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Abstract

We introduce a new and versatile cryptographic primitive called Attribute-Based Signatures
(ABS), in which a signature attests not to the identity of the individual who endorsed a message,
but instead to a (possibly complex) claim regarding the attributes she posseses. ABS offers:

– A strong unforgeability guarantee for the verifier, that the signature was produced by a
single party whose attributes satisfy the claim being made; i.e., not by a collusion of individuals
who pooled their attributes together.

– A strong privacy guarantee for the signer, that the signature reveals nothing about the
identity or attributes of the signer beyond what is explicitly revealed by the claim being made.

We formally define the security requirements of ABS as a cryptographic primitive, and then
describe an efficient ABS construction based on groups with bilinear pairings. We prove that our
construction is secure in the generic group model. Finally, we illustrate several applications of
this new tool; in particular, ABS fills a critical security requirement in attribute-based messaging
(ABM) systems.

A powerful feature of our ABS construction is that unlike many other attribute-based cryp-
tographic primitives, it can be readily used in a multi-authority setting, wherein users can make
claims involving combinations of attributes issued by independent and mutually distrusting
authorities.

1 Introduction

Attribute-based systems are a natural fit for settings where the roles of the users depend on the
combination of attributes they possess. In such systems, the users obtain multiple attributes from
one or more attribute authorities, and a user’s capabilities in the system (e.g., sending messages,
access to a resource) depend on their attributes. While offering several advantages, attribute-based
systems also present fundamental cryptographic challenges. For instance, to provide end-to-end
secure communication in an attribute-based messaging system, it must be possible to encrypt a
message using attribute-keys (rather than individual users’ keys). Recently cryptographic tools
have emerged to tackle some of these challenges for encryption [11, 3]. In this work, we provide a
solution for authentication.

The kind of authentication required in an attribute-based system differs from that offered by dig-
ital signatures, in much the same way public-key encryption does not fit the bill for attribute-based
encryption. An attribute-based solution requires a richer semantics, including privacy require-
ments, similar to more recent signature variants like group signatures [9], ring signatures [18], and
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mesh signatures [6]. The common theme in all these new kinds of signature primitives is that they
allow the signer fine-grained control over how much of her personal information is revealed by the
signature. For instance, in a group or ring signature, the signature only reveals the fact that the
message was endorsed by one of a set of possible signers. It is conceptually useful to think of these
primitives as instances of a more abstract “claim-and-endorse” primitive. A claim-and-endorsement
σ includes a claim clm and a message msg, with the following (informally stated) semantics:

– Unforgeability. By verifying σ, one is assured that the message msg was indeed endorsed
by a party who satisfies the condition described in clm.

– Privacy and Unlinkability. σ reveals no information about the signer other than the fact
that it satisfies clm, even when σ is considered among other signatures. In particular, different
signatures cannot be identified as generated by the same party.

Such a primitive has several applications, including authentication, simple trust-negotiations,
and “leaking secrets.” Our main motivation for developing such schemes comes from the challenging
authentication requirements in an Attribute-Based Messaging (ABM) system (see Section 5.1).

1.1 Our Results

The new tool we develop, called Attribute-Based Signatures or ABS for short, is a claim-and-endorse
primitive that supports claims of the form: “a single user, whose attributes satisfy the predicate
Υ, endorsed this message,” where the attributes in question can even come from different attribute
authorities. As a simple illustrative example (further developed in Section 4.3), suppose Alice
wishes to anonymously publish an anecdote on user experience in online social networks. To give
credibility to her story she decides to use the following claim to endorse her message:
(Facebook user for 2 years AND Has 100 Facebook friends) OR (Has 100 Orkut friends AND Partic-
ipated in 100 Orkut discussion forums) OR ((Princeton professor OR Yale professor) AND Expert on
online social networks).

ABS allows her to endorse her anecdote using this claim, without having to reveal how she
satisfies the claim. A moment’s reflection will reveal that this a rather challenging requirement.
Alice could acquire these attributes from multiple attribute-authorities who may not trust each
other, or even be aware of each other. Nor might all these authorities trust a common central
agency. To make matters more challenging, Alice may have never interacted with Facebook’s
attribute-authority, and yet she may wish to use an arbitrary attribute string from Facebook as
part of her claim.

Another challenge, and an important part of the soundness requirement, is collusion resistance:
different parties should not be able to pool together their attributes to sign a message with a claim
which none of them satisfy alone. For instance, if Alice has an attribute Facebook user for 2 years,
and her friend Bob has an attribute Has 100 Facebook friends, they should not be able to sign a
message claiming to have both the attributes.

We formally define the requirements needed for an ABS scheme — first, in a simpler setting
with only one attribute authority, and then in the more general multi-authority setting. We also
give an efficient construction that achieves our definitions. We prove our scheme secure in the
generic group model.

1.2 Related Work

We use tools and techniques used recently for constructing attribute-based encryption schemes
[19, 11, 3] and also “mesh signatures” [6]. Our construction somewhat resembles the one in [6], but
crucially differs in that we prevent collusion, where as mesh signatures explicitly allow collusion.
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Interestingly, for attribute-based encryption, if collusion is allowed there are fairly easy solutions;
but for ABS, even after allowing collusion (for instance by considering all users to have the same
identity while generating keys), the required primitive is a mesh signature, which is a non-trivial
cryptographic problem in itself.

Though not pursued in our construction, a line of work relevant to ABS involves non-interactive
zero-knowledge (NIZK) proofs (with appropriate properties like simulation-soundness). Indeed the
privacy property of the claim-and-endorse primitives is similar to that of a zero-knowledge proof.
NIZKs have been used in the context of group signature constructions [1, 7, 12]. Further, [14]
proposed a generic notion called identity-based NIZK that, we observe, can in fact be adapted to
be an ABS scheme. However, this generic construction will be very inefficient. We point out that
in some cases specialized NIZK proofs have been used as part of efficient schemes (like the group
signature scheme of [7] which uses the NIZK proofs of [13]). But for ABS no such construction is
known.

Khader [16, 15] proposes a notion called attribute-based group signatures. This primitive hides
only the identity of the signer, and reveals which attributes the signer used to satisfy the predicate.
It also allows a group manager to identify the signer of any signature (which is similar to the
semantics of group signatures [9]); in contrast we require signer privacy to hold against everyone,
including all authorities.

A related (but much simpler) notion is of identity-based signatures [20]. It is well-known that a
simple scheme using traditional certificates realizes IBS, but dedicated schemes aimed at achieving
better efficiency have been widely studied. We refer the reader to a comprehensive survey by Bellare
et al. [2] for more details.

Chase [8] extends attribute-based encryption schemes in [19, 11] to a multi-authority setting
(but employing a central authority who, unlike in our setting, shares some private keys with the
authorities).

1.3 Organization of the paper

In Section 2 we formally introduce and define the ABS primitive, in the simpler setting of a single
attribute authority. Section 3 gives the actual construction, and an overview of our proof of security.
(The detailed proof is given in the appendix.) In Section 4 we present the more general, multi-
authority definitions for ABS, illustrate its flexibility with an example (Section 4.3), and extend
our construction to meet its requirements. In Section 5 we discuss important applications of this
primitive. We conclude by outlining some immediate and longer term goals in this line of research.

2 Attribute-Based Signatures

We now formally define attribute-based signatures (ABS). For the sake of expositional clarity, in
this section we shall restrict ourselves to the case where there is only one authority who manages
the attributes as well as the global parameters of the signature scheme. Later in Section 4, we show
how these definitions and our construction can be extended to the more complex case where there
are multiple attribute authorities, and illustrated using an example scenario (see Section 4.3).

2.1 Syntax of ABS

Let A be the universe of possible attributes. A claim-predicate over A is a monotone boolean
function, whose inputs are associated with attributes of A. We say that an attribute set A ⊆ A
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satisfies a claim-predicate Υ if Υ(A) = 1 (where an input is set to be true if its corresponding
attribute is present in A).

Definition 1 (ABS). An Attribute-Based Signature
(ABS) scheme is parametrized by a universe of possible attributes A, and consists of the follow-
ing four algorithms. All procedures (except possibly Verify) are randomized.

Setup: The authority obtains a key pair (PK, MK)← Setup(), and outputs public parameters PK
and keeps a private master key MK.

AttrGen: To assign a set of attributes A ⊆ A to a user, the authority computes a signing key
SKA ← AttrGen(MK,A) and gives it to the user.

Sign: To sign a message m with a claim-predicate Υ, and a set of attributes A such that Υ(A) = 1,
the user computes a signature σ ← Sign(PK, SKA,m, Υ).

Verify: To verify a signature σ on a message m with a claim-predicate Υ, a user runs Verify (PK, m,Υ, σ),
which outputs a boolean value, accept or reject.

For definitional clarity, we have treated the signing key SKA as a monolithic quantity. But in
our construction the signing key consists of separate components for each attribute in A. The Sign
algorithm will need only as much of SKA as is relevant to satisfying the claim-predicate.

2.2 Security and Correctness Definitions

The minimal correctness property of ABS schemes is that honestly-generated signatures pass the
verification check:

Definition 2 (Correctness). We call an ABS scheme correct if for all (PK, MK) ← Setup, all
messages m, all attribute sets A, all signing keys SKA ← AttrGen(MK,A), and all claim-predicates
Υ such that Υ(A) = 1,

Verify
(
PK, m,Υ,Sign

(
PK, SKA,m, Υ

))
= accept,

with probability 1 over the randomness of all the algorithms.

We present two formal definitions that together capture our desired notions of security.

Definition 3 (Perfect Privacy). An ABS scheme is perfectly private if, for all (PK, MK)← Setup,
all attribute sets A1,A2, all SK1 ← AttrGen(MK,A1), SK2 ← AttrGen(MK,A2), all messages m,
and all claim-predicates Υ such that Υ(A1) = Υ(A2) = 1, the distributions
Sign(PK, SK1,m, Υ) and Sign(PK, SK2,m, Υ) are equal.

If the perfect privacy requirement holds, then a signature does not leak (even to the authority
and/or a computationally unbounded adversary) which attributes were used to generate it, nor any
other identifying information associated with the particular signer. This holds even if the adversary
gets access to the signer’s private keys: the signature is simply independent of everything except
the message and the claim-predicate (and the public-keys of the authority).

Another way to interpret perfect privacy is by considering a “simulator” AltSign: Given (MK, m,Υ),
AltSign first runs SKA ← AttrGen(MK,A) for some A satisfying Υ, and then outputs the signature
Sign(PK, SKA,m, Υ). Since the correct distribution on signatures can be perfectly simulated with-
out taking any private information as input, signatures must not leak any such private information
of the signer.
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For convenience, in the experiment below we use AltSign to describe the generation of signatures
that the adversary gets to see. This is without loss of generality only if the scheme satisfies perfect
privacy. With a slight modification to the experiment, this restriction can be easily removed.

Definition 4 (Unforgeability). An ABS scheme is unforgeable if the success probability of any
polynomial-time adversary in the following experiment is negligible:

1. Run (PK, MK)← Setup and give PK to the adversary.
2. The adversary is given access to oracles AttrGen(MK, ·) and AltSign(PK, ·, ·).
3. At the end the adversary outputs (m,Υ, σ).
We say the adversary succeeds if (m,Υ) was never queried to the AltSign oracle, and Υ(A) = 0

for all A queried to the AttrGen oracle, and Verify(PK, m,Υ, σ) = accept.

If the unforgeability requirement holds, then the only valid new signatures that a coalition can
produce are signatures that a single member of the coalition could have legitimately generated by
himself. Thus, colluding does not confer any advantage in generating signatures.

Note that in this definition, it is not considered a forgery if the adversary requests a signature
on (m,Υ) and then produces a different signature on the same pair (such a requirement is usually
called strong unforgeability).

2.3 Using Attribute-Based Signatures

Attribute-based signatures are just a cryptographic primitive fully defined by the above described
algorithms and the security and correctness guarantees. To be useful in a system, ABS has to be
used appropriately. Here we describe the typical usage scenario for ABS.

For the sake of expositional clarity, in this section we consider a setting with a single authority
who sets up the system parameters and public keys, and also issues private keys for each user, for
each of the user’s attributes.1

Mapping Real-life Attributes to ABS Attributes. Before describing the operation of the
system, we need to relate the attributes as used in ABS with the attributes that occur in a real-
life system. In a typical system one encounters attributes which have a name and optionally a
value. For instance a user may possess an attribute named age, with a numerical value 25. On
the other hand, some attributes may not have any value attached to them; for instance a user
could possess an attribute named student. ABS, as described above, supports only the latter
kind of attributes. Nevertheless, since the names supported by ABS are free-form strings, one
could encode a (name, value) pair into a single string using an appropriate (standardized) encoding
scheme.

But it is not enough to encode the attributes; one must also translate the predicates involving the
(name, value) pair into predicates in terms of the encoded string. The above encoding is sufficient
if the predicates involve only equality conditions. But for numerical attributes, other comparisons
(like “≥”, “≤”) are also important. This can be taken care of by representing a single numerical
attribute by a few value-less attributes, as has been already pointed out in [11, 3]. We remark that
at the cost of increasing the number of value-less attributes used (thereby increasing private-key
size of the user), one can reduce the size of the predicate representing a comparison condition,
leading to faster operations (signing and verification, in our case).

Another issue regarding mapping real-life attributes to ABS attributes relates to attribute
expiry and revocation issues. As discussed below, the collusion-resistance property of ABS provides

1We do not consider the technical issues of how the authority establishes the identity of a user before handing
it any keys. Also, we consider it the authority’s prerogative to determine which attributes should be given to each
requesting user.
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suitable flexibility to support revocation. But the exact manner in which this flexibility is used is
a design decision that trades off efficiency and security parameters.

Typical System with ABS: Single Authority Version. In the single authority setting, the
authority first runs the algorithm Setup to generate a global key pair for the scheme, and publishes
the public key PK. This public-key will be picked up by all users who need to create or verify
signatures in the system.

Later, each user visits the authority to obtain private keys corresponding to her attributes. Let
A ⊆ A be the set of attributes that the authority wants to give to this user. Then the authority
runs AttrGen to generate a signing key SKA corresponding to the set of attributes posessed by that
user.

After this, parties can sign and verify messages without further interaction with the authority.
As long as the authority is uncorrupted, the unforgeability guarantee holds. Further, even if the
authority is corrupt, the perfect privacy guarantee holds for the signer.2

Changing Attributes. In the scenario above the authority issued a single key SKA for the set
of attributes A. Once issued this attribute set is never changed. This is usually not satisfactory.
There are two possible solutions that ABS offers.

When a user’s attribute set changes, the authority can reissue an entire new set of signing keys,
generated via AttrGen. This is akin to establishing a new user with new set of attributes. By
the collusion-resistance the user cannot combine keys in the new set with keys in the old set (or
any other set for that matter). The user can of course still create signatures using the old set of
attributes, so the attributes should be designed to include expiry information if the system requires
revoking the old attributes.

Alternately, if the user simply acquires new attributes, it is not necessary to issue a totally new
key set. Though not apparent from the syntax presented above, in fact our ABS construction allows
the authority to augment a key SKA to SKA∪A′ . The syntax for this operation is made explicit
in our definitions for multi-authority ABS (Section 4), where keys are issued for one attribute at a
time. To allow for augmenting signing keys with new attributes, the authority could either maintain
some state per user (to remember the randomness used to generate the key SKA), or provide a
signed certificate of some public randomness that the user can keep and must bring back when
requesting each new attribute, or more practically use a pseudorandom function such as AES to
obtain this randomness as a function of the user’s identity. In the latter case, the authority only
needs to remember just one additional pseudorandom function seed (or AES key).

3 Constructing an ABS Scheme

We present a construction of an ABS scheme using cryptographic tools recently developed in the
context of attribute-based encryption. Below we briefly describe these tools. Also, before describing
the construction, we explain the rich class of credential claims that are supported by our ABS
scheme.

2Of course, if the authority wishes to reveal the user’s attributes, it can; but irrespective of what the authority
reveals, the signer has the guarantee that creating a signature reveals no further information about its attributes
(beyond the fact that its attributes satisfied the claim-predicate).
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3.1 Preliminaries

3.1.1 Groups with Bilinear Pairings

Let G, H,GT be cyclic (multiplicative) groups of order p, where p is a prime. Let g be a generator
of G, and h be a generator of H. Then e : G×H → GT is a bilinear pairing if e(g, h) is a generator
of GT , and e(ga, hb) = e(g, h)ab for all a, b.

We require a triplet of such groups where problems related to discrete-log are hard. Formally,
we shall model them as “generic groups.” (See Section 3.1.3.)

3.1.2 Monotone Span Programs

Let Υ be a monotone boolean function. A monotone span program for Υ over a field F is an `× t
matrix M with entries in F, along with a labeling function u that associates each row of M with
an input variable of Υ, that satisfies the following:

Υ(x1, . . . , xn) = 1 ⇐⇒ ∃~v ∈ F1×` s.t. ~vM = [1, 0, 0, . . . , 0]
and (∀i : xu(i) = 0⇒ di = 0)

In other words, Υ(x1, . . . , xn) = 1 if and only if the rows of M indexed by {i | xu(i) = 1} span the
vector [1, 0, 0, . . . , 0].

We call ` the length and t the width of the span program. Every monotone boolean function can
be represented by some monotone span program. The size of the signatures in our scheme depends
on the dimensions of the claim-predicate’s monotone span program. A large class of claim-predicates
do have compact monotone span programs. In particular, given a circuit expressed using threshold
gates, with the i-th gate being an

(
`i
ti

)
threshold gate, it is easy to recursively construct a monotone

span program with length
∑

i(`i − 1) + 1 and width
∑

i(ti − 1) + 1. As an example, a monotone
span program for the predicate given in the Introduction involving 7 attributes and several OR and
AND gates (which are binary threshold gates with thresholds 1 and 2, respectively) is given by

M =


1 0 1 0 1 1 0
1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 1


T

.

M has 7 rows, labeled by the 7 attributes and 4 columns. ~v corresponding to having the last two
attributes (Professor at Yale and Expert on online social networks) will be ~v = [0 0 0 0 0 1 −1], so
that ~vM = [1 0 0 0].

3.1.3 Security in Generic Group Model

We formally prove the security of our scheme in the generic group model, introduced by Shoup [21].
The model relies on hardness of problems related to finding the discrete logarithm in a group with
bilinear pairings. In the model, algorithms can only manipulate group elements via canonical
group operations (including the bilinear pairing). Thus the model formalizes the intuition that a
cryptographically secure group provides no exploitable structure other than its group structure.

A proof in the generic group model gives significant confidence in the security of a construction,
and in particular rules out attacks which use only the group structure of the underlying group. But
it falls short of reducing the security to a well-understood hardness assumption. Indeed, it is the
only level of security known for several efficient cryptographic tools used in practice. We leave it
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as an interesting theoretical problem to come up with an efficient ABS scheme whose security can
be reduced to a standard hardness assumption.

We point out that our construction satisfies correctness and the perfect privacy requirement
unconditionally; only the unforgeability analysis uses the generic group model. As such, even if an
attack is found in future, it does not compromise the privacy of existing signatures.

3.2 Our Construction

We now describe our ABS construction, which supports all claim-predicates whose monotone span
programs have width at most tmax, where tmax is an arbitrary parameter. We treat A = Z∗p as the
universe of attributes, where p is the size of the cyclic group used in the scheme.3

We assume that all parties agree on some canonical efficient method of computing a monotone
span program given a claim-predicate Υ, and that there is also an efficient algorithm for computing
the vector ~v that corresponds to a given satisfying assignment of Υ.

Setup: Choose suitable cyclic groups G and H of prime order p, equipped with a bilinear pairing
e : G×H → GT . Choose a collision-resistant hash function H : {0, 1}∗ → Z∗p. Choose random
generators:

g, C ← G; h0, . . . htmax ← H.

Choose random a0, a, b, c← Z∗p and set:

A0 = ha0
0 ; Aj = ha

j and Bj = hb
j (∀j ∈ [tmax]).

The master key is MK = (a0, a, b). The public key PK is a description of the groups G, H
and their pairing function, as well as:

(H, g, h0, . . . , htmax , A0, . . . , Atmax , B1, . . . , Btmax , C)

AttrGen: On input MK as above and attribute set A ⊆ A, Choose random generator Kbase ← G.
Set:

K0 = K
1/a0

base ; Ku = K
1/(a+bu)
base (∀u ∈ A)

The signing key is then:
SKA = (Kbase,K0, {Ku | u ∈ A}).

Sign: On input (PK, SKA,m, Υ) such that Υ(A) = 1, first convert Υ to its corresponding monotone
span program M ∈ (Zp)`×t, with row labeling u : [`] → A. Also compute the vector ~v that
corresponds to the satisfying assignment A. Compute µ = H(m‖Υ).

Pick random r0 ← Z∗p and r1, . . . r` ← Zp and compute:

Y = Kr0
base; Si = (Kvi

u(i))
r0 · (Cgµ)ri (∀i ∈ [`]);

W = Kr0
0 ; Pj =

∏̀
i=1

(AjB
u(i)
j )Mij ·ri (∀j ∈ [t]).

We note that the signer may not have Ku(i) for every attribute u(i) mentioned in the claim-
predicate. But when this is the case, vi = 0, and so the value is not needed. The signature
is:

σ = (Y, W, S1, . . . , S`, P1, . . . , Pt)
3The universe of attributes can be further extended to {0, 1}∗ by applying a collision-resistant hash having range

Z∗
p. For simplicity of presentation, we do not include this modification.
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Verify: On input (PK, σ = (Y, W, S1, . . . , S`, P1, . . . , Pt),m, Υ), first convert Υ to its corresponding
monotone span program M ∈ (Zp)`×t, with row labeling u : [`]→ A. Compute µ = H(m‖Υ).
If Y = 1, then output reject. Otherwise check the following constraints:

e(W,A0)
?= e(Y, h0)∏̀

i=1

e
(
Si, (AjB

u(i)
j )Mij

)
?=

{
e(Y, h1) e(Cgµ, P1), j = 1
e(Cgµ, Pj), j > 1,

for j ∈ [t]. Return accept if all the above checks succeed, and reject otherwise.

3.3 Efficiency

The total public key data consists of 3(tmax+1) group elements, which we emphasize is independent
of the number of possible attributes in the system. Signatures have linear size, consisting of `+t+2
group elements, where ` and t are the dimensions of the claim-predicate’s monotone span program.

Signing can be done using a maximum of 2w + `(1+2t)+3 exponentiations in G and H, where
w is the minimum number of attributes needed for the signer to satisfy Υ.

3.3.1 Probabilistic Verification

Using a standard technique, signatures in our scheme can be verified probabilistically with only
`+4 pairings instead of `t+2, at the cost of additional exponentiations and a very small probability
of false positives.

To probabilistically verify a signature, proceed as in the normal verification algorithm, but
replace the final t checks with the following random one: Choose random r1, . . . rt ← Z∗p, and check
the single constraint:

∏̀
i=1

e

Si,

t∏
j=1

(AjB
u(i)
j )Mij ·rj

 ?= e(Y, hr1
1 ) e

Cgµ,

t∏
j=1

P
rj

j


This is essentially a random linear combination of the t original constraints. Legitimate signatures
pass such a check with probability 1, while invalid signatures pass with probability at most 1/p.

3.4 Security Proofs

Theorem 1. Our construction is correct (Definition 2) and perfectly private (Definition 3).

Proof. Correctness can be seen by straight-forward substitutions. To prove perfect privacy it suffices
to show that for any claim-predicate Υ and any attribute set A that satisfies Υ, the output of
Sign(PK, SKA,m, Υ) is uniformly distributed among signatures σ, subject to the constraint that
Verify(PK, m,Υ, σ) = 1. For σ = (Y, W, S1, . . . , Sn, P1, . . . , Pt) it is easy to see that for any setting
of Y 6= 1 and S1, . . . , Sn, there is a unique value of W,P1, . . . , Pt for which the signature successfully
verifies. We conclude by observing that Y and S1, . . . , Sn output by Sign are distributed uniformly
in their respective domains and that the signature output by Sign successfully verifies.

Theorem 2. Our construction is unforgeable (Definition 4) in the generic group model.
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Proof. The full proof is given in the appendix. Here we sketch the main ideas.
In the generic group model, the adversary can only manipulate group elements by using the

canonical group operations, independent of the encoding for group elements. Thus if the adversary
is given group elements gγ1 , . . . , gγt ∈ G as its only inputs, then each element of G output by the
adversary must be of the form gπ(γ1,...,γt), where π is a fixed multilinear polynomial.

Suppose the adversary gives a signature that passes the verification checks. Using a standard
argument for the generic group model, we first show that if this is to happen with non-negligible
probability, then the multilinear polynomials described above must also satisfy corresponding con-
straints.

Thus our approach is to assume that the multilinear polynomials corresponding to the adver-
sary’s output satisfy the appropriate constraints, and then obtain a contradiction. We proceed by
arguing that in order to satisfy the constraints, the polynomials must have certain structure (i.e.,
they can only depend on certain variables).

First, we show that because of the check on the Y and W components of the signature, Y can
only depend on a few public key components. In fact, without this check, the scheme is forgeable.

After narrowing down the possibilities for Y , we observe that a successful forgery must have a
different value of µ than any signature given by the AltSign oracle, due to the collision resistance of
H. Using this property, we show that none of the multilinear polynomials in question can depend
on any part of the signatures given by the AltSign oracle in the experiment.

Then, we apply the properties of the monotone span programs to show that the claim predicate
of the adversary’s forgery must be satisfied by one of the adversary’s signing keys. But this directly
contradicts the forgery condition in the experiment’s definition.

4 Multiple Attribute Authorities

In this section, we describe how to extend our definitions and construction for use in an environment
with multiple authorities. Except in a centralized enterprise setting, a single user would acquire
her attributes from different authorities (e.g., different government agencies, different commercial
services she has subscribed to, different social networks she is registered with and so on). These
different attribute authorities may not trust each other, and may not even be aware of each other.
Indeed, some of the attribute authorities may be corrupt, and this should not affect the attributes
acquired from other authorities.

Apart from these mutually distrusting attribute authorities, there should be some entity to
set up the various public parameters of the signature system. We call this entity the signature
trustee. However, we shall require that the signature trustee does not have to trust any attribute
authority. In particular, the attribute authorities use only the public keys from the signature
trustee.

Finally, we shall also allow there to be multiple signature trustees. In this case, the attribute
authorities would issue attribute keys to a user for all the signature trustees she wishes to work
with. Here, an attribute authority or a signer need not trust the signature trustee.

Below we describe in detail the modifications in the syntax and security definitions of the
ABS primitive in detail. We follow it up by an illustrative example involving multiple attribute
authorities and signature trustees.

4.1 Definitions

Our main changes in definitions involve separating the key material into pieces originating from
different authorities. Further, the syntax now includes new safety checks on the key material
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(TokenVerify and KeyCheck) before using it, because (a) the authorities depend on the user to
provide key material from the trustees, and (b) the users no longer consider all authorities as
trusted entities.

The claim-predicates in the signatures are now required to carry the identity of the attribute-
authorities who own the various attributes (possibly as meta-data attached to the attribute descrip-
tion). Note that if for any attribute appearing in the claim-predicate the verifier uses a different
attribute-authority than what the signer used, the verification will simply fail. So it is in the
interest of the signer to point to the correct attribute-authorities.

Definition 5 (Multi-Authority ABS). A multi-authority ABS scheme consists of the following
algorithms/protocols:

TSetup: The signature trustee runs the algorithm TSetup which produces a trustee public key PK
and trustee secret key TSK. The trustee publishes PK and stores TSK.

TRegister: When a user with user id uid registers with the signature trustee, the trustee runs
TRegister(TSK, uid) which outputs a public user-token τ . The trustee gives τ to the user.

ASetup: An attribute authority who wishes to issue attributes runs ASetup(PK) which outputs
an attribute-authority public key APK and an attribute-authority secret key ASK. The
attribute authority publishes APK and stores ASK.

AttrGen: When an attribute authority needs to issue an attribute u ∈ A to a user uid, first it obtains
(from the user) her user-token τ , and runs a token verification algorithm TokenVerify(PK, uid, τ).
If the token is verified, then it runs AttrGen(ASK, τ, u) which outputs an attribute key Ku.
The attribute authority gives Ku to the user.

The user checks this key using KeyCheck(PK, APK, τ,Ku) and accepts this attribute key only
if it passes the check.

Sign: A user signs a message m with a claim-predicate Υ, only if there is a set of attributes A such
that Υ(A) = 1, the user has obatined a set of keys {Ku |u ∈ A} from the attribute authorities,
and they have all passed KeyCheck. Then the signature σ can be generated using

Sign
(
PK, {APKauth(u) | u ∈ AΥ}, τ, {Ku | u ∈ A},m, Υ

)
.

Here auth(u) stands for the authority who owns the attribute u (as described in u), and AΥ

is the set of attributes appearing in Υ. (m,Υ, σ) can be given out for verification.

Verify: To verify a signature σ on a message m with a claim-predicate Υ, a user runs

Verify
(
PK, {APKauth(u) | u ∈ AΥ},m, Υ, σ

)
which outputs a boolean value, accept or reject.

Security Definitions. We extend the two ABS security definitions to the multi-authority case.
The security definitions are now a little more elaborate to accommodate for the different cases
corresponding to different entities (signers, verifiers, attribute-authorities and signature-trustees)
being corrupt.

The privacy requirement, as before, is formulated as a perfect information-theoretic property:
for every PK, m, and Υ, the output distribution of Sign(PK, {APKauth(u) |u ∈ AΥ}, ·, ·,m, Υ) is the

11



same no matter which τ , and attribute signing keys {Ku} are used, as long as the keys {Ku} have all
passed KeyCheck. In other words, there is a (computationally infeasible) procedure AltSign such that
AltSign(PK, m,Υ, {APKauth(u) | u ∈ AΥ})) is distributed exactly as a valid signature on m with
claim-predicate Υ.

Note that this is required to hold no matter which trustee keys and attribute keys are used.
In particular, even if the trustee or one or more of the authorities are corrupt, the signer is still
guaranteed that the signature does not reveal anything beyond m, Υ and the fact that some signer
possessed enough attributes to satisfy Υ.

We also modify the unforgeability definition to account for the case where some of the attribute
authorities may be corrupt. Further we allow there to be signature trustees under the control of
the adversary with respect to whom the attribute authorities can be required to run ASetup and
AttrGen. The unforgeability requirement is with respect to an uncorrupted signature trustee (whose
setup is carried out by the security experiment below).

As in the single authority case, in the experiment below, we use an AltSign procedure as the
adversary’s signature oracle. As before, this restricts our definition of unforgeability to schemes for
which perfect privacy holds, but this restriction can be easily removed at the expense of a more
complicated security experiment.

Definition 6. A multi-authority ABS scheme is unforgeable if the success probability of every
polynomial-time adversary is negligible in the following experiment:

1. Run (PK, TSK)← TSetup. The adversary is given PK and access to the TRegister(TSK, ·)
oracle.

2. The adversary can ask for honest attribute authorities to be instantiated using ASetup. For
each of these, the adversary receives only the public key APK and gets access to a AttrGen(ASK, ·, ·)
oracle. The adversary can also instantiate (corrupt) attribute authorities and publish public
keys for them.

3. The adversary gets access to the alternate signing oracle AltSign(PK, ·, ·, ·).
4. At the end the adversary outputs (m,Υ, σ).
Let Auid be the set of u ∈ A such that the adversary queried the AttrGen oracle on (uid, u).

Let A0 be the set of possible attributes corresponding to corrupt attribute authorities. Then the
adversary succeeds if σ verifies as a valid signature on (m,Υ), and (m,Υ) was never queried to the
signing oracle, and Υ(A0 ∪ Auid) = 0 for all uid queried to the TRegister oracle.

4.2 Construction

Here we briefly sketch the modifications to our construction required to support multiple attribute
authorities.

TSetup: Here the signature trustee selects the cyclic groups G and H, generators g, C, h0, . . . , htmax ,
hash function H, and A0 = ha0

0 , as in the single-authority setting. In addition, it generates
a signature key-pair (TSig, TV er) for a (conventional) digital signature scheme. The private
key is TSK := (a0, TSig), and the public key is PK := ((G, H),H, g, A0, h0, . . . , htmax , C, TV er).

TRegister: Given uid, draw at random Kbase ← G. Let K0 := K
1/a0

base , where a0 is retrieved from
TSK. Output τ := (uid,Kbase,K0, ρ) where ρ is (conventional) signature on uid‖Kbase using
the signing key TSig (also retrieved from TSK).

ASetup: Choose a, b ← Zp and compute Aj = ha
j , Bj = hb

j for j ∈ [tmax]. The private key is
ASK := (a, b) and the public key is APK := {Aj , Bj | j ∈ [tmax]}.
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AttrGen: The token verification TokenVerify(PK, uid, τ) verifies the signature contained in τ using
the signature verification TV er in PK. AttrGen(ASK, τ, u) extracts Kbase from τ , and using
(a, b) from ASK, computes Ku := K

1/(a+bu)
base .

The key Ku can be checked for consistency using
KeyCheck(PK, APK, τ,Ku), which checks that e(Ku, AjB

u
j ) = e(Kbase, hj) for all j ∈ [tmax],

where Aj and Bj are from APK.

Sign, Verify: These algorithms proceed verbatim as before, except where (AjB
u(i)
j ) is used (corre-

sponding to the attribute u(i) associated with the ith row of the monotone span program),
we use AijB

u(i)
ij where Aij and Bij are Aj and Bj from APK (as described in ASetup above)

published by the authority auth(u(i)) who owns the attribute u(i).

Simpler set-up using a random oracle. In the above construction we used a τ which contained
a certificate from the signature trustee binding Kbase to uid. The need for this certificate can be
avoided if we derive Kbase as Kbase = R(uid), where R : {0, 1}∗ → G is a hash function modeled
as a random oracle. We use a random oracle because it is important that users have no advantage
in computing the discrete logarithms of their Kbase values. This eliminates the need for a user
to present the token to the attribute authorities, and the need for token verification, because the
attribute authorities could themselves derive the Kbase. We stress that in our construction, we do
not employ a random oracle anywhere, except for this optional efficiency improvement.

4.3 Using Multi-Authority ABS

As described above, ABS can support multiple, mutually independent (and possibly distrusting)
agents who can set up their own signature infrastructure, and multiple agents who can issue their
own attributes to users. To illustrate how ABS operates in such a setting, we return to the
example introduced in the Introduction. Recall that Alice wishes to endorse her message with
a claim which includes attributes owned by different attribute authorities like Facebook, Orkut,
Princeton University, Yale University and the American Sociological Association. Alice needs to
choose one or more signature trustees under whose system she will provide the signatures. Suppose
Alice is aware that most of her potential readers use Google or the Department of Motor Vehicles
(DMV) as trusted signature-trustees. Then Alice can go about endorsing her story as follows:

1. Alice registers herself with Google and the DMV (using TRegister). These trustees would
use their idiosyncratic ways to bind the user with a user ID. For instance the DMV could use the
user’s driver’s licence number and Google could use the user’s social security number. Alice gets
two tokens τGoogle and τDMV this way. We stress that the tokens issued by the trustees are public.
As such it is not important for the trustees to verify the identity of a user while registering.

2. Alice happens to be a professor at Yale, and is certified by the American Sociological Associ-
ation as an expert on online social networks. To obtain appropriate attributes, first she approaches
Yale’s attribute authority, and presents her tokens from Google and the DMV. For Yale to be able
to issue her attributes under these trustees, Yale needs to have the trustee’s public-keys. Further,
Yale should be satisfied that Alice is indeed the person who possesses the user ID mentioned in the
tokens. We shall assume that the Yale can verify the social security number and licence number
of all Yale faculty. After verifying Alice’s identity and the tokens she presented, using Google and
DMV’s trustee public-keys, Yale can issue corresponding attribute keys on the attribute “Professor
at Yale” (for simplicity we ignore the fact that Alice is untenured, and Yale would only issue an
attribute saying Professor at Yale in 2008). Similarly the American Sociological Association will
issue Alice keys for the attribute “Expert on online social networks” under the two trustees. Again,
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the ASA will need to be able to verify Alice’s social security number and driver’s licence for this,
and have access to Google and the DMV’s public trustee keys.

3. Alice has already registered herself with Google and the DMV and obtained her tokens.
Later, when she has prepared her anecdote — which we shall denote simply by m — she can decide
what claim to attach to it. As mentioned above, she decides on the claim (which we shall call Υ)
involving additional attributes owned by the attribute authorities Facebook, Orkut and Princeton
(from whom she does not have any attributes). Using her attributes from Yale and the American
Sociological Association, she can successfully prepare a pair of signatures σGoogle and σDMV on m
using Υ. For this she will need access to the public keys of Facebook, Orkut and Princeton (but
need not have interacted with them otherwise). In describing Υ, each attribute is clearly marked
as owned by the corresponding attribute authority, so that a verifier knows which public keys are
to be used. Further, σGoogle and σDMV include the information that the signature trustee for that
signature is Google and the DMV respectively.

4. Suppose Alice has anonymously published
(m,Υ, σGoogle, σDMV) on the internet. A user in India who trusts Google (but does not know
if DMV can be trusted) can verify σGoogle and be convinced that the message was endorsed by
someone possessing adequate attributes as claimed. For this she should have access to the public
keys issued by all the attribute authorities (Facebook, Orkut, Princeton, Yale and the American
Sociological Association).
As an orthogonal issue, this user might believe that Princeton University’s attribute authority has
been hacked, and an attribute from that authority should not be trusted. In this case she does not
attach any significance to the part of the claim (Professor at Princeton OR Professor at Yale).

In this example, Alice herself need not have trusted all the signature trustees. Indeed, she could
be concerned that Google is interested in knowing who signed the message, or which attributes
were used to sign them. Further, Orkut’s attribute authority could be colluding with Google’s
signature trustee. But even so, the perfect privacy guarantee assures Alice that her signature does
not contain any information other than the message and the claim-predicate (and other public
information).

Finally, we point out that it is important to use user IDs (social security number or licence
number) which cannot be shared among multiple individuals. To see this, suppose Google used an
e-mail address as the user ID. Also suppose Alice and her friend Bob shared the e-mail address
alice.and.bob@gmail.com . Yale could verify that the e-mail address indeed belongs to Alice. But,
meanwhile Bob, who happens to be a professional chess player, can get an attribute Top-100 Chess
Player from the World Chess Federation, also under the same user ID and token from Google,
because the World Chess Federation verifies that the user ID indeed belongs to Bob. Thus, if they
could share a user ID, Alice and Bob would be able to pool their attributes together and endorse
messages claiming to have attributes satisfying Professor at Yale AND Top-100 Chess Player.

5 Applications

5.1 Attribute-Based Messaging

Attribute-Based Messaging or ABM (e.g. [4]) provides an example of a quintessential attribute-
based system which demands new cryptographic primitives for achieving its natural security goals.
In an ABM system, the set of users to whom a message is addressed is not specified by their
identities, but by an “attribute-based address”: that is, a predicate on the attributes, such that
the intended receivers are the users whose attributes satisfy the predicate. An ABM system can

14



also ensure that only users whose attributes satisfy certain conditions can send messages to certain
other users. All this must be facilitated without requiring the users to be aware of each other’s
identities or attributes.

End-to-End guarantees in ABM. The goals of an ABM system can be achieved using trusted
entities. But as in other communication systems, the users may require an end-to-end guarantee
on these properties, independent of the entities involved in delivering the messages. That is, (1)
senders would like to encrypt their messages so that only users with appropriate attributes can
decrypt them, and (2) receivers would like to verify signatures on messages such that only users
with appropriate attributes could have signed them; the signer should not be forced to reveal
more details about its attributes or identity than what is relevant to the receiver. Note that here
the users would be willing to trust the authority that issues the attributes, as a compromised
attribute-authority could give all attributes to any user, thereby rendering the above guarantees
meaningless.4

The first of these issues can be elegantly handled using attribute-based encryption: in particular
the ciphertext-policy attribute-based encryption of Bethencourt, Sahai and Waters [3] provides just
the right cryptographic tool. Their implementation of this encryption scheme was integrated into
the ABM system of Bobba et al. [5] and demonstrated to be practical.

However, the second issue of authentication did not have a satisfactory solution until now. To
highlight some of the issues involved, we point out shortcomings of some natural proposals using
existing cryptographic tools:
• Using certificates: For each attribute that a user has, the attribute authority gives the user a

new signing key and a certificate binding the attribute to the corresponding signature verification
key. Then, to sign a message using her attributes, a user simply signs it using the signing key from
the attribute authority and presents (a subset of) the certificates it received.
This achieves the goal of users not having to be a priori aware of other users or their attributes. But
this “solution” has at least two drawbacks. First, the user has to reveal (a subset of) its attributes,
rather than just some predicate of the attributes. Second, even though the user’s identity is not
directly revealed by the signature, multiple signatures can be linked together as coming from the
same user.
• Using mesh signatures: To allow signing with non-trivial predicates of attributes, one could

consider using the recently developed tool of mesh-signatures [6]. This does indeed provide a perfect
privacy guarantee. However, this approach fails a crucial unforgeability requirement: multiple
users can pool their attributes together and create signatures which none of them could have by
themselves produced.
• As a “fix” to the above collusion problem, one might consider using disjoint attribute uni-

verses for different parties. This would indeed prevent collusion, and would still retain the privacy
guarantee that the signature does not reveal how the claim-predicate was satisfied. However this is
also not a satisfactory solution, as it allows multiple signatures to be identified as being generated
by the same user.

Using an ABS scheme simultaneously overcomes all these problems, and achieves (a) perfect
privacy and unlinkability, and (b) collusion resistant unforgeability. In integrating ABS into ABM,
the message path of the ABM need not be altered. But in the attribute keying path, during
registration the users should obtain keys for signing and verification as well (in addition to keys for
encryption and decryption). An implementation would follow the description in Section 2.3.

4In an ABM system, the entities in the message path are significantly more vulnerable than the attribute authority,
because they need to stay online and be involved in every message delivery. The attribute authority interacts with
users only when issuing them attributes.
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ABS for Access Control in ABM. As suggested above, the primary application of ABS in an
ABM system would be to obtain end-to-end authentication guarantees. But in addition, ABS could
be used by the system to implement access control: a typical ABM system will require that messages
to some addresses be not delivered unless the sender has attributes satisfying a certain policy. That
is, an attribute-based access control mechanism must decide whether to allow a messaging attempt
from a sender or not, depending on the attributes of the sender and the attribute-based address of
the message.

In the current implementations this is achieved by the sender authenticating itself to a central
server in the message path, who then consults the attribute database to determine whether the
sender’s attributes satisfy the requisite predicate. This requires this central server having access to
the user’s identity as well as attributes. This in general is not considered a serious issue, because
anyway the attribute database has to be queried for obtaining the list of recipients.

However, it is possible that the attributes of the receivers used in the addresses are not the same
(and may not be as sensitive) as the attributes of the sender used to determine access privileges. In
such a scenario, using ABS can completely eliminate the need to query the database regarding the
more sensitive attributes. Instead, for each message, a sender can decide what predicate regarding
its attributes is to be revealed, then sign the message with that predicate using ABS. A server in
the message path can ensure that the claimed predicate satisfies the system’s sending policy, and if
the signature verifies, deliver the message. Note that since this signature verification can be carried
out using public keys, it can be done at one of the many points in the message path, instead of at
a centralized server.

In a complex ABM system one might require the senders to include two ABS tags with every
message — one intended for the message delivery agents, and one for the end recepient. The former
would typically involve a claim-predicate that is independent of the contents of the message, and
simpler (and hence faster to verify). The signature intended for the receiver could be dependent on
the message and more complex; note that this signature is verified by the individual users locally,
without putting load on central servers.

ABS for inter-domain ABM. There are several engineering and cryptographic challenges in
implementing a truly inter-domain ABM system. Neither the current implementations of ABM
nor attribute-based encryption schemes known today fully support multiple attribute authorities
(so that a user can use attributes from different attribute-authorities in the same message). For
instance, Chase’s proposal [8] for multi-authority attribute-based encryption (originally for the
schemes in [19, 11], but can be extended to the one in [3]) requires all the attribute-authorities to
share secret keys with a central authority, thereby requiring the central authority to trust all the
attribute authorities.

Remarkably, however, the multi-authority version of our ABS scheme is readily amenable to
a full-fledged inter-domain setting. There can be multiple attribute-authorities and signature-
trustees who need not trust each other. It is safe for a signer to produce signatures using keys
from untrusted trustees, and it is possible to form signatures involving attributes from multiple
(untrusted) attribute-authorities; the verifier needs to trust just one of the signature-trustees used.

5.2 Other Applications

ABS offers a unique combination of features that makes it suitable for several other scenarios as well.
We point out a few potential applications. These are only meant to illustrate different possibilities
of ABS, and not claimed to be solutions for these problems in their most general setting.

Attribute-Based Authentication. Consider a server which allows clients to connect to it and
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carry out transactions depending only on the client’s attributes. A client who wishes to carry
out a transaction may wish to reveal only minimal information about its identity of attributes as
required by the system policy. ABS provides an immediate solution: to establish an authenticated
session, the server sends a unique session-id to the client. The client responds to the server over an
encrypted channel with an ABS signature on (session-id, session-key), where session-key consists
of freshly generated keys for symmetric-key encryption (with semantic security) and MAC. After
verifying the ABS signature, the server grants the client access depending on the claim-predicate
of the ABS tag. All further communication in the session is carried out using the session-key.

Leaking Secrets. The classical application for which the notion of ring-signatures was developed
by Rivest, Shamir and Tauman [18] is “leaking secrets.” In a ring signature the signer can endorse
a message and attach a claim that it is one of the identities (or attributes, in our case) in some
set. This is indeed an instance of ABS, with a particularly simple class of claim-predicates, namely
disjunctions. Mesh signatures [6] are an extension of this concept that allow a rich class of claim-
predicates (the same class of claim-predicates supported in our construction). However, when
allowing this larger class of predicates an issue arises which is not present in the ring signature
setting — namely, the possibility of multiple users colluding to pool their attributes together.
Note that when restricted to disjunction, having any one attribute is enough to satisfy the claim,
and pooling attributes does not allow a coalition to satisfy any new disjunctions. But for any
claim-predicate other than a disjunction, collusion can indeed help. In [6] collusion is considered
legitimate: indeed attributes there are considered to be individual identities, and multiple users
must collude to obtain multiple attributes.

ABS goes beyond mesh signatures and provides collusion-resistance. (If certain groups of users
must be allowed to collude, an ABS scheme would treat them as a single user; indeed if there is
only one user in the system, an ABS scheme degenerates to a mesh signature scheme.) In that
sense ABS is a more appropriate generalization of ring signatures to complex claim-predicates in
many settings.

The semantics of leaking a secret with an ABS signature is that a single entity who has attributes
satisfying a certain claim has endorsed the message. Here it is important that the ABS allows claims
to be in terms of some arbitrary attributes chosen by the signer (presumably designed to obscure
their identity), as well as some attributes the signer might indeed possess.

Trust Negotiations. Trust-negotiation between two parties is a well-studied problem in the
setting of an attribute-based system. From a theoretical point of view, the problem is a special
case of secure two-party computation. However much of the research on this problem focuses on
obtaining very efficient solutions when possible. A standard approach to such an efficient protocol
is a carefully designed sequence of rounds in which the two parties progressively reveal more and
more of their attributes. At its simplest, this can mean simply revealing one or more of one’s
own attributes in a verifiable manner. However, several recent works also consider cryptographic
approaches to trust negotiation that give more privacy to users than is achieved when they simply
take turns revealing their attributes [17, 10]. ABS permits a sophisticated way to reveal partial
information about one’s attributes that is natural for this setting: one party can prove to the other
party that her attributes satisfy some complex predicate.

Being able to bind a message with such a proof about one’s attributes, as ABS permits, allows
for a robust turn-based trust negotiation protocol. At every step of the negotiation, there is an
“ephemeral key” for secure communication (private-key encryption and MAC). At each step, the
active party picks a new ephemeral key, signs it using ABS with the claim that he or she wants to
reveal at that step, and sends it securely (using the ephemeral key from the previous step) to the
other party, who verifies the signature. Using new ephemeral keys at each step prevents man-in-
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the-middle attacks by an adversary who has enough attributes to carry out only the first few steps
of the negotiation.

6 Conclusion and Future Work

We introduced a new cryptographic primitive called Attribute-Based Signatures (ABS), and pre-
sented a construction that provably meets the requirements of ABS. The security proof we provide
is in the generic-group model. The construction is fairly efficient, for reasonably complex claim-
predicates. ABS is ideally suited for an Attribute-Based Messaging (ABM) system, as well as
possibly in several other scenarios that exhibit a tension between authentication and privacy. Our
ABS scheme supports multiple attribute-authorities and multiple signature-trustees, who need not
trust each other.

In future work, on the theoretical front, one would like to base the security on a standard
hardness assumption, without sacrificing too much of the efficiency. The evident drawback of
relying on security in the generic group model is in evaluating the underlying group used by a
candidate implementation. In fact, even the “standard” hardness assumptions regarding bilinear
groups are not as well-studied as more traditional hardness assumptions, as the algorithmic study
of such groups is relatively in its infancy.

On the practical front, the next step would be to implement our ABS scheme and integrate it
with an application. The natural candidate is an ABM system like that of [5]. We remark that
there are several engineering challenges involved in augmenting such an ABM system so that it can
fully exploit the power of ABS, which are beyond the scope of the current work.
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A Unforgeability Proof

Here we present the full proof of Theorem 2.
We first observe that the distribution AltSign(MK, m,Υ) can be sampled in the following way:
Let M ∈ (Zp)l×t be the monotone span program for Υ, with row labeling u : [l] → A; let

µ = H(m‖Υ).

1. Pick random s1, . . . , sl ← Zp and y ← Z∗p

2. For all j ∈ [t], compute

pj =
1

(c + µ)

[
l∑

i=1

si(a + u(i)b)Mi,j − yzj

]
,

where ~z = [1, 0, . . . , 0].

3. Output σ = (gy, gy/a0 , gs1 , . . . , gsl , hp1
1 , . . . , hpt

t )

It is straight-forward to check that this distribution matches AltSign(MK, m,Υ). WLOG, we
assume that in the security experiment, responses to signature queries are generated in this way.

We now proceed with the proof of unforgeability, following the standard approach for generic
groups. First, we observe that it can only help the adversary if the groups G and H coincide.

For any generic-group adversary, we consider a modified security experiment, carried out by
a simulator as follows. For each group element seen or created by the adversary, this simulator
keeps track of its discrete logarithm by means of a multivariate rational functions in the following
indeterminate formal variables:

Σ ={a0, a, b, c,∆0} ∪ {∆j | j ∈ [tmax]}

∪ {xk | k ∈ [n]} ∪ {s(q)
i , y(q) | q ∈ [ν], i ∈ [l(q)]}

where ν is the number of signature queries made by the adversary, n is the number of queries made
to the AttrGen oracle, and l(q) is the width of the monotone span program corresponding to the qth
signature query.

The simulation associates each group element with some rational function. For each distinct
rational function in its collection, it chooses a random distinct representation f and gives it to the
adversary as the encoding of that particular group element. The functions are associated with the
group elements in the simulation as follows:

• Public key components generated by Setup:

1. 1, representing the generator g.

2. a0, representing A0 = ga0

3. ∆0, representing h0 = g∆0 .

4. {∆j | j ∈ [tmax]}, representing hj = g∆j .

5. {∆ja | j ∈ [tmax]}, representing Aj = ha
j .

6. {∆jb | j ∈ [tmax]}, representing Bj = ha
j .

7. c, representing C = gc.
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• Signing key components given by AttrGen. Let Ak be the kth set of attributes queried to
AttrGen:

1. xk, representing K
(k)
base = gxk .

2. xk/a0, representing K
(k)
0 = gxk/a0 .

3. {xk/(a + bu) | u ∈ Ak}, representing K
(k)
u = gxk/(a+bu).

• Signature queries. Suppose the q-th signature query is on message m(q) under the predicate
Υ(q). Let M (q) ∈ (Zp)l(q)×t(q)

be the corresponding monotone span program, with row labeling
u(q) : [l(q)]→ A. Let µ(q) = H(m(q)‖Υ(q)).

1. {s(q)
i | i ∈ [l(q)]}, representing Si = gs

(q)
i .

2. y(q), representing Y (q) = gy(q)
.

3. y(q)/a0, representing W (q) = gy(q)/a0 .

4. {p(q)
j | j ∈ [t(q)]}, where

p
(q)
j =

∆j(
c + µ(q)

)
 l(q)∑

i=1

s
(q)
i (a + u(q)(i)b)M (q)

i,j − y(q)zj


representing P

(q)
j = gp

(q)
j .

• Queries to the generic group oracle:

1. When the adversary asks for the group operation to be performed on α, β (specified
by their encodings), where the group elements are associated with functions Fα, Fβ,
associate with the result the function Fα + Fβ.

2. When the adversary asks for a group element α (specified by its encoding) to be raised
to the power d, where the α is associated with function Fα, associate with the result the
function d · Fα.

The simulator returns a distinct handle for each group element that is associated with a
distinct function over the formal variables.

We note that in the actual experiment, the values of the formal variables are chosen uniformly
at random in Z∗p. Two distinct functions may in that case evaluate to the same value. The
simulation is faithful to the standard interaction in a generic group, except in the event that
two of the distinct functions evaluate to the same value on a random assignment to the formal
variables. For any two distinct functions of the form listed above, the probability of this happening
is at most O(ν +

∑
k |Ak|)/p, since we can multiply both functions by the common denominator∏

q(c + µ(q))
∏

u∈
S

k∈[n]Ak
(a + bu) to obtain distinct multivariate polynomials with total degree at

most O(ν +
∑

k |Ak|). Since this probability is negligible, we ignore this case.
Now the adversary outputs a purported forgery signature σ∗ on a policy Υ∗ and message m∗

such that (m∗,Υ∗) 6= (m(q),Υ(q)) for all q. Let M∗ ∈ Zp
l∗×t∗ be the corresponding monotone span

program with row labeling u∗(·). Let µ∗ = H(m∗‖Υ∗), and suppose the signature has the form
σ∗ = (gy∗ , gw∗

, gs∗1 , . . . , gs∗
l∗ , gp∗1 , . . . , gp∗

t∗ ).
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Then each of these group elements must be associated with a function which must be a multi-
linear combination of the functions given as input to the adversary (public key, signature query
responses, and signing keys).

To be a forgery, we need y∗ 6= 0, and w∗ = y∗/a0, and

l∗∑
i=1

s∗i M
∗
i,j(a + u∗(i)b)∆j = y∗zj∆j + (c + µ∗)p∗j (∀j ∈ [t∗])

for a random assignment of the formal variables. But by a similar argument to above, these
constraints can only hold with non-negligible probability if they hold with respect to the actual
functions – i.e., if the two sides of the constraints are functionally equivalent.

The rest of our proof proceeds by assuming these constraints are functionally equivalent, and
eventually obtaining a contradiction: that there exists a k0 ∈ [n] such that Υ(Ak0) = 1. In other
words, the adversary could have generated a signature legitimately with the signing key for Ak0 ,
and thus the output is not a forgery.

Let L(Γ) be the set of all multilinear polynomials over the set of terms Γ with coeficients in Zp.
Let H(Γ) ⊂ L(Γ) be the subset of homogeneous polynomials (those with a zero constant coefficient).

We know that y∗, w∗, s∗1, . . . , s
∗
l∗ , p

∗
1, . . . , p

∗
t∗ ∈ L(Γ), where

Γ ={1, a0,∆0, c} ∪ {∆j , a∆j , b∆j | j ∈ [tmax]}
∪ {xk, xk/a0, xk/(a + bu) | k ∈ [n], u ∈ Ak}

∪ {s(q)
i , y(q), w(q), p

(q)
j | q ∈ [ν], i ∈ [l(q)], j ∈ [t(q)]}

The rest of our analysis proceeds by comparing terms in these constraints. We can show that the
multilinear functions given by the adversary’s forgery cannot contain terms of certain kinds. Since
y∗ = w∗a0, we get that:

y∗ ∈ H
(
{∆0a0} ∪ {xk : k ∈ [n]} ∪ {y(q) : q ∈ [ν]}

)
It is easy to see that ∆j |(c + µ∗)p∗j and hence ∆j |p∗j . So,

p∗j ∈ H
(
{∆j ,∆ja,∆jb} ∪ {p(q)

j : q ∈ [ν]}
)

Consider j0 such that zj0 6= 0. Then suppose y∗ has a ∆0a0 term. Then there is a ∆0a0∆j0

monomial in y∗zj∆j0 . This monomial cannot occur in (c+µ∗)p∗j0 , nor can it occur in
∑l∗

i s∗i Mi,j0(a+
u∗(i)b)∆j0 , since all monomials from the sum have a factor of a or b. Hence,

y∗ ∈ H
(
{xk : k ∈ [n]} ∪ {y(q) : q ∈ [ν]}

)
Suppose p∗j has ∆j term. Then the right hand side contributes monomials ∆j and b∆j . Be-

cause y∗ has no constant term, y∗zj∆j can not contribute a ∆j monomial. And similar to above,∑l∗

i s∗i Mi,j(a + u∗(i)b)∆j can not contribute a monomial with ∆j alone, hence

p∗j ∈ H
(
{∆ja,∆jb} ∪ {p(q)

j : q ∈ [ν]}
)

Suppose p∗j has a p
(q)
j term. Then on the right hand side we will have a contribution of (c+µ∗)p∗j ,

producing a term with a factor of (c + µ∗)/(c + µ(q)). Since µ∗ 6= µ(q) for any q, this is a proper
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rational. No setting of y∗ or {s∗i }i∈[l∗] can yield terms in the final equation with a factor of
(c + µ∗)/(c + µ(q)). Hence:

p∗j ∈ H ({∆ja,∆jb})

Consider j0 such that zj0 6= 0. Now, y∗ can not have a y(q) term, because neither (c + µ∗)p∗j0
nor

∑l∗

i s∗i Mi,j0(a + u∗(i)b)∆j0 can contribute a monomial of this form. Hence:

y∗ ∈ H ({xk : k ∈ [n]})

Finally we conclude that:

p∗j ∈ H ({∆ja,∆jb}) and y∗ ∈ H({xk : k ∈ [n]})

Observe that any term which appears in y∗ must also be contributed from the left hand side, to
make the expression equal. So, we can split s∗i into two parts; one whose terms involve xk variables,
and one which does not. Let

s∗i = t∗i (Xi) + δ∗(Γ \Xi)

where Xi =
{

xk
(a+u∗(i)b) : u(i) ∈ Ak, k ∈ [n]

}
. Observe that t∗i ∈ H(Xi), and satisfies the following

equation for all j ∈ [t]:
l∗∑

i=1

t∗i M
∗
i,j(a + u∗(i)b) = y∗zj

Consider any xk0 such that it has a non-zero coefficient in y∗. Construct v∗i , for i ∈ [l], by defining

v∗i =
1

[xk0 ]y∗

[
xk0

a + u∗(i)b

]
t∗i

where the [x]π notation denotes the coefficient of the term x in π. We see that v∗ is a vector of
constant coefficients which satisfies the equation v∗M∗ = [z1 . . . zt] = [1, 0 . . . , 0]. Further, in every
position where v∗i 6= 0, the set Ak0 surely contained the attribute u∗(i). By the properties of the
monotone span program, it must be the case that Υ∗(Ak0) = 1, and thus the signature is not a
forgery.
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