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Abstract. Building upon a famous result due to Ajtai, we propose a sequence of lattice
bases with growing dimension, which can be expected to be hard instances of the shortest
vector problem (SVP) and which can therefore be used to benchmark lattice reduction
algorithms.

The SVP is the basis of security for potentially post-quantum cryptosystems. We use our
sequence of lattice bases to create a challenge, which may be helpful in determining appro-
priate parameters for these schemes.
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1 Introduction

For the construction of post-quantum cryptosystems, it is necessary to identify computational
problems, whose difficulty can be used as a basis of the security for such systems, and that remain
difficult even in the presence of quantum computers. One candidate is the problem of approxi-
mating short vectors in a lattice (shortest vector problem — SVP). The quantum-hardness of this
problem was analyzed by Ludwig [27] and Regev [36]. They both find that the computational
advantage gained with quantum computers is marginal. There are several cryptographic schemes
whose security is based on the intractability of the SVP in lattices of sufficiently large dimension
(e.g. [19,20,3,37]). To determine appropriate parameters for these cryptosystems, it is necessary
to assess the practical difficulty of this problem as precisely as possible.

In this paper, we present a sequence of lattice bases with increasing dimension, which we
propose as a world wide challenge. The construction of these lattices is based both on theoretical
and on practical considerations. On the theoretical side, we apply a result of Ajtai [2]. It states
that being able to find a sufficiently short vector in a random lattice from a certain set, which
also contains our challenge lattices, implies the ability to solve supposedly hard problems (cf. [38])
in all lattices with a slightly smaller dimension than that of the random lattice. Furthermore, we
invoke the pigeon hole principle, which guarantees the existence of a short trinary vector in each
challenge lattice. On the practical side, using an analysis by Gama and Nguyen [16], we argue
that finding this vector is hard for the lattices in our challenge. We also present first experimental
results that confirm the analysis.

Our challenge at http://www.latticechallenge.org can be considered as an analogue of
similar challenges for the integer factoring problem [39] and the problems of computing discrete
logarithms in the multiplicative group of a finite field [30], or in the group of points on an elliptic
curve over a finite field [11].

Our aim is to evaluate the current state-of-the-art in practical lattice basis reduction by provid-
ing means for an immediate and well-founded comparison. As a first application of the proposed
challenge, we compare the performance of LLL-type reduction methods — LLL [26], Nguyen and
Stehlé’s fpLLL [33], Koy and Schnorr’s segment LLL (sLLL) [24] — and block-type algorithms —
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Schnorr’s BKZ [41,40], Koy’s primal-dual (PD) [23], Ludwig’s practical random sampling 1 (PSR)
[28]. To our knowledge, this is the first comparison of these algorithms.

Related work. Lattice reduction has been subject to intense studies over the last decades, where
a couple of methods and reduction schemes, in particular the LLL algorithm by Lenstra, Lenstra,
and Lovász [26], have been developed and successively improved. Especially, the block Korkine
Zolotarev algorithm (BKZ), due to Schnorr [40,41], has become the standard method when strong
lattice basis reduction is required. In theory, the best algorithm for finding short vectors is the
block algorithm slide reduction presented in [15]. Compared to other algorithms like Schnorr’s,
the asymptotical complexity remains the same, the asymptotical approximation factor achievable
remains 2O(n log logn/ logn), while the constants are lowered using slide reduction.

There have been several approaches to measure the effectiveness of known lattice reduction
algorithms, especially in the context of the NTRU cryptosystem [20]. Some of them, as in [21,22],
base their analysis on cryptosystems while others, like [34,16], make a more general approach using
random lattices.

To our knowledge, there has never been a unified challenge, one that is independent of a
specific cryptosystem, for lattice reduction algorithms. In all previous challenges, the solution was
always known to the creator. There exist some classes of lattices, upon which you could build
a challenge, e.g. the random lattices described in [13]. The authors fix a number N and choose
one of the lattices with dimension n and determinant N . For implementation issues it is common
to use a prime N . It can be shown that these lattices are uniformly distributed in the set of all
modulo lattices of dimension n with respect to the natural probability measure on this set. This
construction leads to lattices with short vectors of approximate length vol(L)1/n

√
n/(2πe) [16].

However, for a challenge it is more application oriented to use modular lattices since most lattice-
based cryptographic schemes work in modular lattices, e.g. the SWIFFT hash function [29], the
GPV signature scheme [17], or the NTRU cryptosystem [20].

Organization. In Section 2, we provide a brief introduction to lattices and state some fundamen-
tal definitions. In Section 3, we define a family of lattices and prove two properties, which are
fundamental for our explicit construction presented in Section 4. Then, we give first experimental
results comparing the performance of various lattice reduction algorithms in Section 5. Finally,
Section 6 introduces the actual lattice challenge.

2 Preliminaries

Let Rn denote the n-dimensional real vectorspace. We write the vectors of this space in boldface to
distinguish them from numbers. Any two vectors v,w ∈ Rn have an inner product 〈v,w〉 = vTw.
Any v ∈ Rn has a length given by the Euclidean norm ‖v‖2 =

√〈v,v〉 =
√
v2
1 + · · ·+ v2

n. In
addition to the Euclidean norm, we also use the maximum norm ‖v‖∞ = maxi=1,...,n{|vi| }.

A lattice in Rn is a set L = {∑m
i=1 xi bi |xi ∈ Z}, where b1, . . . ,bm are linearly independent

over R. The matrix B = [b1, . . . ,bm] is called a basis of the lattice L and we write L = L(B). The
number of linearly independent vectors in the basis is the dimension of the lattice. If dim(L(B)) = n
the lattice is full-dimensional.

An m-dimensional lattice L = L(B) has many different bases, namely all the matrices in the
orbit BGLm(Z) = {BT |T ∈ GLm(Z)}. If the lattice is full-dimensional and integral, that is
L ⊆ Zn, then there exists a unique basis B = (bi,j) of L, which is in Hermite normal form (HNF),
i.e.

i. bi,j = 0 for all 1 ≤ j < i ≤ m
ii. bi,i > bi,j ≥ 0 for all 1 ≤ i < j ≤ m

Furthermore, the volume vol(L) of a full-dimensional lattice is defined as |det(B)|, for any
basis B of L. For every m-dimensional lattice L there is a dual (or polar, reciprocal) lattice
L∗ = {x ∈ Rm | ∀y ∈ L : 〈x,y〉 ∈ Z}. For any full-dimensional lattice L = L(B), it holds that
1 A practical variant of Schnorr’s random sampling reduction [42].



3

L∗ = L((B−1)T ). The length of the shortest lattice vector, denoted with λ1 = λ1(L), is called first
successive minimum.

3 Foundations of the challenge

In this section, we define a family of sets containing lattices, where each set will have two important
properties:

1. All lattices in the set contain non-obvious short vectors;
2. Being able to find a short vector in a lattice chosen uniformly at random from the set, im-

plies being able to solve difficult computational problems in all lattices of a certain smaller
dimension.

The family of lattice sets. Let n ∈ N, n ≥ 50, c1, c2 ∈ R>0, such that

c1 ≥ 2.1 and c2 ≤ c1 ln(2)− ln(2)
50 ln(50)

(1)

Furthermore, let

m = bc1n ln(n)c , (2)
q = bnc2c , (3)

and Zq = {0, . . . , q − 1}. For a matrix X ∈ Zn×mq , with column vectors x1, . . . ,xm, let

L(c1, c2, n,X) =

{
(v1, . . . , vm) ∈ Zm

∣∣∣∣∣
m∑
i=1

xivi ≡ 0 (mod q)

}
.

All lattices in the set L(c1, c2, n, ·) = {L(c1, c2, n,X)|X ∈ Zn×mq } are of dimension m and the
family of lattices L is the set of all L(c1, c2, n, ·), such that c1, c2, n are chosen according to (1).

In the following theorems, we prove that all lattices in the sets of the family L have the desired
properties.

Existence of short vectors. We prove that all lattices in L(c1, c2, n, ·) of the family L contain a
vector with Euclidean norm less than

√
m.

Theorem 1. Let n ∈ N, n ≥ 50, c1, c2 ∈ R>0, and q,m ∈ N be as described above. Then, any
lattice in L(c1, c2, n, ·) ∈ L contains a vector with Euclidean norm less than

√
m.

Proof. Let L(c1, c2, n,X) ∈ L(c1, c2, n, ·) ∈ L. We use the pigeon hole principle in order to show
that L(c1, c2, n,X) contains a trinary vector of length less than or equal to

√
m.

Consider the set of all vectors z ∈ {0, 1}m. Obviously, it contains 2m vectors. By the choice of
c1, c2,m, and q above, we have 2m > qn because

n ln(q) ≤ c2 n ln(n)
∗
< ln(2) bc1 n ln(n)c
= m ln(2) .

For a proof of inequality ∗, we refer the reader to Appendix A. In consequence, there is a collision,
i.e. two distinct vectors z, z′ ∈ {0, 1}m with

m∑
i=1

xi zi ≡
m∑
i=1

xi z′i (mod q)

and therefore z− z′ ∈ L(c1, c2, n,X). The vector z− z′, however, is at least as short as
√
m in the

Euclidean norm because
‖z− z′‖2 ≤

√
m ‖z− z′‖∞ =

√
m.

ut
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Fig. 1. The complexity of γ-SVP for increasing γ (some constants omitted).

Hardness of finding short vectors. In the following, we show that being able to find short vectors
in an m-dimensional lattice chosen uniformly at random from L(c1, c2, n, ·) ∈ L, implies being able
to solve (conjectured) hard lattice problems for all lattices of dimension n.

In his seminal work [2], Ajtai proved the following theorem that connects average-case instances
of certain lattice problems to worst-case instances. The problems are defined as follows.

Lattice problems. Let L ⊆ Zn be an n-dimensional lattice and γ ≥ 1. We define the

– Approximate shortest length problem (γ-SLP):
Find l ∈ R, such that l ≤ λ1(L) ≤ γ l.

– Approximate shortest vector problem (γ-SVP):
Find a vector v ∈ L \ {0}, such that for all w ∈ L : ‖v‖2 ≤ γ ‖w‖2.

– Approximate shortest basis problem (γ-SBP):
Find a basis B of L, such that for all C ∈ BGLm(Z) :

max
i=1,2,...,n

‖bi‖2 ≤ γ max
i=1,2,...,n

‖ci‖2 .

Theorem 2 ([2, Theorem 1]). Let c > 1 be an absolute constant. If there exists a probabilistic
polynomial time (in n) algorithm A that finds a vector of Euclidean norm at most β(n) =

√
m in

a random m-dimensional lattice from L(c1, c2, n, ·) ∈ L with probability ≥ 1/2 then there exists

1. an algorithm B1 that solves the γ-SLP;
2. an algorithm B2 that solves the SVP, provided that the shortest vector is γ-unique 2;
3. an algorithm B3 that solves the γ-SBP.

Algorithms B1,B2,B3 solve the respective problem (each with γ = nc) with probability exponentially
close to 1 in all lattices of dimension n, i.e. especially in the worst-case. B1,B2, and B3 run in
probabilistic polynomial time in n.

As for the constant c in Theorem 2, there have been several improvements to Ajtai’s reduction
with c ≥ 8 [10]. The first improvement (c = 3.5 + ε) is due to Cai and Nerurkar [10], whereas the
most recent works by Micciancio [31] and Micciancio and Regev [32], improve c to almost 3 1.

Following an improved worst-case to average-case reduction by Gentry, Peikert, and Vaikun-
tanathan [17], we argue that Theorem 2 holds for our choice of parameters. Their reduction
demands that for β(n) =

√
m, q = bnc2c has to grow at least slightly faster than

√
2.1n ln(n).

More precisely,

bnc2c ≥ √mω(
√
n ln(n)) , i.e. bnc2c ≥ √c1 n ln(n) (

√
n ln(n))ε (ε > 0) .

With our choice of c2, we satisfy this lower bound for all relevant n ≥ 50. The resulting approxi-
mation factor γ is Õ(n).

Asymptotic and practical hardness of the above problems depends on the choice of γ. A recent
survey [38] by Regev states the currently known“approximability”and“inapproximability” results.
As for the complexity of lattice problems, it focuses on the works of Lagarias, Lenstra, and Schnorr
2 A shortest vector v ∈ L is γ-unique if for all w ∈ L with ‖w‖2 ≤ γ ‖v‖2 ⇒ w = ±v.
3 Omitting poly-logarithmic terms in the resulting approximation factor.
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[25], Banaszczyk [7], Goldreich and Goldwasser [18], Ajtai, Kumar, and Sivakumar [4], Aharonov
and Regev [1], and Peikert [35]. Since it is very helpful and descriptive, we adopted Figure 1 from
the survey.

On the left, there are provably NP-hard problems, followed by a gap for which the hardness
is unknown. In the center, there are problems conjectured not to be NP-hard because their NP-
hardness would contradict the general perception that coNP 6= NP. Finally, on the right, there are
problems that can be solved in probabilistic polynomial time.

We emphasize that the problems in Theorem 2 are not believed to be NP-hard because γ >
√
n.

Nevertheless, there is no known algorithm that efficiently solves worst-case instances of lattice
problems for sufficiently large dimensions n, with an approximation factor polynomial in n. So
Theorem 2 strongly supports our claim that computing short vectors in the lattice family is hard.
This is also supported by a heuristic argument of Gama and Nguyen [16], which we refer to in
Section 4.

4 Construction of explicit bases

Ajtai’s construction in [2] defines all lattices implicitly. In this section, we show how to generate
explicit integral bases for these lattices.

For any m ≥ 500, we now construct a lattice Lm of dimension m, which is our hard instance of
the SVP. The lattice Lm is of the form L(c1, c2, n,X), where the parameters c1, c2, n,X are chosen
as a function of the dimension m as follows.

We start with a desired lattice dimension m, set c1 = 2.1, c2 = c1 ln(2) − ln(2)/(50 ln(50)),
and choose n = n(m) such that (2) holds, i.e. find an n ∈ N such that bc1 n ln(n)c is a close to m
as possible. With m = 500, for example, we get c1 = 2, c2 = 1.45207, n = 59, and q = 372.

Having selected the set L(c1, c2, n, ·), we “randomly” pick a lattice from it. We use the digits
of π as a source of “randomness” 4. This approach is supported by the conjectured normalcy of π
in [5,6]. We write

3.π1 π2 π3 π4 . . . ,

so πi, for i ≥ 1, is the ith decimal digit of π in the expansion after the decimal point. In order to
compensate for potential statistical bias, we define

π∗i = π2 i + π2 i−1 mod 2 for i ≥ 1 .

Now, we use the sequence (π∗1 , π
∗
2 , π
∗
3 , π
∗
4 , . . .) as a substitute for a sequence of uniformly distributed

random bits.
Let ` = 0. The matrix X = (xi,j) ∈ Zn×mq is chosen via

xi,j =
k+blog2(q)c∑

l=k

2l−k π∗l for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

with k = k(i, j) = ((i− 1)m+ (j − 1) + `) (blog2(q)c+ 1) + 1 ,
If xi,j ≥ q recompute xi,j with ` = `+ 1 .

With that, we have selected a “random” element L(c1, c2, n,X), for which we will now generate an
integral basis.

Let Im be the m-dimensional identity matrix. We start with the matrix

Y1 = (XT | q Im) =


x1,1 · · · xn,1 q 0 · · · 0

x1,2 · · · xn,2 0 q
...

...
. . .

...
...

. . . 0
x1,m · · · xn,m 0 · · · 0 q

 .

4 The digits of π can be obtained from ftp://pi.super-computing.org/.
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m n q δm

200 29 132 1.0125
250 34 167 1.0110
300 40 211 1.0095
350 45 251 1.0087

400 50 293 1.0079
450 54 327 1.0075
500 59 372 1.0069
550 64 419 1.0065
600 68 458 1.0062
650 73 507 1.0058
700 77 548 1.0055

Table 1. Lattice parameters with the necessary δm.

Let Y2 be the Hermite normal form of Y1, we compute the transformation matrix T1, which satisfies

Y2 T1 = Y1 = (XT | qIm) .

We set T2 to be equal to T1, but without the n leading columns. This guarantees that

Y2 T2 = q Im . (4)

Finally, we set the basis to B = TT2 .
Now, we have to show that B is an integral basis of L(c1, c2, n,X). Clearly, B is an integral

matrix because the transformation T1, given by the HNF computation, is in Zm×(n+m) and T2 is
the same matrix with the n leading columns removed.

By the uniqueness of inverses, (4) shows that B = ((Y2/q)−1)T . This implies that B is a basis
for the dual lattice of L(Y2/q) (cf. Section 2). Since Y2 is an integral transformation of Y1, they
span the same lattice. Thus, L(Y2/q) = L(Y1/q).

By the defining property of the dual lattice, we have that for any v ∈ L(B) and w ∈ L(Y1/q),
it holds that 〈v,w〉 ∈ Z. So especially for all columns x of XT , it holds that 〈v,x/q〉 ∈ Z, or
equivalently 〈v,x〉 ∈ qZ. This implies 〈v,x〉 mod q = 0, which in turn gives us L(B) ⊆ L(c1, c2, n,
X).

Now let v ∈ L(c1, c2, n,X), so for any column x of XT we have that the inner product
〈v,x〉 mod q = 0, or equivalently 〈v,x/q〉 ∈ Z. Since we know L(c1, c2, n,X) ⊆ Zm, it also holds
that 〈v, e〉 ∈ Z for any column e of the identity matrix Im. Since v has an integral inner product
with each column vector in Y1/q, this means v is in the dual lattice of L(Y1/q), which we know to
be L(B). Finally, we have L(B) = L(c1, c2, n,X).

For a small example of such a basis, refer to Appendix C.

The choice of parameters. We now argue that our choice of the parameters leads to m-dimensional
lattices Lm = L(c1, c2, n,X), in which vectors of norm less than

√
m are hard to find.

We have chosen c2, such that Theorem 1 guarantees the existence of lattice vectors with norm
less than

√
m in Lm. Then, the hardness of lattice problems in a large dimension m would be

based on the worst-case hardness of lattice problems in a very small dimension n. As n decreases,
our hardness argument becomes less meaningful because even worst-case lattice problems in small
dimensions are believed to be easy.

Table 1 shows how m and n are related for the selected lattices Lm. For a graphical overview,
up to m = 2000, refer to Appendix B. Thus, in order to apply Theorem 2 as a strong indication
for hardness, we keep n(m) close to m in the above construction. We choose a pseudo-random X
to get a random element in L(c1, c2, n, ·), as required by Theorem 2.

To give another argument for the hardness of SVP in our lattices, we use a result by Gama and
Nguyen [16]. They analyze the hardness of finding vectors v in a random lattice L of dimension d
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such that
‖v‖ < δdvol(L)1/d,

where δ is a predetermined constant (Hermite factor). They state that computing such vectors
is difficult for δ = 1.01 and “totally out of reach” for δ = 1.005 and d ≥ 500. The distribution
from which Gama and Nguyen choose the random lattices for their analysis is different from the
distribution we have described at the beginning of this section, so their statement can only be seen
as an indication of hardness.

Following the analysis in [8], the shortest vector we are likely to find in in a d-dimensional
sublattice of the challenge lattice Lm has length δdqn/d. Considering this length as a function of
the dimension d, the minimum δ2

√
n log(q)/ log(δ) is obtained for d =

√
n log(q)/ log(δ). Setting the

target length to
√
m, we can compute a δm, which satisfies

√
m ≤ δ2

√
n log(q)/ log(δm)

m .

Such δm are listed in column 3 of Table 1.
In combination with the analysis of Gama and Nguyen, the table suggests that while finding a

vector shorter than
√
m in L250 is still possible, the respective problem in L700 will be very hard

in practice. As the dimension increases, the necessary δm falls below 1.005. We believe that finding
short vectors in the corresponding lattices will require entirely new algorithms.

5 Experiments with lattice reduction algorithms

As a first application of our explicit construction of lattices Lm, we show how various lattice
reduction algorithms perform on them. Basically, there are two types of algorithms: the LLL-
type and the block-type. Building upon LLL, block-type algorithms are typically stronger, in the
sense that they are able to find significantly shorter vectors. Block-type algorithms, however, are
impractical for large block sizes because their running time increases at least exponentially in this
parameter. All experiments were run on a single core AMD Opteron at 2.6 GHz, using Shoup’s
NTL [43] in version 5.4.2 and GCC 4.3.1. .

Toy challenges. For Theorem 1 to work, we need n(m) ≥ 50, which is why we refer to lattices Lm
with m < 400 as toy challenges. This does not imply that solving the challenge is easy in those
smaller dimensions. We just cannot simply prove the existence of a sufficiently short lattice vector.
In practice, however, we have seen that such vectors can be found.

Implementations. For LLL and BKZ, we used the famous floating-point implementations integrated
in the NTL. We thank Filipović and Koy for making available their implementations of sLLL and
PD, which were part of the diploma thesis [14]. We also thank Ludwig for making available and
updating his implementation of PSR that was part of his PhD thesis [28]. Finally, we thank Cadé
and Stehlé for making available their implementation of fpLLL. It was obtained from [44] in version
3.0.3.

Figure 2 and Figure 3 depict the performance, i.e. the length of the shortest obtained vector
and the logarithmic running time in seconds, for LLL-type and block-type methods, respectively.
The boxed line in the left figures shows the norm bound

√
m that has to be undercut. In contrast

to our initial construction in [9], the same algorithms are not able to solve even the easiest problem
in dimension m = 200.

While being arguably efficient with our choice of parameters, sLLL performs slightly worse
than fpLLL and LLL with respect to approximation quality. This, however, is to be expected in this
segment-wise algorithm. For larger dimensions, however, the approximation results of all LLL-type
algorithms seem to converge. Thanks to Damien Stehlé, who pointed out the correct parameters
for fpLLL, the running time performance of fpLLL significantly surpasses that of LLL and sLLL in
higher dimensions. In Figure 3a, observe that BKZ and PSR perform better than PD, which is
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Fig. 2. Performance of LLL-type lattice reduction with comparable parameters.
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Fig. 3. Performance of block-type lattice reduction with comparable parameters.

mostly due to the internal sLLL step in PD. Their running time, displayed in Figure 3b, seems to
converge in higher dimensions.

While the approximation performance of block-type algorithms can be further improved using
larger block sizes, this approach is limited by the resulting running time. Extrapolating to higher
dimensions, it becomes obvious that finding sufficiently short vectors in Lm requires a significantly
larger effort. This coincides with our observation on the Hermite factor in Section 4.

To conclude, we have reviewed the current state-of-the-art performance of lattice reduction
algorithms, using reasonable parameters. We did not, however, explore the limits of the block-type
methods. This assessment, we leave to the contestants of the actual lattice challenge that is defined
in the next section.

6 The challenge

In Section 4, we have constructed challenge lattices Lm of dimension m, for m ≥ 500. The results
in Section 3 together with the pseudo-random choice of Lm guarantee the existence of vectors
v ∈ Lm with ‖v‖2 < n(m), which are hard to find. For a toy example, refer to Appendix C.

As stated before, we want the lattice challenge to be open in the sense that it does not terminate
when the first short vector is found. Having proven the existence of just one solution might suggest
that there are no more, but during practical experiments, we found that many successively shorter
vectors exist. For example in Figure 4, we display that in dimension m = 200 BKZ with increasing
block size subsequently finds smaller and smaller lattice vectors.

We propose the following challenge to all researchers and students.
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Lattice Challenge

The contestants are given lattice bases of lattices Lm, together with
a norm bound ν. Initially, we set ν = d√me.

The goal is to find a vector v ∈ Lm, with ‖v‖2 < ν.
Each solution v to the challenge decreases ν to ‖v‖2.
The challenge is hosted at http://www.latticechallenge.org.
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14. B. Filipović. Implementierung der Gitterbasenreduktion in Segmenten. Master’s thesis, Johann Wolf-

gang Goethe-Universität Frankfurt am Main, 2002.
15. N. Gama and P. Q. Nguyen. Finding short lattice vectors within mordell’s inequality. In STOC, pages

207–216, 2008.
16. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In N. P. Smart, editor, Advances in

Cryptology — Eurocrypt 2008, volume 4965 of Lecture Notes in Computer Science, pages 31–51.
Springer-Verlag, 2008.

17. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In Proceedings of the Annual Symposium on the Theory of Computing (STOC) 2008,
pages 197–206. ACM Press, 2008.

18. O. Goldreich and S. Goldwasser. On the limits of nonapproximability of lattice problems. J. Comput.
Syst. Sci., 60(3):540–563, 2000.

19. O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice reduction problems.
In Advances in Cryptology — Crypto 1997, volume 1294 of Lecture Notes in Computer Science, pages
112–131. Springer-Verlag, 1997.

20. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In
J. Buhler, editor, Algorithmic Number Theory Symposium — ANTS, volume 1423 of Lecture Notes in
Computer Science, pages 267–288. Springer-Verlag, 1998.

21. J. Hoffstein, J. H. Silverman, and W. Whyte. Estimated breaking times for NTRU lattices. Technical
Report 012, Version 2, NTRU Cryptosystems, 2003. http://ntru.com/cryptolab/tech_notes.htm.

22. N. Howgrave-Graham, H. J., J. Pipher, and W. Whyte. On estimating the lattice security of NTRU.
Technical Report 104, Cryptology ePrint Archive, 2005. http://eprint.iacr.org/2005/104/.

23. H. Koy. Primale-duale Segment-Reduktion. http://www.mi.informatik.uni-frankfurt.de/

research/papers.html, 2004.
24. H. Koy and C.-P. Schnorr. Segment LLL-reduction of lattice bases. In J. H. Silverman, editor, CaLC,

volume 2146 of Lecture Notes in Computer Science, pages 67–80. Springer, 2001.
25. J. C. Lagarias, H. W. L. Jr., and C.-P. Schnorr. Korkin-Zolotarev bases and successive minima of a

lattice and its reciprocal lattice. Combinatorica, 10(4):333–348, 1990.
26. A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische

Annalen, 261(4):515–534, 1982.
27. C. Ludwig. A faster lattice reduction method using quantum search. In Algorithms and Computation,

volume 2906 of Lecture Notes in Computer Science, pages 199–208. Springer-Verlag, 2003.
28. C. Ludwig. Practical Lattice Basis Sampling Reduction. PhD thesis, Technische Universität Darmstadt,

2005. http://elib.tu-darmstadt.de/diss/000640/.
29. V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Swifft: A modest proposal for fft hashing.

In Fast Software Encryption (FSE) 2008, Lecture Notes in Computer Science, pages 54–72. Springer-
Verlag, 2008.

30. K. S. McCurley. The discrete logarithm problem. In C. Pomerance, editor, Cryptology and computa-
tional number theory, pages 49–74, Providence, 1990. American Mathematical Society.

31. D. Micciancio. Almost perfect lattices, the covering radius problem, and applications to Ajtai’s con-
nection factor. SIAM Journal on Computing, 34(1):118–169, 2004.

32. D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian measures. SIAM
Journal on Computing, 37(1):267–302, 2007.
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A Completing the proof of Theorem 1

We want to show there exists an n0, such that

c2n ln(n) < ln(2) bc1n ln(n)c
for all n ≥ n0. Recall that c2 < c1 ln(2), so there exists an ε > 0, such that c2 = c1 ln(2) − ε. We
choose n0 to be the smallest positive integer, such that ln(2) ≤ ε n0 ln(n0). We prove the inequality.

c2n ln(n) = (c1 ln(2)− ε)n ln(n)
≤ ln(2)c1n ln(n)− ε n ln(n)
≤ ln(2)(c1n ln(n)− 1)
< ln(2) bc1n ln(n)c

This completes the proof.

B Ratio between m, n, and q

In order to get an idea of the ratios n : m and q : m in our challenge lattices, refer to Figure 5.
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Fig. 5. Ratio between challenge dimension m, reference dimension n, and the modulus q.
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C Challenge example

The following low-dimensional example gives an idea of what the challenge lattices, and the short
vectors in them, essentially look like. Its block structure is similar to the one found by Coppersmith
and Shamir for NTRU lattices [12]. This is not surprising because both belong to the class of
modular lattices.

Example 1. The transposed challenge basis for m = 20, n = 6, q = 13 looks like:

[

[1 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 -4 -2 0 -11 -7]

[0 1 0 0 0 0 0 0 0 0 0 0 0 0 -2 -6 -8 0 -6 0]

[0 0 1 0 0 0 0 0 0 0 0 0 0 0 -5 -7 -12 -6 -10 -1]

[0 0 0 1 0 0 0 0 0 0 0 0 0 0 -4 -6 -1 -1 0 -3]

[0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 -10 -4 -4 -10 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 -3 -8 0 -1 -4 -7]

[0 0 0 0 0 0 1 0 0 0 0 0 0 0 -6 -5 0 -4 -6 -4]

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 -4 -9 -8 -2 -9 -1]

[0 0 0 0 0 0 0 0 1 0 0 0 0 0 -8 -2 -5 -1 -2 -5]

[0 0 0 0 0 0 0 0 0 1 0 0 0 0 -11 -12 -2 -11 -10 -5]

[0 0 0 0 0 0 0 0 0 0 1 0 0 0 -9 -1 -7 -7 0 -6]

[0 0 0 0 0 0 0 0 0 0 0 1 0 0 -2 -2 -7 -2 -5 -6]

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -12 -7 -5 -2 -6]

[0 0 0 0 0 0 0 0 0 0 0 0 0 1 -11 -4 -11 -3 -4 -2]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13]

]


