
SMS4 Encryption Algorithm for Wireless Networks

Translated and typeset by

Whitfield Diffie of Sun Microsystems

and

George Ledin of Sonoma State University

15 May 2008

Version 1.03

SMS4 is a Chinese block cipher standard, mandated for use in protecting wireless net-
works, and issued in January 2006. The input, output, and key of SMS4 are each 128 bits.
The algorithm has 32 rounds, each of which modifies one of the four 32-bit words that make
up the block by xoring it with a keyed function of the other three words. Encryption and
decryption have the same structure except that the round key schedule for decryption is the
reverse of the round key schedule for encryption.

SMS4 Encryption Algorithm for Wireless Networks

The SMS4 algorithm is a block cipher with 128-bit key and 128-bit input block. Encryp-
tion and decryption take 32 rounds of nonlinear substitutions. Encryption and decryption
have the same structure, but the round key schedule for decryption is the reverse (goes in
the opposite order) of the round key schedule for encryption.

1. Terminology (Definitions)

1.1 Zi and ZiJie (Word and Byte)

Ze
2 is the set of e-bit vectors. Specifically, the elements of Z32

2 are called Zi (32-bit words),
and the elements of Z8

2 are called ZiJie (8-bit characters, or bytes).

1.2 S box

The S (substitution) box takes in 8 bits and outputs 8 bits. It is written Sbox(.).

1.3 Fundamental Operations

The two fundamental operations used by this algorithm are:
⊕ the bitwise XOR of two 32-bit vectors,
<<< i the circular shift of a 32-bit word, with i bits shifted left.

1.4 Input and output blocks, and key

The 128-bit input block consists of four 32-bit words MK = (MK1, MK2, MK3, MK4)
or MKi(i = 0, 1, 2, 3).

The round key schedule, derived from the encryption key, is represented by (rk0, rk1, . . . , rk31),
where each rki(i = 0, . . . , 31) is 32 bits long.

The 128-bit output block consists of four 32-bit words FK = (FK0, FK1, FK2, FK3).
For decryption, the round key schedule is represented by CK = (CK0, CK1, . . . , CK31) or
FKi(i = 0, . . . , 3), CKi(i = 0, . . . , 31).

2. The round function F

This algorithm uses a nonlinear substitution structure, encrypting 32 bits at a time. This
is called a one-round exchange. To illustrate, consider a one-round-substitution:

Let the 128-bit input block be the four 32-bit elements
(X0, X1, X2, X3) ∈ (Z32

2)4, with rk ∈ Z32
2 , then F is given by

F (X0, X1, X2, X3, rk) = X0 ⊕ T (X1 ⊕ X2 ⊕ X3 ⊕ rk)

2

2.1 Mixer-substitution T

T is a substitution that generates 32 bits from 32 bits T : Z32
2 7→ Z32

2 . This substitution
is a reversible process. It consists of a non-linear substitution, τ , and a linear substitution
L, i.e., T (.) = L(τ(.)).

2.1.1 Non-linear substitution τ

τ applies 4 S-boxes in parallel.

Let a 32-bit input word be A = (a0, a1, a2, a3) ∈ (Z8
2)

4, where each ai is an 8-bit character.
Let the 32-bit output word be B = (b0, b1, b2, b3) ∈ (Z8

2)
4, given by

(b0, b1, b2, b3) = τ(A) = (Sbox(a0), Sbox(a1), Sbox(a2), Sbox(a3))

2.1.2 Linear substitution L

B ∈ Z32
2 , the 32-bit output word of the non-linear substitution τ will be the input word

of the linear substitution L. Let C ∈ Z32
2 be the 32-bit output word generated by L. Then

C = L(B) = B ⊕ (B <<< 2) ⊕ (B <<< 10) ⊕ (B <<< 18) ⊕ (B <<< 24)

2.2 S box

All Sbox numbers are in hexadecimal notation.

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 d6 90 e9 fe cc e1 3d b7 16 b6 14 c2 28 fb 2c 05

1 2b 67 9a 76 2a be 04 c3 aa 44 13 26 49 86 06 99

2 9c 42 50 f4 91 ef 98 7a 33 54 0b 43 ed cf ac 62

3 e4 b3 1c a9 c9 08 e8 95 80 df 94 fa 75 8f 3f a6

4 47 07 a7 fc f3 73 17 ba 83 59 3c 19 e6 85 4f a8

5 68 6b 81 b2 71 64 da 8b f8 eb 0f 4b 70 56 9d 35

6 1e 24 0e 5e 63 58 d1 a2 25 22 7c 3b 01 21 78 87

7 d4 00 46 57 9f d3 27 52 4c 36 02 e7 a0 c4 c8 9e

8 ea bf 8a d2 40 c7 38 b5 a3 f7 f2 ce f9 61 15 a1

9 e0 ae 5d a4 9b 34 1a 55 ad 93 32 30 f5 8c b1 e3

a 1d f6 e2 2e 82 66 ca 60 c0 29 23 ab 0d 53 4e 6f

b d5 db 37 45 de fd 8e 2f 03 ff 6a 72 6d 6c 5b 51

c 8d 1b af 92 bb dd bc 7f 11 d9 5c 41 1f 10 5a d8

d 0a c1 31 88 a5 cd 7b bd 2d 74 d0 12 b8 e5 b4 b0

e 89 69 97 4a 0c 96 77 7e 65 b9 f1 09 c5 6e c6 84

f 18 f0 7d ec 3a dc 4d 20 79 ee 5f 3e d7 cb 39 48

For example, if the input to the Sbox is ’ef’, then go to e-th row and f-th column, to find
Sbox(’ef’)=’84’.

3

3. Encryption and decryption

Let the reverse substitution R be:

R(A0, A1, A2, A3) = (A3, A2, A1, A0), Ai ∈ Z32

2 , i = 0, 1, 2, 3.

Let the plaintext input be (X0, X1, X2, X3) ∈ (Z32
2)4, the ciphertext output be (Y0, Y1, Y2, Y3) ∈

(Z32
2)4, and the encrypting key be rki ∈ Z32

2 , i = 0, 1, 2, . . . , 31. Then encryption proceeds as
follows:

Xi+4 = F (Xi, Xi+1, Xi+2, Xi+3, rki) = Xi ⊕ T (Xi+1 ⊕ Xi+2 ⊕ Xi+3 ⊕ rki), i = 0, 1, . . . , 31

(Y0, Y1, Y2, Y3) = R(X32, X33, X34, X35) = (X35, X34, X33, X32).

This algorithm’s encryption and decryption methods have the same structure, except the
order in which the round keys are used is reversed.

The key order for encryption is: (rk0, rk1, . . . rk31). The key order for decryption is:
(rk31, rk30, . . . rk0).

4. Key expansion when encrypting

The rki round key used for encrypting in this algorithm is derived from the encryption
key MK.

Let MK = (MK0, MK1, MK2, MK3), MKi ∈ Z32
2 , i = 0, 1, 2, 3; Ki ∈ Z32

2 , i = 0, 1, . . . , 31;
rki ∈ Z32

2 , i = 0, 1, . . . , 31; the derivation proceeds as follows:

First,

(K0, K1, K2, K3) = (MK0 ⊕ FK0, MK1 ⊕ FK1, MK2 ⊕ FK2, MK3 ⊕ FK3)

Then for i = 0, 1, 2, . . . , 31:

rki = Ki+4 = Ki ⊕ T ′(Ki+1 ⊕ Ki+2 ⊕ Ki+3 ⊕ CKi)

Notes:

(1) T ′ substitution uses the same T as in encryption, except the linear substitution L is
changed to L′: L′(B) = B ⊕ (B <<< 13) ⊕ (B <<< 23);

(2) The system parameter FK, given in hexadecimal notation is

FK0 = (a3b1bac6), FK1 = (56aa3350), FK2 = (677d9197), FK3 = (b27022dc).

(3) The constant parameter CK is calculated as follows:

Let cki,j be the j-th byte of CKi,j(i = 0, 1, . . . , 31; j = 0, 1, 2, 3), i.e., CKi =
(cki,0, cki,1, cki,2, cki,3) ∈ (Z8

2)
4, then cki,j = (4i + j) × 7 (mod 256). The 32 constants

CKi are represented in hexadecimal as tabulated below.

00070e15, 1c232a31, 383f464d, 545b6269,

70777e85, 8c939aa1, a8afb6bd, c4cbd2d9,

e0e7eef5, fc030a11, 181f262d, 343b4249,

50575e65, 6c737a81, 888f969d, a4abb2b9,

c0c7ced5, dce3eaf1, f8ff060d, 141b2229,

30373e45, 4c535a61, 686f767d, 848b9299,

a0a7aeb5, bcc3cad1, d8dfe6ed, f4fb0209,

10171e25, 2c333a41, 484f565d, 646b7279

4

5. Encryption examples

Below are encryption examples of this algorithm’s ECB (electronic code book mode)
calculation method. We use this to verify the correctness of this algorithm’s encryption.
The numbers are represented in hexadecimal notation.

Example 1: Encrypt plaintext with key once

plaintext: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10

encrypting key: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10

rk and the output in each round:

rk[0] = f12186f9 X[0] = 27fad345

rk[1] = 41662b61 X[1] = a18b4cb2

rk[2] = 5a6ab19a X[2] = 11c1e22a

rk[3] = 7ba92077 X[3] = cc13e2ee

rk[4] = 367360f4 X[4] = f87c5bd5

rk[5] = 776a0c61 X[5] = 33220757

rk[6] = b6bb89b3 X[6] = 77f4c297

rk[7] = 24763151 X[7] = 7a96f2eb

rk[8] = a520307c X[8] = 27dac07f

rk[9] = b7584dbd X[9] = 42dd0f19

rk[10] = c30753ed X[10] = b8a5da02

rk[11] = 7ee55b57 X[11] = 907127fa

rk[12] = 6988608c X[12] = 8b952b83

rk[13] = 30d895b7 X[13] = d42b7c59

rk[14] = 44ba14af X[14] = 2ffc5831

rk[15] = 104495a1 X[15] = f69e6888

rk[16] = d120b428 X[16] = af2432c4

rk[17] = 73b55fa3 X[17] = ed1ec85e

rk[18] = cc874966 X[18] = 55a3ba22

rk[19] = 92244439 X[19] = 124b18aa

rk[20] = e89e641f X[20] = 6ae7725f

rk[21] = 98ca015a X[21] = f4cba1f9

rk[22] = c7159060 X[22] = 1dcdfa10

rk[23] = 99e1fd2e X[23] = 2ff60603

rk[24] = b79bd80c X[24] = eff24fdc

rk[25] = 1d2115b0 X[25] = 6fe46b75

rk[26] = 0e228aeb X[26] = 893450ad

rk[27] = f1780c81 X[27] = 7b938f4c

rk[28] = 428d3654 X[28] = 536e4246

rk[29] = 62293496 X[29] = 86b3e94f

rk[30] = 01cf72e5 X[30] = d206965e

rk[31] = 9124a012 X[31] = 681edf34

ciphertext: 68 1e df 34 d2 06 96 5e 86 b3 e9 4f 53 6e 42 46

Example 2: Use the same encryption key and encrypt the plaintext again and again 1,000,000
times.

plaintext: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10

encrypting key: 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10

ciphertext: 59 52 98 c7 c6 fd 27 1f 04 02 f8 04 c3 3d 3f 66

5

