0|j).

2. AID|j−1 again chooses values (d′0, d1, . . . , dj−1, d′j) ∈ Gj+1 for the second oracle,
performs the same check and temporarily recording sk1 for ID1|j as before.

3. Finally, if both checks failed or both checks succeeded, AID|j−1 takes (sk0, sk1).
If sk0 = ⊥ and sk1 6= ⊥, take (⊥, ε). If sk0 6= ⊥ and sk1 = ⊥, take (ε, ⊥).

By inspection, we can see that AID|j−1 is performing what the two oracles do,
namely AID|j−1 makes the same checks and finally taking values which have the same
distributions as the outputs of the oracles. As a consequence, AID|j−1 does not need the
oracles to improve its advantage in guessing the bit b. Thus, all of AID|j−1’s advantage
must come from distinguishing the earlier messages from the oracles, which are only
randomly-distributed values h′ ∈ G and zero-knowledge proofs of representation of h′.
From the security of the zero-knowledge proofs, we know that AID|j−1’s advantage is
negligible, so that selective-failure blindness is satisfied.

B.2 Proof of Theorem 4

This proof follows the outline of the proof of Theorem 3 almost identically. To make
leak-freeness satisfied, the simulator S is built exactly as before: (1) running the adver-
sary A internally; (2) extracting the values (y, Ij [1], · · · , Ij [n]) from the corresponding
proof of knowledge; (3) querying (ID|j−1, Ij = Ij [1] · · · Ij [n]) to the Extract oracle
to get (d0Fj(Ij)rj , d1, . . . , dj−1, grj ); (4) and finally returning (d0Fj(Ij)rj · (grj )y,
d1, . . . , dj−1, g

rj ) to A.
To satisfy selective-failure blindness, we observe that the prediction of U ’s final

output is done exactly as before. Thus AID|j−1 does not need the U oracles, and
hence all of its advantage come from seeing the randomly-distributed values h′ ∈ G
and zero-knowledge proofs of representation of h′ from the oracles. We conclude that
this advantage must be negligible.
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C Proof of Theorem 9

Proof. Let Game 0 be the attack game as in Definition 7. Note that in Game 0, every
time the adversaryAmakes a blind decryption query to PID with a ciphertext C, where
ID ∈ Leaves and C = ((ID, I), Ĉ), the protocol BlindExtract(PID(skID),A(ID, I)) is
executed.

Game 1 is the same as Game 0, except that the part of A making blind decryption
queries is replaced by the simulator S, and the protocol BlindExtract is replaced by Ex-
tract. That means, BlindExtract(PID(skID),A(ID, I)) is replaced by Extract(PID(skID),
S(ID, I)).

By the leak-free property of the underlying blind HIBE, Game 0 and Game 1 are
indistinguishable. Indeed, every p.p.t algorithm distinguishing the two games can be
turned into the distinguisher A1 against leak-freeness. Thus,

Pr[b′i = bπ(i)∀1 ≤ i ≤ v + 1 in Game 0]− Pr[b′i = bπ(i)∀1 ≤ i ≤ v + 1 in Game 1]

≤ Advleak−freeB-HIBE (A1),

which leads to

Pr[b′i = bπ(i)∀1 ≤ i ≤ v + 1 in Game 0]− 1
2

≤ Advleak−freeB-HIBE (A1)

+
(

Pr[b′i = bπ(i)∀1 ≤ i ≤ v + 1 in Game 1]− 1
2

)
,

and hence,

Advind−omHBDP (A) ≤ Advleak−freeB-HIBE (A1)

+
(

Pr[b′i = bπ(i)∀1 ≤ i ≤ v + 1 in Game 1]− 1
2

)
.

It now suffices to build the ind-sid-cpa adversary A2 who utilizes the adversary A and
its corresponding simulator S in Game 1 such that

Pr[b′i = bπ(i)∀1 ≤ i ≤ v + 1 in Game 1]− 1
2
≤ kuAdvind−sid−cpaB-HIBE (A2).

Recall that, as in IND-OM security definition, Leaves = {ID1, . . . , IDk}(k ≥ 1). We
now build A2 as follows. A2 chooses j∗ $←{1, . . . , k} and i∗ $←{1, . . . , uj∗}. It further-
more prepares I(i,1), . . . , I(i,ui)

$←I for all 1 ≤ i ≤ k. (These values represents items
owned by retailer IDi.) A2 outputs the target identity ID∗ = (IDj∗ , I(j∗,i∗)), receiving
params from its challenger. It makes key extraction queries IDj for all 1 ≤ j 6= j∗ ≤ k
to get skIDj from its own oracle. It feeds params to (A,S) and begins to simulate the
environment for (A,S) as follows:

– Encryption query (IDj ∈ Leaves,m
(i)
0 ,m

(i)
1 ) (1 ≤ j ≤ k and 1 ≤ i ≤ uj) by

A: If j = j∗ and i = i∗ then A2 forwards (m(i)
0 ,m

(i)
1 ) to its own encryption or-

acle to obtain Ĉ∗ = Encrypt(params, ID∗,m(i)
b ) for some challenge bit b, denoted

as b(j∗,i∗). A2 gives (ID∗, Ĉ∗) = ((IDj∗ , I(j∗,i∗)), Ĉ∗) to A. In the other cases,
namely j 6= j∗ or i 6= i∗, A2 chooses a bit b(j,i) at random and compute Ĉ(j,i) ←
Encrypt(params, (IDj , I(j,i)),m

(i)
b(j,i)

), and gives C(j,i) ← ((IDj , I(j,i)), Ĉ(j,i)) to A.
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– Key extract query (IDj , SI) (1 ≤ j ≤ k and SI ∈ I) by S: If j 6= j∗, then A2 uses
its own key skIDj to answer the query. If j = j∗ and SI 6= I(j∗,i∗), then A2 forwards
the query to its own key extraction oracle and gives S the private key it gets. If j = j∗

and SI = I(j∗,i∗), A2 halts and outputs a random bit. Denote this event Halt1.

If Halt1 does not occur, (A,S) outputs v+ 1 bits b′1, . . . , b
′
v+1 and an injective map

π : {1, . . . , v + 1} → {1, . . . , k} × {1, . . . , u}. Consider v + 1 corresponding ciphertexts
of the form ((IDj , I(j,i)), Ĉ(j,i)) where (j, i) ∈ π({1, . . . , v + 1}). Since there are v + 1
corresponding identities, and only v key extraction queries are made, there exists one
identity which was not a key extraction query, called ((IDr, I(r,s)) where (r, s) = π(t)
for some 1 ≤ t ≤ v + 1. Recall that b′t is the guess of bπ(t). If π(t) = (j∗, i∗) then A2

outputs b′t; otherwise it halts and outputs a random bit. Denote this event Halt2

Let bA2 be the bit finally output by A2 and R the event that A2 outputs a random bit.
We have

Advind−sid−cpaB-HIBE (A2)

=
∣∣∣ Pr[bA2 = b(j∗,i∗)]−

1
2

∣∣∣
=

∣∣∣ Pr[bA2 =b(j∗,i∗)|R]Pr[R]+Pr[bA2 =b(j∗,i∗)|R] Pr[R]− 1
2

∣∣∣
=

∣∣∣1
2

(1− Pr[R]) + Pr[b′t = bπ(t)] Pr[R]− 1
2

∣∣∣
= Pr[R]

(∣∣∣ Pr[b′t = bπ(t)]−
1
2

∣∣∣)
≥ Pr[R]

(
Pr[b′i = bπ(i)∀1 ≤ i ≤ v + 1 in Game 1]− 1

2

)
.

It is now sufficient to prove that Pr[R] ≥ 1/ku. Since R = Halt1 ∨ Halt2, we have R =
Halt1 ∧ Halt2, and hence Pr[R] = Pr[Halt2] Pr[Halt1|Halt2]. Note that if Halt2 happened,
then we know that Halt1 had previously occurred, so that Pr[Halt1|Halt2] = 1. We also
have Pr[Halt2] = Pr[π(t) = (j∗, i∗)] ≥ 1/ku, so Pr[R] ≥ 1/ku, which concludes the
proof.
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