
Modified Huang-Wang’s Convertible Nominative Signature Scheme

Wei Zhao, Dingfeng Ye
State Key Laboratory of Information Security

Graduate University of Chinese Academy of Sciences
Beijing 100049, P. R. China
{wzh,ydf}@is.ac.cn

Abstract

At ACISP 2004, Huang and Wang first introduced the
concept of convertible nominative signatures and also pro-
posed a concrete scheme. However, it was pointed out by
many works that Huang-Wang’s scheme is in fact not a nom-
inative signature. In this paper, we first present a security
model for convertible nominative signatures. The properties
of Unforgeability, Invisibility, Non-impersonation and Non-
repudiation in the setting of convertible nominative signa-
tures are defined formally. Then we modify Huang-Wang’s
scheme into a secure one. Formal proofs are provided to
show that the modified Huang-Wang’s scheme satisfies all
the security properties under some conventional assump-
tions in the random oracle model.

Keywords: Digital signature, nominative signature, con-
vertible, selectively, provable security.

1. Introduction

Digital signature, introduced by Diffie and Hellman [3],
is a cryptographic means through which the authenticity,
data integrity and non-repudiation can be verified. Stan-
dard digital signatures have the property that anyone can
check whether an alleged message-signature pair is valid or
not with respect to a given public key. This publicly verifi-
able property is necessarily required for some applications
of digital signatures such as official announcements. How-
ever, this may not be a desired property in some applica-
tions, where message to be authenticated are personally pri-
vate or commercially sensitive. To restrict the public verifi-
ability, some kinds of digital signatures have been proposed,
such as nominative signatures (NS).

The concept of nominative signatures was due to Kim,
Park and Won [7]. A nominative signature scheme allow
a nominative A (i.e. the signer) and a nominee B (i.e. the
verifier) to jointly generate a signature σ so that the validity
of σ can only be verified by B. Furthermore, if σ is valid,

B can convince a third party C of the validity of σ using
confirmation protocol; otherwise, B can convince a third
party C of the invalidity of σ using disavowal protocol. As
suggested in [5, 7, 9], nominative signatures have potential
applications in the scenarios where a signed message is per-
sonally private or commercially sensitive, such as a tax bill,
a medical examination report, ID certification system.

At ACISP 2004, Huang and Wang [5] first added
the “convertible” property to nominative signatures, and
introduced the concept of convertible nominative signa-
tures (CNS). Moreover, they proposed a concrete scheme
based on Kim et al.’s nominative signature scheme [7].
Their scheme enables the nominee to convert a nominative
signature into a publicly verifiable one, if necessary.

Unfortunately, in [4, 12, 13], it was found that Huang-
Wang’s scheme is not nominative in fact. Specially, the
nominator in Huang-Wang’s scheme can verify the valid-
ity of a nominative signature and also show to anyone that
the nominative signature is indeed a valid one without the
help of the nominee. Hence, Huang-Wang’s scheme fails to
meet the crucial security requirements of nominative signa-
ture: invisibility and non-impersonation.

In this paper, we first give a formal security model of
convertible nominative signatures. In the model, the se-
curity properties of convertible nominative signatures in-
clude Unforgeability, Invisibility, Non-impersonation and
Non-repudiation. Then we modify Huang-Wang’s scheme
to make it satisfy all the properties. Moreover, formal secu-
rity analysis is provided to show that the modified scheme
is provably secure under some standard assumptions in the
random oracle model [1].

The rest of paper is organized as follows. In Section 2,
we review some basic knowledge and definitions required
throughout the paper. In Section 3, we present the defini-
tion and security models of convertible nominative signa-
tures. We describe our modified Huang-Wang’s convertible
nominative signature scheme together with its security anal-
ysis in the random oracle model in Section 4. Finally, we
conclude the paper in Section 5.

2. Preliminaries

Let p, q be large primes that satisfy q|p − 1, and g be
an element in Z∗

p with order q. Let H : {0, 1}∗ → Zq be
a public secure hash function. Hereafter, we will use the
notation a ∈R A to mean that a is chosen randomly from A
and use the symbol ‖ to mean concatenation.

2.1. Intractability Problems

The following three problems are assumed to be hard for
any polynomial time algorithm.

1. Discrete Logarithm Problem: Given g, ga ∈ Z∗
p where

a ∈ Z∗
q , find a.

2. Computational Diffie-Hellman Problem: Given g, ga,
gb ∈ Z∗

p where a, b ∈ Z∗
q , find gab.

3. Decisional Diffie-Hellman Problem: Given g, ga, gb,
gc ∈ Z∗

p where a, b and c ∈ Z∗
q , decide whether c

?= ab.

2.2. Signature of Equality

Following signature of equality [2] will be used in our
convertible nominative signature scheme to convert given
nominative signatures into publicly verifiable ones.

A pair (c, s) satisfying c=H(g‖h‖y‖z‖gsyc‖hszc‖m)
is signature of equality of the discrete logarithm of y with
respect to the base g and the discrete logarithm of z with
respect to the base h for the message m and is denoted by
SEQDL(g, h, y, z, m).

A SEQDL(g, h, y, z, m) can only be computed if the
secret key x = loggy = loghz is known, by choosing k ∈R

Z∗
q , and computing c and s according to

c = H(g‖h‖y‖z‖gk‖hk‖m),

s = k − cx (mod q).

3. Definition and Security Model of Convert-
ible Nominative Signature

In this section, we extend the definition and security
model of nominative signature [8, 9] to the setting of con-
vertible nominative signature. We will let A, B and C to
denote the nominator, the nominee, and the verifier (a third
party) throughout the paper.

3.1. Definition of Convertible Nominative
Signature

The convertible nominative signature scheme consists of
the following algorithms and protocols:

• System Setup: a probabilistic algorithm that on input
1k where k ∈ N is a security parameter, generates the
common parameters denoted by cp.

• Key Generation: a probabilistic algorithm that on in-
put cp, generates a public/private key pair (pk, sk) for
a user in the system.

• Signing Protocol: an interactive (or non-interactive)
algorithm. The common inputs of A and B are cp and
a message m. A has an additional input pkB , indicat-
ing that A nominates B as the nominee; and B has an
additional input pkA, indicating that A is the nomina-
tor. At the end of the protocol, either A or B outputs
a convertible nominative signature σ, or ⊥ indicating
the failure of the protocol.

• Vernominee(nominee-only verification): a deter-
ministic algorithm that on input the common param-
eters cp, a nominative message-signature pair (m,σ),
A’public key pkA and B’private key skB , returns
valid or invalid.

• Confirmation/Disavowal Protocol: an interactive (or
non-interactive) algorithm between B and C. On
input the common parameters cp and (m, σ,
pkA, pkB), B sets a bit µ to 1 if valid←
Vernominee (m, σ, pkA, skB); otherwise, µ is set to
0. B first sends µ to C. If µ = 1, Confirmation pro-
tocol is carried out; otherwise, Disavowal protocol is
carried out. At the end of the protocol, C outputs either
accept or reject while B has no output.

• Selectively Convert: a probabilistic (or deterministic)
algorithm that on input the common parameters cp,
the public/private key pair (pkB , skB), A’public key
pkA and a valid message-signature pair (m,σ), out-
puts a selective proof P m, σ

pkA,pkB
of the given message-

signature pair.

• Selectively Verify: a deterministic algorithm that on
input the common parameters cp, the public keys pkA

and pkB , the message-signature pair (m,σ) and the
selective proof P m, σ

pkA,pkB
, outputs accept or reject.

Correctness: Suppose that all the algorithms and protocols
of a convertible nominative signature scheme are carried out
accordingly by honest entities A, B and C, then the scheme
is said to satisfy the correctness requirement if

1. valid←Vernominee(m,σ, pkA, skB);

2. C outputs accept at the end of Confirmation protocol;

3. On input (m,σ) together with a valid selective
proof P m, σ

pkA,pkB
, Selectively Verify algorithm outputs

accept.

Validity of a Convertible Nominative Signature: A con-
vertible nominative signature σ is said to be valid
on m with respect to pkA and pkB if valid ←
Vernominee(m,σ, pkA, skB) where skB is the corre-
sponding private key of pkB .

The security model of convertible nominative signature
will be defined using the game between an adversary and
a simulator. We allow the adversary F to access the fol-
lowing oracles and submit their queries to the simulator S
adaptively:

• CreateUser Oracle: On input an identity, say I , it
generates a key pair (pkI , skI) using Key Generation
algorithm and returns pkI .

• Corrupt Oracle: On input a public key pk, if pk is
generated by CreaterUser Oracle or in {pkA, pkB},
the corresponding private key is returned; otherwise,
⊥ is returned. pk is said to be corrupted.

• Signing Oracle: On input a message m, two distinct
public keys pk1 (the nominator) and pk2 (the nominee)
such that at least one of them is uncorrupted, and one
parameter called role ∈ {nil, nominator, nominee},

– if role is nil, S simulates a run of Signing proto-
col and then returns a valid convertible nomina-
tive signature σ and a transcript of the execution
of Signing protocol.

– If role is nominator, S (as nominee with public
key pk2) simulates a run of Signing protocol with
F (as nominator with public key pk1).

– If role is nominee, S (as nominator with public
key pk1) simulates a run of Signing protocol with
F (as nominee with public key pk2).

• Confirmation/Disavowal Oracle: On input a mes-
sage m, a nominator signature σ and two public keys
pk1 (the nominator) and pk2 (the nominee). Let sk2

be the corresponding private key of pk2, the oracle
responds based on whether a passive attack or an ac-
tive/concurrent attack is mounted.

– In a passive attack, if Vernominee (m, σ, pk1,
sk2) = valid, the oracle returns a bit µ = 1 and a
transcript of Confirmation protocol. Otherwise,
µ = 0 and a transcript of Disavowal protocol is
returned.

– In an active/concurrent attack, if Vernominee
(m, σ, pk1, sk2)=valid, the oracle returns µ =
1 and executes Confirmation protocol with F
(acting as a verifier). Otherwise, the oracle re-
turns µ = 0 and executes Disavowal protocol

with F . The difference between active and con-
current attack is that F interacts serially with the
oracle in the active attack while F interacts with
different instances of the oracle concurrently in
the concurrent attack.

• Selectively Convert Oracle: On input a message
m, a nominative signature σ and two public keys pk1

(the nominator) and pk2 (the nominee), it runs Se-
lectively Convert algorithm to generate the selective
proof P m, σ

pkA,pkB
and returns it to F .

The security notions for convertible nominative signature
include: Unforgeability, Invisibility, Non-impersonation
and Non-repudiation. We will make detailed descriptions
for them in the following subsections.

3.2. Unforgeability

The existential unforgeability means that an adversary
should not be able to forge a valid convertible nominative
signature if at least one of the private keys of A and B is not
known. The adversary in our definition is allowed to access
to the CreatUser Oracle, Corrupt Oracle, Signing Or-
acle and Confirmation/Disavowal Oracle. Furthermore,
we also allow the adversary to submit queries to Selectively
Convert Oracle. This is to ensure that the knowledge of
the selective proof cannot help the adversary to forge a new
valid message-signature pair.

To discuss the unforgeability of our convertible nomina-
tive signatures, we divide the potential adversaries into the
following three types:

• Adversary 0 who has only the public keys of the nom-
inator A and the nominee B.

• Adversary I who has the public keys of the nominator
A and the nominee B and also has B’s private key;

• Adversary II who has the public keys of the nomina-
tor A and the nominee B and also has A’s private key.

We can easily find that if a convertible nominative
signature scheme is unforgeable against Adversary I
(or Adversary II), then it is also unforgeable against
Adversary 0.
Game Unforgeability (Adversary I): Let S be the sim-
ulator and FI be the adversary.

1. (Initialization Phase) Let k ∈ N be a security param-
eter. First, cp ← SystemSetup (1k) is executed and
key pairs (pkA, skA) and (pkB , skB) for nominator A
and nominee B, respectively, are generated using Key
Generation algorithm. FI is invoked with inputs 1k,
pkA, pkB .

2. (Attacking Phase) FI can make queries to the ora-
cles mentioned above;

3. (Output Phase) FI outputs a pair (m∗, σ∗).

FI wins the game if valid ← Vernominee(m∗, σ∗,
pkA, skB) and (1) FI has never corrupted pkA; (2)
(m∗, pkA, pkB , role) has never been queried to Signing
Oracle for any valid value of role. FI ’s advantage in this
game is defined to be Adv(FI) = Pr [FI wins].
Game Unforgeability (Adversary II): It is defined sim-
ilarly to the above game. Specially, the descriptions of all
phases are the same as the above game, so we omit them.
When all phases are over,

FII wins the game if valid ←Vernominee(m∗, σ∗,
pkA, skB) and (1) FII has never corrupted pkB ; (2)
(m∗, pkA, pkB , role) has never been queried to Signing
Oracle for any valid value of role; (3) (m∗, σ′, pkA, pkB)
has never been queried to Confirmation/Disavowal Ora-
cle for any convertible nominative signature σ′ with respect
to pkA and pkB . FII ’s advantage in this game is defined to
be Adv(FII) = Pr [FII wins].

Definition 1 A convertible nominative signature scheme is
said to be existential unforgeable if no probabilistic poly-
nomial time (PPT) adversaries FI and FII have a non-
negligible advantage in the above games.

3.3. Invisibility

We now extend the property invisibility for nominative
signatures into the setting of convertible nominative signa-
ture. This property essentially means that it is impossible
for an adversary to determine whether a given message-
signature pair (m,σ) is valid without the help of the nomi-
nee and the selective proof P m, σ

pkA,pkB
.

Game Invisibility: Let D′ be the simulator and D be the
distinguisher.

1. (Initialization Phase) The initialization phase is the
same as that of Game Unforgeability.

2. (Preparation Phase) The distinguisher D can adap-
tively access to all the oracles. At some point, D sub-
mits the challenge (m∗, pkA, pkB , role) to Signing
Oracle.

Then D (acting as nominator) will carry out a run of
Signing protocol with the simulatorD′ (acting as nom-
inee). Let σvalid be the convertible nominative signa-
ture generated by the simulator D′ at the end of the
protocol.

The challenge signature σ∗ is then generated based on
the outcome of a random coin toss b. If b = 1, D′

sets σ∗ = σvalid. If b = 0, σ∗ is chosen uniformly
at random from the signature space of the convertible
nominative signature scheme with respect to pkA and
pkB . Then the challenging signature σ∗ is returned to
D.

3. (Guessing Phase) Finally, the distinguisher D out-
puts a guess b

′
.

D wins the game if b
′

= b and (1) pkB has never been
submitted to Corrupt Oracle; (2) (m∗, pkA, pkB , role)
has never been submitted to Signing Oracle; (3)
(m∗, σ∗, pkA, pkB) has never been submitted to Selec-
tively Convert Oracle; (4) (m∗, σ′, pkA, pkB) has never
been submitted to Confirmation/Disavowal Oracle for
any convertible nominative signature σ′ on m∗ with respect
to pkA and pkB . D’advantage in this game is defined to be
Adv(D) = |Pr [b

′
= b]− 1

2 |.

Definition 2 A convertible nominative signature scheme is
said to have the property of invisibility if no PPT distin-
guisher D has a non-negligible advantage in the above
game.

3.4. Non-impersonation

The notion of non-impersonation means that the validity
of a nominative signature can only be determined by the
help of the nominee, someone else including the nominator
should not be able to show the validity of the nominative
signature to a third party. Concretely, this notion requires
that:

1. Only with the knowledge of the public key of the nom-
inee B, it should be difficult for an impersonator II to
execute Confirmation/Disavowal protocol.

2. Only with the knowledge of the public key of the nom-
inee B, it should be difficult for an impersonator III

to generate the selective proof for a message-signature
pair.

Game Impersonation of Confirmation/Disavowal
Protocol: Let S be the simulator and II be the imper-
sonator.

1. (Initialization Phase) The initialization phase is the
same as that of Game Unforgeability.

2. (Preparation Phase) In this phase, impersonator II

is permitted to access all the oracles. II prepares a
triple (m∗, σ∗, µ) where m∗ is some message, σ∗ is a
convertible nominative signature and µ is a bit.

3. (Attacking Phase) If µ = 1, II (as nominee) exe-
cutes Confirmation protocol with the simulator S (as

a verifier) on common inputs (m∗, σ∗, pkA, pkB). If
µ = 0, II executes Disavowal protocol with simulator
S on the same inputs.

The impersonator II wins the game if the simulator act-
ing as the verifier outputs accept while II has the follow-
ing restrictions: II has never submitted pkB to the Cor-
rupt Oracle. II ’s advantage in this game is defined to be
Adv(II) = Pr [II wins].
Game Impersonation of Selectively Convert Algo-
rithm: Let S be the simulator and III be the impersonator.

1. (Initialization Phase) The initialization phase is the
same as that of Game Unforgeability.

2. (Preparation Phase) The impersonator III is in-
voked on input 1k, pkA, pkB and permitted to issue
queries to all the oracles.

3. (Impersonation Phase) The impersonator III out-
puts a valid selective proof P m∗,σ∗

pkA,pkB
for a message-

signature pair (m∗, σ∗).

The impersonator III wins the game if P m∗,σ∗

pkA,pkB
satis-

fies Selectively Verify algorithm but: (1) pkB has never
been submitted to Corrupt Oracle; (2) (m∗, σ∗, pkA, pkB)
has never queries Selectively Convert Oracle. III ’s
advantage in this game is defined to be Adv(III) =
Pr [III wins].

Definition 3 A convertible nominative signature scheme is
said to be secure against impersonation if no PPT imper-
sonators II and III have a non-negligible advantage in the
above games.

3.5. Non-repudiation

The notion of non-repudiation requires that the nominee
cannot convince a verifier C that a valid (invalid) convert-
ible nominative signature is invalid (valid).
Game Non-repudiation: Let S be the simulator and B
be the cheating nominee.

1. (Initialization Phase) The initialization phase is the
same as that of Game Unforgeability.

2. (Preparation Phase) B prepares (m∗, σ∗, µ) where
m∗ is some message and σ∗ is a nominative signature.
µ = 1 if Vernominee(m∗, σvalid, pkA, skB) = valid;
otherwise, µ = 0.

3. (Repudiation Phase) If µ = 1, B executes Dis-
avowal protocol with the simulator S (acting as a ver-
ifier) on (m∗, σvalid, pkA, pkB) but the first bit sent to
S is 0. If µ = 0, B executes Confirmation protocol
with simulator S but the first bit sent to S is 1.

B wins the game if the simulator acting as the verifier out-
puts accept. B’s advantage in this game is defined to be
Adv(B) = Pr [Bwins].

Definition 4 A convertible nominative signature scheme is
said to be secure against repudiation by nominee if no PPT
cheating nominee B has a non-negligible advantage in the
above game.

4. Modified Huang-Wang’s Convertible Nomi-
native Signature Scheme

In this section, we will describe the modified Huang-
Wang’s convertible nominative signature scheme and make
a detailed formal security analysis in the random oracle
model [1].

4.1. Scheme

We now modify the Huang-Wang’s convertible nomina-
tive signature scheme [5] into a secure one. The modified
Huang-Wang’s scheme is as follows.

• System Setup: Let p, q be two large primes such that
q|p − 1, and g an element in Z∗

p of order q. Assume
that the discrete logarithm problem in the group 〈g〉 is
hard. In addition, two one-way hash functions H1 :
{0, 1}∗ → 〈g〉 and H2 : {0, 1}∗ → Zq is publicly
available.

• Key Generation: The nominator A and the nominee
B set their public/private key pairs as (yA, xA) and
(yB , xB) respectively, where xA, xB ∈R Z∗

q , yA =
gxA mod p and yB = gxB mod p.

• Signing Protocol: To generate a nominative signature
σ = (b, c, s) for a message m, the nominator A and
the nominee B jointly perform as follows.

1. The nominee B first picks R ∈R Z∗
q , then sends

(a, c) to the nominator A by computing

a = gR mod p,

c = H1(m‖yA‖yB)xB mod p.

2. Upon receiving (a, c), the nominator A chooses
r ∈R Z∗

q , and sends (b, c, s′) to B by computing

b = ag−r mod p,

e = H2(yA‖yB‖b‖c‖m),

s′ = r − xA · e (mod q).

3. Then nominee B checks whether both of the fol-
lowing equations hold:

e ≡ H2(yA‖yB‖b‖c‖m),

a ≡ gs′ye
Ab mod p.

If not, outputs “False”. Otherwise, nominee B out-
puts σ = (b, c, s) as the nominative signature for mes-
sage m by setting s = s′ + xB −R (mod q).

We say that σ = (b, c, s) is a convertible nominative
signature (i.e. σ is in the signature space with respect
to pkA and pkB) if b, c ∈ Zp, s ∈ Zq and

gsye
Ab ≡ yB mod p.

• Vernominee: Given a nominative signature σ =
(b, c, s) and a message m, the nominee B accepts σ
as valid if and only if

gsye
Ab ≡ yB mod p,

c = H1(m‖yA‖yB)xB mod p.

• Confirmation/Disavowal Protocol: On input
(m, σ, yA, yB) where σ is a convertible nominative
signature, if Vernominee(m, σ, yA, xB) = valid,
B sends µ = 1 to verifier C; otherwise, µ = 0
is sent to C. B then proves to C that the tuple
(g, yB , H1(m‖yA‖yB), c) is a DH-tuple or not
according to the value of u using WI protocols [6].

• Selectively Convert: When the nominee B wants to
convert a nominative signature σ = (b, c, s) into a pub-
licly verifiable one, he chooses k ∈R Z∗

q and computes
the selective proof P m, σ

pkA,pkB
as

SEQDL(g,H1(m‖yA‖yB), yB , c, σ) = (c′, s′)

where c′ = H2 (g ‖ H1 (m‖ yA ‖ yB) ‖ yB

‖ c ‖ gk ‖ (H1(m‖yA‖yB))k‖σ) and s′ = k −
c · xB (mod p). Then B publishes (c′, s′).

• Selectively Verify: Anyone can verify the nomina-
tive signature σ = (b, c, s) with its selective proof
P m, σ

pkA,pkB
= (c′, s′) by verifying the corresponding

signature of equality SEQDL.

Remark. We say that (g, gu, gv, gw) is a DH-tuple if
w ≡ uv (mod q); otherwise, it is a non-DH-tuple. As shown
in [6], using WI protocol, a prover who knows the knowl-
edge of either one of the witnesses, i.e. u or v, can prove
that whether the tuple (g, gu, gv, gw) is a DH-tuple or not.
In Confirmation/Disavowal protocol of our scheme, B’s
knowledge is xB . We will use the WI protocol [6] for con-
crete implementation.

4.2. Security Analysis

In this section, we give a formal security analysis of the
modified Huang-Wang’s scheme.

Lemma 1 (Adversary I) The modified Huang-Wang’s
convertible nominative signature scheme is existential
unforgeability against Adversary I if DLP problem is hard.

Proof : Suppose there exists a (t, ε, Q)-forger FI who can
forge a valid signature with probability at least ε after run-
ning at most time t and making at most Q queries, then we
show that there exists a (t′, ε′)-algorithm S who can solve
the DLP problem in G by running FI as a subroutine. Let
(g, U = gu) be a random instance of the DLP problem
where g, gu ∈ Z∗

p, S will simulate all the oracles and an-
swer FI ’s queries as follows.
S first generates cp according to System Setup algo-

rithm and sets nominator A’s public key yA = U . B’s pub-
lic/private key pair (yB , xB) is generated using Key Gen-
eration algorithm accordingly.

• Random Oracles: In order to respondFI ’s queries to
random oracles, S will maintain two lists: H1-list and
H2-list.

1. H1-query: At any time, FI can make a H1

query for m‖y1‖y2. In response, S will main-
tain a H1-list which stores his response to such
queries. For a new query, S checks H1-list to
see if the same query has been made before, if
so, the same answer will be returned; otherwise,
S chooses a random number r1 from Z∗

q and
sets H1(m‖y1‖y2) = gr1 mod p. Then S adds
(m‖y1‖y2, g

r1 mod p, r1) into H1-list and re-
turns gr1 mod p as the answer.

2. H2-query: When FI make a H2 query for
y1‖y2‖b‖c‖m, in response, S will maintain
a H2-list which stores his response to such
queries. For a new query, S checks H2-list
to see if the same query has been made before,
if so, the same answer will be returned; other-
wise, S chooses a random number r2 from Zq

and sets H2(y1‖y2‖b‖c‖m) = r2. Then S adds
(y1‖y2‖b‖c‖m, r2) into H2-list and returns r2 as
the answer.

• CreaterUser oracle: For a CreateUser query for iden-
tity I , in response, S will generate the public/private
key pair (yI , xI) using Key Generation algorithm and
return yI .

• Corrupt Oracle: FI can make a corrupt query for pub-
lic key yI , S will return xI as the answer. As restricted,
FI cannot query Corrupt Oracle for A’s private key.

• Signing Oracle: We assume that when FI requests a
signature on (m, y1, y2), it has already made the cor-
responding H1 query on (m, y1, y2). At any time, FI

can submit a signing query (m, y1, y2), there are three
cases to handle.

– Case (1): If role =nil, the simulation will be
carried out exactly according to Signing protocol
except in the following two sub-cases:

1. If y1 = yA, i.e. A is indicated as the nomi-
nator. For this case, since S does not know
A’s private key, he is not able to generate
a valid nominative signature using Signing
protocol directly. In this situation, S will
compute the nominative signature (b, c, s)
by following the steps below: (1) chooses
randomly R ∈ Z∗

q and sets a = gR mod p,
c = (gr1)x2 mod p = yr1

2 mod p where
gr1 mod p is the answer of H1 query; (2)
chooses randomly k ∈ Z∗

q , sets e = r2,
s′ = k and b = ag−s′y−e

A mod p =
ag−ky−r2

A mod p; (3) sets s = s′ + x2 −
R (mod q).

2. If y2 = yA, i.e. A is indicated as nomi-
nee. For this case, S first chooses randomly
R ∈ Z∗

q and sets a = gR mod p and c =
(gr)xA mod p = yr1

A mod p where gr1 mod p
is the answer of H1 query; then since S does
not know A’s private key, it is not able to
compute s directly, in this situation, S will
choose randomly l ∈ Zq and sets s = l and
b = yAg−sy−e

1 mod p = yAg−ly−r2
1 mod p

where r2 is the answer of H2 query; finally,
S returns (b, c, s) as the response.

– Case (2): If role=nominator, S simulates the be-
havior of a nominee and interacts with FI ac-
cording to Signing protocol except the following
subcase: if y2 = yA, similar to the subcase 2 in
case (1).

– Case (3): If role=nominee, S simulates the be-
havior of a nominator and interacts with FI ac-
cording to Signing protocol except the following
subcase: if y1 = yA, similar to the subcase 1 in
case (1).

• Confirmation/Disavowal Oracle: When FI makes
a confirmation/disavowal query on (m,σ, y1, y2), S
simulates Confirmation/Disavowal protocol accord-
ingly except the following case: if y2 = yA, i.e.
A is indicated as the nominee, S does not know
A’s private key to prove a DH-tuple/non-DH-tuple
(g, yB ,H1(m‖y1‖yA, c). In this situation, S will use

its knowledge r1 to execute the WI protocol, where
gr1 mod p is the answer of query H1(m‖y1‖yA).

• Selectively Convert Oracle: When FI makes a se-
lectively convert query on (m,σ, y1, y2), S chooses
randomly c ∈ Zp and s ∈ Zq and sets (c, s) as the
answer.

After all the queries, FI outputs a valid forgery
(m∗, σ∗, yA, yB) with the restrictions defined in Section
3.2. Therefore, σ∗ = (b∗, c∗, s∗) satisfies gs∗ye∗

A b∗ ≡
yB (mod p), c∗ = H1(m∗‖yA‖yB)xB (mod p) and e∗ =
H2(yA‖yB‖b∗‖c∗‖m∗), then FI can forge a s∗ satisfying
gs∗ye∗

A ≡ gr′ (mod p). In other words, he can forge a valid
Schnorr’s signature [11]. It is known that Schnorr’s signa-
ture scheme is existential unforgeable under DLP problem,
hence S will solve DLP problem.

To complete the proof, it remains to calculate the prob-
ability ε′ that S solves the DLP problem and the time t′

that S runs. The success probability of S is at least ε. The
time t′ of running is at most t + Qtq + c where tq is the
maximum time for simulating one oracle query and c de-
notes some constant time of system setup and key genera-
tion. This completes our proof. �

We leave the following security proofs in the appendices.

Lemma 2 (Adversary II) The modified Huang-Wang’s
convertible nominative signature scheme is existentially
unforgeable against Adversary II if CDH problem is hard.

Theorem 1 The modified Huang-Wang’s convertible nom-
inative signature scheme is existential unforgeable if both
DLP and CDH problems are hard.

Proof: The proof of this theorem follows from Lemma 1
and Lemma 2.

Theorem 2 The modified Huang-Wang’s convertible nom-
inative signature scheme has the property of invisibility if
the DDH problem is hard.

Theorem 3 The modified Huang-Wang’s convertible nom-
inative signature scheme is secure against impersonation if
DLP problem is hard.

Theorem 4 The modified Huang-Wang’s convertible nom-
inative signature scheme is secure against repudiation by
nominee.

4.3. Comparison

Compared with Huang-Wang’s scheme, our scheme ad-
ditionally employ a hash function in the signing protocol, so
it is slightly less efficient. However it offers formal security
analysis under a reasonable security model, while Huang-
Wang’s scheme is in fact not a secure scheme.

5. Conclusions

In this paper, we first presented a security model of con-
vertible nominative signatures and then modified Huang-
Wang’s scheme to be secure in this model. Meanwhile,
all the security properties of the modified Huang-Wang’s
scheme were formally proven under some conventional
complexity assumptions in the random oracle model.

References

[1] M. Ballare and P. Rogaway, “Random Oracles Are Practical:
A Paradigm for Designing Efficient Protocols”, Proceedings
of the First Annual Conference on Computer and communica-
tions Security, ACM, 1993, pp.62-73.

[2] J. Camenisch, “Efficient and Generalized Group Signa-
tures”, Advance in Cryptology-EUROCRYPT’97, LNCS
1233, pp.465-479, Springer-Verlag, 1997.

[3] W. Diffie and M. Hellam, “New Directions in Cryptography”,
IEEE IT22, pp.644-654, 1976.

[4] L. Guo, G. Wang and D. Wang, “Further Discussions on the
Security of a Nominative Signature Scheme”, IACR erpint
archive, http://eprint.iacr.org/2006/007.

[5] Z. Huang and Y. Wang, “Convertible Nominative Signatures”,
In: Proc. of Information Security and Privacy (ACISP’04),
LNCS 3108, pp.181-357, Springer-Verlag, 2005.

[6] K. Kurosawa and S. Heng, “3-Move Unideniable Signature
Scheme”, In: R.J.F.Cramer(ed.) EUROCRYPT 2005, LNCS
3494, pp.181-197, Springer-Verlag, 2005.

[7] S. J. Kim, S. J. Park and D. H. Won, “Zero-knowledge Nom-
inative Sigantures”, In Pragocrypt’96, International Confer-
ence on the Theory and Applications of Cryptology, pp.380-
392, 1996.

[8] D. Y. W. Liu, Q. Huang and D. S. Wong, “An Efficient One-
move Nominative Signature Scheme”, IACR eprint archive,
http://eprint.iacr.org/2007/260.

[9] D. Y. W. Liu, D. S. Wong, X. Huang, G. Wang, Q.
Huang, Y. Mu and W. Susilo, “Formal Definition and Con-
struction of Nomiantive Signature”, S.Qing, H.Imai and
G.Wang(eds): ICICS 2007, LNCS 4861, pp.57-68, 2007.

[10] D. Pointcheval and J. Stern, “Security Proofs for Signature
Schemes”, In: U.M.Maurer(eds) EUROCRYPT 1996, LNCS,
vol.1070, pp.387-398, Springer, Heidelberg(1996).

[11] C. P. Schnorr, “Efficient Signature Generation for Smart
Cards”, Journal of Crryptology, 1991(4), pp.239-252.

[12] W. Susilo and Y. Mu, “On the Security of Nominative
Signatures”, In: Proc. of Information Security and Privacy
(ACISP05), LNCS 3547, pp.329-335. Springer-Verlag, 2005.

[13] G. Wang and F. Bao, “Security Remarks on a Convertible
Nomiantive Signature Scheme”, In IFIP International Fed-
eration for Information Processing, Volume 232, New Ap-
proaches for Security, Privacy and Trust in Complex Envi-
ronments, eds. H.Venter, M.Eloff, L.Labuschague, J.Eloff,
R.Vonsolms, (Boston:Springer), pp.265-275.

A. Proof of Lemma 2

Proof : Suppose there exists a (t, ε, Q)-forger FII who can
forge a valid signature with probability at most ε after run-
ning at most time t and making at most Q queries, then we
show that there exists a (t′, ε′)-algorithm S who can solve
the CDH problem in G by running FII as a subroutine. Let
(g, U = gu, V = gv) be a random instance of the CDH
problem where g, gu, gv ∈ Z∗

p, S will simulate all the ora-
cles and answer FII ’s queries as follows.
S first generates cp according to System Setup algo-

rithm and sets nominator B’s public key yB = U . A’s pub-
lic/private key pair (yA, xA) is generated using Key Gener-
ation algorithm accordingly. Let qH1 be the number of H1

queries that FII issues.

• Random Oracles: In order to respond FII ’s queries
to random oracles, S will maintain two lists: H1-list
and H2-list.

1. H1-query: At any time, FII can make a H1

query for m‖y1‖y2. In response, S will main-
tain a H1-list which stores his response to such
queries. Among the qH1 H1 queries, S ran-
domly chooses one of the H1 queries that are
in the form m‖yA‖yB , say m̃‖yA‖yB , and sets
H1(m̃‖yA‖yB)=(gv)r1 mod p. Other queries,
however, will be set as gr1 mod p where r1

is chosen randomly from Z∗
q . Then S adds

(m‖y1‖y2, H1(m‖y1‖y2), r1) into H1-list and
returns H1(m‖y1‖y2) as the answer.

2. H2-query: When FII make a H2 query for
y1‖y2‖b‖c‖m, in response, S will maintain
a H2-list which stores his response to such
queries. For a new query, S checks H2-list
to see if the same query has been made before,
if so, the same answer will be returned; other-
wise, S chooses a random number r2 from Zq

and sets H2(y1‖y2‖b‖c‖m) = r2. Then S adds
(y1‖y2‖b‖c‖m, r2) into H2-list and returns r2 as
the answer.

• CreateUser Oracle: For a CreateUser query for iden-
tity I , in response, S will generate the public/private
key pair (yI , xI) using Key Generation algorithm and
return yI .

• Corrupt Oracle: FII can make a corrupt query for
public key yI , S will return xI as the answer. As re-
stricted, FII cannot query Corrupt Oracle for B ’s
private key.

• Signing Oracle: We assume that when FII requests
a signature on (m, y1, y2), it has already made the cor-
responding H1 query on (m, y1, y2) and H2 query on
(y1‖y2‖b‖c‖m). At any time, FII can submit a sign-
ing query (m, y1, y2), there are three cases to handle.

– Case (1): If role =nil, the simulation will be
carried out exactly according to Signing protocol
except in the following two sub-cases:

1. If y1 = yB , i.e. B is indicated as the nom-
inator. For this case, since S does not know
B’s private key, he is not able to generate
a valid nominative signature using Signing
protocol directly. In this situation, S will
compute the nominative signature (b, c, s)
by following the steps below: (1) chooses
randomly R ∈ Z∗

q and sets a = gR mod p,
c = (gr1)x2 mod p = yr1

2 mod p where gr1

is the answer of H1 query; (2) chooses ran-
domly k ∈ Z∗

q , sets e = r2, s′ = k and
b = ag−s′y−e

B mod p = ag−ky−r2
B mod p;

(3) sets s = s′ + x2 −R (mod q).

2. If y2 = yB , i.e. B is indicated as the nom-
inee. If both y1 = yA and m = m̃ are sat-
isfied, S aborts and fails to solve the CDH
problem. Otherwise, S first chooses ran-
domly R ∈ Z∗

q and sets a = gR mod p and
c = (gr1)xB mod p = yr1

B mod p where
gr1 mod p is the answer of H1-query; then
since S does not know B’private key, it will
chooses random l ∈ Zq and sets s = l and
b = yBg−ly−e

1 mod p = yBg−ly−r2
1 mod p

where r2 is the answer of H2 query; finally,
S returns (b, c, s) as the response.

– Case (2): If role=nominator, S simulates the be-
havior of a nominee and interacts with FII ac-
cording to Signing protocol except the following
subcase: if y2 = yB , similar to the subcase 2 in
case (1).

– Case (3): If role=nominee, S simulates the be-
havior of a nominator and interacts with FII ac-
cording to Signing protocol except the following
subcase: if y1 = yB , similar to the subcase 1 in
case (1).

• Confirmation/Disavowal Oracle:When FII makes
a confirmation/disavowal query on (m, σ, y1, y2), S
simulates Confirmation/Disavowal protocol accord-
ingly except the following case: if y2 = yB , i.e.
B is indicated as the nominee, S does not know
B’s private key to prove a DH-tuple/non-DH-tuple

(g, yB , H1(m‖y1‖y2), c). In this situation, if both
y1 = yA and m = m̃ are satisfied, S aborts; otherwise,
S will use its knowledge r1 to execute the WI protocol,
where gr1 mod p is the answer of query H1(m‖y1‖y2).
In the following, we will see that at least 1/qH1 chance
the case that S aborts will not happen.

• Selectively Convert Oracle: When FII makes a se-
lectively convert query on (m,σ, y1, y2), S chooses
randomly c ∈ Zq and s ∈ Zq and sets (c, s) as the
answer.

After all the queries, FII outputs a valid forgery
(m∗, σ∗, yA, yB) with the restrictions defined in Section
3.2. If m̃ = m∗, then c∗ = H1(m∗‖yA‖yB)xB mod p =
(guv)r1 mod p. Therefore, S can obtain guv =
(c∗)1/r1 mod p and thus solves the CDH problem.

To complete the proof, it remains to calculate the prob-
ability ε′ that S does not abort and the time t′ that S runs.
The probability that S does not abort, i.e. the success prob-
ability that S guesses m̃ = m∗ correctly, is q−1

H1
. So, the

success probability that S solves CDH problem is q−1
H1

ε ≥
Q−1ε. Note that F

II
is not allowed to submit confirma-

tion/disavowal query on (m∗, σ′, yA, yB), Hence the simu-
lation will not have early abortion for the case m∗ = m̃.
The time t′ of running is at most t + Qtq + c where tq is
the maximum time for simulating one oracle query and c
denotes some constant time of system setup and key gener-
ation. This completes our proof. �

B. Proof of Theorem 2

Proof : Suppose there exists a (t, ε, Q)-distinguisherD who
can win Game Invisibility with probability at least ε after
running at most time t and making at most Q queries, then
we show that there exists a (t′, ε′)-algorithm D′ who can
solve the DDH problem by running D as a subroutine. Let
(g, U = gu, V = gv, Z = gz) be a random instance of the
DDH problem where g, gu, gv , gz ∈ Z∗

p, D′ will simulate
all the oracles and answer D’s queries as in Lemma 2.

After all the queries, D submits the challenging mes-
sage m∗. We assume that D has already made the cor-
responding H1 query on (m∗, yA, yB) and H2 query on
(yA‖yB‖b∗‖c∗‖m∗), but it has never submitted a Corrupt
Oracle on yB , (m∗, yA, yB , role) has never been queried
to Signing Oracle for any valid value of role. If m∗ = m̃ ,
then H1(m∗‖yA‖yB) = (gv)r1 mod p, D′ returns the chal-
lenging signature σ∗ = (b∗, c∗, s∗) where c∗ = Zr1 mod p.
Otherwise, D′ aborts and fails to solves DDH problem.

After receiving the challenging signature σ∗, D can still
submit queries to all the oracles with the restrictions de-
fined in Section 3.3. Finally, D submits his guess b′ to D′.
D′ forwards b′ as his answer to the DDH problem. Note

that if b′ = 1, then σ∗ is a valid signature of message m∗

with probability 1/2+ε, which means c∗ = (guv)r1 mod p.
Since D′ computes c∗ as Zr1 mod p, hence z = uv mod q.
Otherwise, σ∗ is a invalid signature of message and z 6=
uv mod q. Therefore, if D′ does not abort during the sim-
ulation, it can solve the instance of DDH problem with the
advantage at least ε.

To complete the proof, it remains to calculate the prob-
ability ε′ that D′ does not abort and the time t′ that D′

runs. The probability that S does not abort, i.e. the suc-
cess probability that D′ guesses m̃ = m∗ correctly, is q−1

H1
.

So, the success probability that S solves DDH problem is
q−1
H1

ε ≥ Q−1ε. Note that D is not allowed to submit confir-
mation/disavowal query on (m∗, σ′, yA, yB), hence the sim-
ulation will not have early abortion for the case m∗ = m̃.
The time t′ of running is at most t + Qtq + c where tq is
the maximum time for simulating one oracle query and c
denotes some constant time of system setup and key gener-
ation. This completes our proof. �

C. Proof of Theorem 3

The proof of this theorem consists of the following two
lemmas:
Non-impersonation of Confirmation/Disavowal Proto-
cols:

Lemma 3 The modified Huang-Wang’s convertible nomi-
native signature scheme is secure against impersonation
of confirmation/disavowal protocol if the DLP problem is
hard.

Proof : Suppose there exists a (t, ε, Q)-impersonator II

who can win Game Impersonation of Confirma-
tion/Disavowal protocol with probability at least ε af-
ter running at most time t and making at most Q queries,
then we show that there exists a (t′, ε′)-algorithm S who
can solve the DLP problem by running II as a subroutine.

Let (g, U = gu) be a random instance of the DLP prob-
lem where g, gu ∈ Z∗

p. S first generate cp according to
System Setup algorithm and sets nominator B’s public key
yB = U . A’s public/private key pair (yA, xA) is generated
using Key Generation algorithm accordingly. S will simu-
late all the oracles and answer II ’s queries similarly to the
simulator in the proof of Lemma 2 with the exception that S
will always return gr mod p as the answer for any H1-query.

Based on the proof techniques in [6], the advantage that
S can extract the discrete logarithm of yB to the base g, i.e.
xB = u, is at least ε′ = (ε− 1

q)2/2. The time t′ of running
is at most t + Qtq + c where tq is the maximum time for
simulating one oracle query and c denotes some constant
time of system setup, key generation and the impersonation
of Confirmation/Disavowal protocol which II executes
with S. This completes our proof. �

Non-impersonation of Selectively Convert Algorithm:

Lemma 4 The modified Huang-Wang’s convertible nomi-
native signature scheme is secure against impersonation of
selectively convert algorithm if the DLP problem is hard.

Proof : Suppose there exists a (t, ε, Q)-impersonator III

who can win Game Impersonation of Selectively
Convert Algorithm with probability at least ε after run-
ning at most time t and making at most Q queries, then we
show that there exists a (t′, ε′)-algorithm S who can solve
the DLP problem by running III as a subroutine.

Let (g, U = gu) be a random instance of the DLP prob-
lem where g, gu ∈ Z∗

p, S will simulate all the oracles and
answer III ’s queries as in Lemma 2 with the exception that
S will always return gr mod p as the answer for any H1-
query.

After all the queries, III outputs a valid forgery
Pm∗,σ∗

yA,yB
=(c∗1, s

∗
1) on (m∗, σ∗, yA, yB) with the restrictions

defined in Section 3.4. It is obvious that (c∗1, s∗1) satisfies
c∗1 = H2(g ‖ h ‖ yB ‖ c∗ ‖ gs∗1y

c∗1
B ‖ hs∗1c∗c∗1 ‖ σ∗) mod q

where h = H1(m∗‖yA‖yB). Using the forking lemma
[10], III can output another forgery Pm∗,σ∗

yA,yB
= (c∗2, s

∗
2)

on (m∗, σ∗, yA, yB). We have

c∗1 6= c∗2 (mod q)

s∗1 + xBc∗1 = s∗2 + xBc∗2 (mod q)

From the above equations, S can obtain xB = (s∗2 −
s∗1)/(c∗1 − c∗2) mod q and thus solves the DLP problem.

To complete the proof, it remains to calculate the suc-
cess probability ε′ of S and the time t′ that S runs. The
success probability ε′ of S is at least ε2 due to the forking
lemma [10]. The time t′ of running is at most 2t+2Qtq + c
where tq is the maximum time for simulating one oracle
query and c denotes some constant time of system setup
and key generation. �

D. Proof of Theorem 4

Proof : This secure property follows directly the soundness
property of the WI proofs in [6]. �

