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Abstract

We construct a new public key encryption based on two assumptions:

1. One can obtain a pseudorandom generator with small locality by connecting the outputs to the inputs
using any sufficiently good unbalanced expander.

2. It is hard to distinguish between a random graph that is such an expander and a random graph where
a (planted) random logarithmic-sized subset S of the outputs is connected to fewer than |S| inputs.

The validity and strength of the assumptions raise interesting new algorithmic and pseudorandomness
questions, and we explore their relation to the current state-of-art.

1 Introduction

Public key encryption is a central notion in cryptography – indeed security of current electronic commerce is
based on it. Fortifying the foundations of public-key cryptography is thus a central goal. However, despite
30 years of research, very few candidates for such encryptions are known, and these are based on a handful
of computational problems of a very structured, algebraic nature, from the areas of number theory, lattices,
and error-correcting codes (e.g., [DH76, RSA78, McE78, AD97]).1

In this work we give a construction of a public key encryption based on different assumptions. The
proposed system has, at this point, two major drawbacks. First, the new assumptions are not as well-studied
as, say, the hardness of factoring. Second, the scheme is far less efficient and secure than might be hoped: it
can be broken in nO(logn) time, where n is the key length / security parameter of the system.

These drawbacks certainly demand attention. Regarding the second drawback, it is quite likely that other,
more efficient variants will allow subexponential (rather than superpolynomial) security, and we are pursuing
such ideas. Regarding the first one, we initiate here a study of the algorithmic and pseudorandomness
questions which arise, relate them to known results, and obtain some preliminary new ones.

The main advantage of the new scheme is the relatively general and unstructured nature of the new
assumptions – a combination of only (specific, of course) private-key cryptography and average case hardness.
These seem qualitatively different than previous constructions. In particular, unlike most previously known
public key cryptosystems, we see no obvious way to reduce breaking our system to a problem in SZK (or
even in AM ∩ coAM), nor does it seem one can break our system using known algorithmic techniques for
quantum computing. For more on this see Section 2.2.

In short, we hope that this new proposal, even if broken, will open the door to many other proposals
which break away from the existing algebraic mold.
∗Department of Computer Science, Princeton University, boaz@cs.princeton.edu. Supported by NSF grants CNS-0627526

and CCF-0426582, US-Israel BSF grant 2004288 and Packard and Sloan fellowships.
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1This is in contrast to digital signature schemes, that can be based on any one-way function (or equivalently, private-key

encryption) [NY89, Rom90]. Obtaining an analogous result for public key encryption is a longstanding open problem, and cannot
be achieved via a black-box reduction [IR89].
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2 Assumptions and construction

We now describe the assumptions used by our public key encryption scheme.

Notation. An (m,n, d)-graph is a bipartite graph G = (VL, VR, E) with m vertices on the left side, n
vertices on the right side, and left-degree equal to d (i.e., |VL| = m, |VR| = n and |E| = dm). We will
typically think of m ≥ n. We say that an (m,n, d)-graph is almost right regular if the right-degree of each
vertex is at most 2(m/n)d. For k ∈ N and e > 0, we say that an (m,n, d)-graph is a (k, e)-expander if for
every subset S ⊆ VL with |S| ≤ k, |ΓG(S)| ≥ e|S|, where ΓG(S) denotes the set of neighbors of S in G. For
y ∈ {0, 1}m and S ⊆ [m], we denote by yS the projection of y to the coordinates in S. Un denotes the uniform
distribution on {0, 1}n.

Our assumptions. We assume that there exist d0 ∈ N and α0 > 1/2 such that:

• Assumption UPP: (Ultra-Parallel Pseudorandomness: Poly-stretch pseudorandom generators in NC0,
with quasirandom graph structure.) There exists a function f : {0, 1}d0 → {0, 1} such that for every
almost right regular (n1.1, n, d0)-graph G that is an (n0.1, α0 ·d) expander, the function Gf is a (crypto-
graphically secure) pseudorandom generator, where Gf is the function mapping n bits to n1.1 with the
ith output bit computed by applying f to the input bits corresponding to the neighbors of the vertex
i ∈ VL.2

• Assumption UE: (Hardness of planted Unbalanced Expansion problem, for small sets.) There exist
two distributions GY and GN on almost right regular (n1.1, n, d0)-graphs such that:

1. If G is chosen from GN , then G is an (n0.1, α0 · d)-expander with probability 1− 1/n.

2. If G = (VL, VR, E) is chosen from GY , then with probability 1, G is not an (n0.1, 1)-expander. In
particular there exists a set S ⊆ VL of size O(log n) such that |ΓG(S)| < |S|. Moreover, there is
an algorithm that samples elements of GY together with this set S.

3. For every polynomial-time algorithm A,

Pr
b∈R{Y,N},G∈RGb

[A(G) = b] ≤ 0.6 (1)

Note that distinguishing between any two distributions GN and GY above can of course be easily done
in O(n|S|) = nO(logn) time. The assumption is that no significant shortcut is possible.

Remark 2.1. Some of the parameters are fixed to certain values for convenience only. In particular, the
degree d0 doesn’t have to be constant. It just seems that the smaller d0 is, the more reasonable is the UE
assumption. Similarly, the number m of vertices on the left side doesn’t have to be n1.1. However, we do
need m = ω(n) to ensure that one cannot break the UE assumption by looking at the second eigenvalue.3

The set-size in the expansion parameter also does not have to be n0.1. However, it has to be ω(log n), since
if there is a set of size O(log n) that does not expand then there is a polynomial-time circuit that will break
the corresponding pseudorandom generator.

2We assume that the set of edges touching each vertex is labeled with numbers in [d0], and so to obtain the ith output we’ll
apply f to x1, . . . , xd0 where xj is the input bit corresponding to the jth neighbor of i.

3In fact, if m = O(n) then one can break UE even using simpler algorithms such as counting the number of copies of K2,2

in the graph, or finding the shrinking set S in m2O(|S|) time by guessing one of m possibilities for a vertex v in S and then
enumerating all 2|S|-length paths from v.
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A concrete suggestion. We have the following candidates for the distributions GN and GY of the UE
assumption:

• GN is just a random graph - each left side vertex is connected to d0 random neighbors.

• GY is sampled by choosing a a graph from GN , and modifying it as follows. Choose a random k-sized
subset S of the left side, a random k−1-sized subset T of the right side, and reconnect any member of S
to d0 random neighbors in T . (Note: another possibility is to connect S and T via a random bi-regular
graph with left-degree d0.)

Note that these candidates can be distinguished with bias Ω(1/ log n), since the probability that the
resulting graph will contain K2,3 will be O(m2.2+3−6) = O(m−0.8) in GN , but Ω(|S|−1) = Ω(1/ log n) in GY .

For the purposes of our application, one can strengthen the UE assumption to require that these particular
candidates GY and GN are hard to tell apart. This will allow to relax the UPP assumption to require that GN
yields a pseudorandom generator with high probability (rather than every sufficiently good lossless expander).
However, we believe the current description of the assumptions is cleaner.

2.1 Public key encryption

These assumptions allow us to obtain a public key encryption scheme:

Theorem 2.2. If Assumptions UPP and UE are true, then there exists a semantically secure public-key
encryption scheme.

Proof. We construct a public-key encryption scheme for one-bit messages. This is obtained by repeating the
following basic scheme several times.

Basic Scheme

Public encryption key: A random (n1.1, n, d)-graph G = (VL, VR, E)
sampled from distribution GY of Assumption UE.

Private decryption key: Corresponding subset S ⊆ VL such that
|ΓG(S)| < |S| that is obtained from the sampler of GY .

Encryption: To encrypt 0 send a random string in {0, 1}n1.1
. To encrypt

1, choose r ∈R {0, 1}n and send Gf (r) where Gf is the pseudorandom
generator corresponding to G as per Assumption UPP.

Decryption: To decrypt y ∈ {0, 1}n1.1
, we output 1 if and only if

yS = (Gf (r′))S for some r′ ∈ {0, 1}ΓG(S) (taking 2|ΓG(S)| time). Note that
these |S| outputs do indeed depend only on the at most |S| − 1 bits in
locations specified by ΓG(S).

Thus we always successfully decrypt an encryption of 1, and successfully
decrypt an encryption of 0 with probability at least 1− 2|S|−1/2|S| ≥ 1/2.
We can repeat this basic scheme several times to ensure that encryption
is successful with high probability. Below we will repeat the basic scheme
2 log n times, so that the decryption error is only at most 1/n2.

Because GY and GN may be distinguished with constant probability, we need to use standard techniques
to amplify the security of this basic encryption scheme. Thus, our full public key encryption scheme is
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obtained by choosing n independent keys G1, . . . , Gn for the basic scheme, and encrypting a bit b by choosing
x1, . . . , xn at random subject to x1 ⊕ · · · ⊕ xn = b, and encrypting xi using the key Gi. Note that decryption
is still successful with high probability ≥ 1− 1/n.

The proof of security uses standard techniques originating from Yao’s work on hardness amplifica-
tion [Yao82]. The reader familiar with these is invited to skip the formal proof and proceed to the discussion
section.

We now prove the security of the scheme in detail, and start with an high level overview. There are
several ways to argue this, in line with several different proofs of the XOR lemma, and we’ll utilize the one
using Impagliazzo’s hard-core set lemma [Imp95]. Specifically, will combine this lemma with Assumption UE
to argue that there are sub-distributions G′Y and G′N with noticeable density in GY and GN respectively, such
that G′Y and G′N are computationally indistinguishable, and moreover, every graph in the support of G′N is an
α0 · d expander. We then note that if the key was chosen from G′N instead of GY then by Assumption UPP,
the encryption of 1 will be indistinguishable from the encryption of 0. Since with very high probability one
of the n repetitions will fall in this sub-distribution, the security of the scheme follows.

Now we proceed formally. Suppose towards a contradiction that there exists a T = poly(n)-sized circuit
A that distinguishes between an encryption of 1 and encryption of 0 with probability ε > 1/ poly(n) (for
infinitely many n’s). That is,

Pr[A(G1, . . . , Gn, Y1, . . . , Yn) = b] ≥ 1/2 + ε (2)

where the probability is over G1, . . . , Gn chosen from GY , b chosen in {0, 1}, x1, . . . , xn chosen uniformly
subject to x1 ⊕ · · · ⊕ xn = b, and Yi chosen as a random encryption of xi using the key Gi according to the
basic scheme.

By the UE Assumption, for every constant c, circuits of size T ′ = cn2T/ε2 cannot distinguish between
GY and GN with probability better than 0.6. This implies that even if we let G̃N equal GN conditioned on
the graph being an α0 · d expander, then still no T ′-sized circuit can distinguish between GY and G̃N with
probability better than 0.6 + 1/n < 0.7. Thus by the Hard-Core Lemma (e.g., see version in [Kal07]), there
exists a distribution D such that (looking at distributions as vectors), 1/2GY + 1/2G̃N = 0.3D+ 0.7D′, and for
every T -sized circuit C,

Pr
G∈RD

[C(G) = g(G)] ≤ 1/2 + ε/(100n), (3)

where g(G) = 1 iff G is an α0 ·d expander. In other words, if we let DN = D|g(G) = 1 and DY = D|g(G) = 0,
then the distributions DN and DY are ε/(100n)-indistinguishable for T -sized circuits. Note also that (3)
implies that the event g(G) = 1 has probability roughly 1/2 in D. This means that we can express the
distribution GY = pDY + (1 − p)D′′ where p ∼ 0.3, and so GY cannot be distinguished with probability
ε/(100n) by T -sized circuits from the distribution F = pDN + (1− p)D′′.

The above implies that Equation (2) above still holds (perhaps with ε replaced with 0.99ε) if the tuple of
keys G1, . . . , Gn was generated from the distribution Fn instead of GnY . The distribution Fn can be written as
a convex combination of distributions that of the form D1×· · ·×Dn where Di is either DN or D′′. Moreover,
the coefficient of D′′n in this convex combination is exponentially small (i.e., (1 − p)n) and hence by an
averaging argument there exists one distribution E of this form other than D′′n such that Equation (2) still
holds (with ε replaced with, say, 0.98ε) even if the keys G1, . . . , Gn are chosen from E . There is one coordinate
i in E where the key is chosen from DN . By another averaging argument there is a way to fix all keys Gj ,
values xj , and encryptions Yj for all coordinates j different from i so that Equation (2) still holds. Thus we
get a T -sized circuit A′ such that

Pr
G∈RDN ,b∈R{0,1}

[A′(YG,b) = b] ≥ 1/2 + ε/2 , (4)

where YG,b is the encryption of b using the key G in the basic scheme. But if G is chosen from DN then it is
a lossless expander, meaning that by the UPP Assumption the encryption of 0 (2 log n independent random
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strings) is indistinguishable from the encryption of 1 (2 log n independent outputs of the pseudorandom
generator). Thus we reached a contradiction.

Note that assuming that the distribution GN is sampleable as well (as is the case for our candidate
distributions), the public key cryptosystem we construct has the property that one can generate a “bad public
key” that looks indistinguishable from the valid public key, but does not allow the receiver to distinguish
between the encryption of 0 and the encryption of 1. This means that this encryption system can be used
to obtain an oblivious transfer protocol by following the framework of [EGL82]. (Thus implying also a secure
protocol for any multi-party functionality [GMW87].)

2.2 Discussion

The biggest question raised by the above construction is of course to find out whether the UPP and UE
assumptions are true. We present some preliminary findings in Sections 3 and 4. Another question is to
what extent are our assumptions qualitatively different than previous constructions. We discuss this issue
briefly here, although “qualitative difference” is of course a subjective term. We do not review all previous
assumptions used for candidates for public key encryption; see the survey [Zhu01] and the web site [Lip97]
for more. It seems that currently those candidates that are considered secure can be classified as falling
into two broad categories: schemes based on number theoretic or group theoretic problems such as factoring
(e.g. [Rab79, RSA78]) and discrete log in various groups (e.g. [DH76, Mil85, Kob87]) and schemes based on
knapsack/lattices/error correcting codes (e.g., [McE78, AD97]).

Comparing our assumptions to the ones used in prior works, it seems to us that the UPP Assumption is
more of the “private key crypo” type, similar in nature to the kind of components or layers used in the design
of block ciphers, hash functions, etc.. The UE Assumption also seems more combinatorial in nature than the
kind of algebraic assumptions used before for the construction of public key encryption. But the question
of connections between these assumptions and previous ones needs to be further investigated. One concrete
open problem is whether or not our assumptions imply that there is a hard problem in the class SZK of
statistical zero knowledge proofs (or more generally in the class AM∩coAM). It seems that many previously
known public key encryption schemes rely on the assumption that SZK * BPP. For example, this holds for
discrete-log based schemes [GK90], as well as Lattice-based schemes relying on the hardness to approximate
SVP/CVP within factors larger than

√
n [GG98, AR04]. We do not know whether or not this was shown to

hold for factoring-based schemes, though in any case these scheme do rely at least on the assumption that
NP ∩ coNP * BPP.

Benny Applebaum (personal communication, July 2008) noted that since a function depending on d
variables always has agreement at least 2−d with some linear function, the UPP Assumption can be thought
of as assuming hardness of learning parity with noise of magnitude roughly 1/2−2−d, though the noise added
to different coordinates is not independent. In this sense the UPP assumption (and also the assumption
of the existence of a large stretch pseudorandom generator in NC0) seems related to the assumption that
learning noisy linear equations is hard. But, while the latter assumption was used to construct public key
cryptosystems by Alekhnovich [Ale03] and Regev [Reg05], in both cases the magnitude of the noise is very
small (less than 1/

√
m where m is the number of equations), as compared to a constant close to half in our

case.4 We believe (though this needs to be further investigated) that this quantitative difference translates
to a qualitative difference between the assumptions. Some evidence for this belief is that in the worst-case,
learning parity with constant noise is NP-hard [Hås97], while in contrast the security of [Reg05]’s cryptosystem
relies on SZK * BPP (though we don’t know if that’s the case for [Ale03]).

On a high level, our two assumptions can be seen as analogous to (often implicit) pairs of assumptions
used in previous public key cryptosystems such as the (broken) Merkle-Hellman knapsack-based cryptosys-

4Regev’s scheme used equations over a non-binary field— Fp for p = O(m2). The noise at each coordinate was a discrete
Gaussian centered at 0 with standard deviation o(p/

√
m).
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tem [MH78] and the (believed secure) McEliece coding-based cryptosystem [McE78]. We illustrate the analogy
and difference between our assumptions and previous ones using the example of the McEliece cryptosystem.
It seems (e.g., see [CFS01]) that the cleanest way to state the assumptions behind the latter system is that (1)
it is hard to decode a codeword of random linear code that is corrupted in a small fraction of its coordinates
and (2) there is a family C of efficiently decodable codes such it is hard to distinguish between the gener-
ating matrix of a random linear code and a generating matrix of a random code in C that is “scrambled”
by changing the input to a random basis and permuting the coordinates. The best candidate for C seems
to come from algebraic-geometric codes (also known as Goppa codes). Comparing the two constructions,
our Assumption UPP is used in a way analogous to the way Assumption (1) is used in the McEliece system
and our Assumption UE is analogous to Assumption (2). In fact, as we mentioned above, Assumption UPP
can be viewed as a variant of Assumption (1). In contrast, it seems to us that Assumption (2) (which relies
on the properties of the code family C) is more “structured” than Assumption UE.5 As mentioned above,
[Ale03, Reg05] did construct public key cryptosystems that are based solely on variants on Assumption (1),
but they needed the magnitude of noise to be very small (less than 1/

√
m).

3 On the validity of Assumption UPP

Under widely believed assumptions, Applebaum et al [AIK04] show that there exists a pseudorandom generator
mapping n bits to n + n1/10 bits that can be computed in NC0[4] (each output bit depending on 4 input
bits). It has been conjectured that there exist pseudorandom generators in NC0 with output length 1.1n
and even n1.1 [AIK06, IKOS08]. Note that in the latter case we may assume without loss of generality that
all the generator’s outputs apply the same function to the input, since there is only a constant number of
possible functions (and hence a generator with this property can be obtained by reducing the output by some
constant factor). Currently the best negative result known is by Mossel et al [MST03], who showed that a
generator where each output bit depends on d input bits cannot have output of length longer than Õ(nd/2).

It seems reasonable that if such an NC0 generator exists, then it can be found by mapping the inputs to
the outputs via a random graph. In fact, this assumption suffices for our construction. However we feel that
the only quasirandomness property needed from the random graphs is lossless expansion, and so used this
conjecture for Assumption UPP to allow a cleaner statement of the UE assumption. Note that the expansion
constant α0 in UPP has to be larger than 1/2, since expansion smaller than d/2 is not (on its own) a sufficient
condition for pseudorandomness. Indeed there are graphs with expansion d/2 that have two vertices with
the same set of neighbors, which will correspond to having two output bits in the generator equalling one
another with probability 1, thus violating pseudorandomness.

Assumption UPP is related to a candidate one-way function by Goldreich [Gol00], but is stronger than
Goldreich’s assumption in two ways: (1) we require that not only is it hard to invert the function Gf but in
fact it is hard to distinguish its output from the uniform distribution, and (2) we require that output of Gf
to be significantly larger than the input.

We now study to what extent the generator of Assumption UPP passes at least some very simple statistical
tests (namely, those for which unconditionally secure pseudorandom generators are known to exist), and is
likely pass others. These include sparse tests, linear tests, low degree polynomials and AC0 circuits. But
first, we need to specify what function one should place at the vertices.

3.1 Resilient functions

Definition 3.1 (δ-resilient functions). Let δ > 0. We say that a function f : {0, 1}d → {0, 1} is δ-resilient if
for every subset S ⊆ [d] with |S| < δd and a ∈ {0, 1}S :

5If one uses a fixed good code C rather than a family then Assumption (2) is false if SZK ⊆ BPP [PR97], and can also be
broken in many practical cases by the heuristic of [Sen00].
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1. Prw∈RWS,a
[f(w) = 1] = 1/2, where WS,a is the distribution over w ∈ {0, 1}d chosen such that wS = a

and for i 6∈ S, wi is a random bit.

2. For every i 6∈ S, Prw∈RWS,a
[f(w) = f(w ⊕ ei)] ∈ (0, 1), where ei is the vector that has 1 in the ith

coordinate and 0 everywhere else.

For ε > 0, we say that the function f is (δ, ε)-resilient if in Condition 2 the probability is not just in the
interval (0, 1) but in the interval [ε, 1 − ε]. Note that this probability is over a sample space of size at most
2d, and hence every δ-resilient function is (δ, 2−d)-resilient. (Recall that in our application we think of d as
small or even a constant.)

Condition 1 is equivalent to requiring that the function is a perfect bit-fixing extractor for bit-fixing sources
of entropy more than (1− δ)d (this is also known as a δd perfect exposure resilient function).

The parity function satisfies Condition 1, even with δ = 1, but does not satisfy Condition 2 no matter
how small δ is. An example for a 1/10-resilient function is the “majority on three parities” function. This is
the function f : {0, 1}3k → {0, 1} such that on input w = x1, .., xk, y1, ..yk, z1, .., zk ∈ {0, 1}3k, f outputs the
majority of the three bits x, y, z where x = x1 ⊕ · · · ⊕ xk, y = y1 ⊕ · · · ⊕ yk, and z = z1 ⊕ · · · ⊕ zk. Indeed, as
long as less than a third of the bits are fixed, all the values x, y, z will be uniform and independent, and hence
MAJ(x, y, z) will equal 1 with probability 1/2. For Condition 2, note that for any fixing of at most 1/10 of
the bits, when we choose at random all bits except for xi (for i that is not fixed) then with probability 1/2

we will have y = z, in which case the value of f will stay the same no matter whether xi is equal to 0 or to
1. On the other hand, there’s also a probability 1/2 that we will have y 6= z, in which case changing the value
of xi will flip the value of f .

3.2 k-wise independence

We start by showing that our generator is k-wise independent for k = n0.1:

Theorem 3.2. Let G be an (m,n, d)-graph that is a (k, (1− ε)d) expander, and let f be a δ-resilient function
for δ > 2ε. Then, the distribution Gf (Un) is k-wise independent.

Proof. Let Y = G(Un). We will prove the theorem by showing that for every subset S ⊆ [m] with |S| ≤ k,

Pr[
⊕
i∈S

Yi = 1] = 1/2 (5)

Indeed, by a simple counting argument, there exists i ∈ S such that |ΓG(i) \ ΓG(S \ {i})| ≥ (1 − 2ε)d.
Therefore, if we fix all inputs in ΓG(S \ {i}) (thus fixing Yj for all j ∈ S with j 6= i), then by the 2ε-resiliency
of f , the probability over the choice of inputs in ΓG(i) \ ΓG(S \ {i}) that Yi = 1 is equal to 1/2, establishing
(5).

Note that in this proof we only used Condition 1 of the definition of δ-resilient functions. In particular,
Theorem 3.2 holds even if we use the parity function for f . (This was known before, see for example [MST03].)

3.3 Fooling AC0 circuits

We were not able to show that our generator fools such constant depth (i.e., AC0) circuits. But the limited
independence above is far higher than what would, at least conjecturally, imply such a pseudorandomness
result. First recall that according to a conjecture of Linial and Nisan [LN90], logω(1) n independence implies
that Gf (Un) fools every AC0 circuit. This conjecture has been open for a while, but was recently proven for
the first nontrivial case of depth-2 circuits (i.e., DNF formulae) by Bazzi [Baz07]. It would be interesting to
prove the weaker version of the general conjecture that will suffice for us, namely that nε-independence fools
AC0 circuits. We note that the pseudorandom generator for AC0 of [AW85] is a very specific nε-independent
distribution, and perhaps their argument can be generalized to prove this weaker conjecture.
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3.4 Fooling linear tests

We now show that if G is a good expander and f is a resilient function, then the distribution Gf (Un) fools
all linear tests (i.e., is an ε-bias sample space).

Theorem 3.3. Let G be an almost right regular (n`, n, d)-graph that is a (k, (1−ε)d)-expander for k > ω(`2).
If f is δ resilient for δ > 2ε then for every S ⊆ [m],

Pr[
⊕
i∈S

Yi = 1] ∈ 1/2± 2−Ω(k/`2) , (6)

where the constant in the Ω notation depends on d but not on `, n.

Proof. We may assume that |S| ≥ k, since otherwise (6) is implied by k-wise independence (i.e., Theorem 3.2).
Let X1 be an input vertex that is connected to S. Let S1 be the set of at most d` output vertices in S that
are connected to X1, let V1 = ΓG(S1) and let S′1 = ΓG(V1) be the set of at most 2d`2 output vertices that
share an input with a member of S1. Remove S′1 from S and continue in this way to obtain X2, . . . , Xt for
t ≥ |S|/(2d`2) = Ω(k/`2). Note that by construction, the sets V1, . . . , Vt are disjoint.

Claim: If we fix at random an assignment for the variables in Vi \ {Xi}, then with probability at least 2−d,
the function mapping the bit Xi to

∑
j∈Si Yj is equal to Xi or to 1⊕Xi.

The claim concludes the proof since then with probability 1 − (1 − 2−d)t = 1 − 2−Ω(t), for any fixing of
[n] \ {X1, . . . , Xt}, the resulting function is a non-constant affine function of X1, . . . , Xt and hence equals 1
with probability 1/2.

Proof of claim: Note that since Xi has right degree 2`d < k, |Si| < k, and hence Si is an expanding set,
implying that there exists an output j ∈ Si with |ΓG(j) \ΓG(Si \ {j})| ≥ (1− 2ε)d. Now fix all inputs except
for Xi in ΓG(Si \ {j}), this means that for every k ∈ Si \ {j}, Yk is now a function of Xi, which is either a
constant function or Xi ⊕ b for some b ∈ {0, 1}, and in particular the same holds for

⊕
k∈Si\{j} Yk. But now

by the fact that f is δ-resilient for δ > 2ε, if we choose at random the inputs in ΓG(j) \ ΓG(Si \ {j}) then we
have positive (and at least 2−d) probability for both the event that Yj is a constant function of Xi, and the
event that Yj is equal to Xi ⊕ b for some constant b. Thus, no matter that was the function

⊕
k∈Si\{j} Yk,

with probability at least 2−d the function Yj⊕
⊕

k∈Si\{j} Yk =
⊕

k∈Si Yk will be a non-constant affine function
of Xi.

We note that a generator of small locality (number of inputs connected to each output) fooling linear tests
was constructed before by Mossel et al [MST03]. The difference is that they were interested in a single con-
struction with as small locality as possible while we want to show that every sufficiently good expander gives
rise to such a generator. Their construction was obtained by XOR’ing together two generators on indepen-
dent seeds. The first generator handled sparse tests using k-wise independence as in Theorem 3.2. [MST03]’s
second generator used a different construction and analysis than ours— they used a specific construction of
locality two.

3.5 Fooling low degree GF (2) polynomials

The last year has seen tremendous progress on constructing explicit distributions which fool not only poly-
nomials of degree 1, but actually polynomials of degree up to o(log n). The best current result, Viola [Vio08]
recently proved that the XOR of t independent samples from an ε-bias set fools degree t polynomials. Com-
bining this with Theorem 3.3 (or the previous generator of [MST03]) we can obtain an NC0 pseudorandom
generator fooling such polynomials by simply XOR’ing together several copies of our basic generator. Note
however that the graph’s structure resulting from this composition will not be any expander but rather have
a special form (combining functions from disjoint pieces of the input). We note that this structure problem
can be solved by considering non-Boolean inputs to the generator.
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4 On the validity of Assumption UE

Assumption UE talks about the hardness of a combinatorial problem (graph expansion) that is NP-hard to
solve exactly in the worst-case. But the variant of this problem that UE studies is more restricted (making
UE much stronger) than the NP-complete variant in several important ways:

1. UE assumes hardness of an average-case problem, talking about planted distributions, rather than a
worst-case problem.

2. UE talks about sets of small (O(log n)) size, and so in particular the problem can be solved using
nO(logn) time.

3. UE is a gap/approximation problem, assuming the hardness of distinguishing between graphs that are
almost ideal expanders (expansion close to d, in particular larger than d/2), and graphs that are rather
bad expanders (expansion smaller than 1).

On its own, Property 1 (average-case hardness) is not that problematic. If we could show for example
that this problem is NP-hard under Karp reductions, then if we assume that any NP-problem is hard on the
average-case on some distribution X, this implies that our problem is hard on the distribution f(X), where f
is the reduction function. Moreover, if the reduction is of the standard type that maps witnesses to witnesses,
then under the assumption that a one-way function exists (and hence we can sample hard-on-the-average NP
problems together with the witnesses) we would have established UE fully, including the sampling condition.
(Of course we don’t really expect this problem to be NP-complete with a polynomial-time reduction, since
it has an nO(logn) time algorithm.)

We also have some evidence that on its own, Property 2 (small set size) is not that problematic as well.
That is, using known results from the area of parameterized complexity, we can show that at least some
worst-case exact computation variant of this problem is hard even for sets of small size. In fact, we show that
under plausible assumptions, the problem cannot be solved in polynomial time for sets of non-constant size.

Property 3 (gap/approximation hardness) seems harder to argue, especially in conjunction with Prop-
erty 2. While there are some hardness of approximation results for graph expansion, the gap they establish
is not in the right region for us. As a partial result, we show in Theorem 4.3 that if a variant of the planted
clique problem is hard, it is hard to distinguish between the case that a bipartite graph of (non-constant)
degree d has expansion at least d0.9 and the case that some set of size k = O(log n) has at most k/d9 neighbors
(hence having expansion � 1). We also give in Theorem 4.5 another reduction which relates the planted
clique problem to distinguishing unique-neighbor expansion from non expansion.

These connections and others we suggest in the subsections ahead give some “circumstantial evidence”
that the UE Assumption holds, as variants of this assumption (with different settings of parameters) are
implied by the hardness of variants of some well studied computational problems.

4.1 Hypergraph formulation

We can look at an (m,n, d)-graph G as a d-uniform hypergraph H of n vertices and m hyperedges, where the
ith hyperedge of H contains the d neighbors of the ith left-vertex of G. In this formulation, the UE assumptions
is about the hardness of distinguishing hypergraphs that contain a somewhat dense sub-hypergraph — a set
T of k − 1 vertices, such that the induced sub-hypergraph on T has at least k hyperedges— from graphs
where the induced sub-hypergraph of every set of k vertices (for k up to roughly n0.1 size or some other
super-logarithmic bound) has only about k/d edges. Indeed, the task of distinguishing our candidates GY
and GN is essentially equivalent to the problem of distinguishing between a random fairly sparse hypergraph
(n1.1 hyperedges) and a random hypergraph with a planted somewhat dense (average degree larger than 1)
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small subgraph.6 Indeed, the analog of this program for standard graphs (i.e., 2-uniform hypergraphs) has
been studied by several works (e.g., [FPK01, Kho04]). This is known as the densest k-subgraph problem—
finding a subgraph of k vertices with highest average degree. The variant of this problem where we ask for a
subgraph of high minimum degree is fixed-parameter intractable [ASS08].

The following immediate observation relates the clique problem to expansion:

Lemma 4.1. For every graph G = (V,E), let Ĝ be the edge-vertex incidence graph of G.7 Then, G has a
k-clique if and only if there is a subset S of

(
k
2

)
left vertices of Ĝ such that |ΓĜ(S)| ≤ k.

Under plausible assumptions (that some problem in the class SNP that includes 3SAT and CLIQUE
cannot be solved in 2o(n) time), the k-clique problem for n-vertex graphs cannot be solved in no(k) steps [FK97,
CCF+04]. Thus under these assumptions a worst-case exact computation version of the expansion problem,
where one needs to decide given (G, s, `) whether there exists a set S of left-side vertices such that |S| ≤ s
and |ΓG(S)| ≤ `, cannot be solved in no(

√
s) time.

4.2 Planted clique problem and expansion

A natural route to show hardness of the approximation or gap problem, is to use the PCP Theorem. Un-
fortunately, it seems that current PCP techniques are not well suited to showing hardness of problems with
short witnesses. Moreover, we do not know how to establish the gap we need even for large sets using PCP.
Following Feige [Fei02], we use instead assumptions on average-case hardness of certain problems. This has
the added advantage of directly showing average-case hardness of our problem as well.

Definition 4.2 (Planted Clique problem). For n, k ∈ N and p ∈ (0, 1), the planted k-clique problem in Gn,p
is to distinguish between the following two distributions:

1. GN - the random graph Gn,p, where each edge is included with probability p.

2. GY - the random graph Gn,p where in addition we select a k-subset S of [n] at random and add all edges
between pairs in S.

Note that for every k > 2 log n and p ≤ 1/2, the planted k-clique problem in Gn,p can be solved in time
nO(logn) since with high probability the maximum clique of a random graph will be at most 2 log n. The
well-studied case is the planted k-clique problem in Gn,1/2, where there is an efficient algorithm for k ∼

√
n,

but nothing non-trivial is known for, say k = n0.4. We were not able to reduce the planted k-clique problem
in Gn,1/2 to the UE problem, but rather only reduce the planted clique problem in Gn,p for some p� 1/2 into
a variant of the UE Problem.

Theorem 4.3. Let ε > 0 and suppose that the planted
√

log n-clique problem in G
n,2− log1−ε n is hard. Then,

there exist two sampleable distributions GY and GN over (m,n, d = 2 log10ε n) for m ∼ n22− log1−ε n that are
computationally indistinguishable such that:

1. With high probability, a graph from GN is a (2log0.9 n, d0.8)-expander.

2. Every graph from GY has a set of log n/3 left vertices with at most log1/2+11ε n neighbors.
6We say “essentially” because in the planted hypergraph problem the natural distribution would be not to fix the number of

edges but rather to include each of the possible
(
n
d

)
edges with probability p = n1.1/

(
n
d

)
. This corresponds to the case where the

size of the large side of the bipartite graph is not fixed but rather only concentrated around n1.1.
7That is, Ĝ is the (|E|, |V |, 2) bipartite graph such that the eth left vertex of Ĝ is connected to the two vertices of the eth

edge in G.
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Proof. We reduce the planted clique problem to distinguishing between the above two cases. Let G be an
instance of the planted

√
log n-clique problem in G

n,2− log1−ε n . We let Ĝ be the (m,n, 2)-graph that is the

edge-vertex incidence graph of G. If G had a clique of size k =
√

log n then Ĝ has a set of
(
k
2

)
> log n/3

vertices that have only k neighbors. On the other hand, if G is a random element in G
n,2− log1−ε n , then the

following lemma implies that with high probability Ĝ is a (2log0.9 n, 1/(10 logε n))-expander:

Lemma 4.4. With high probability over G chosen from Gn,2−`, for every t < 2`/10, every subset of t edges
of G touches at least t · `

10 logn vertices.

Proof. Let’s bound the probability pk,t that there exists a set of k vertices whose induced graph has at least
t edges. By using the simplest bounds,

pk,t ≤
(
n

k

)(
k2

t

)
2−`t ≤ nkk2tpt .

Taking logs we see that as long as
k log n+ 2t log k � `t,

this probability will be very close to 0. In our setting log k � `, and hence we only need to show k log n� `t,
which holds if t > (10 log n/`)k.

Now make d′ = log10ε n copies of every righthand side vertex u of Ĝ and connect these copies also to
the same neighbors as u. The resulting graph G′ has left-degree d = 2d′ and for every subset S of the left
vertices of G′, |ΓG′(S)| = d′|ΓG(S)|. Hence if G had a

√
log n clique then G′ will have a set of size log n/3

left-vertices with d′
√

log n neighbors, while if G was chosen from G
n,2− log1−ε n then with high probability G′

will be an (2log0.9 n, d′/(10 logε n))-expander.

The two drawbacks of Theorem 4.3 is that (1) the theorem only gives evidence of hardness of a variant
of the UE problem where even in the NO case, the graph is not a lossless expander, and (2) even for this
variant, the evidence is rather weak, since to our knowledge the planted clique problem in Gn,p has been only
extensively studied for constant p. It would be very interesting if there is a reduction from the planted clique
problem in Gn,1/2 to (variants of) the UE problem, even if the reduction takes slightly superpolynomial time.

One reason why it may be hard to reduce the planted clique problem to our problem is that in the planted
clique problem we do not know of any efficient distinguisher with non-negligible bias, while by looking at the
existence of constant-sized subgraphs, we can distinguish with Ω(1/ log n) bias at least the specific candidates
GY and GN we put forward in Section 2. (Of course if UE is true then Impagliazzo’s Hard-core Lemma tells us
that there are other distributions G′Y and G′N that are cannot be distinguished with non-negligible advantage,
but it does not guarantee that they are sampleable.)

4.3 Planted clique and unique neighbor expansion

As mentioned above, one drawback of Theorem 4.3 is that even in the NO case, the graphs obtained were not
lossless expanders. We now show a different reduction, where in the NO case the graphs will have a property
that is weaker than, but closely related to, lossless expansion. Alas, the size of the sets in the YES case will
not be logarithmic but slightly super-logarithmic.

A central property of lossless expanders (with expansion > d/2 for sets of size ≤ k) is the unique neighbor
property, which is that for every subset S of the left-side of size at most k, there is a vertex v ∈ Γ(S) with
only one neighbor in S. Note that in particular this implies that |Γ(S)| ≥ |S|. We say that G is a unique
neighbor expander for k-sets if it has the unique neighbor property for sets of size ≤ k. A generalization of
the UE problem is to distinguish between unique neighbor expanders and graphs where some O(log n)-sized
set shrinks. We are able to relate this problem to the planted clique problem, but with a caveat— the set
that shrinks will not be of O(log n) size but rather polylog(n) (in addition the degree will not be constant).
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Theorem 4.5. There is a polynomial-time reduction from the planted k-clique problem in Gn,2−` to dis-
tinguishing between two distributions GY and GN over (m,n′, O(log n)) graphs, with m = Θ(n22−`) and
n′ = n polylog(n) such that:

1. With high probability a graph G from GY is a unique neighbor expander for sets of size at most 2`/10.

2. With probability 1, a graph G from GN will have a set of size k2 with at most O(k log2 n
` ) neighbors.

Note that in particular this means that if, say, the planted log1+2ε n-clique problem is hard in Gn,2− logε n

then we can’t distinguish between unique neighbor expanders for 2log1−ε n/10-sets and graphs where there is
a set of size log2+4ε n with at most O(log1+3ε n) neighbors.

Proof sketch for Theorem 4.5. The proof is inspired by the Zig-Zag product [RVW00]. Say that a function
D : [m] × [d′] → [s′] is an s-lossless disperser if for every s-sized subset S of [m], there exists i ∈ [d′] such
that the mapping |D(S, {i})| > 0.9|S|. For d′ = 100 logm, a random function D : [m]× [d′]→ [100s] will be
such a disperser with high probability.

We can look at an (m,n, d) graph G as a function from [m]× [d] to [n], which we also denote by G. Let
s = 100 log n/` and define the function G′ : [m]× ([2]× [d′])→ [n]× [100s]× [d] as follows:

G′(u, i, j) = 〈G(u, i), D(u, j), j〉 .

For every set S ⊆ [m] of vertices of G, if |ΓG(S)| ≥ |S|/s then there exists u ∈ ΓG(S) with at most s
preimages in G. Let Su be the set of these preimages. For some i ∈ [d′], this set Su will be mapped by D
to at 0.9|Su| outputs, and hence there will be some x ∈ Su with the unique neighbor 〈u,D(x, i), i〉. On the
other hand, clearly for every S ⊆ [m],

|ΓG′(S)| ≤ |ΓG(S)| ·O(sd′) .

Now let G be the (m,n, 2) graph obtained from the proof of Theorem 4.3. In the NO case every not too
large (less than 2`/10 vertices) subset S of G has at least |S|`/(10 log n) vertices. Thus, setting s = 10 log n/`,
the graph G′ will be a unique neighbor expanders. However, in the YES case there will be a set of k2 vertices
with k neighbors, and hence in G′ this set will have at most O(ksd) = O(k log2 n/`) neighbors.

Remark 4.6. We note that by itself the unique neighbor expansion property does not seem sufficient for
pseudorandomness. It seems that there is a set S of many outputs with d − 1 of their neighbors in a small
set T and only one unique neighbor outside T , then by guessing the inputs in T we will be able to predict
many more of these outside neighbors. Nevertheless, it is possible that variants of this property could turn
out useful for variants of the construction. Moreover, the unique-neighbor property seems so closely related
to lossless expansion, that studying it may shed light on the truth of the UE assumption.

Remark 4.7. Other problems that seem closely related to the UE problem are (1) certifying expansion—
show an efficient algorithm that outputs 1 with high probability on a random graph, but never outputs 1
if there exists an O(log n)-sized set S with < |S| neighbors and (2) search variant show an algorithm that
given every graph with an O(log n)-sized set S with < |S| neighbors finds a subset S′ of size O(log2 n) such
that S′ has no unique neighbors.

5 Conclusions

The two main challenges are to investigate more the validity of our assumptions, and improve the efficiency
and security of the encryption. Toward the latter end, in a follow-up work joint with Benny Applebaum, we
consider a variant of our encryption where the non-linear function is replaced with parity with noise. Under
plausible assumptions, this variant can achieve sub-exponential security. A related advantage of this variant
is that it enables making different tradeoffs between the parameters of the UPP and UE assumptions.
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