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Abstra
t

It has been known that the 
ode lengths of Tardos's 
ollusion-se
ure

�ngerprinting 
odes are of theoreti
ally minimal order with respe
t to

the number of adversarial users (pirates). However, the 
ode lengths 
an

be further redu
ed, as some pre
eding studies on Tardos's 
odes already

revealed. In this arti
le we improve a re
ent dis
rete variant of Tardos's


odes, and give a se
urity proof of our 
odes under an assumption weaker

than the original assumption (Marking Assumption). Our analysis shows

that our 
odes have signi�
antly shorter lengths than Tardos's 
odes. For

example, in a pra
ti
al setting, the 
ode lengths of our 
odes are about

3:01%, 4:28%, and 4:81% of Tardos's 
odes if the numbers of pirates are

2, 4, and 6, respe
tively.

1 Introdu
tion

Re
ent development of 
omputer and network te
hnology has promoted trades

of digital 
ontents. This has in
reased not only 
onvenien
e for both 
ontent

servers and users, but also risks of the distributed 
ontents being illegally 
opied

and redistributed. Digital �ngerprinting s
heme is a solution for su
h problems,

in whi
h the 
ontent server embeds some user identi�
ation data into ea
h 
on-

tent in advan
e and dete
t the redistributor (
alled a pirate) from the data

embedded into the redistributed 
ontent. The obje
t of this arti
le is �nger-

printing 
odes used for en
oding the user identi�
ation data.

A 
ollusion atta
k by more than one pirates is a typi
al atta
k (modi�
ation

and erasure) to the embedded �ngerprint 
odeword. A �ngerprinting 
ode is


alled 
-se
ure, if it is se
ure against 
ollusion atta
ks by at most 
 pirates,

namely if it is equipped with a tra
ing algorithm whi
h 
an output a pirate


orre
tly with an overwhelming probability. The �rst 
onstru
tion of 
-se
ure

�
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odes for every 
 was given by Boneh and Shaw [2℄, where they introdu
ed a


ertain assumption on the pirates' atta
k strategies 
alledMarking Assumption.

Then Tardos [8℄ proposed 
-se
ure 
odes (under Marking Assumption) with

highly probabilisti
 
odeword generation algorithms. A 
hara
teristi
 of his


odes is that by the tra
ing algorithm, 
loseness of ea
h user's 
odeword to the


odeword in the redistributed 
ontent is quanti�ed as a \s
ore" of ea
h user

and then users whose s
ores ex
eed a given threshold are output. His work is a

milestone in this area be
ause of the fa
t that 
ode lengths of his 
-se
ure 
odes

are of theoreti
ally minimal order (that is, O(


2

)) with respe
t to 
.

After Tardos's work, there have been proposed several improvements of his


odes. A dire
tion investigated by

�

Skori�
 et al. [7℄ 
on
erns redu
tion of the


ode lengths by modifying the s
oring fun
tion and by sharpening evaluation of

error probability of the tra
ing algorithm. Another dire
tion taken by Blayer

and Tassa [1℄ 
on
erns redu
tion of the 
ode lengths by improving the parame-

ter 
hoi
e for Tardos 
odes. Moreover, a work by Nuida et al. [5, 6℄ (following

Hagiwara et al. [3℄) 
on
erns implementation issues of the 
odes. Namely, they

repla
ed the 
ontinuous probability distributions used in Tardos 
odes with


ertain �nite (hen
e dis
rete) probability distributions, and proposed an appro-

priate way of approximating the s
oring fun
tion, so that the resulting 
odes


an be implemented by using smaller amount of memory and numbers expli
-

itly representable on 
omputers. In addition, their \dis
rete Tardos 
odes" also

have shorter lengths than the original.

Our 
ontribution in this arti
le is a further improvement of the dis
rete

Tardos 
odes in [5, 6℄, at the following points:

� Modi�
ation of the tra
ing algorithm: In 
ontrast with the previous 
odes

[3, 5, 6, 7, 8℄, our tra
ing algorithm outputs only one user having the

highest s
ore. This results in signi�
ant redu
tion of the error probability.

� Redu
tion of 
ode lengths: It is dedu
ed from our formula of 
ode lengths

that the lengths are redu
ed to less than or almost equal to 1=20 of Tardos


odes in many pra
ti
al settings.

� Relaxation of Marking Assumption: Our se
urity proof is given under an

assumption weaker than the Marking Assumption, thus it 
overs more

pra
ti
al 
ases.

This arti
le is organized as follows. Se
tion 2 summarizes our models and

assumptions on �ngerprinting 
odes. In Se
tion 3, we introdu
e the abovemen-

tioned relaxation of Marking Assumption, and des
ribe our 
odeword generation

algorithm and our tra
ing algorithm. In Se
tion 4, we give our main results re-

garding the bound of error probabilities and the formula of 
ode lengths of our


odes. Se
tion 5 deals with some numeri
al examples of our 
odes and their


omparison with previous 
-se
ure 
odes [6, 7, 8℄. In Se
tion 6, we investigate

an asymptoti
 behavior of 
ode lengths of our 
odes. Arguments in these two

se
tions show that the lengths of our 
odes are signi�
antly short. Finally,

Se
tion 7 is devoted to the proofs of our results given in Se
tion 4.
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2 Preliminary

2.1 A general model for �ngerprinting 
odes

In this subse
tion, we give a general model for �ngerprinting 
odes. A spe
ialized

model relevant to 
odes of our proposal will be shown in Se
tion 2.2.

The players in our model are a 
ontent server (or a server in short) and

a number (denoted by N) of users. The users are 
lassi�ed into two types;

adversarial users 
alled pirates, and the remaining users 
alled inno
ent users.

Let ` denote the number of pirates.

Before the 
odeword generation phase, �rst the server 
hooses in a proba-

bilisti
 manner an auxiliary parameter P used in the remaining phases. This

phase may be omitted when su
h a parameter P is not ne
essary.

In the 
odeword generation phase, the server generates a 
odeword of ea
h

user in a probabilisti
 manner whi
h may depend on the above parameter P .

In this arti
le we assume that the 
odeword w

i

= (w

i;1

; : : : ; w

i;m

) of i-th user

u

i

is a binary sequen
e of the 
ommon length m. Then the server sends ea
h


odeword w

i

to the 
orresponding user u

i

by a 
ertain way, e.g. by embedding

w

i

as a digital �ngerprint into a digital 
ontent and sending it to the user u

i

.

When the pirates re
eive their 
odewords, they 
reate a new 
odeword (de-

noted by y) 
alled a pirated 
odeword by an algorithm referred to as a pirates'

strategy. It is generally possible that pirates not only modify their 
odewords

but also erase some bits in them. To 
onsider su
h atta
ks, we assume that the

length of y is also m but y 
onsists of symbols in a larger alphabet f0; 1; ?g,

where `?' signi�es an erased bit. The following two assumptions are standard

so far in the resear
h area of �ngerprinting 
odes. The former one was �rst

introdu
ed by Boneh and Shaw [2℄, whi
h is a 
onsequen
e of a desired property

of steganography used by the server. On the other hand, the latter has been

impli
itly put in most of the pre
eding works, and it represents a reasonable

assumption that 
odewords of inno
ent users and the parameter P (if it exists)

are kept se
ret for the pirates.

De�nition 2.1 (Marking Assumption). If the bits w

i

1

;j

; : : : ; w

i

`

;j

in the j-th

position of 
odewords of the pirates u

i

1

; : : : ; u

i

`

(1 � j � m) all 
oin
ide with

ea
h other (we 
all su
h a position undete
table), then the j-th bit y

j

of the

pirated 
odeword y also 
oin
ides with them.

De�nition 2.2 (No Leakage Assumption). The distribution of the pirated 
ode-

word y, 
onditioned on given pirates' 
odewords, is independent of both inno
ent

users' 
odewords and the parameter P (if it exists).

Then the pirates distribute the pirated 
odeword y, e.g. by distributing


opies of a pirated 
ontent involving a modi�ed �ngerprint that 
oin
ides with

y.

Finally, after the server obtains the pirated 
odeword y (e.g. by �nding a

pirated 
ontent and extra
ting the embedded �ngerprint), the server performs

a tra
ing algorithm to dete
t the pirates. A tra
ing algorithm takes the pirated


odeword y, the users' 
odewords and the parameter P (if it exists) as input,

and outputs a (possibly empty) set of suspe
ted users. A result of the algorithm

is regarded as a tra
ing error, or an error in short, unless the list of suspe
ts

involves at least one pirate and no inno
ent user.
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A �ngerprinting 
ode signi�es a pair of a 
odeword generation algorithm

(in
luding a 
hoi
e of parameter P , if it exists) and a tra
ing algorithm. We

say that a �ngerprinting 
ode is 
-se
ure (with "-error) [2℄, if the probability

of tra
ing error, taken over 
hoi
es of users' 
odewords and parameter P (if it

exists), does not ex
eed a negligibly small value " whenever ` � 
.

2.2 A model relevant to our 
odes

Here we give a spe
ialized model based on the one in Se
tion 2.1, whi
h is

relevant to our �ngerprinting 
odes proposed in this arti
le. This model also


overs Tardos 
odes [8℄ and its re
ent variants su
h as [3, 5, 6, 7℄.

In this spe
ialized model, �rst the server prepares a probability distribution

P with real values in the open interval (0; 1), whi
h we refer to as a bias distribu-

tion. Then the parameter P is a sequen
e (p

(1)

; : : : ; p

(m)

) of values p

(j)

2 (0; 1)


hosen independently a

ording to P . As is explained below, ea
h p

(j)

signi�es

the frequen
y of 1s appearing in j-th positions of users' 
odewords. We refer to

the parameter P as the bias parameter.

In the 
odeword generation phase, the server 
hooses ea
h bit w

i;j

in users'


odewords independently, with probability

Pr(w

i;j

= 1) = p

(j)

and Pr(w

i;j

= 0) = 1� p

(j)

:

Given a pirated 
odeword y, the tra
ing algorithm �rst 
al
ulates a s
ore S

(j)

i

for j-th bit w

i;j

of i-th user u

i

by a 
ertain real-valued fun
tion, and then

sums them up as the total s
ore S

i

=

P

m

j=1

S

(j)

i

of i-th user. Se
ondly, the

algorithm 
ompares the s
ores with an appropriately sele
ted threshold Z, and

pi
ks up every user u

i

with S

i

� Z as a 
andidate of the output. We let this

model in
lude the extreme 
ase \Z = �1", where no user is exempted from

the 
andidates. Finally, the algorithm sele
ts a part of the 
andidate users in a


ertain manner and outputs every user in the sele
ted part.

Example 2.3. In the 
ase of Tardos 
odes [8℄, a 
ertain 
ontinuous distribution

is used as the bias distribution (see [8℄ for details). By introdu
ing an auxiliary

fun
tion �(p) =

p

(1� p)=p, the s
oring fun
tion in [8℄ is given by S

(j)

i

= �(p

(j)

)

if (y

j

; w

i;j

) = (1; 1), S

(j)

i

= ��(1 � p

(j)

) if (y

j

; w

i;j

) = (1; 0), and S

(j)

i

= 0 if

y

j

2 f0; ?g. Moreover, the tra
ing algorithm outputs every user whose s
ore

ex
eeds the threshold Z. In [8℄, the 
ode length and the threshold are determined

by m = 100


2

dlog(N=")e and Z = 20
dlog(N=")e. On the other hand, in a

\dis
rete variant" of Tardos 
odes proposed by Hagiwara et al. in [3℄, the bias

distribution is a �nite (hen
e dis
rete) probability distribution with only a small

number of possible values. Moreover, in a \symmetrized version" of Tardos


odes proposed by

�

Skori�
 et al. in [7℄, the s
oring fun
tion is modi�ed so that

S

(j)

i

= �(1� p

(j)

) if y

j

2 f0; ?g and w

i;j

= 0, S

(j)

i

= ��(p

(j)

) if y

j

2 f0; ?g and

w

i;j

= 1, and S

(j)

i

is the same as the original otherwise.

Now we give a remark on 
omparison between tra
ing algorithms of the

following two types. An algorithm of the �rst type outputs every user with

the s
ore ex
eeding a threshold Z (e.g. Tardos 
odes). On the other hand, an

algorithm in the se
ond type does not use a threshold (in other words, it is in

the extreme 
ase Z = �1) and outputs just one of the users with the highest

s
ore. Then we have the following result:
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Proposition 2.4. If all the remaining attributes are in 
ommon, the error

probability of a �ngerprinting 
ode with a tra
ing algorithm of se
ond type is not

more than the error probability of a 
ode with a tra
ing algorithm of �rst type.

Proof. In the 
ase that a tra
ing algorithm of the se
ond type results in an error,

an inno
ent user has the highest s
ore, therefore we have either an inno
ent

user's s
ore ex
eeds a given threshold or no pirate's s
ore ex
eeds the same

threshold. Thus the 
orresponding tra
ing algorithm of the �rst type also results

in an error in this 
ase. Hen
e the proposition follows.

3 Our proposal

This se
tion summarizes our proposal; a relaxed version of Marking Assump-

tion, a 
odeword generation algorithm, and an improved tra
ing algorithm. An

appropriate 
hoi
e of the 
ode lengths together with a se
urity proof of our


odes will be given in later se
tions.

3.1 A relaxation of Marking Assumption

An issue of the Marking Assumption (De�nition 2.1) is that �ngerprint embed-

ding s
hemes assuring this assumption stri
tly seem diÆ
ult to realize. From

this viewpoint, we put the following relaxed version of Marking Assumption:

De�nition 3.1 (Æ-Marking Assumption). The number of undete
table posi-

tions (see De�nition 2.1 for terminology) in whi
h y di�ers from the pirates'


odewords is not more than mÆ, where m is the 
ode length and Æ � 0 is a �xed

parameter.

When Æ = 0, this assumption 
oin
ides with the Marking Assumption.

3.2 Our 
odeword generation algorithm

The following des
ription of our 
odeword generation pro
ess is based on the

model in Se
tion 2.2. Thus it now suÆ
es to determine the bias distribution.

Here we introdu
e the following bias distribution P

GL

= P

GL




for ea
h 
:

De�nition 3.2. Let L

k

(t) = (

d

dt

)

k

(t

2

�1)

k

=(k! 2

k

) be the k-th Legendre polyno-

mial, and put

e

L

k

(t) = L

k

(2t� 1). Then we de�ne P

GL

2k�1

= P

GL

2k

to be the �nite

probability distribution whose values are the k zeroes of

e

L

k

, with ea
h value

p taken with probability C

�

p(1 � p)

�

�3=2

e

L

k

0

(p)

�2

, where C is the normalized


onstant making the sum of the probabilities equal to 1.

These bias distributions P

GL




were �rst introdu
ed by a dis
rete variant

[5, 6℄ of Tardos 
odes. In [5, 6℄, P

GL




are 
alled \Gauss-Legendre distributions"

due to their deep relation to the Gauss-Legendre quadrature in numeri
al ap-

proximation theory. It is shown in [5, 6℄ that P

GL




minimizes, among the bias

distributions with 
ertain desirable property, the memory amount required to

re
ord the bias parameter P , and that the 
ode lengths are also redu
ed by

using P

GL




instead of the 
ontinuous bias distributions for Tardos 
odes. This

is the main reason of adopting the distributions P

GL




as our bias distributions.
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We should note that the values and the 
orresponding emerging probabilities

of P

GL




are not rational, therefore we need some approximation to implement

these distributions on 
omputer. E�e
ts of su
h approximations will also be 
on-

sidered in our se
urity proof. In this arti
le, we assume the following 
ondition

on the bias distribution P approximating P

GL




:

De�nition 3.3. We say that a bias distribution P is symmetri
, if P takes the

values p and 1� p with the same probability for any 0 < p < 1.

Note that the original P

GL




are also symmetri
 in this sense.

3.3 Our tra
ing algorithm

Our tra
ing algorithm is also de�ned along the model in Se
tion 2.2. For the

s
oring rule, we put

�(p) =

p

(1� p)=p

and de�ne the bitwise s
ores S

(j)

i

by

S

(j)

i

=

8

>

>

>

<

>

>

>

:

�(p

(j)

) if y

j

= 1 and w

i;j

= 1 ;

��(1� p

(j)

) if y

j

= 1 and w

i;j

= 0 ;

��(p

(j)

) if y

j

2 f0; ?g and w

i;j

= 1 ;

�(1� p

(j)

) if y

j

2 f0; ?g and w

i;j

= 0 :

(1)

Note that this s
oring rule was used in a pre
eding work [7℄ to redu
e the 
ode

lengths of Tardos 
odes.

Then, instead of 
omparing users' s
ores with a threshold, our tra
ing algo-

rithm simply outputs one of the users with the highest s
ore. This modi�
ation

is in fa
t an improvement, due to Proposition 2.4. Note that the way of 
hoosing

just one user from the users with the highest s
ore may be arbitrarily designed,

sin
e our se
urity proof 
overs any possible way for this 
hoi
e.

Note that s
ores determined by the above rule are in general not expli
itly

representable on 
omputer, therefore we also need some approximations of these

values. For this purpose, we enumerate the values of the symmetri
 (in the

sense of De�nition 3.3) bias distribution P (whi
h is either the distribution

P

GL




itself or its approximation) in in
reasing order as p

0

; p

1

; : : : ; p

k

, and �x an

approximated value U

i

of ea
h �(p

i

). Now by the symmetry property of P , we

have 1�p

i

= p

k�i

, therefore the value U

k�i

(denoted by U

0

i

for simpli
ity) is an

approximated value of �(1 � p

i

). In this setting, we modify the above s
oring

rule (1) for bitwise s
ores as follows:

S

(j)

i

=

8

>

>

>

<

>

>

>

:

U

�

if y

j

= 1 and w

i;j

= 1 ;

�U

0

�

if y

j

= 1 and w

i;j

= 0 ;

�U

�

if y

j

2 f0; ?g and w

i;j

= 1 ;

U

0

�

if y

j

2 f0; ?g and w

i;j

= 0 ;

where p

(j)

= p

�

: (2)

Our se
urity proof also 
onsider the e�e
ts of this approximation.
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4 Code lengths and error probabilities of our


odes

For our 
odes proposed in Se
tion 3, in this se
tion we give a bound of tra
ing

error probabilities and a formula of 
ode lengths (Theorem 4.2), whi
h show

that our 
odes are 
-se
ure. Proofs of the results will be provided in Se
tion 7.

First, we present some notations and terminology. Let P be a symmetri


bias distribution (see De�nition 3.3), whi
h is either the distribution P

GL




in

De�nition 3.2 or its approximation. Let p

0

; p

1

; : : : ; p

k

, U

i

, and U

0

i

be as de�ned

in the last paragraph of Se
tion 3.3. Put

� = �(p

0

) :

Let

Æ

0

= max

0�i�k

j�(p

i

)� U

i

j = max

0�i�k

j�(1� p

i

)� U

0

i

j ;

i.e. the bound of approximation errors of the bitwise s
ores. Then we de�ne the

toleran
e rate � of our 
ode by

� = Æ

0

+ 2�Æ ;

where the value Æ is that appearing in Æ-Marking Assumption (De�nition 3.1).

For ea
h 1 � ` � 
 and 0 � x � `, put

R

`;x

= maxf0; E

�

p

x

(1� p)

`�x

�

x�(p) � (`� x)�(1 � p)

��

g ;

R

`

= `E

h

(1� p)

`�1=2

p

1=2

i

�

`�1

X

x=1

�

`

x

�

R

`;x

;

where the expe
tation values E[�℄ are taken over the values p of P . Then �x

a value R su
h that 2
� � R � R

`

for all 1 � ` � 
. Moreover, de�ne the

following fun
tions

B

1

(t) =

e

t�

+ �

2

e

�t=�

�

2

+ 1

; B

2;`

(t) = 1 +

e

t`�

� 1� t`�

`�

2

� 2tR ;

�(t) = t(1� log t) ;

where log denotes the natural logarithm, and put

T

`

= B

1

(�`)B

2;`

(�)e

2�`�

for ea
h 1 � ` � 
 ;

where � > 0 is an appropriately 
hosen parameter (see below). These fun
-

tions have the following properties, from whi
h it follows that the values T

`

are

positive and bounded below from zero. The proofs will be given in Se
tion 7.

Lemma 4.1. 1. For t > 0, B

1

(t) is an in
reasing fun
tion and B

1

(t) > 1.

2. For ea
h 1 � l � 
, the fun
tion B

2;`

(t) (t > 0) takes the minimum value

at t = (`�)

�1

log(1 + 2R�), and B

2;`

(t) > 1=2.

Now our bound of error probabilities and our formula of 
ode lengths are

summarized as follows. The proofs will be given in Se
tion 7. Moreover, some

numeri
al examples 
on
erning this result will be provided in Se
tion 5.
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Theorem 4.2. Let 0 < " < 1, and 
hoose � > 0 so that NT




m

< 1. Let ` be

the number of pirates. We put Æ-Marking Assumption (De�nition 3.1) and No

Leakage Assumption (De�nition 2.2).

1. If ` � 
, T




� T

0

and NT

0

m

< 1, then the tra
ing error probability of our


ode, using the s
oring rule (2) instead of (1), is not more than �(NT

0

m

).

Hen
e our 
ode is 
-se
ure with "-error if �(NT

0

m

) � ".

2. Let a > 1 su
h that " � ae

1�a

(e.g. a = 10=9 for " � 0:99). Then our


ode is 
-se
ure with "-error if the 
ode length satis�es that

m � �

1

logT




�

log

N

"

+ log

a

a� 1

+ log log

a

"

�

(3)

(note that T




< 1 by our assumption, therefore �(logT




)

�1

= j logT




j

�1

).

This result implies that, for the sake of redu
ing 
ode lengths, the parameter

� should be 
hosen so that the value T




be
omes as small as possible (note that

the fun
tion �(t) is in
reasing for 0 < t < 1). Sin
e it seems very diÆ
ult to

determine the optimal value �

optimal

of the parameter � for a general 
ase, here

we instead give (by a heuristi
 approa
h) a simple formula �

formula

of nearly

optimal values of �. The de�nition of �

formula

is

�

formula

=

1

�

2

j

1

log

�

1 +

2�




(R� �j

1

�)

�

; (4)

where

j

1

= 2:40482 � � � (5)

denotes the smallest positive zero of the 0th-order Bessel fun
tion J

0

(t) =

P

1

i=0

(�1)

i

(t=2)

2i

=(i!)

2

of the �rst kind. The examples in Se
tion 5 suggest

that the formula (4) is \pretty good", though it is not optimal.

The asymptoti
 behavior of the 
ode lengths of our 
odes will be investigated

in Se
tion 6.

5 Numeri
al examples

This se
tion is devoted to numeri
al examples of our 
-se
ure 
odes, where 


varies as 
 = 2, 3, 4, 6, and 8, and to 
omparison of our 
odes with previously

proposed 
-se
ure 
odes [5, 6, 7, 8℄.

5.1 Approximations of bias distributions and s
oring fun
-

tions

The former part of Table 1 shows an approximation P of the bias distribution

P

GL




for ea
h 
, where 
olumns entitled `p' and `q' denote, respe
tively, the values

of P and the emerging probabilities of the 
orresponding values. Note that

these distributions P are symmetri
 in the sense of De�nition 3.3. Moreover,

approximations U

i

of values of the fun
tion � are given in the latter part of

Table 1. Now the bound Æ

0

of the approximation error is Æ

0

= 0 for 
 � 2, and

Æ

0

= 10

�5

for 
 � 3. Table 2 shows approximations of the values of R and �.
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Table 1: Approximations of the bias distributions P

GL




and bitwise s
ores


 p q 
 p q

1; 2 0:50000 1:00000 7; 8 0:06943 0:24833

3; 4 0:21132 0:50000 0:33001 0:25167

0:78868 0:50000 0:66999 0:25167

5; 6 0:11270 0:33201 0:93057 0:24833

0:50000 0:33598

0:88730 0:33201


 U

0

U

1

U

2

U

3

2 1

4 1:93187 0:51763

6 2:80590 1 0:35639

8 3:66101 1:42485 0:70182 0:27314

Table 2: Auxiliary values for our examples


 2 3 4 6 8

R 0:50000 0:40823 0:40823 0:37796 0:36291

� 1:00000 1:93188 1:93188 2:80591 3:66102

5.2 Cal
ulation of 
ode lengths

Table 3 shows the 
ode lengths of our 
odes under Æ-Marking Assumption (Def-

inition 3.1). Here we set the toleran
e late � = Æ

0

+ 2�Æ to 0:01; namely, our


odes are still 
-se
ure even if mÆ � m=(200�) bits in undete
table positions are


ipped or erased. In the table, we 
onsider the following three 
ases:

� Case 1: N = 100
 and " = 10

�11

,

� Case 2: N = 10

9

and " = 10

�6

,

� Case 3: N = 10

6

and " = 10

�3

.

In this example, we 
al
ulate the 
ode lengths by using the �rst part of Theorem

4.2 and a numeri
al 
al
ulation, instead of a slightly looser formula (3) in the

se
ond part of Theorem 4.2. The 
ode length shown in the �rst row for ea
h


 in Table 3 is 
al
ulated by using the optimal value �

optimal

determined by a

numeri
al sear
h. On the other hand, the 
ode length in the se
ond row for

ea
h 
 in Table 3 is derived by using the formula (4) instead of �

optimal

. This

table shows that the 
ode lengths derived from (4) are not very apart from the

ones derived from �

optimal

, namely the formula (4) is a good approximation of

�

optimal

.

A similar table (Table 4) is also given for the 
ase under the Marking As-

sumption instead of the Æ-Marking Assumption (or equivalently, Table 4 deals

with the 
ase that Æ = 0). Again, the 
ode lengths derived from the parameters

in (4) are not very apart from the ones derived from �

optimal

.

5.3 Comparison of our 
ode lengths with other 
odes

Tables 3 and 4 also show the 
ode lengths 100


2

dlog(N=")e of Tardos 
odes [8℄ for

the same settings (ex
ept that the lengths of Tardos 
odes for the 
ases in Table 3

9



Table 3: Length 
omparison under Æ-Marking Assumption (where � = 0:01)

Values in parentheses are 
ode lengths 
al
ulated by using �

formula

instead of

�

optimal

.


 Case 1 Case 2 Case 3 Case 4 �

optimal

Ours 403 444 273

2 (404) (444) (274) 0:16921

Tardos 12400 14000 8400

% 3:25 3:17 3:25 2:97

Ours 1514 1646 1014

3 (1630) (1771) (1091) 0:057404

Tardos 28800 31500 18900

% 5:26 5:23 5:37 4:89

Ours 2671 2879 1774

4 (2672) (2880) (1775) 0:034093

Tardos 51200 56000 33600

% 5:22 5:14 5:28 4:81

Ours 7738 8244 5079

6 (7743) (8249) (5082) 0:013798

Tardos 115200 126000 75600

% 6:72 6:54 6:72 6:13

Ours 16920 17879 11015

8 (16934) (17894) (11024) 0:0071633

Tardos 211200 224000 134400

% 8:01 7:98 8:20 7:47
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Table 4: Length 
omparison under Marking Assumption (here � = Æ

0

)

Values in parentheses are 
ode lengths 
al
ulated by using �

formula

instead of

�

optimal

.


 Case 1 Case 2 Case 3 Case 4 �

optimal

Ours 373 410 253

2 (374) (411) (253) 0:17549

Tardos 12400 14000 8400

% 3:01 2:93 3:01 2:74

Ours 1309 1423 877

3 (1390) (1511) (931) 0:061345

Tardos 28800 31500 18900

% 4:55 4:52 4:64 4:23

Ours 2190 2360 1454

4 (2190) (2360) (1454) 0:037405

Tardos 51200 56000 33600

% 4:28 4:21 4:33 3:95

Ours 5546 5909 3640

6 (5547) (5909) (3641) 0:016111

Tardos 115200 126000 75600

% 4:81 4:69 4:81 4:39

Ours 10469 11062 6815

8 (10469) (11062) (6816) 0:0089586

Tardos 211200 224000 134400

% 4:96 4:94 5:07 4:62
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are derived under Marking Assumption instead of Æ-Marking Assumption), and

the per
entages of our 
ode lengths relative to those of Tardos 
odes. Moreover,

we also give (as \Case 4") the per
entages in the limit 
ase N="!1 (i.e. N !

1 or "! 0). For the limit 
ase, we use the formula (3) for 
ode lengths of our


odes, therefore the per
entagem=

�




2

dlog(N=")e

�


onverges to�

�




2

logT




�

�1

=

�




2

j logT




j

�

�1

whenN="!1. These two tables show that our 
odes have mu
h

shorter 
ode lengths than Tardos 
odes. Moreover, our 
ode lengths are also

signi�
antly shorter than a pre
eding improvement [5, 6℄ of Tardos 
odes. In

fa
t, numeri
al examples in [5, 6℄ show that the 
ode lengths in [5, 6℄ are more

than 30% of those of Tardos 
odes for 
 � 8.

On the other hand, it is proved in [7℄ that the 
ode lengths of Tardos 
odes

(under Marking Assumption) 
an be redu
ed to �

2

=2% � 4:93% of the original

by using the symmetrized s
oring rule (1), provided we put a 
ertain statisti
al

assumption on distributions of inno
ent users' s
ores (see [7℄ for details). It is

worth noti
ing that, despite the un
onditional se
urity of our 
odes (that is, our

se
urity proof holds without su
h a statisti
al assumption), our 
ode lengths

shown in Tables 3 and 4 are almost the same as, or even shorter than, the

lengths given in [7℄ (i.e. 4:93% of Tardos 
odes) for many 
ases. Moreover, the

un
onditionally 
-se
ure 
ode lengths given in [7℄ are �

2

% � 9:87% of lengths

of Tardos 
odes, and our 
ode lengths are shorter than their 
ode lengths for

every 
ase shown in the two tables.

6 Asymptoti
 behavior of our 
ode lengths

In this se
tion, we investigate an asymptoti
 behavior of 
ode lengths m of

our 
-se
ure 
odes in the limit 
ase 
 ! 1. More pre
isely, we show that

m � K


2

log(N=") for some K <1 when 
 ! 1, and determine the 
onstant

fa
tor K (Theorem 6.3). Note that the fa
tor K is 100 for Tardos 
odes.

6.1 The results

In our analysis, we use the following asymptoti
 properties of the bias distribu-

tions P

GL




, whi
h are proved in [5℄:

Lemma 6.1 ([5℄). If P = P

GL




, then R = min

1�`�


R

`

! 1=� and �=
! 1=j

1

when 
!1, where j

1

is as de�ned in (5).

Following Lemma 6.1, we 
hoose an approximation P of P

GL




for ea
h 
 su
h

that R ! 1=�, �=
 ! 1=j

1

and 
� ! �

0

when 
 ! 1, where 0 � �

0

< 1.

(Although the values R, � and � depend on 
, we omit subs
ripts `
' in the

notations for simpli
ity.) In parti
ular, � ! 1 when 
 ! 1. Note that

�

0

� (2�)

�1

by our assumption 2
� � R for ea
h 
 (see Se
tion 4).

We use the formula (3) for 
ode lengths and the formula (4) for the parameter

�. Now we have N="! 1 when 
! 1, sin
e " � 1 and N � 
. Thus by (3),

the ratio m=

�




2

log(N=")

�


onverges (when 
 ! 1) to the same value as the

limit of �1=

�




2

logT




�

, whenever the latter 
onverges. Sin
e




2

logT




= 


2

logB

1

(�
) + 


2

logB

2;


(�) + 2�


3

� ;
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it suÆ
es to 
al
ulate the limit of ea
h term in the right-hand side. Now put

A = 1 +

2�




(R� �j

1

�) and A

0

= 1 +

2

j

1

�

1

�

��

0

�

;

therefore A! A

0

> 1 when 
!1. Then for the third term, we have

2�


3

� =




2

�

2

�

2
�

j

1

logA! 2j

1

�

0

logA

0

when 
!1 :

In the remaining argument, we use the following lemma, whi
h will be proved

in Se
tion 6.2:

Lemma 6.2. Let f(
) and g(
) be real-valued fun
tions.

1. If 


2

(f(
)� 1)! a 2 R when 
!1, then 


2

log f(
)! a when 
!1.

2. If f(
) ! a and g(
) ! 0 when 
 ! 1, 0 < a < 1, and g(
) 6= 0 for all

suÆ
iently large 
, then (f(
)

g(
)

� 1)=g(
)! log a when 
!1.

Owing to the �rst part of Lemma 6.2, it now suÆ
es to determine the limit

of the values 


2

(B

1

(�
) � 1) and 


2

(B

2;


(�)� 1). First, we have




2

(B

1

(�
)� 1) =




2

�

2

�

�

2

�

2

+ 1

 

A


=(�j

1

)

� 1�




�j

1

�

A

�
=(�

3

j

1

)

� 1

�
=(�

3

j

1

)

!

:

Sin
e A! A

0

> 1 when 
!1, the se
ond part of Lemma 6.2 implies that

lim


!1




2

(B

1

(�
)� 1) = j

1

2

� 1 � (A

0

0

� 1� 1 � logA

0

) = j

1

2

(A

0

� 1� logA

0

)

(re
all that � !1 when 
!1). On the other hand, we have




2

(B

2;


(�)� 1) =




�

�

1

�

�

A


=(�j

1

)

� 1�




�j

1

logA

�

�




2

�

2

�

2R

j

1

logA :

Sin
e A


=(�j

1

)

� 1� (�j

1

)

�1


 logA is bounded when 
!1, we have

lim


!1




2

(B

2;


(�) � 1) = 0� j

1

2

�

2=�

j

1

logA

0

= �

2j

1

�

logA

0

:

Hen
e by the �rst part of Lemma 6.2, we have

lim


!1




2

logT




= j

1

2

(A

0

� 1� logA

0

)�

2j

1

�

logA

0

+ 2j

1

�

0

logA

0

= �j

1

2

(A

0

logA

0

�A

0

+ 1) ;

therefore lim


!1

m=

�




2

log(N=")

�

= j

1

�2

(A

0

logA

0

� A

0

+ 1)

�1

. The right-

hand side is a de
reasing fun
tion of A

0

> 1, therefore an in
reasing fun
tion of

�

0

� 0. Hen
e it is optimal for de
reasing the value to set �

0

= 0.

Summarizing, we have the following result (assuming Lemma 6.2):

Theorem 6.3. In this setting, by putting A

0

= 1 + 2=(j

1

�) where j

1

is as

de�ned in (5), the asymptoti
 behavior of lengths m of our 
odes is given by

m � K


2

log(N=") where K =

1

j

1

2

(A

0

logA

0

�A

0

+ 1)

� 5:35310 � � � :
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As a 
omparison with other 
odes, the 
onstant fa
tor K is K = 100 for

Tardos 
odes [8℄, K � 20:6021 for 
odes in [5℄, K � 20 for 
odes in [1℄, and

K � 9:87 for 
odes in [7℄. Theorem 6.3 shows that our asymptoti
 
ode lengths

are signi�
antly shorter than those for the above 
odes. Note also that K � 4:93

for 
odes in [7℄ under a 
ertain statisti
al assumption (
f. Se
tion 5.3), and that

our asymptoti
 ratios are 
lose to that value though our se
urity proof does not

require su
h an additional assumption.

6.2 Proof of Lemma 6.2

Here we give a proof of Lemma 6.2 to 
omplete the proof of Theorem 6.3.

of Lemma 6.2. For the �rst part of Lemma 6.2, note that f(
)! 1 when 
!1

sin
e 


2

(f(
) � 1) is bounded. First, if the set f

�1

(1) = f
 j f(
) = 1g is

bounded, then we have 


2

log f(
) = 


2

(f(
) � 1) � (f(
) � 1)

�1

log f(
) for all

suÆ
iently large 
, and lim


!1

(f(
)�1)

�1

log f(
) = lim

x!1

(x�1)

�1

logx = 1

by L'Hôpital's Rule, therefore our 
laim follows. Se
ondly, if the set f

�1

(1) is

not bounded, then a must be 0, sin
e there is an in�nite sequen
e 


1

; 


2

; : : :

diverging to1 su
h that f(


i

) = 1 for all i. Now we de�ne another fun
tion f(
)

by f(
) = f(
) if f(
) 6= 1 and f(
) = e




�3

if f(
) = 1. This fun
tion satis�es

that f(
) 6= 1 for any 
 and 


2

(f(
)� 1)! 0 when 
!1, sin
e 


2

(e




�3

� 1) =

(e




�3

� 1)=


�2

! 0 when 
 ! 1 by L'Hôpital's Rule. Thus 


2

log f(
) ! 0

when 
 !1 by the above argument, while we have 


2

log f(
) = 0 if f(
) = 1.

Hen
e we have 


2

log f(
)! 0 when 
!1, therefore our 
laim follows.

From now, we prove the se
ond part of Lemma 6.2. First note that, if f(
)

is 
onstantly equal to a, then we have

lim


!1

(f(
)

g(
)

� 1)=g(
) = lim

x!0

(a

x

� 1)=x = log a

by L'Hôpital's Rule. Now for a general 
ase, for any 0 < � < a, we have

0 < a�� < f(
) < a+� for all suÆ
iently large 
 sin
e f(
)! a when 
!1.

This implies that

(a� �)

g(
)

� 1

g(
)

<

f(
)

g(
)

� 1

g(
)

<

(a+ �)

g(
)

� 1

g(
)

(6)

for any suÆ
iently large 
. By the above argument, the left-hand side and the

right-hand side of (6) 
onverge to log(a� �) and log(a+ �), respe
tively, when


!1. Thus

log(a� �) � lim inf


!1

f(
)

g(
)

� 1

g(
)

� lim sup


!1

f(
)

g(
)

� 1

g(
)

� log(a+ �) : (7)

By taking the limit � ! 0, both the left-hand side and the right-hand side


onverge to log a, therefore the middle two terms are both equal to log a. This

means that (f(
)

g(
)

� 1)=g(
) also 
onverges to log a.

Hen
e the proof of Lemma 6.2 is 
on
luded.

7 Proofs of results in Se
tion 4

In this se
tion, we give the proofs of our results in Se
tion 4. First, in Se
tion

7.1 we prove Lemma 4.1. Se
ondly, in order to prove Theorem 4.2, we present

14



in Se
tion 7.2 a key lemma for the proof, and we show in Se
tion 7.3 some

properties of distributions of the users' s
ores. Se
tion 7.4 is the body of the

proof of Theorem 4.2. Finally, in Se
tion 7.5, we give a proof of the key lemma

presented in Se
tion 7.2.

7.1 Proof of Lemma 4.1

In this subse
tion, we prove Lemma 4.1. The �rst part of Lemma 4.1 
an be

proved by an easy analysis. Namely, we have B

0

1

(t) = �(e

t�

�e

�t=�

)=(�

2

+1) > 0

for t > 0 sin
e � > 0, therefore B

1

(t) is in
reasing for t > 0, and B

1

(t) > B

1

(0) =

1 for t > 0.

From now, we prove the se
ond part of Lemma 4.1. The �rst 
laim, namely

B

2;`

(t) takes the minimum value for t > 0 at t = t

0

= (`�)

�1

log(1 + 2R�),

is proved by a straightforward analysis. For the remaining 
laim, it suÆ
es to

show that B

2;`

(t

0

) > 1=2. We have

B

2;`

(t

0

) = 1 +

4R

2

`

f(s) , where f(t) =

t� (1 + t) log(1 + t)

t

2

and s = 2R� :

Now we use the following two lemmas:

Lemma 7.1. We have f(t) > �1=2 for t > 0.

Proof. First, by putting g(t) = (t+2) log(t+1)�2t, a dire
t 
al
ulation implies

that f

0

(t) = g(t)t

�3

. Now we have g

0

(t) = log(t + 1) + (t + 1)

�1

� 1 and

g

00

(t) = (t+ 1)

�1

� (t+ 1)

�2

> 0 for t > 0, therefore g

0

(t) > g

0

(0) = 0 for t > 0

and g(t) > g(0) = 0 for t > 0. Thus f(t) is in
reasing for t > 0. Moreover, we

have lim

t!0

f(t) = �1=2 by applying L'Hôpital's Rule twi
e. Hen
e the 
laim

follows.

Lemma 7.2. We have R � 1=2.

Proof. Re
all our assumption given in Se
tion 4 that 2
� � R � R

`

0

for all

1 � `

0

� 
. In parti
ular, R � R

1

= E

�

(1� p)

1=2

p

1=2

�

. Now the 
laim follows

from the fa
t that

p

(1� p)p � 1=2 for any 0 < p < 1.

By these two lemmas, we have B

2;`

(t

0

) > 1+(1=`) � (�1=2) � 1=2 (note that

2R� > 0). Hen
e the proof of Lemma 4.1 is 
on
luded.

7.2 A key lemma

In this subse
tion, we present the following inequality regarding two random

variables, whi
h will be a key ingredient of our proof of Theorem 4.2:

Lemma 7.3. Let g

1

and g

2

be two real-valued random variables on the same

probability spa
e, and G(x) = Pr(g

2

� x) (x 2 R) the distribution fun
tion of

g

2

. Suppose that we are given a weakly de
reasing fun
tion ' : R ! R

�0

(where

R

�0

denotes the set of nonnegative real numbers) and a right-
ontinuous, weakly

in
reasing fun
tion F : R ! R

�0

satisfying the following 
onditions:

1. we have G(x) � F (x) for all x 2 R, and lim

x!�1

F (x) = 0,
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2. for any �nite 
losed interval I � R and any "

0

> 0, there exists a � > 0

su
h that Pr(g

1

� x

1

j x

1

� g

2

< x

2

) � '(x

1

) + "

0

whenever x

1

; x

2

2 I,

0 < x

2

� x

1

< � and Pr(x

1

� g

2

< x

2

) > 0.

Then Pr(g

1

� g

2

) �

R

R

'dF , where the integral in the right-hand side is the

Lebesgue-Stieltjes integral (see e.g. [4℄) with respe
t to the fun
tion F .

The proof of this lemma will be given in Se
tion 7.5.

7.3 Lemmas on distributions of users' s
ores

In this subse
tion, we give two lemmas 
on
erning distributions of the s
ores of

users in our 
odes, whi
h will be used in our proof of Theorem 4.2. These lemmas

and their proofs presented below are based on the ones for similar properties

given in [3, 6, 8℄.

Our �rst lemma 
on
erns the s
ores of inno
ent users:

Lemma 7.4. Let u

i

be an inno
ent user, and z 2 R. Then for any �xed

bias parameter P , any pirated 
odeword y, and any � > 0, the s
ore S

i

of u

i


al
ulated by the rule (1) satis�es

Pr(S

i

� z j P; y) = Pr(e

�S

i

� e

�z

j P; y)

� E

�

e

�S

i

j P; y

�

e

��z

� B

1

(�)

m

e

��z

;

where the 
onditional probabilities and the 
onditional expe
tation are taken over


hoi
es of the 
odeword w

i

of the user u

i

.

Proof. The �rst equality in the statement is obvious, while the former of the

two inequalities is derived from Markov's Inequality. For the latter of the two

inequalities, sin
e ea
h bit in w

i

is 
hosen independently of ea
h other, we

have E

�

e

�S

i

j P; y

�

=

Q

m

j=1

E

h

e

�S

(j)

i

j P; y

i

. Now we de�ne a fun
tion f(t) for

0 < t < 1 by f(t) = te

�

p

(1�t)=t

+(1� t)e

��

p

t=(1�t)

. Note that E

h

e

�S

(j)

i

j P; y

i

is equal to f(p

(j)

) if y

j

= 1 and to f(1 � p

(j)

) if y

j

2 f0; ?g. By putting

� = �=

p

t(1� t), a straightforward 
al
ulation shows that

f

0

(t) =

e

��

p

t=(1�t)

2

�

(2� �)e

�

� 2� �

�

(note that

p

(1� t)=t = �=��

p

t=(1� t)), while an elementary analysis implies

that (2��)e

�

�2�� < 0 for any � > 0. Thus f

0

(t) < 0 for 0 < t < 1, therefore

f(p

(j)

) � f(p

0

) and f(1 � p

(j)

) � f(p

0

) sin
e p

(j)

� p

0

and 1 � p

(j)

� p

0

by the assumption that P is symmetri
 (see De�nition 3.3). Finally, we have

f(p

0

) = B

1

(�) by the 
hoi
e of �. Hen
e the 
laim follows.

On the other hand, our se
ond lemma 
on
erns the s
ores of the pirates:

Lemma 7.5. Fix an arbitrary pirates' strategy satisfying Marking Assumption.

Let S

i

denote the s
ore of a pirate u

i


al
ulated by the rule (1). Let S

pmax

denote

the maximum of the S

i

among the ` pirates u

i

, and S

psum

denote the sum of

the ` s
ores S

i

. Then for any z 2 R and any � > 0, we have

Pr(S

pmax

� z) � Pr(S

psum

� `z) = Pr(e

��S

psum

� e

��`z

)

� E

�

e

��S

psum

�

e

�`z

� B

2;`

(�)

m

e

�`z

;
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where the probabilities and the expe
tation are taken over 
hoi
es of the bias

parameter P , the pirates' 
odewords w

i

, and the pirated 
odeword y.

Proof. The 
laim ex
ept the last inequality E

�

e

��S

psum

�

e

�`z

� B

2;`

(�)

m

e

�`z

follows from Markov's Inequality and easy arguments. In order to prove the

above inequality, we investigate the value E

�

e

��S

psum

�

. In this proof, we assume

for simpli
ity that u

1

; : : : ; u

`

are the ` pirates.

By No Leakage Assumption (De�nition 2.2), the �xed (probabilisti
) pirates'

strategy satis�es that Pr(y j w;P ) = Pr(y j w) for any bias parameter P , any


olle
tion w = (w

i

)

i

of the pirates' 
odewords, and any pirated 
odeword y.

Thus we have Pr(P;w; y) = Pr(P )Pr(w j P )Pr(y j w), therefore

E

�

e

��S

psum

�

=

X

w

X

y

E

(P )

�

e

��S

psum

Pr(w j P )

�

Pr(y j w) ; (8)

where E

(P )

[�℄ denotes the expe
tation value taken over 
hoi
es of P .

Put x

j

= #fi 2 f1; : : : ; `g j w

i;j

= 1g for ea
h 1 � j � m. Then, sin
e ea
h

w

i;j

depends solely on p

(j)

and is 
hosen independently of ea
h other, we have

e

��S

psum

Pr(w j P ) = e

��

P

m

j=1

P

`

i=1

S

(j)

i

m

Y

j=1

`

Y

i=1

Pr(w

i;j

j p

(j)

)

=

Y

j

�

e

��

P

i

S

(j)

i

(p

(j)

)

x

j

(1� p

(j)

)

`�x

j

�

:

Sin
e the j-th term of the produ
t in the right-hand side depends on p

(j)

but

not on p

(j

0

)

for other j

0

, and ea
h p

(j)

is 
hosen independently a

ording to the

same bias distribution P , we have (for any w and y)

E

(P )

�

e

��S

psum

Pr(w j P )

�

=

m

Y

j=1

E

(p

(j)

)

h

e

��

P

i

S

(j)

i

(p

(j)

)

x

j

(1� p

(j)

)

`�x

j

i

;

where E

(p

(j)

)

[�℄ denotes the expe
tation value taken over the values p

(j)

of P .

Now note that

P

i

S

(j)

i

= L

x

j

;p

(j)

if y

j

= 1 and

P

i

S

(j)

i

= �L

x

j

;p

(j)

if y

j

2 f0; ?g,

where L

x;p

= x�(p)� (`� x)�(1� p). Then we have

E

(P )

�

e

��S

psum

Pr(w j P )

�

�

m

Y

j=1

max

�

fN

0;x

j

; N

1;x

j

g ;

where

N

0;x

= E

(p)

�

e

�L

x;p

p

x

(1� p)

`�x

�

; N

1;x

= E

(p)

�

e

��L

x;p

p

x

(1� p)

`�x

�

and max

�

takes the �rst term N

0;x

j

if x

j

= 0, the se
ond term N

1;x

j

if x

j

= `,

and the maximum of N

0;x

j

and N

1;x

j

if 1 � x

j

� `� 1 (this de�nition of max

�

re
e
ts the Marking Assumption; i.e. y

j

must be 0 if x

j

= 0, and 1 if x

j

= `).

This bound does not depend on y, and both N

0;x

j

and N

1;x

j

depend solely on
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x

j

. Thus by substituting it into (8) we have

E

�

e

��S

psum

�

�

X

w

m

Y

j=1

max

�

fN

0;x

j

; N

1;x

j

g

=

X

x

1

;:::;x

m

m

Y

j=1

�

`

x

j

�

m

Y

j=1

max

�

fN

0;x

j

; N

1;x

j

g

=

m

Y

j=1

`

X

x

j

=0

�

`

x

j

�

max

�

fN

0;x

j

; N

1;x

j

g =

 

`

X

x=0

�

`

x

�

M

x

!

m

;

where M

0

= N

0;0

, M

`

= N

1;`

and M

x

= maxfN

0;x

; N

1;x

g for 1 � x � `� 1.

Sin
e jL

x;p

j � `� for any value p of P and any 0 � x � `, an elementary

analysis shows that e

��L

x;p

� 1 � �L

x;p

+ r(�`�)�

2

L

x;p

2

, respe
tively, where

r(t) = (e

t

�1� t)=t

2

(note that this r(t) is an in
reasing fun
tion, where we put

r(0) = lim

t!0

r(t) = 1=2). Thus we have

M

x

� E

(p)

�

p

x

(1� p)

`�x

�

� �E

(p)

�

p

x

(1� p)

`�x

L

x;p

�

+ r(�`�)�

2

E

(p)

�

p

x

(1� p)

`�x

L

x;p

2

�

+ 2�R

`;x

for 1 � x � `� 1 (see Se
tion 4 for the de�nition of R

`;x

), while

M

0

� E

(p)

�

p

0

(1� p)

`�0

�

+ �E

(p)

�

p

0

(1� p)

`�0

L

0;p

�

+ r(�`�)�

2

E

(p)

�

p

0

(1� p)

`�0

L

0;p

2

�

and

M

`

� E

(p)

�

p

`

(1� p)

`�`

�

� �E

(p)

�

p

`

(1� p)

`�`

L

`;p

�

+ r(�`�)�

2

E

(p)

�

p

`

(1� p)

`�`

L

`;p

2

�

:

Note that

P

`

x=0

�

`

x

�

p

x

(1 � p)

`�x

= 1,

P

`

x=0

�

`

x

�

p

x

(1 � p)

`�x

L

x;p

= 0, and

P

`

x=0

�

`

x

�

p

x

(1� p)

`�x

L

x;p

2

= `. Then we have

`

X

x=0

�

`

x

�

M

x

� 1 + 2�E

(p)

�

p

0

(1� p)

`�0

L

0;p

�

+ r(�`�)�

2

`+ 2�

`�1

X

x=1

R

`;x

= 1� 2�`E

(p)

h

p

1=2

(1� p)

`�1=2

i

+ r(�`�)�

2

`+ 2�

`�1

X

x=1

R

`;x

= 1 + r(�`�)�

2

`� 2�R

`

� B

2;`

(�) :

Thus we have E

�

e

��S

psum

�

� B

2;`

(�)

m

, therefore the 
laim follows.

7.4 Proof of Theorem 4.2

In this subse
tion, we give a proof of Theorem 4.2 assuming Lemma 7.3. Let

� be an arbitrary pirates' strategy satisfying Æ-Marking Assumption, and let

y denote a pirated 
odeword generated by �. Then we de�ne another pirates'

strategy �

0

, whose output is denoted by y

0

, in the following manner: The j-th

bit y

0

j

is equal to j-th bit of the 
odeword of any pirate if the j-th position
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is undete
table, and y

0

j

= y

j

otherwise. Note that this �

0

satis�es Marking

Assumption, and y and y

0

di�er in at most mÆ positions owing to Æ-Marking

Assumption on �.

In this proof, let S

i

denote the s
ore of a user u

i

determined by y and the

s
oring rule (2), and let S

0

i

denote the s
ore of u

i

determined by y

0

and the rule

(1). Let S

imax

and S

0

imax

denote the maximum of S

i

and of S

0

i

, respe
tively,

among the inno
ent users u

i

. We de�ne S

pmax

and S

0

pmax

similarly for the

pirates instead of inno
ent users. Then the error probability of our 
ode with

the pirates' strategy � is not more than the probability Pr(S

pmax

� S

imax

)

regardless of the way of 
hoosing the output user from the users with the highest

s
ore. Now note that

jS

(j)

i

� S

0

i

(j)

j �

(

Æ

0

+ � if y

j

6= y

0

j

;

Æ

0

if y

j

= y

0

j

;

therefore jS

i

� S

0

i

j � mÆ

0

+mÆ� = m�. Thus we have

Pr(S

pmax

� S

imax

) � Pr(S

0

pmax

� S

0

imax

+ 2m�) :

Put g

1

= S

0

imax

+2m� and g

2

= S

0

pmax

, both of whi
h are random variables

on the same probability spa
e. Let G(x) = Pr(g

2

� x) be the distribution

fun
tion of g

2

, therefore G(x) � 1. Now given a parameter � > 0, de�ne a

fun
tion F (x) by

F (x) =

(

B

2;`

(�)

m

e

�`x

if x � Z

2

;

1 if x � Z

2

;

where

Z

2

= �

m

�`

logB

2;`

(�)

(note that B

2;`

(�) � 1=2 by Lemma 4.1). Then F (x) is a 
ontinuous, weakly

in
reasing fun
tion su
h that lim

x!�1

F (x) = 0, and we have G(x) � F (x) by

Lemma 7.5. Namely, the �rst 
ondition in Lemma 7.3 is now satis�ed.

On the other hand, de�ne another fun
tion '(x) by

'(x) =

(

NB

1

(�`)

m

e

��`x+2�`m�

if x � Z

1

;

1 if x � Z

1

;

where � is the given positive parameter and

Z

1

=

logN +m logB

1

(�`)

�`

+ 2m�

(note that B

1

(�`) > 1 by Lemma 4.1). Then '(x) is a weakly de
reasing

fun
tion and '(x) > 0, and we have Pr(g

1

� x j P; y

0

) � '(x) for any bias

parameter P and any pirated 
odeword y

0

by Lemma 7.4 (where we put � = �`).

Now we give the following lemma:

Lemma 7.6. The se
ond 
ondition in Lemma 7.3 is satis�ed.
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Proof. It suÆ
es to show that, for any �nite 
losed interval I � R, we have

Pr(g

1

� x

1

j x

1

� g

2

< x

2

) � '(x

1

) whenever x

1

; x

2

2 I , x

1

< x

2

and

Pr(x

1

� g

2

< x

2

) > 0. Let w

p

and w

i

denote the 
olle
tions of 
odewords

of the pirates and of the inno
ent users, respe
tively. Then for any P , w

p

, w

i

and y

0

, we have Pr(y

0

j P;w

i

; w

p

) = Pr(y

0

j P;w

p

) by No Leakage Assumption

(De�nition 2.2), and Pr(w

i

j P;w

p

) = Pr(w

i

j P ) sin
e users' 
odewords are


hosen independently with ea
h other. This implies that

Pr(g

1

� x

1

; x

1

� g

2

< x

2

)

=

X

P;w

p

;w

i

;y

0

; g

1

�x

1

; x

1

�g

2

<x

2

Pr(P;w

p

; w

i

; y

0

)

=

X

P;w

p

;w

i

;y

0

; g

1

�x

1

; x

1

�g

2

<x

2

Pr(P )Pr(w

p

j P )Pr(w

i

j P )Pr(y

0

j P;w

p

)

=

X

P;w

p

;y

0

; x

1

�g

2

<x

2

Pr(P )Pr(w

p

j P )Pr(y

0

j P;w

p

)

X

w

i

; g

1

�x

1

Pr(w

i

j P )

=

X

P;w

p

;y

0

; x

1

�g

2

<x

2

Pr(P;w

p

; y

0

) � Pr(g

1

� x

1

j P; y

0

)

�

X

P;w

p

;y

0

; x

1

�g

2

<x

2

Pr(P;w

p

; y

0

)'(x

1

) = '(x

1

)Pr(x

1

� g

2

< x

2

)

(re
all that Pr(g

1

� x

1

j P; y

0

) � '(x

1

) by the argument before Lemma 7.6).

Thus we have Pr(g

1

� x

1

j x

1

� g

2

< x

2

) � '(x

1

). Hen
e the 
laim holds.

By Lemma 7.6, the 
onditions in Lemma 7.3 are satis�ed. Therefore Lemma

7.3 implies that Pr(g

2

� g

1

) �

R

R

'dF , where the right-hand side is the

Lebesgue-Stieltjes integral (see e.g. [4℄). Now note that Z

1

� Z

2

if and only

if NT

`

m

� 1. Thus in the 
ase that NT

`

m

� 1, we have

Z

R

'dF =

Z

(�1;Z

1

℄

dF +

Z

(Z

1

;Z

2

℄

'dF +

Z

(Z

2

;1)

'dF :

Sin
e F is di�erentiable on the interval (�1; Z

2

℄, F is 
onstant on (Z

2

;1),

and lim

x!�1

F (x) = 0, it follows from properties of Lebesgue-Stieltjes integral

that

Z

R

'dF =

Z

Z

1

�1

F

0

(x) dx +

Z

Z

2

Z

1

'(x)F

0

(x) dx + 0

= F (Z

1

) +

Z

Z

2

Z

1

�`NT

`

m

dx

= NT

`

m

+ �`NT

`

m

(Z

2

� Z

1

) = �(NT

`

m

) :

Summarizing, the error probability of our 
odes (under Æ-Marking Assumption

and the s
oring rule (2)) is not more than �(NT

`

m

) if the number of pirates is

` and NT

`

m

� 1.

Now note that T

`

� T




for any 1 � ` � 
 (sin
e ea
h of B

1

(�`), B

2;`

(�) and

e

2�`�

is in
reasing as ` is getting larger) and �(t) is an in
reasing fun
tion for

0 < t � 1. Thus if T




� T

0

and NT

0

m

< 1, then whenever the number of the

pirates is ` � 
, we have NT

`

m

� NT

0

m

< 1 and the error probability is not

more than �(NT

0

m

). Hen
e the �rst part of Theorem 4.2 is proved.
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From now, we prove the se
ond part of Theorem 4.2. For a given 0 < " < 1,

we introdu
e a fun
tion �

"

(t) = �(t) � ", whi
h is in
reasing, 
ontinuous and


on
ave up for 0 < t < 1. Sin
e lim

t!+0

�

"

(t) = �" < 0 and lim

t!1�0

�

"

(t) =

1� " > 0, there exists a unique 0 < t

0

< 1 su
h that �

"

(t

0

) = 0. Now if a > 1

and " � ae

1�a

, then we have

�

"

("=a) =

"

a

�

1� log

"

a

�

� " �

"

a

� a� " � 0 ;

therefore t

0

� "=a < 1. Moreover, put

t

1

=

"

a

�

�

"

("=a)

�

0

"

("=a)

=

a� 1

a

"

log(a=")

> 0 ;

whi
h is the x-inter
ept of the tangent line of the 
urve y = �

"

(x) in the x-y

plane at x = "=a. Sin
e "=a � t

0

, and �

"

(t) is in
reasing and 
on
ave up,

we have t

1

� t

0

, therefore �

"

(t

1

) � 0. Thus we have �(NT




m

) � �(t

1

) � "

whenever NT




m

� t

1

, or equivalently, whenever the inequality (3) is satis�ed.

Hen
e the proof of Theorem 4.2 (assuming Lemma 7.3) is 
on
luded.

7.5 Proof of Lemma 7.3

Finally, to 
omplete the proof of Theorem 4.2, we give a proof of Lemma 7.3.

First, we re
all the following well-known fa
ts used in our proof:

Proposition 7.7. If ' is a weakly de
reasing fun
tion on a �nite interval in

R, then the number of points of dis
ontinuities of ' is either �nite or 
ountably

in�nite.

Theorem 7.8. Let (
; �) be a measurable spa
e, f'

i

g

1

i=1

a sequen
e of mea-

surable fun
tions on 
, and ' a fun
tion on 
 su
h that lim

n!1

'

n

= '.

1. (Bounded Convergen
e Theorem) If �(
) < 1 and there is a 
on-

stant M > 0 su
h that j'

n

(!)j < M for any n and any ! 2 
, then ' and

ea
h '

n

are �-integrable and lim

n!1

R




'

n

d� =

R




'd�.

2. (Monotone Convergen
e Theorem) If 0 � '

n

(!) � '

n+1

(!) for any

n and any ! 2 
, then lim

n!1

R




'

n

d� =

R




'd� (this in
ludes the 
ase

that both terms are 1).

Our proof of Lemma 7.3 is done by showing the following two properties:

1. Pr(g

1

� g

2

) �

R

R

'dG,

2.

R

R

'dG �

R

R

'dF .

7.5.1 Proof of the �rst property

We show that Pr(g

1

� g

2

) �

R

R

'dG. We denote the 
ommon underlying

probability spa
e for g

1

and g

2

by 
, and denote the values of g

1

and of g

2

at

! 2 
 by g

1

(!) and by g

2

(!), respe
tively. First, we have

Pr(g

1

� g

2

) = 1� Pr(g

1

< g

2

) = 1� lim

n!1

Pr(g

1

< g

2

; �n � g

2

< n) : (9)
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Sin
e ' is weakly de
reasing, Proposition 7.7 implies that the set A

n

of the

points of dis
ontinuities of ' in the interval [�n; n) is either �nite or 
ountably

in�nite. Enumerate the elements of A

n

as a

(n)

1

, a

(n)

2

, and so on. Then for ea
h

integer k � 1, we de�ne �nite sets D

(n)

k

by

D

(n)

k

= f�n+ i=2

k

j 0 � i � n2

k+1

g [ fa

(n)

i

j 1 � i � kg

and enumerate the points in D

(n)

k

in in
reasing order as d

(n)

k;0

< d

(n)

k;1

< � � � <

d

(n)

k;`

n;k

. Now we have the following properties:

D

(n)

k

� D

(n)

k+1

; d

(n)

k;0

= �n and d

(n)

k;`

n;k

= n for any k ; (10)

for ea
h k; we have d

(n)

k;i

� d

(n)

k;i�1

� 2

�k

for every i : (11)

Now we use the following lemma:

Lemma 7.9. In this setting, for any n we have

f! 2 
 j g

1

(!) < g

2

(!); �n � g

2

(!) < ng

= lim

k!1

`

n;k

G

i=1

f! 2 
 j g

1

(!) < d

(n)

k;i�1

� g

2

(!) < d

(n)

k;i

g ;

where the symbol `t' in the right-hand side means the disjoint union.

Proof. Sin
e ea
h summand in the right-hand side is disjoint with ea
h other

and is 
ontained in the left-hand side by (10), our remaining task is to show that

any element ! in the left-hand side is in
luded in the right-hand side. Choose

M > 0 su
h that 2

�M

< g

2

(!) � g

1

(!). Then for any k � M , it follows from

(11) that D

(n)

k

interse
ts with the interval (g

1

(!); g

2

(!)℄, thus there exists an

index i su
h that g

1

(!) < d

(n)

k;i�1

� g

2

(!) < d

(n)

k;i

. This means that ! belongs to

the set in the right-hand side. Hen
e the 
laim holds.

By Lemma 7.9, the right-hand side of (9) is equal to

1� lim

n!1

lim

k!1

`

n;k

X

i=1

Pr(g

1

< d

(n)

k;i�1

� g

2

< d

(n)

k;i

)

= 1� lim

n!1

lim

k!1

`

n;k

X

i=1

�

Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

)

� Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

; g

1

� d

(n)

k;i�1

)

�

:

(12)

For an interval I = [�n; n℄ and any "

0

> 0, take a � > 0 as in the se
ond


ondition in the statement of Lemma 7.3. Then by (10) and (11), for any

suÆ
iently large k, we have d

(n)

k;i�1

; d

(n)

k;i

2 I and d

(n)

k;i

� d

(n)

k;i�1

< � for every i,

therefore the se
ond 
ondition in Lemma 7.3 implies that

Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

; g

1

� d

(n)

k;i�1

) � ('(d

(n)

k;i�1

) + "

0

)Pr(d

n

k;i�1

� g

2

< d

(n)

k;i

)
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for every i. Thus the right-hand side of (12) is less than or equal to

1� (1� "

0

) lim

n!1

lim

k!1

`

n;k

X

i=1

Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

)

+ lim

n!1

lim

k!1

`

n;k

X

i=1

'(d

(n)

k;i�1

)Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

) :

(13)

By (10), the se
ond term in (13) is equal to

(1� "

0

) lim

n!1

lim

k!1

Pr(�n � g

2

< n) = (1� "

0

) lim

n!1

Pr(�n � g

2

< n) = 1� "

0

:

Thus the right-hand side of (12) is less than or equal to

"

0

+ lim

n!1

lim

k!1

`

n;k

X

i=1

'(d

(n)

k;i�1

)Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

) : (14)

Sin
e "

0

> 0 is arbitrary, taking the limit "

0

! 0 implies that the right-hand

side of (12) is less than or equal to

lim

n!1

lim

k!1

`

n;k

X

i=1

'(d

(n)

k;i�1

)Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

) : (15)

Moreover, if �

G

denotes the measure on R indu
ed by the fun
tion G (thus

�

G

((a; b℄) = G(b)�G(a)), then Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

) is equal to

lim

t!+0

Pr(d

(n)

k;i�1

� t < g

2

� d

(n)

k;i

� t)

= lim

t!+0

�

G

�

(d

(n)

k;i�1

� t; d

(n)

k;i

� t ℄

�

= �

G

�

lim

t!+0

(d

(n)

k;i�1

� t; d

(n)

k;i

� t ℄

�

= �

G

�

[d

(n)

k;i�1

; d

(n)

k;i

)

�

:

Now de�ne '

n;k

=

P

`

n;k

i=1

'(d

(n)

k;i�1

)�

[d

(n)

k;i�1

;d

(n)

k;i

)

for k � 1 (where �

A

denotes

the 
hara
teristi
 fun
tion of a set A), whi
h is a nonnegative, �

G

-measurable

fun
tion on R. Then by the above argument, the right-hand side of (15) is equal

to

lim

n!1

lim

k!1

`

n;k

X

i=1

'(d

(n)

k;i�1

)�

G

�

[d

(n)

k;i�1

; d

(n)

k;i

)

�

= lim

n!1

lim

k!1

Z

R

'

n;k

d�

G

: (16)

Now we use the following lemma:

Lemma 7.10. In this setting, we have lim

k!1

'

n;k

= '�

[�n;n)

.

Proof. Sin
e both fun
tions '

n;k

and '�

[�n;n)

take the value 0 outside the

interval [�n; n), it suÆ
es to show that lim

k!1

'

n;k

(x) = '(x) for any �n �

x < n. First, if �n � x < n and x 2 A

n

, then x 2 D

(n)

k

for any suÆ
iently

large k by the de�nition of D

(n)

k

, therefore '

n;k

(x) = '(x) for any suÆ
iently
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large k by the de�nition of '

n;k

(note that x 6= n = d

(n)

k;`

n;k

by (10)). Thus the


laim holds in this 
ase.

On the other hand, assume that �n � x < n and x 62 A

n

. Take an arbitrary

� > 0. Then by the 
hoi
e of x, there is a �

�

> 0 su
h that j'(x

0

)� '(x)j < �

whenever �n � x

0

< n and jx

0

� xj < �

�

. Now by an argument similar to the

proof of Lemma 7.9, it follows from (11) that for any suÆ
iently large k, we

have d

(n)

k;i�1

� x < d

(n)

k;i

and x� d

(n)

k;i�1

< d

(n)

k;i

� d

(n)

k;i�1

< �

�

for some i, therefore

'

n;k

(x) = '(d

(n)

k;i�1

) and j'

n;k

(x) � '(x)j = j'(d

(n)

k;i�1

)� '(x)j < � for this i by

the above argument. This means that lim

k!1

'

n;k

(x) = '(x). Hen
e the 
laim

holds.

Note that �

G

(R) = 1, and '

n;k

� '(�n) sin
e d

(n)

k;0

= �n and ' is weakly

de
reasing. Thus lim

k!1

R

R

'

n;k

d�

G

=

R

R

'�

[�n;n)

d�

G

by Lemma 7.10 and

Bounded Convergen
e Theorem (Theorem 7.8). Moreover, sin
e ' is non-

negative, we have lim

n!1

R

R

'�

[�n;n)

d�

G

=

R

R

'd�

G

by Monotone Conver-

gen
e Theorem (Theorem 7.8). Thus the right-hand side of (16) is equal to

R

R

'd�

G

=

R

R

'dG.

Summarizing, we have Pr(g

1

� g

2

) �

R

R

'dG, as desired.

7.5.2 Proof of the se
ond property

From now, we show that

R

R

'dG �

R

R

'dF , whi
h 
on
ludes the proof of

Lemma 7.3. First, we introdu
e some notations. We de�ne

R

0

= R [ fa

�

j a 2 Rg [ f�1;1

�

g

and extend the order < on R to R

0

by �1 < a

�

< a < b

�

< 1

�

for every

a; b 2 R su
h that a < b. Put

(a; b℄ = fx 2 R j a < x � bg for any a; b 2 R

0

(for example, we have (a

�

; b

�

℄ = [a; b) in the usual notation for a; b 2 R).

Moreover, for ea
h H 2 fF;Gg, write H(a

�

) = lim

b!a�0

H(b) for any a 2 R,

H(�1) = lim

b!�1

H(b), and H(1

�

) = lim

b!1

H(b). Then for any a; b 2 R

su
h that a � b, we have �

H

((a

�

; b

�

℄) = H(b

�

) � H(a

�

) sin
e (a

�

; b

�

℄ =

lim

t!+0

(a� t; b� t℄ (note that �

H

((a; b℄) = H(b) � H(a) by the de�nition of

�

H

). By similar arguments, it follows that

�

H

((a; b℄) = H(b)�H(a) for any a; b 2 R

0

su
h that a � b ; (17)

where we put H(b)�H(a) = 0 in the 
ase that a = b (even if H(a) = �1).

For any n � 1, de�ne I

n;i

= fx 2 R j i2

�n

� '(x) < (i + 1)2

�n

g for

ea
h 1 � i � 4

n

� 1, and I

n;4

n

= fx 2 R j '(x) � 2

n

g. Then, sin
e '

is weakly de
reasing, ea
h I

n;i

is a (possibly empty or in�nite) interval in R.

Moreover, for ea
h n, there exist �

n;i

2 R

0

(for 1 � i � 4

n

+ 1) su
h that

�1 = �

n;4

n

+1

� �

n;4

n

� � � � � �

n;2

� �

n;1

and I

n;i

= (�

n;i+1

; �

n;i

℄ for ea
h

1 � i � 4

n

. We have �

H

(I

n;i

) = H(�

n;i

) �H(�

n;i+1

) for ea
h H 2 fF;Gg by

(17). Now put  

n

=

P

4

n

i=1

i2

�n

�

I

n;i

, whi
h is a nonnegative, �

F

-measurable and

�

G

-measurable simple fun
tion on R. Then for ea
h H 2 fF;Gg, the integral
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R

R

 

n

d�

H

is equal to

4

n

X

i=1

i2

�n

�

H

(I

n;i

)

=

4

n

�1

X

i=1

i2

�n

(H(�

n;i

)�H(�

n;i+1

)) + 2

n

(H(�

n;4

n

)�H(�1))

=

4

n

X

i=1

H(�

n;i

)

�

i

2

n

�

i� 1

2

n

�

� 2

n

H(�1) =

4

n

X

i=1

H(�

n;i

)

2

n

� 2

n

H(�1)

(this equality holds even if H(�

n;i

) = 1 for an index i, in whi
h 
ase all the

terms are 1). By the �rst 
ondition in Lemma 7.3, we have G(�

n;i

) � F (�

n;i

)

for every i, and G(�1) = F (�1) = 0. Thus we have

Z

R

 

n

d�

G

=

4

n

X

i=1

G(�

n;i

)

2

n

�

4

n

X

i=1

F (�

n;i

)

2

n

=

Z

R

 

n

d�

F

:

To 
on
lude the proof, we need the following lemma:

Lemma 7.11. We have  

n

�  

n+1

for any n, and lim

n!1

 

n

= '.

Proof. First we show that  

n

(x) �  

n+1

(x) for any x 2 R. Sin
e  

n

(x) �

2

n

by de�nition, it suÆ
es to 
onsider the 
ase that  

n+1

(x) < 2

n

, namely

x 62

S

4

n+1

i=2

2n+1

I

n+1;i

. Now if 2 � i � 2

2n+1

� 1 and x 2 I

n+1;i

, then we have

x 2 I

n;bi=2


and  

n

(x) = bi=2
2

�n

� i2

�n�1

=  

n+1

(x). On the other hand, if

x 62

S

2

2n+1

�1

i=2

I

n+1;i

, then we have '(x) < 2

�n

, therefore  

n

(x) = 0 �  

n+1

(x).

Hen
e we have  

n

�  

n+1

.

Se
ondly, we show that lim

n!1

 

n

(x) = '(x) for any x 2 R. By de�nition

of  

n

, we have 0 � '(x) �  

n

(x) < 2

�n

whenever '(x) < 2

n

. Now for any

x 2 R and any � > 0, we have '(x) < 2

n

and 2

�n

< � for all suÆ
iently large

n, therefore j'(x)� 

n

(x)j < � for all these n. This means that  

n

(x) 
onverges

to '(x) when n!1. Hen
e the 
laim holds.

This lemma and Monotone Convergen
e Theorem (Theorem 7.8) imply that

Z

R

'dG =

Z

R

'd�

G

= lim

n!1

Z

R

 

n

d�

G

� lim

n!1

Z

R

 

n

d�

F

=

Z

R

'd�

F

=

Z

R

'dF :

Hen
e the proof of Lemma 7.3 is 
on
luded.

8 Con
lusion

In this arti
le, we proposed a 
onstru
tion of 
-se
ure �ngerprinting 
odes for

every 
, whi
h improves re
ent dis
rete variants [3, 5, 6℄ of Tardos's 
-se
ure


odes [8℄. Our se
urity proof was given under an assumption weaker than the

usual Marking Assumption. The ratio of the 
ode length divided by the value




2

log(N="), where N is the number of the users and " is the error probability,
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onverges to approximately 5:35 when 
 goes to in�nity, and the ratio is further

smaller in some 
ases for 
 � 8. Thus we have shown that the lengths of our


odes are signi�
antly shorter than the lengths of 
-se
ure 
odes in [3, 5, 6, 8℄,

and also shorter than the lengths of 
-se
ure 
odes re
ently proposed by [7℄ in

the 
ase without the statisti
al assumption introdu
ed in [7℄.
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