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Abstract

In emerging networks consisting of large-scale deployments of mobile devices, efficient security mechanisms
are required to facilitate cryptographic authentication. While computation and bandwidth overheads are expensive
for mobile devices, the cost of storage resources continue to fall at a rapid rate. We propose a simple novel key
predistribution scheme, key subset and symmetric certificates (KSSC) which can take good advantage of inexpensive
storage resources, and has many compelling advantages over other approaches for facilitating ad hoc establishment
of pairwise secrets in mobile computing environments. We argue that a combination of KSSC with a variant of
an elegant KDS proposed by Leighton and Micali is an appealing choice for securing large scale deployments of
mobile devices.

I. INTRODUCTION

Rapidly lowering costs of computing and communication devices is expected to result in explosive
growth of mobile computers equipped with wireless capabilities. In the “wireless future” home equipment
like TVs, DVD players, refrigerators, microwaves, garage openers, security cameras etc., equipped with
short range radios, will be controlled by hand-held devices like PDAs or mobile phones, even from
remote locations. Sensors monitoring vital internal organ functions of a person on the road may relay
early warning signs over multi-hop ad hoc networks to the nearest hospital to facilitate timely responses.

An important requirement for the feasibility of such co-operative networks is a mechanism for crypto-
graphic authentication of devices deployed in very large scales. Cryptographic authentication is realized
through security associations (SA) facilitated by key distribution schemes (KDS).

A. Key Distribution Schemes
Popular KDS include Kerberos-like schemes based on the Needham-Schroeder symmetric key dis-

tribution protocol [1], and the public key infrastructure (PKI) used in conjunction with asymmetric
cryptographic primitives.

Kerberos-like schemes which require an on-line trusted server to mediate interactions between entities
for establishing SAs are not suitable in scenarios where access to the trusted server is not possible. Thus
key distribution schemes that facilitate ad hoc (without active involvement of a third party) establishment
of SAs are required.

While public key schemes (in conjunction with PKI) cater for this requirement they demand substantial
bandwidth and communication overheads for exchanging public key certificates and performing asymmet-
ric computations. As deployments are expected to include resource constrained devices, we would like to
restrict the devices to employing only inexpensive symmetric cryptographic primitives. At the same time
however, we require such key distribution schemes to support very large network scales. Unfortunately
schemes based only on symmetric primitives do not scale well. More specifically, scalable schemes either
©1 require a trusted server for mediation (Kerberos-like schemes), or ©2 are susceptible to collusions (key
predistribution schemes).



1) Key Predistribution Schemes: Scalable key pre-distribution schemes (KPS) [2] consist of a key
distribution center (KDC) who chooses a set of P secrets and a practically unlimited number (say N )
of entities with unique identities. Each entity is assigned a set of k < P secrets by the KDC, which
are derived from the secrets chosen by the KDC. KPSs use only inexpensive symmetric cryptographic
primitives. Any two entities (say A and B) can independently compute an SA (a common secret) KAB

by using the secrets assigned to them by the KDC.
While there is no practical limit on the number of entities N who can be provided with secrets, a

group of colluding entities can pool their secrets together to compromise the KPS. An n-secure KPS
can resist collusions of up to n entities pooling their secrets together, irrespective of the network size N .
Any KPS is essentially a trade-off between security and complexity. A measure of the security is n, the
number of colluding nodes that a KPS can resist. Arguably, if a KPS can resist collusions of several tens
of thousands or even hundreds of thousands of entities, their “susceptibility to collusions” may not be a
practical issue. However increasing n results in increased complexity.

The metrics for complexity can include several factors like computation, bandwidth, and storage
overheads. For applications involving mobile computing devices computation and bandwidth overheads
are expensive. However the cost of storage continues to reduce at a very rapid rate, with no impending
sign of “Moore’s law saturation.” Flash based storage cards supporting several GBs are already common,
and are very well suited for mobile devices. Thus employing a few tens of megabytes of that storage for
the storing KDS parameters is indeed practical.

Increasing collusion resistance of most KPSs call for ©1 increasing the number of secrets k (and thus
storage for secrets) assigned to each entity and 2) increased computational complexity for evaluation of
SAs. While the increase in storage requirement is not a serious issue (after all, storing one million 64-bit
secrets requires a mere 8 MB of storage), high computational complexity is not acceptable.

2) Contributions: In this paper we argue how the reducing cost of storage requirement can offset the
inherent limitations of inexpensive symmetric cryptographic primitives. The specific contributions of this
paper are two fold. The first is a novel, yet simple key predistribution scheme, KSSC, which (we argue)
is particularly well suited for facilitating ad hoc establishment of SAs in mobile computing applications.
As a second contribution we argue why i) the elegant key distribution scheme proposed by Leighton
and Micali (LM-KDS) in [3] is very well suited for small-scale networks and that ii) a combination of
LM-KDS and KSSC is an appealing choice for securing such networks.

B. Organization
In Section II we provide an overview of some KDSs and explore several sources of complexities

associated with KDSs. In Section III we introduce the KSSC scheme and provide an extensive analysis of
its performance and security-complexity trade-offs. In Section IV we investigate practical issues associated
with key distribution. We argue why the LM-KDS [3] is very well suited for small-scale deployments
and that a combination of LM-KDS and KSSC is very well suited for large scale networks. In Section
V we discuss some related prior work. We discuss some similarities between KSSC and a broadcast
authentication scheme proposed by Canetti et al [4] which also employs symmetric certificates [5] and
key subsets. Few other key predistribution schemes that have been proposed in the literature are also
evaluated. Conclusions are offered in Section VI. The following notations are used in this paper

1) h() - a secure hash function (for example, SHA1);
2) A,B - identities of entities;
3) KAB - a symmetric shared secret between entities A and B;
4) h(M, K) - a hashed message authentication code (HMAC) for a message M using a secret K.

II. KEY DISTRIBUTION FOR EMERGING NETWORKS

A key distribution scheme (KDS) is a mechanism for distributing secrets and / or public values to
all participants (entities) to facilitate establishment of cryptographic bonds or security associations (SA)
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between the entities. The most common of such SAs are one-to-one SAs which take the form of a shared
secret between two entities.

A shared secret KAB between entities A and B can be employed for privacy of exchanges between
A and B, and mutual authentication. In a scenario where entity A sends a message M to entity B, the
message can be encrypted with the shared secret KAB if privacy of exchanges is desired. In scenarios
where authentication of the source and the integrity of the messageM is desired, A can append a hashed
message authentication code (HMAC) h(M, KAB) to the message M.

KDSs can be broadly classified into nonscalable and scalable schemes. An example of a nonscalable
scheme is the basic key predistribution scheme, where to support a network of N entities a key distribution
center (KDC) chooses

(
N
2

)
pairwise secrets and provides each entity with N − 1 secrets.

An example of a scalable KDS is Kerberos-like schemes, which however require a trusted server for
mediating SAs. While the basic KPS does not require involvement of the KDC after the entities are
supplied with secrets, the need for O(N) storage for each entity restricts the number of entities that can
be supported. In Kerberos-like approaches while each entity needs to store just one secret to authenticate
itself to the trusted server, they do not facilitate ad hoc establishment of SAs.

A. Scalable KDSs
Scalable KDSs that facilitate ad hoc establishment of SAs can be categorized into certificates-based

and ID-based schemes.
1) Certificates Based Schemes: In certificates based schemes each entity is associated with an ID,

a public key, and a private key. Each entity is free to choose their own private key and compute the
corresponding public key. An entity with ID A can choose a private key RA and derive (compute) a
public key UA. As the public key UA provides no information about the identity A, a trusted third party
has to securely specify a binding between the identity and the public key of every entity. This binding is
typically achieved through a certificate issued by a certificate authority (CA).

Well known certificates based schemes include several asymmetric encryption and signature schemes
like RSA, El Gamal (and variants like DSA) and elliptic curve schemes, used in conjunction with a CA
or more often a hierarchical organization of CAs in the form of a public key infrastructure (PKI). Such
schemes facilitate pairwise SAs by exchanging chains of public key certificates and performing some
computations.

2) ID-Based Schemes: For ID-based schemes the ID of an entity itself doubles as the public key, thus
obviating the very need for certificates. A key distribution center (KDC) chooses public parameters of the
system and one or more master secrets. The KDC can then compute the private key(s) corresponding to
any public key (ID). The private keys for an entity with identity A are thus assigned by the KDC to the
entity A.

ID-based schemes are increasingly seen as preferable over certificates based schemes for large scale
networks, and especially for many emerging application scenarios like ad hoc networks. In existing
networks based on the client-server paradigm, the client and server exchange public key certificates for
mutual authentication, at the end of which a shared secret is established. This secret can be used for
authentication and encryption of a large number of packets exchanged between them subsequently. Thus
the overheads (exchange of certificates and their verification) incurred for establishing a shared secret
can be leveraged for securing large amounts of data. However in ad hoc networks a node will typically
exchange small packets with many nodes. Thus the overheads for exchanging certificates with each node
may be prohibitive. With ID-based schemes two nodes A and B can independently compute a shared
secret KAB without exchanging certificates for this purpose.

In ID-based schemes the ID of an entity is typically chosen as a secure one way function of a descriptive
real-life identity and credentials. For example Alice with real-life identity described by string SA = “Alice
B Cryptographer, AnyTown, USA, · · ·” can be assigned an ID A = h(SA). In such scenarios large
“ID spaces” are required to ensure that collisions are rare. For a network expected to support up to 2t
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entities, the IDs should be larger than 2t-bits. Furthermore pre-image resistance of the hash function h()
is also required to ensure that A cannot substitute the preimage SA with an alternate one - say S ′A where
A = h(S ′A) = h(SA).

ID-based public key schemes for encryption (IBE) and signatures (IBS), most of which take advantage
of pairings in special elliptic curve groups, have attracted substantial attention recently [6].

B. ID-Based Key Predistribution Schemes
ID-based key predistribution schemes (KPS) consist of a KDC and entities with unique IDs drawn from

a large ID space. For example, if 128-bit IDs are used the size of the ID space is N = 2128. The KDC
chooses a set of P master secrets S and each entity is provided with a set of k ≤ P secrets. The set of k
secrets SA assigned to an entity with ID A is determined by a public function F() which takes two inputs
- the ID A, and the set of P KDC secrets S. Two entities A and B (with secrets SA and SB respectively)
can discover an SA in the form of a pairwise secret KAB using a public function G(). In other words

SA = F(S, A)
SB = F(S, B)

}
and KAB = G(SA, B) = G(SB, A) (1)

An attacker who has access to secrets of many (say v) entities {O1 · · ·Ov} may be able to discover KAB

even without access to SA or SB. An n-secure KPS can resist collusions of up to n entities pooling their
secrets together.

With O(n) limitation on storage, the basic KPS can only support a network size of N = O(n). However
the basic KPS is not susceptible to collusions. On the other hand, scalable KPSs can support any N , but
can only tolerate collusions of up to n entities. That such trade-offs are possible was first realized by
Blom et al [7] who proposed the first KPS in the literature.

1) Blom’s SKGS: In Blom’s SKGS (symmetric key generation system) [8] based on maximum distance
separation (MDS) codes over GF (q) (say the finite field Zq = {0, 1, . . . , q − 1} where q is a prime), a
public MDS generator matrix G with primitive element α is used. For a network size of N ≤ q the
(n+ 1)×N MDS generator matrix is G = [g0 · · ·gN−1] where gjs are column vectors of length n+ 1
with the ithelement given by gj(i) = αij, 0 ≤ j ≤ N − 1, 0 ≤ i ≤ n.

The KDC chooses a (n + 1) × (n + 1) symmetric matrix D with
(
n+1

2

)
independent values (secrets)

chosen randomly from Zq. Entity A is assigned k = n + 1 values (secrets) of dA = DgA. A and B
(with secrets dA and dB respectively) can calculate KAB = (dA)TgB = (dB)TgA (as D is a symmetric
matrix). In other words, A computes KAB as

KAB =
n∑
i=0

dAi βi where βi = αiB. (2)

The choice of the value q > N will depend on the desired size of the ID space N . If we desire 128-bit
IDs we should choose at least 128-bit q. The k secrets assigned to any entity will also be 128-bits long.
Computation of a shared secret involves finite-field multiplication operations employing k secrets, and k
finite-field exponentiation operations. An n-secure SKGS is unconditionally secure as long as n or less
entities pool their secrets together. However, it is completely compromised if more than n entities do so
- or the failure occurs catastrophically.

C. ID-Based Probabilistic KPSs
More generally KPSs can be regarded as (n, p)-secure, where an attacker can expose a fraction p of

all possible SAs by pooling together secrets assigned to n entities. As long as p is low enough (say
2−64) it is computationally infeasible for an attacker to even identity which SAs can be compromised
by using the pooled secrets. Deterministic n-secure KPSs (like SKGS) can be seen as special cases of
(n, p)-secure “probabilistic” KPSs where p takes only binary values (0 or 1). While deterministic KPSs
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fail catastrophically (p(n′) = 0 for n′ ≤ n and p(n′) = 1 for n′ > n), for (n, p)-secure probabilistic KPSs
p increases gracefully with n.

Most probabilistic KPSs are based on the idea of random (or pseudo random) allocation of subsets of
keys to each entity, from a pool of keys chosen by the KDC. Such probabilistic KPSs are extensions of
similar techniques [9] - [10] that relied on deterministic strategies for allocation of subsets of keys to
every node. Dyer et al [11] were the first to point out that “set intersection schemes are best generated at
random.” Approaches based on random subset allocation have since been used for broadcast authentication
[4], and for securing interactions between sensors in ad hoc sensor networks [12] - [15].

1) Random Preloaded Subsets: Schemes employing ID-based allocation of subsets [15], [14], referred
to as random preloaded subsets (RPS) in the rest of this paper, are defined by two parameters (ξ, k),
where ξ < 1. The KDC chooses an indexed set of P = k/ξ secrets S = {K1, K2, . . . , KP}. A public
pseudo-random function F () is employed [15] for ID-based allocation of a subset of k = ξP secrets to
every entity. Thus for an entity with ID A, the set of secrets assigned are

SA = {KA1 , . . . , KAk
} where F (A) = {A1, . . . , Ak}, (3)

and 1 ≤ Ai ≤ P .
Any two entities (say A and B) will share m̄ = ξk secrets on an average. The indices of shared secrets

can be determined by computing F (A)∩F (B) = {I1 · · · Im}. Corresponding to each shared index j = Ii,
A and B can find an elementary shared secret Si = Kj . Both A and B can independently compute
the SA KAB as a secure one-way function of all m shared secrets S1 · · ·Sm, as KAB = h(S1, . . . , Sm).
Alternately, KAB could be computed by just XOR-ing the m elementary secrets together.

An attacker who has access to all secrets from n nodes in the set O = {O1, . . . , On} where A,B 6∈ O
has a finite probability of determining the shared secret KAB between A and B. The probability p(n) of
such an event is

p(n) = (1− ξ(1− ξ)n)k (4)

The optimal choice of ξ that minimizes k for a desired p(n) is ξ = 1
n+1

[4], [16]. Correspondingly, for
large n we have

k ≈ ne log(1/p) m = ξk ≈ e log(1/p) (5)

D. The Cost of Resources
Any security solution demands resources which take the form of computation, bandwidth and storage.

Different resources have different costs, which may also vary with time and advances in technology.
Efficient security solutions should strive to reduce dependence on expensive resources, perhaps by taking
advantage of less expensive resources.

Even while advances in technology lowers the cost of all resources in accordance with Moore’s Law,
there is an obvious change in balance between the cost of resources. A few decades ago, asymmetric
cryptographic primitives were deemed expensive even for many desktop computers. While this is obviously
not the case today, the explosive growth of low complexity network enabled devices will once again result
in a scenario where asymmetric primitives are beyond the reach of most devices.

In emerging application scenarios mobile computers are expected to come together to form large co-
operative networks in which every device will be required to perform some tasks for the overall good of
the network. For example sensors monitoring vital internal organ functions of Bob may send an alarm,
which may have to be relayed by Alice’s mobile phone (and possibly many other such devices) to the
closest hospital. Furthermore many devices may also be deployed in an unattended fashion. For such
co-operative networks to be feasible, an essential requirement is the ability to trust every device to act in
the intended manner.

Computers that have to be trusted, or computers that may have to be deployed without the possibility
of close supervision, need to be tamper-responsive. More specifically, they should provide assurances
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against ©1 tampering of the software executed by such computers and ©2 exposure of secrets used for
authentication of the computers by zeroizing secrets under such attempts. While providing such assurances
are not impossible now [17], [18] they can be expensive.

Arguably, the only way to realize affordable trustworthy computers is to reduce the complexity inside
the trusted boundary. As long as the computational complexity to be borne inside a trusted (protected)
boundary is low enough unconstrained shielding strategies can be used to prevent such computers from
intrusions. The need to dissipate heat (in scenarios where the computational complexity inside the trusted
boundary is high) can severely cramp strategies for shielding, and thus render them expensive [17].
Furthermore, the need to conserve battery life will also restrict computation and bandwidth overheads that
can be tolerated by mobile devices.

However storage continues to reduce in cost at perhaps a rate faster than predicted by Moore’s
Law, especially for mobile computing scenarios. Thus while there are compelling reasons to reduce
computational overheads, we can afford to take advantage of inexpensive storage resources. Also note
that increasing the storage overheads, especially storage outside the protected boundary, does not hinder
strategies for shielding trustworthy computers.

1) Computational Complexity C: In the rest of this paper we denote the computational complexity by
C. However in scenarios where proactive measures are taken to protect secrets, there is also a need to
distinguish between the complexity of “sensitive” computations (operations performed with secrets) CS
and public computations (which do not require operations with secrets) CU . Sensitive computations will
need to performed inside a tamper-sensitive protected boundary. Thus it is very much desirable to reduce
the complexity CS to facilitate unconstrained shielding. However, public computations could be performed
outside the protected boundary.

For instance, a mobile phone / PDA could employ a secure co-processor or smart card or a smart SIM
(subscriber identity module) card for performing operations involving secrets. However the more powerful
processor of the mobile phone / PDA could be used for performing public computations. Obviously there
are compelling reasons to keep CS as low as possible. While we would also like to keep CU low, this is
not as crucial as keeping CS low.

2) Bandwidth Complexity B and Storage Complexity S: In most application scenarios where an entity
is required to store multiple secrets, a common practice is to encrypt them with a single “host master
secret” which is afforded extensive protection. All encrypted secrets could then be stored in an encrypted
key-ring. In scenarios involving unattended devices, the host master secret could be stored in a special
well protected register. In scenarios involving attended devices it could be a password known only to
the end user. The encrypted key ring itself can be stored in unprotected flash storage devices, or even
locations possibly accessed over an insecure network. As an example a trustworthy sensor attached to
Bob’s chest could communicate over blue-tooth interface with a PDA (with an SD card) where its key
ring is stored.

Public values stored in unprotected locations will need to be authenticated (to prevent unauthorized
entities from modifying them). Secrets need to be encrypted and authenticated. One important consider-
ation in this respect is B, the number of values that have to be fetched from storage for computing any
pairwise secret. Note that even in scenarios where the values do not have to be fetched over a network,
fetching a large number of values from slower bulk-storage devices is not desirable.

3) Descending Order of Cost: Based on the discussions above, perhaps a reasonable descending order
of cost of various resources is as follows:
©1 CS Computations with secrets
©2 / ©3 B Bandwidth overheads
©2 / ©3 CU Public computations
©4 S Storage

Thus efficient solutions should strive to reduce the complexities CS,B and CU , even if it implies
increasing storage complexity S.
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TABLE I

COMPUTATION, BANDWIDTH AND STORAGE COMPLEXITY MANDATED FOR n-SECURE SKGS AND (n, p)-SECURE KPSS IN TERMS OF

KPS PARAMETERS (UNSHADED ROWS) AND THE VALUES n AND p (SHADED ROWS).

KPS CS CU B S

SKGS k k k k + 1
n+ 1 n+ 1 n+ 1 n+ 2

RPS ξk k log2(1/ξ) ξk k
log(1/p) n log(1/p) log(n) log(1/p) n log(1/p)

KSSC m m log2(M) m mM
log(1/p) log(1/p) log(n) log(1/p) n log(1/p)

E. Complexity of KDSs
The high complexity of operations with secrets renders public key schemes (both certificates based and

IBE / IBS schemes) unsuitable. For the basic key predistribution scheme the major source of complexity
is storage, influenced by the desired network scale N . The computational and bandwidth overheads are
however very low. A single readily available shared secret has to be fetched from a key ring where O(N)
such values are stored. Even while storage is inexpensive, such schemes are far from suitable for network
scales upward of hundreds of millions.

For scalable KPSs the complexity is contributed by various factors influenced by the value n - the extent
of collusion resistance sought. Various factors that affect the complexity of different KPSs are depicted
in Table I in terms of the KPS parameters (unshaded rows), and in terms of the values n (and p) (shaded
rows) to realize an n-secure (or (n, p)-secure) KPS.

1) Computation Complexity C:
a) Computations with Secrets CS: Blom’s SKGS scheme requires k = n+ 1 finite-field multiplica-

tions with secrets. RPS requires m operations with secrets to compute KAB.
b) Public Computations CU : For SKGS computation of βi, 0 ≤ i ≤ k − 1 (see Eq (2)) - involving

computation of one modular exponent and k modular multiplications, do not require access to secrets. For
RPS F (A)∩F (B) needs to be computed to determine m = ξP intersecting indices. For RPS computing
F (A) involves generation of k log2(1/ξ)-bit pseudo-random integers.

2) Storage S and Bandwidth B: Blom’s SKGS scheme calls for every entity to store k = n+1 secrets.
For (n, p)-secure RPS entity needs to store k ≈ 2.71n log(1/p).

a) Bandwidth Overheads B: For Blom’s scheme all k = n + 1 secrets stored by an entity are
required for computation of every pairwise secret. However for RPS while an entity may store k secrets,
only m << k of them are required for computing a pairwise secret like KAB.

F. Unsuitability of SKGS and RPS
Blom’s KPS requires substantial computational overheads. Both CS and CU require O(n) finite-field

computations. Thus even for n of the order of a few hundreds, the complexity of Blom’s KPS becomes
comparable to that of asymmetric primitives. Furthermore B, viz., the number of values that need to be
fetched for computing any pairwise secret, is also O(n).

RPS requires more storage overheads than deterministic schemes (by a factor log(1/p)). While RPS
demands significantly lower complexity of operations with secrets CS and bandwidth overheads B the
computational overheads CU becomes the bottle-neck for RPS. Note that each entity has to first evaluate
the public function F () to determine which of the m (of k) secrets need to be used for computing KAB.
The complexity CU of the public function is k = O(n log(1/p)).

Consider the example of the RPS scheme with parameters m̄ = 121, ξ = 2−14, and k = 121 × 214 =
1, 982, 464, for which p(16384 = 214) < 2−64. The storage complexity is slightly over 15 MB (if each
secret is 64-bits long). Evaluating the public function F (A) amounts to generating k 14-bit pseudo-
random values (or 14k random bits). More specifically, determining the m shared indices by executing
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F (A)∩F (B) requires (pseudo-random) generation of 2k×14 ≈ 55.5 million bits. Thus while the storage
overheads (15 MB) is acceptable, the complexity of the public function becomes unacceptably high for
large n - even if the computation is performed outside a trusted boundary.

III. KEY SUBSET AND SYMMETRIC CERTIFICATES (KSSC)
The primary motivation for the KSSC, a probabilistic KPS proposed in this section, is to overcome

the limitation of the complexity CU of the public function. For KSSC the achievable security is limited
only by storage - the least expensive of resources. Furthermore, as we shall see in the rest of this section,
compared to RPS KSSC demands

1) substantially lower CU ; and
2) lower CS,B and S for achieving (n, p)-security.

A. Symmetric Certificates
The concept of symmetric key certificates (SC) was first suggested by Davis and Swick [5] in the context

of Kerberos. From a broad perspective an SC is derived by binding some arbitrary descriptor D ∈ {0, 1}∗
(a bit-string of arbitrary length) with a secret key K through a one-way function. For example

KD = h(K,D) (6)

is an SC derived from K. Note that an SC is derived in the same manner as a hashed message authentication
code (HMAC). Furthermore, like HMACs, SCs can be truncated (say only 64 LSBs of the 160-bit hash
is retained). However unlike HMACs, SCs are treated as secrets. The SC is only privy to the issuer (the
entity with secret K) and the entity receiving the SC KD.

As an example of the utility of SCs, consider a scenario where a server S wishes to bestow upon Alice
(A), certain privileges described (for example) by a string PA = “Bearer is authorized access the print
server from 9 to 5 pm between 8-1-07 and 12-1-07.” The server S can issue a secret KA = h(PA, KS),
where K is a secret privy only to the server S. The SC KA is produced by Alice along with the string PA
whenever she wishes to use her privilege. Note that a server S may assign such privileges to numerous
entities like Alice. With the use of symmetric certificates the server S does not have to keep track of what
privileges were assigned to whom. For this reason, Davis and Swick [5] saw symmetric certificates as a
“convenient way of issuing memorandums to oneself1.”

B. KSSC
KSSC is defined by two parameters (m,M). The KDC chooses
1) a set of k = mM secrets S = {K(i, j)}, 1 ≤ i ≤ m, 1 ≤ j ≤M ,
2) a hash function h(), and
3) a set of m public functions fi(), 1 ≤ i ≤ m

The public functions fi() take IDs of entities (say 128-bit quantities) as inputs and outputs a uniformly
distributed random number between 1 and M (the output is a pseudo-random log2M -bit number).

Every entity is assigned a subset m of the k = mM keys chosen by the KDC, and a set of k = mM
symmetric certificates (SC). For an entity with ID A the KDC computes ai = fi(A), 1 ≤ i ≤ m. The
entity A is then assigned a set of m secrets SA and a set of mM SCs CA bound to the ID A where

SA = {K(1, a1), K(2, a2), . . . , K(m, am)}
CA = {KA(i, j) = h(K(i, j), A)}, 1 ≤ i ≤ m, 1 ≤ j ≤M.

The m secrets SA is a subset of the mM secrets chosen by the KDC. The mM SCs CA are derived from
the mM KDC secrets using the one-way hash function h(). More generally, KA(i, j) can be a truncated
hash of h(K(i, j), A) where only (say) t = 64 LSBs of a 160-bit hash h() is retained.

The SCs assigned to an entity A are stored encrypted in bulk storage. The m secrets SA (we shall see
that m is typically a few tens) could however be stored in a cache memory.

1In the context of Kerberos, strings like PA describe previleges, and the combination of PA and the SC KA constitute a Kerberos ticket.
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1) Computing Pairwise Secrets: Two entities A and B can derive up to 2m common elementary shared
secrets

SAi = KA(i, bi), 1 ≤ i ≤ m and (7)
SBi = KB(i, ai), 1 ≤ i ≤ m (8)

Note that the elementary shares are SCs

{SAi , 1 ≤ i ≤ m} = CA
B ⊂ CB

{SBi , 1 ≤ i ≤ m} = CB
A ⊂ CA.

(9)

Entity A can find m elementary shares CB
A among its mM SCs CA. The indices of the particular m

SCs to be used can be determined by computing bi = fi(B), 1 ≤ i ≤ m. Entity A can compute the m
elementary shares CA

B using its m secrets. Similarly B has CA
B as a subset of its SCs and can compute

CB
A . All 2m elementary shares are used to derive the SA (pairwise secret) KAB as

KAB = h(CA
B,CB

A), (10)

or simply XOR-ing all 2m elementary shares.

C. Security Analysis
Note that the SCs assigned to any entity do not reveal any information about the secrets or the SCs of

other entities. While a group of n colluding attackers (that does not include A and B) cannot gain access
to the SCs of A and B, they can pool their secrets together to determine SA = {K(1, a1) · · ·K(m, am)}
and SB = {K(1, b1) · · ·K(m, bm)}, from which the required SCs (the 2m elementary shares) can be
computed.

The probability that an entity C has been assigned the secret K(i, ai) (or the probability that ci =
fi(C) = ai = fi(A)) is 1/M . The probability that a particular elementary share is not included in the
attacker’s pool (collected from n entities) is

εA = (1− 1/M)n ≈ e−n/M, (11)

and the probability that the attackers pool of secrets includes all the required 2m secrets is

p(n) = (1− εA)2m ≈ (1− e−n/M)2m. (12)

1) Complexity: The computational complexity for the scheme is O(m). Evaluation of KAB involves
1) CU - computation of m public functions fi() and
2) CS - m hash function evaluations to compute m Sis.
3) B - m SCs to be fetched from bulk storage.

Most often the public function evaluations like ai = fi(A) are computed for all 1 ≤ i ≤ m. The hash
function h() can be used for realizing the public functions efficiently. If, for example, m = 32 and
log2M = 15, we need to generate m log2M = 15 × 32 = 480 pseudo-random bits. If we use a 160-bit
hash function h() the 160× 3 bits of [h(A, 1) ‖ h(A, 2) ‖ h(A, 3)] can be interpreted as [a1 ‖ · · · ‖ am)].
Thus for KSSC

CS = m CU = m log2M
B = m S = m+Mm

(13)

D. Choice of Parameters
A quick inspection of Eq (12) reveals that for a choice of n ∝ M , we have m ∝ log(1/p). It is very

important to note that the computational complexity (both CS and CU ) and bandwidth overheads B are
independent of n. We can thus increase n to any extent by increasing M , which will result in more storage
required for SCs. Thus the extent of collusion resistance n that can be realized is constrained only by
available storage.
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1) Minimizing Storage: We can rewrite Eq (12) as

k = mM =
n log(1/p)

−2θ log(1− e−θ)
, where θ =

n

M
. (14)

If we intend to minimize the storage k ≈ mM (required for the SCs) for realizing an (n, p)-secure
KSSC, we need to maximize −θ log(1 − e−θ), which occurs for (θ = log(2)) = θ∗. The optimal choice
of parameters that minimizes k is thus

m∗ = log(1/p)
2 log 2

M∗ = n
log 2

}
⇒ k∗ =

n log(1/p)

2 log2 2
(15)

a) Numerical Example: KSSC with parameters m = 32 and M = 215 is the storage optimal design
to meet the criteria p(22, 500) < 2−64. Such a scheme requires each entity to store m = 32 secrets and
mM = 220 (a million) SCs. For 64 bit SCs the storage required is 8 MB. An attacker who has access to
secrets assigned to over 22500 entities can determine only a fraction 2−64 of pairwise secrets (between
entities that are not part of the n colluders). An attacker who has exposed secrets from n′ = 42, 200 > n
entities can expose one in one-billion pairwise secrets (or p(42200) ≈ 2−30).

While for Blom’s scheme and RPS some complexity factors increase linearly with n (see Table I), for
KSSC only storage2 is linear in n. As an example, while p(22500) ≈ 2−64 for KSSC with m = 32,M = 215

(storage 8 MB), doubling M to 216 will result in a scheme for which p(45000) ≈ 2−64. The storage
complexity mM is doubled to 16 MB. The complexity of the public function increases marginally. While
the former scheme requires pseudo-random generation of m = 32 15-bit integers, the latter scheme
(m = 32,M = 216) requires pseudo random generation of m = 32 16-bit integers. If we desire a KSSC
scheme with p(100000) ≈ 2−64, a little less than 36 MB of storage is required for every entity.

2) Computation-Storage Trade-offs: Even while KSSC requires very low computational overheads
(about m hash function evaluations) it may still be advantageous to reduce m further (by increasing M
and k = mM ) as m has bearings on the complexities CS , CU and B, while M affects only storage (the
least expensive resource).

If we desire to reduce m by a factor a (or m′ = m/a) we need to chose M ′ > M such that

p(n) = (1− e−
n
M )2m = (1− e−

n
M′ )2m′ ⇒

e−
n

M′ = 1− 1/2a (16)

Thus

m′ = log(1/p)
2a log 2

M ′ = n
log(1−1/2a)

}
⇒ k′ = k∗

log(1− 1/2)

a log(1− 1/2a)
. (17)

The table below depicts the tradeoffs involved in reducing m (by a factor a) vs the corresponding increase
in total storage s:

a 2 3 4 5 8
k′/k∗ 1.204 1.730 2.685 4.366 22.137

Thus decreasing m by a factor of 3 (a = 3) calls for increasing storage k by a factor 1.73 (and increasing
M by a factor 3 × 1.73). Decreasing m from 32 to 12 (in the numerical example illustrated in Section
III-D.1.a) calls for a four-fold increase in M and a 1.5 fold increase in s. In other words, both PLM
schemes viz., (m = 32,M = 215) and (m = 12,M = 217), meet the requirement p(22500) < 2−64.

2The complexity of the public function has a log2 n dependency on n.
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Fig. 1. Performance of RPS and KSSC designed to meet the criterion p(22500) ≤ 2−64. Note that all plots intersect at the point n = 22500
and log2(1/p) = 64.

E. Performance Comparison
A performance comparison of RPS and KSSC designed to meet the criterion p(n) < 2−64 for n ≤ 22500

(or − log2(p(n)) > 64 for n ≤ 22500) is depicted using plots of − log2 p vs n in Figure 1. The enclosed
table in Figure 1 also provides quantitative measures of various complexities associated with the KPSs
and the rate of degradation of security (even while the latter is evident from the plot).

In the table in Figure 1 the computational complexity is broken down into complexity of operations
with secrets CS and complexity of public operations CU . The value CS is itself broken down into two
components. For example, for RPS the m = 121 secrets fetched from storage (where they are stored
encrypted) have to decrypted to yield the m elementary shares Si. For KSSC-2 m = 12 SCs have to be
fetched from storage and decrypted. In addition m = 12 SCs have to be computed using the 12 secrets
stored in cache memory.

The complexity CU is indicated in terms of the number of 160-bit hash function evaluations. For RPS,
and KSSC computation of public functions (F () and f() respectively) calls for pseudo-random generation
of bits. A 160-bit hash function could be used to generate 160 pseudo-random bits. The storage complexity
S is shown in MBs, assuming 64-bit values (for all schemes).

Apart from demanding very low expensive overheads compared to RPS, KSSC also has the least rate of
degradation of security, which can further be improved by trading off some storage efficiency (KSSC-2,
higher mM ) and simultaneously reducing the computational and bandwidth overheads.

IV. PRACTICAL DEPLOYMENT ISSUES

Large scale networks do not typically start as large scale networks. A potential large scale network
may start with a few thousands or even a few hundred thousands and may grow to several billions. With
the large storage capabilities of current mobile devices, even for network sizes of millions nonscalable
KDSs which require very low computational overheads are well suited. After all, storing 5 million 128-bit
secrets requires only 64 MB of storage.

In this section we argue why an elegant KDS proposed by Leighton and Micali in [3] is a substantially
more appealing alternative to the basic KPS for small scale networks. We then argue that a combination
of LM-KDS and KSSC has many compelling advantages for practical deployments.

A. Network Model
We shall assume that entities are inducted into the network by the KDC (perhaps controlled by the

network operators) by providing them with secrets corresponding to some ID. We shall represent the
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entities as A (Alice), B (Bob), C (Charlie) etc. Values like A,B,C could be 128-bit hashes of long
descriptive real-life identities. Let us further assume that

1) the only time that the entities have access to the KDC is during their induction into the network,
and

2) that entities can be inducted at any time.
Any two inducted entities should thereafter be able to ©1 establish a shared secret (say 128-bit strong),
and ©2 determine each other’s real life identities.

Obviously, the most important criteria to be considered is the network scale. We shall use the following
three distinct measures for scale of the KDS:

1) N - the size of the ID-space, as each entity requires a unique ID;
2) Na(t) - the total number of entities inducted before time t; and
3) Nm - the maximum number of entities that are expected to be inducted;

The value Nm is the “network operators conservative guess” of Na(t) for t→∞.
If the basic KPS is used it may appear at first sight that the KDC can choose a master secret K

and KAB = KBA used for mutual authentication of A (Alice) and B (Bob) can be KAB = KBA =
h(K,A,B)⊕ h(K,B,A). However such an approach is not possible when entities are inducted into the
network asynchronously. For example, if A joins the network before B, the network operator does not
even know the ID B that will be assigned to an entity Bob in the future. Thus there is no way for the
KDC to provide Alice with the value KAB.

One option is to associate each entity with two IDs. For example, Alice, say the ithentity to be inducted
into the network, can be associated with a real-life identity like A (128-bit ID) and a “KDS identity” i.
Bob (who is inducted after Alice) is associated with IDs B and j1 > i. As we need only Nm different
KDS IDs, the IDs like i and j1 could be log2Nm bits long.

Alice can be provided with©1 Nm secrets Kij and©2 Nm “commitments” Xj , 1 ≤ j ≤ Nm (or a single
commitment X derived using a Merkle hash tree [19] with Xjs as leaves). Each commitment can serve
as a public value for a one-time-signature [20] scheme. Thus a commitment Xi can be used to bind the
values A and i using a certificate 〈A, i〉Xi

. While A and B share a secret Kij1 , they will need to exchange
certificates to determine their real-life identities.

B. The Leighton-Micali KDS
In [3] Leighton and Micali proposed an elegant KDS, the LM-KDS, as an alternative to Kerberos. In

LM-KDS a KDC chooses a master key K and a hash function h(). Entity A is provided with the secret
KA = h(K,A). To facilitate mutual authentication of A and B, a public value

PAB = h(KA, B)⊕ h(KB, A) = PBA (18)

is used. When A desires to establish a session secret with B, A approaches the on-line KDC to get the
public value PAB. The shared secret between A and B is computed by A as

KBA = h(KA, B)⊕ PAB = h(KB, A). (19)

Note that B can also compute the shared secret without using the public value PAB.
For small-scale networks (small N ) the LM-KDS can be used to provide ad hoc establishment of SAs

if every entity stores one secret and N − 1 public values. More specifically, while in the basic KPS each
entity requires to store N − 1 secrets, for the LM-KDS (used without an online KDC), each entity stores
one secrets and a maximum of N − 1 public values. We shall now see why LM-KDS is a substantially
more appealing alternative for a small scale network model described in Section IV-A.
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1) Using LM-KDS: When the LM-KDS is used, the KDC chooses a master secret K. Let Alice be
the ithentity to be inducted into the network. Alice (A) is assigned the secret KA = h(M,A). In addition,
Alice receives i− 1 values 〈Ij, PAIj〉, 1 ≤ j ≤ i− 1, where

PAIj = h(KIj , A)⊕ h(KA, Ij) = PIjA, (20)

and Ij’s are identities of entities who were inducted into the network before Alice. Thus Bob (B) who
joins the network after A will store all public values for establishing a secret with all entities who
joined before B (including obviously, Alice). Alice can compute KAB = h(KA, B) and Bob can compute
KAB = h(KB, A)⊕PAB. Thus mutual authentication of any two entities based on their real-life identities
is possible irrespective of when the entities joined the network, without requiring overheads for exchanging
certificates.

2) Basic KPS vs LM-KDS: In practical scenarios the number of entities who have actually joined the
network till a time t, viz., Na(t) may be substantially lower than the “conservative guess” of the maximum
possible number of entities. If the basic KPS is used each entity needs O(Nm) storage and use one-time
signatures in addition.

With LM-KDS an entity inducted into the network at time t requires to store NA(t) values like 〈Ij, PAIj〉
(or Na(t) 32-byte values if IDs and public values are 128-bits long). An entity who joins the network
after ten thousand other entities requires 312 KB of storage. The millionth node to join the network will
require about 32 MB of storage.

That the storage required for any entity grows linearly depending on the time at which it joins the
network is intuitively appealing. After all with reducing costs of storage with time, newer entities (say
entities inducted in the year 2009) can afford to store more values than older entities (say inducted in
2007). Furthermore, that the stored values are public values that do not need as much protection as secrets
is also a desirable feature. Public values could even be stored in read-only media to prevent accidental or
intentional modifications.

LM-KDS also lends itself readily to employing multiple independent escrows. For instance in a scenario
where two KDCs with master secrets 1K and 2K are used, A can receive secrets 1KA = h(1K,A) and
2KA = h(2K,A). Thus establishment of SAs require two public values of the form iPAB = h(iKA, B)⊕
h(iKB, A). Each node however needs to store only one value PAB = 1PAB ⊕ 2PAB. If only B has access
to the public value PAB the pairwise secret KAB can be computed as

KAB =

{
h(1KA, B)⊕ h(2KA, B) by A
h(1KB, A)⊕ h(2KB, A)⊕ PAB by B (21)

Apart from eliminating the need for certificates and requiring substantially lower storage overhead, perhaps
the most compelling advantage of LM-KDS is that there is no need to place a hard limit on the value
Nm. In other words the network operators do not have to “guess” the potential network scale. If at some
time t′ the number of entities Na(t

′) goes beyond practical storage capabilities, one can continue to use
the LM-KDS in the “Kerberos mode” (the way it was intended in [3]) where the KDC is online to provide
public values on demand.

C. Growing Pains
While LM-KDS can facilitate ad hoc authentication for small scale networks, ad hoc SAs will no longer

be feasible as the network size grows to very large extents.
1) Ad Hoc vs Planned SAs: It is important to note that ad hoc SAs between two entities A and B are

required only in scenarios where
1) neither A nor B have a priori knowledge of their need to communicate with each other, and
2) it is impractical for either node to contact the KDC (say over the Internet).

An example of such a scenario is the case when A and B happen (purely by accident) to be neighbors in
a multi-hop ad hoc network where it is impractical for either node to communicate with a KDC. Another
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example is a scenario where A and B meet accidentally in a remote location where no connection to the
Internet exists. For planned interactions, or scenarios where it is practical for at least one node to contact
the KDC, there is no justification, nor the need, for ad hoc SAs based on collusion susceptible KPSs. The
LM-KDS (used in Kerberos-mode) is more than adequate for this purpose.

The use of scalable KPSs like KSSC is mandated only for unplanned interactions where access to
the KDC is impractical. In the rest of this section we shall argue why probabilistic KPSs, and more
specifically KSSC, is well suited to facilitate this requirement.

D. Probabilistic KPSs for Ad Hoc SAs
Apart from graceful degradation of security with increased number of compromised nodes, probabilistic

KPSs (like RPS and KSSC) have other substantial advantages over deterministic KPSs like Blom’s SKGS.
1) Low Complexity Hardware: Implementation of RPS and KSSC requires only block-cipher and / or

hash operations. A very low complexity cryptographic co-processor / smart card / SIM card, equipped
with a single reusable hardware block cipher or hash function3 can be used for all computations involving
secrets.

Implementation of finite field arithmetic required for Blom’s SKGS can be more expensive. Furthermore,
a block cipher / hash function is required in any case to perform computations (encryption of messages
and computing HMACs) using pairwise secrets facilitated by the KPS.

2) KDC Complexity: For all KPSs the number of secrets P to be chosen by the KDC is of very little
consequence. As the KDC has unrestricted freedom in choosing the core secrets a single master secret
can be used to derive all P values using a secure one-way function. However what is an issue is the
complexity required for computing all secrets to be provided to an entity with some ID (say A).

For SKGS the KDC has to compute SA = dA = DgA which requires (n+1)2 finite-field multiplication
operations, which can become prohibitively expensive for large n. For probabilistic KPSs the complexity
involved for computing SA is O(n log(1/p) hash function evaluations.

3) Renewal and Escrow: The (n, p)-secure probabilistic KPSs lend themselves readily to ©1 seamless
renewal, and ©2 simple strategies for employing multiple independent escrows (KDCs).

For Blom’s KPSs changing even one of the P secrets (any value of the symmetric matrix D) chosen
by the KDC will result in modification of every secret assigned to every entity. So renewal involves
complete modification of all secrets assigned to every entity. This may be very difficult to achieve without
interrupting the operation of the deployment. Furthermore, if two SKGS schemes are deployed in parallel
(say controlled by two independent KDCs, and each entity receives O(n) secrets from each KDC) the
resulting KPS, where SAs from both KPSs are used to establish pairwise secrets, is still only n-secure.
Thus simple strategies for increasing the number of escrows will cause increase in complexity proportional
to the number of escrows.

However for (n, p)-secure KPSs the situation is very different. Two (n, p)-secure KPSs can be combined
to yield an (n, p2)-secure KPS. For example, (n, p)-secure RPS with parameters (ξ, k) can actually be t
parallel deployments of (n, pi)-secure RPS schemes with parameters (ξ, ki) where 1 ≤ i ≤ t,

∏t
i=1 pi = p,

and
∑t

i=1 ki = k. Thus parallel deployments (controlled by independent KDCs) can be realized without
any loss of efficiency. To facilitate seamless renewal t−1 of the t systems could be used during the finite
period required for renewing the secrets of one of the t systems. Similarly an (n, p)-secure KSSC with
parameters (m,M) can actually be m parallel deployments controlled by m KDCs.

4) Multi-path Diversity: Another advantage of (n, p)-secure KPSs is that in applications like MANETs
and multi-hop sensor networks, nodes can make use of multi-path diversity [13] to improve the collusion
resistance. For example in a scenario where nodes A and B have three paths, say A→ B, A→ C → B
and A→ D → B, A can send three independent components of a session secret over the three independent
paths. An (n, p)-secure RPS is rendered (n, 4p3)-secure under this scenario. Note that in order to break
the session secret the attacker has to compromise KAB and (KAC or KCB) and (KAD or KDB). As the

3As a block-cipher can be used as a hash function and a hash function can be used as a block cipher [21]
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probability that any SA can be compromised is p (by an attacker who has exposed secrets from n nodes)
the probability that the attacker can compromise the session secret between A and B is p×2p×2p = 4p3.
Deterministic n-secure schemes cannot take advantage of multi-path diversity due to the catastrophic onset
of failure - either all links (SAs) are safe or all links are compromised.

5) Attackers with Specific Intentions: Almost all the advantages of probabilistic KPSs (over determin-
istic KPSs) stem from the fact that only a small fraction of the stored secrets (m << k) need to be used
for evaluating any SA. This fact also has a subtle disadvantage, viz., lower resistance to attacker with
specific intentions. We shall now see why this is not a disadvantage as long as KPS SAs are used only
for unplanned SAs.

Consider a scenario where an attacker desires to gain access to a specific secret KXY used for mutual
authentication of X and Y . With access to KXY the attacker can either impersonate X for purposes of
fooling Y or vice-versa. If the attacker’s strategy is to just compromise as many nodes that she can gain
access to, and if she has no way of intelligently choosing which nodes to compromise, a very large number
of nodes have to be compromised to expose KXY . For example, for KSSC with parameters m = 12 and
M = 217, an attacker has who has exposed secrets from close to half a million entities has an even chance
(p = 0.5) of determining the required KXY . However an attacker with very specific intentions does not
have to actually expose secrets from every node. All she has to do is identify half a million nodes she
could gain access to. Out of these nodes, she has to expose the required 2m secrets (for computing KXY )
from at most 24 nodes.

However, as long as KPS SAs are employed only for ad hoc (unplanned) SAs, attackers have very little
to gain by compromising very specific SAs. After all if X and Y do not foresee their need to interact at
some point in time (and hence use KPS SAs when they actually do), it is unlikely that an attacker may
be “lurking in wait” for such an eventuality. In addition, whenever it is convenient to do so, multi-path
diversity can be used to further reduce the risk posed by such an attacker. Note that in such cases the
attacker will require knowledge of multiple pairwise secrets.

V. RELATED WORK

Canetti et al [4] proposed an elegant broadcast authentication (BA) scheme which employs a concept
very similar to symmetric certificates4 derived from the secrets chosen by the KDC. The scheme in [4]
supports any number of “external entities” to broadcast authenticated messages.

In [4] the KDC chooses k secrets K1 · · ·Kk. “Internal entities” (say A,B,C · · ·, capable of verifying
broadcasts) are provided a subset of m << k secrets on an average - every entity is assigned any of the
k secrets with a probability ξ = m/k. The KDC issues k SCs to every “external entity” (who are not
provided with any of the k KDC secrets) which are derived from the k secrets of the KDC through a one
way function. For example an external entity Λ is provided with SCs KΛ

i = h(Ki,Λ), 1 ≤ i ≤ k. Along
with a message M, broadcast source Λ appends k HMACs Hi = h(M, KΛ

i ). Any entity can verify m of
the k appended HMACs on an average (every entity can compute m of the k SCs provided to Λ using
their subset of m secrets). The probability p(n) that an attacker who has access to the secrets stored in
n nodes can impersonate any external source for fooling a particular entity A (or the probability that the
pool of secrets accumulated from n nodes includes all m secrets of A) is

p(n) = (1− ξ(1− ξ)n)k (22)

One of the primary motivations of KSSC stems from the realization that the BA scheme in [4] is in fact
more suitable for establishing shared secrets between an external entity Λ and any internal entity (with
m secrets). Note that when used for BA we cannot afford to increase k to very large extents as k is the
number of HMACs appended. However when used for facilitating shared secrets k is only the number
of SCs that need to be stored. Only m of the k SCs need to be employed for computing a shared secret
KΛA.

4The authors however refer to the set of k secrets chosen by the KDC as “primary keys” and the SCs as “secondary keys.”
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Fig. 2. Performance of several KPSs designed to meet the criterion p(22500) ≤ 2−64.

In KSSC “internal entities” are assigned exactly m secrets and k SCs. Any two entities share (or can
compute) a set of 2m common SCs.

A. Other Probabilistic KPSs
Several other probabilistic KPSs for pairwise secrets have also been proposed in the literature.
1) HARPS: In hashed random preloaded subsets (HARPS) [16] with parameters (ξ, k, L), the KDC

chooses an indexed set of P = k/ξ secrets S = {K1 · · ·KP}, and a public functions FH(). The public
function FH(A) = {(A1, a1), (A2, a2), . . . , (Ak, ak)} determines the indices of k (of P ) secrets assigned
to entity A and the “hash depth” of each secret. More specifically, the secret KAi

is repeated hashed ai
times before it is assigned to A (say aiKAi

).
Two entities A and B compute their m = ξk shared indices as in RPS, and the respective hash depths

for each shared index. For some shared index (say j) B has the secret bjKj and A has the secret ajKj .
The elementary shared secret Si corresponding to the shared index is max(aj ,bj)Kj . If aj > bj then entity
A already has the elementary shared secret. Entity B needs to repeatedly hash its secret bjKj , aj − bj
times. As the hash depths are uniformly distributed between 1 and L, for any shared index the average
difference in hash depth is L/3. However, as only one of the two entities need to perform the hashing, a
total of mL/6 hashes have to be computed by each entity.

While HARPS requires slightly more computational overheads CS (due to the need for mL/6 hashes),
it retains all the advantages of RPS discussed in Section IV-D. Furthermore, it requires lower k compared
to RPS (and hence lower complexity of the public function F ()) and sports more graceful degradation
of security than RPS (see Figure 2). More specifically, even while the complexity of the public function
involves generation of k(log2(1/ξ) + log2 L) = k log2 L/ξ bits (instead of k log2(1/ξ) for RPS, the lower
value of k results in lower complexity of the public function F (). For HARPS with L = 32 designed to
meet p(22500) < 2−64, the minmal value of k ≈ 1.7e6 for ξ = 0.000077 (instead of k ≈ 2.7e6 for RPS).
The public function computation will require 296,875 160-bit hash computations (instead of 508,125 for
RPS).

2) MBS: Multi-space Blom’s schemes involving combinations of RPS with Blom’s schemes have been
independently proposed in [22] and [23]. The scheme proposed in [22] combines RPS with Blom’s SKGS
scheme. The scheme proposed by [23] combines RPS with Blom’s polynomial scheme [7].

MBS is characterized by three parameters (ξ, k, nb). The KDC chooses P = k/ξ independent instances
of nb-secure SKGS schemes. Each entity receives kb = n + 1 secrets corresponding to k = ξP of those
schemes. Thus the total of kkb values are provided to each entity (storage complexity S = k(nb + 1)).
Any two entities will share m̄ = ξk instances of Bloms KPSs on an average. In each shared scheme the
two entities can discover an elementary shared secret Si.
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The main motivation for MBS seems to be the extension of SKGS to realize more graceful degradation
of security. Simultaneously, MBS gains many of the other advantages of probabilistic KPSs discussed in
Section IV-D (like the ability to take advantage of multi-path diversity and cater for seamless renewal /
multiple escrows). However, like Blom’s scheme it mandates use of more complex hardware for finite-field
arithmetic, and demands substantially higher complexities CS and B.

For MBS one has the freedom to choose the parameter ξ depending on the desired rate of degradation
of security. An (n, p)-secure MBS scheme with parameters (ξ, k, nb) can be realized by combining a
(nr, p)-secure RPS with parameters (ξ, k) with an nb-secure Blom’s scheme where nrnb ≈ n. If we
choose nr << nb the resulting scheme is more “Blom KPS-like” (rapid degradation of security, but more
storage efficient). For nb << nr the resulting scheme is more “RPS-like” (more graceful degradation of
security, lower storage efficiency).

For MBS computation of each Si calls for ©1 nb+1 values to be fetched from storage, ©2 nb+1 finite-
field multiplications with secrets and ©3 nb + 1 exponentiation operations using the public values like α
and IDs. Thus for MBS SC = SU = B = ξk(nb + 1). In addition MBS also requires computation of a
public function F (A) ∩ F (B) (similar to RPS and HARPS) for determining the ξk intersecting indices.

For MBS, once a suitable ξ is chosen, the optimal choice of parameters involves finding a suitable nb that
minimizes k(nb + 1). For MBS designed to meet p(n = 22500 = 2−64 the optimal choice of parameters
for ξ = 2−3, 2−10, 2−12 are (nb = 2940, k = 334), (nb = 28, k = 49563), and (nb = 7, k = 224205)
respectively. The p(n) vs n plots for the MBS schemes are also depicted in Figure 2 (labelled MBS-1
(ξ = 1/8), MBS-2 (ξ = 2−10) and MBS-3 (ξ = 2−12)).

MBS-3 with high ξ (ξ = 1/8) has very little advantage over the SKGS scheme in terms of the rate of
degradation of security while mandating CS = CU = B = ξk(nb + 1) ≈ 122787 which is far greater than
the complexity required for SKGS (which would require CS = CU = B = n + 1 = 22501. For ξ = 2−10

(MBS-2) and ξ = 2−12 (MBS-3) the complexity reduces to 1404 and 438 respectively. However for low
ξ the complexity of the public function F (A) ∩ F (B) increases. MBS-2 (MBS-3) requires an equivalent
of 6196 (33631) 160-bit hash function evaluations to compute F (A) ∩ F (B).

Also note that the sole advantage of MBS compared to RPS (lower storage overheads) is reduced for
small ξ. Assuming 64-bit values MBS-2 and MBS-3 require storage of 11.34 and 15.39 MBs respectively
(compared to 20.71 MB for RPS and 12.94 MB for HARPS). Even this advantage is reduced in scenarios
where large ID-space is required (say 128-bit IDs) as for MBS (and Blom’s scheme) each secret will need
to be 128-bits long (as IDs and secrets belong to Zq, q ≥ N ). However this is not necessary for KPSs
that do not rely finite-field operations (RPS, HARPS, KSSC). While IDs like A and B could be 128-bits
long, each secret could be 64 bits long. After all m such secrets are combined to derive the final pairwise
secret KAB.

VI. CONCLUSIONS

We proposed an efficient key distribution scheme for facilitating cryptographic authentication of resource
constrained devices which are expected to take part in emerging networks. In such evolving application
scenarios involving large scale deployments of mobile computing devices, computation and bandwidth
overheads render scalable key distribution schemes that rely on asymmetric cryptographic primitives
unsuitable. However storage is an inexpensive resource for such devices.

The thesis central to this paper is that the low cost of storage can be used to offset the main disadvantage
of symmetric cryptographic primitives, viz., constraints on their scalability. We argued that a combination
of the KDS proposed by Leighton and Micali (LM-KDS) in [3] used in conjunction with the novel KPS
proposed in this paper (KSSC), is an appealing option for emerging large-scale networks. KSSC can take
good advantage of inexpensive storage resources to realize such high levels of collusion resistance that
its “fragility” may be irrelevant in practice.

We identified different sources of complexity in KPSs which prevent existing KPSs from achieving
high levels of collusion resistance. We argued that efficient KPSs should strive to take advantage of less
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expensive resources (like storage) and reduce dependence on more expensive resources (computation and
bandwidth overheads) to meet this requirement.

We argued that the simple and elegant LM-KDS can be used to cater for ad hoc SAs even when several
million entities may need to take part in a network. However when the number of entities goes beyond
reasonable storage requirements, LM-KDS cannot be used for facilitating ad hoc SAs as the KDC will
be required to be online. In such scenarios KSSC can be used for facilitating ad hoc SAs.

In practice, emerging networks can begin using only LM-KDS till some time t1 where the number
Na(t1) (the number of entities who have actually been inducted into the network) reaches a few millions.
Till this point there is neither the justification, nor the need, for KSSC. However, as the number of
inducted entities become large enough to render storage of Na(t > t1) values impractical, the network
can seamlessly switch to using LM-KDS in the Kerberos-mode for planned interactions, and rely on KSSC
SAs for unplanned interactions.

REFERENCES

[1] R. Needham and M. Schroeder, “Using encryption for authentication in large networks of computers,” Communications of the ACM,
21(12), December 1978.

[2] T. Matsumoto, H. Imai, “On the Key Predistribution System: A Practical Solution to the Key Distribution Problem,” pp 185–193.
CRYPTO 1987.

[3] T. Leighton, S. Micali, “Secret-key Agreement without Public-Key Cryptography,”Advances in Cryptology - CRYPTO 1993, pp 456-479,
1994.

[4] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B. Pinkas, “Multicast Security: A Taxonomy and Some Efficient Constructions,”
INFOCOMM’99, 1999.

[5] D. Davis, R. Swick, “Network Security via Private-Key Certificates,” Proceedings of the 3rd USENIX Security Symposium, Baltimore,
Sep. 1992.

[6] D. Boneh, M. Franklin, “Identity-based encryption from the Weil pairing,” Advances in Cryptology – Crypto’2001, Lecture Notes on
Computer Science 2139, Springer-Verlag (2001), pp. 213–229.

[7] R. Blom, “Non-public Key Distribution,” Crypto-82, pp 231–236, 1982.
[8] R. Blom, “An Optimal Class of Symmetric Key Generation Systems,” Advances in Cryptology: Proc. of Eurocrypt 84, Lecture Notes

in Computer Science, 209, Springer-Verlag, Berlin, pp. 335-338, 1984.
[9] L. Gong, D.J. Wheeler, “A Matrix Key Distribution Scheme,” Journal of Cryptology, 2(2), pp 51-59, 1990.

[10] C.J. Mitchell, F.C. Piper, “Key Storage in Secure Networks,” Discrete Applied Mathematics, 21 pp 215–228, 1995.
[11] M. Dyer, T. Fenner, A. Frieze and A. Thomason, “On Key Storage in Secure Networks,” Journal of Cryptology, 8, 189–200, 1995.
[12] L. Eschenauer, V.D. Gligor, “A Key-Management Scheme for Distributed Sensor Networks,” Proceedings of the Ninth ACM Conference

on Computer and Communications Security, Washington DC, pp 41-47, Nov 2002.
[13] H. Chan, A. Perrig, D. Song, “Random Key Pre-distribution Schemes for Sensor Networks,” IEEE Symposium on Security and Privacy,

Berkeley, California, May 2003.
[14] R. Di Pietro, L. V. Mancini, A. Mei, “Random Key Assignment for Secure Wireless Sensor Networks,” 2003 ACM Workshop on

Security of Ad Hoc and Sensor Networks, October 2003.
[15] M. Ramkumar, N. Memon, R. Simha, “Pre-Loaded Key Based Multicast and Broadcast Authentication in Mobile Ad-Hoc Networks,”

Globecom-2003.
[16] M. Ramkumar, N. Memon, “An Efficient Random Key Pre-distribution Scheme for MANET Security,” IEEE Journal on Selected Areas

of Communication, March 2005.
[17] S.W. Smith, S. Weingart, “Building a High-Performance Programmable Secure Coprocessor,” IBM Technical Report RC21102, Feb

1998.
[18] J.D Tygar, B. Yee, “Dyad: A system for Using Physically Secure Coprocessors,” Technological Strategies for the Protection of Intellectual

Property in the Networked Multimedia Environment, pp 121–152, 1994.
[19] R.C. Merkle “Protocols for Public Key Cryptosystems,” In Proceedings of the 1980 IEEE Symposium on Security and Privacy, 1980.
[20] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption Function,” In Advances in Cryptology, Crypto 87.
[21] B. Schneier, Handbook of Applied Cryptography, Second Edition, John Wiley and Sons Inc., 1996.
[22] W. Du, J. Deng, Y.S. Han. P.K.Varshney, “A Pairwise Key Pre-distribution Scheme for Wireless Sensor Networks,” Proceedings of the

10th ACM Conference on Computer and Communication Security, pp 42–51, 2003.
[23] D. Liu, P.Ning, “Establishing Pairwise Keys in Distributed Sensor Networks,” Proceedings of the 10th ACM Conference on Computer

and Communication Security, Washington DC, 2003.
[24] M. Ramkumar, “Securing Ad Hoc Networks With “Asymmetric” Probabilistic Key Predistribution Schemes,” IEEE Information

Assurance Workshop, West Point, NY, 2006.

18


