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Abstrat

It has been known that the ode lengths of Tardos's ollusion-seure

�ngerprinting odes are of theoretially minimal order with respet to

the number of adversarial users (pirates). However, the ode lengths an

be further redued, as some preeding studies on Tardos's odes already

revealed. In this artile we improve a reent disrete variant of Tardos's

odes, and give a seurity proof of our odes under an assumption weaker

than the original assumption (Marking Assumption). Our analysis shows

that our odes have signi�antly shorter lengths than Tardos's odes. For

example, in a pratial setting, the ode lengths of our odes are about

3:01%, 4:28%, and 4:81% of Tardos's odes if the numbers of pirates are

2, 4, and 6, respetively.

1 Introdution

Reent development of omputer and network tehnology has promoted trades

of digital ontents. This has inreased not only onveniene for both ontent

servers and users, but also risks of the distributed ontents being illegally opied

and redistributed. Digital �ngerprinting sheme is a solution for suh problems,

in whih the ontent server embeds some user identi�ation data into eah on-

tent in advane and detet the redistributor (alled a pirate) from the data

embedded into the redistributed ontent. The objet of this artile is �nger-

printing odes used for enoding the user identi�ation data.

A ollusion attak by more than one pirates is a typial attak (modi�ation

and erasure) to the embedded �ngerprint odeword. A �ngerprinting ode is

alled -seure, if it is seure against ollusion attaks by at most  pirates,

namely if it is equipped with a traing algorithm whih an output a pirate

orretly with an overwhelming probability. The �rst onstrution of -seure

�

A part of this work was presented at 17th Applied Algebra, Algebrai Algorithms, and

Error Correting Codes (AAECC-17), Bangalore, India, Deember 16{20, 2007.
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odes for every  was given by Boneh and Shaw [2℄, where they introdued a

ertain assumption on the pirates' attak strategies alledMarking Assumption.

Then Tardos [8℄ proposed -seure odes (under Marking Assumption) with

highly probabilisti odeword generation algorithms. A harateristi of his

odes is that by the traing algorithm, loseness of eah user's odeword to the

odeword in the redistributed ontent is quanti�ed as a \sore" of eah user

and then users whose sores exeed a given threshold are output. His work is a

milestone in this area beause of the fat that ode lengths of his -seure odes

are of theoretially minimal order (that is, O(

2

)) with respet to .

After Tardos's work, there have been proposed several improvements of his

odes. A diretion investigated by

�

Skori� et al. [7℄ onerns redution of the

ode lengths by modifying the soring funtion and by sharpening evaluation of

error probability of the traing algorithm. Another diretion taken by Blayer

and Tassa [1℄ onerns redution of the ode lengths by improving the parame-

ter hoie for Tardos odes. Moreover, a work by Nuida et al. [5, 6℄ (following

Hagiwara et al. [3℄) onerns implementation issues of the odes. Namely, they

replaed the ontinuous probability distributions used in Tardos odes with

ertain �nite (hene disrete) probability distributions, and proposed an appro-

priate way of approximating the soring funtion, so that the resulting odes

an be implemented by using smaller amount of memory and numbers expli-

itly representable on omputers. In addition, their \disrete Tardos odes" also

have shorter lengths than the original.

Our ontribution in this artile is a further improvement of the disrete

Tardos odes in [5, 6℄, at the following points:

� Modi�ation of the traing algorithm: In ontrast with the previous odes

[3, 5, 6, 7, 8℄, our traing algorithm outputs only one user having the

highest sore. This results in signi�ant redution of the error probability.

� Redution of ode lengths: It is dedued from our formula of ode lengths

that the lengths are redued to less than or almost equal to 1=20 of Tardos

odes in many pratial settings.

� Relaxation of Marking Assumption: Our seurity proof is given under an

assumption weaker than the Marking Assumption, thus it overs more

pratial ases.

This artile is organized as follows. Setion 2 summarizes our models and

assumptions on �ngerprinting odes. In Setion 3, we introdue the abovemen-

tioned relaxation of Marking Assumption, and desribe our odeword generation

algorithm and our traing algorithm. In Setion 4, we give our main results re-

garding the bound of error probabilities and the formula of ode lengths of our

odes. Setion 5 deals with some numerial examples of our odes and their

omparison with previous -seure odes [6, 7, 8℄. In Setion 6, we investigate

an asymptoti behavior of ode lengths of our odes. Arguments in these two

setions show that the lengths of our odes are signi�antly short. Finally,

Setion 7 is devoted to the proofs of our results given in Setion 4.
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2 Preliminary

2.1 A general model for �ngerprinting odes

In this subsetion, we give a general model for �ngerprinting odes. A speialized

model relevant to odes of our proposal will be shown in Setion 2.2.

The players in our model are a ontent server (or a server in short) and

a number (denoted by N) of users. The users are lassi�ed into two types;

adversarial users alled pirates, and the remaining users alled innoent users.

Let ` denote the number of pirates.

Before the odeword generation phase, �rst the server hooses in a proba-

bilisti manner an auxiliary parameter P used in the remaining phases. This

phase may be omitted when suh a parameter P is not neessary.

In the odeword generation phase, the server generates a odeword of eah

user in a probabilisti manner whih may depend on the above parameter P .

In this artile we assume that the odeword w

i

= (w

i;1

; : : : ; w

i;m

) of i-th user

u

i

is a binary sequene of the ommon length m. Then the server sends eah

odeword w

i

to the orresponding user u

i

by a ertain way, e.g. by embedding

w

i

as a digital �ngerprint into a digital ontent and sending it to the user u

i

.

When the pirates reeive their odewords, they reate a new odeword (de-

noted by y) alled a pirated odeword by an algorithm referred to as a pirates'

strategy. It is generally possible that pirates not only modify their odewords

but also erase some bits in them. To onsider suh attaks, we assume that the

length of y is also m but y onsists of symbols in a larger alphabet f0; 1; ?g,

where `?' signi�es an erased bit. The following two assumptions are standard

so far in the researh area of �ngerprinting odes. The former one was �rst

introdued by Boneh and Shaw [2℄, whih is a onsequene of a desired property

of steganography used by the server. On the other hand, the latter has been

impliitly put in most of the preeding works, and it represents a reasonable

assumption that odewords of innoent users and the parameter P (if it exists)

are kept seret for the pirates.

De�nition 2.1 (Marking Assumption). If the bits w

i

1

;j

; : : : ; w

i

`

;j

in the j-th

position of odewords of the pirates u

i

1

; : : : ; u

i

`

(1 � j � m) all oinide with

eah other (we all suh a position undetetable), then the j-th bit y

j

of the

pirated odeword y also oinides with them.

De�nition 2.2 (No Leakage Assumption). The distribution of the pirated ode-

word y, onditioned on given pirates' odewords, is independent of both innoent

users' odewords and the parameter P (if it exists).

Then the pirates distribute the pirated odeword y, e.g. by distributing

opies of a pirated ontent involving a modi�ed �ngerprint that oinides with

y.

Finally, after the server obtains the pirated odeword y (e.g. by �nding a

pirated ontent and extrating the embedded �ngerprint), the server performs

a traing algorithm to detet the pirates. A traing algorithm takes the pirated

odeword y, the users' odewords and the parameter P (if it exists) as input,

and outputs a (possibly empty) set of suspeted users. A result of the algorithm

is regarded as a traing error, or an error in short, unless the list of suspets

involves at least one pirate and no innoent user.
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A �ngerprinting ode signi�es a pair of a odeword generation algorithm

(inluding a hoie of parameter P , if it exists) and a traing algorithm. We

say that a �ngerprinting ode is -seure (with "-error) [2℄, if the probability

of traing error, taken over hoies of users' odewords and parameter P (if it

exists), does not exeed a negligibly small value " whenever ` � .

2.2 A model relevant to our odes

Here we give a speialized model based on the one in Setion 2.1, whih is

relevant to our �ngerprinting odes proposed in this artile. This model also

overs Tardos odes [8℄ and its reent variants suh as [3, 5, 6, 7℄.

In this speialized model, �rst the server prepares a probability distribution

P with real values in the open interval (0; 1), whih we refer to as a bias distribu-

tion. Then the parameter P is a sequene (p

(1)

; : : : ; p

(m)

) of values p

(j)

2 (0; 1)

hosen independently aording to P . As is explained below, eah p

(j)

signi�es

the frequeny of 1s appearing in j-th positions of users' odewords. We refer to

the parameter P as the bias parameter.

In the odeword generation phase, the server hooses eah bit w

i;j

in users'

odewords independently, with probability

Pr(w

i;j

= 1) = p

(j)

and Pr(w

i;j

= 0) = 1� p

(j)

:

Given a pirated odeword y, the traing algorithm �rst alulates a sore S

(j)

i

for j-th bit w

i;j

of i-th user u

i

by a ertain real-valued funtion, and then

sums them up as the total sore S

i

=

P

m

j=1

S

(j)

i

of i-th user. Seondly, the

algorithm ompares the sores with an appropriately seleted threshold Z, and

piks up every user u

i

with S

i

� Z as a andidate of the output. We let this

model inlude the extreme ase \Z = �1", where no user is exempted from

the andidates. Finally, the algorithm selets a part of the andidate users in a

ertain manner and outputs every user in the seleted part.

Example 2.3. In the ase of Tardos odes [8℄, a ertain ontinuous distribution

is used as the bias distribution (see [8℄ for details). By introduing an auxiliary

funtion �(p) =

p

(1� p)=p, the soring funtion in [8℄ is given by S

(j)

i

= �(p

(j)

)

if (y

j

; w

i;j

) = (1; 1), S

(j)

i

= ��(1 � p

(j)

) if (y

j

; w

i;j

) = (1; 0), and S

(j)

i

= 0 if

y

j

2 f0; ?g. Moreover, the traing algorithm outputs every user whose sore

exeeds the threshold Z. In [8℄, the ode length and the threshold are determined

by m = 100

2

dlog(N=")e and Z = 20dlog(N=")e. On the other hand, in a

\disrete variant" of Tardos odes proposed by Hagiwara et al. in [3℄, the bias

distribution is a �nite (hene disrete) probability distribution with only a small

number of possible values. Moreover, in a \symmetrized version" of Tardos

odes proposed by

�

Skori� et al. in [7℄, the soring funtion is modi�ed so that

S

(j)

i

= �(1� p

(j)

) if y

j

2 f0; ?g and w

i;j

= 0, S

(j)

i

= ��(p

(j)

) if y

j

2 f0; ?g and

w

i;j

= 1, and S

(j)

i

is the same as the original otherwise.

Now we give a remark on omparison between traing algorithms of the

following two types. An algorithm of the �rst type outputs every user with

the sore exeeding a threshold Z (e.g. Tardos odes). On the other hand, an

algorithm in the seond type does not use a threshold (in other words, it is in

the extreme ase Z = �1) and outputs just one of the users with the highest

sore. Then we have the following result:
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Proposition 2.4. If all the remaining attributes are in ommon, the error

probability of a �ngerprinting ode with a traing algorithm of seond type is not

more than the error probability of a ode with a traing algorithm of �rst type.

Proof. In the ase that a traing algorithm of the seond type results in an error,

an innoent user has the highest sore, therefore we have either an innoent

user's sore exeeds a given threshold or no pirate's sore exeeds the same

threshold. Thus the orresponding traing algorithm of the �rst type also results

in an error in this ase. Hene the proposition follows.

3 Our proposal

This setion summarizes our proposal; a relaxed version of Marking Assump-

tion, a odeword generation algorithm, and an improved traing algorithm. An

appropriate hoie of the ode lengths together with a seurity proof of our

odes will be given in later setions.

3.1 A relaxation of Marking Assumption

An issue of the Marking Assumption (De�nition 2.1) is that �ngerprint embed-

ding shemes assuring this assumption stritly seem diÆult to realize. From

this viewpoint, we put the following relaxed version of Marking Assumption:

De�nition 3.1 (Æ-Marking Assumption). The number of undetetable posi-

tions (see De�nition 2.1 for terminology) in whih y di�ers from the pirates'

odewords is not more than mÆ, where m is the ode length and Æ � 0 is a �xed

parameter.

When Æ = 0, this assumption oinides with the Marking Assumption.

3.2 Our odeword generation algorithm

The following desription of our odeword generation proess is based on the

model in Setion 2.2. Thus it now suÆes to determine the bias distribution.

Here we introdue the following bias distribution P

GL

= P

GL



for eah :

De�nition 3.2. Let L

k

(t) = (

d

dt

)

k

(t

2

�1)

k

=(k! 2

k

) be the k-th Legendre polyno-

mial, and put

e

L

k

(t) = L

k

(2t� 1). Then we de�ne P

GL

2k�1

= P

GL

2k

to be the �nite

probability distribution whose values are the k zeroes of

e

L

k

, with eah value

p taken with probability C

�

p(1 � p)

�

�3=2

e

L

k

0

(p)

�2

, where C is the normalized

onstant making the sum of the probabilities equal to 1.

These bias distributions P

GL



were �rst introdued by a disrete variant

[5, 6℄ of Tardos odes. In [5, 6℄, P

GL



are alled \Gauss-Legendre distributions"

due to their deep relation to the Gauss-Legendre quadrature in numerial ap-

proximation theory. It is shown in [5, 6℄ that P

GL



minimizes, among the bias

distributions with ertain desirable property, the memory amount required to

reord the bias parameter P , and that the ode lengths are also redued by

using P

GL



instead of the ontinuous bias distributions for Tardos odes. This

is the main reason of adopting the distributions P

GL



as our bias distributions.
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We should note that the values and the orresponding emerging probabilities

of P

GL



are not rational, therefore we need some approximation to implement

these distributions on omputer. E�ets of suh approximations will also be on-

sidered in our seurity proof. In this artile, we assume the following ondition

on the bias distribution P approximating P

GL



:

De�nition 3.3. We say that a bias distribution P is symmetri, if P takes the

values p and 1� p with the same probability for any 0 < p < 1.

Note that the original P

GL



are also symmetri in this sense.

3.3 Our traing algorithm

Our traing algorithm is also de�ned along the model in Setion 2.2. For the

soring rule, we put

�(p) =

p

(1� p)=p

and de�ne the bitwise sores S

(j)

i

by

S

(j)

i

=

8

>

>

>

<

>

>

>

:

�(p

(j)

) if y

j

= 1 and w

i;j

= 1 ;

��(1� p

(j)

) if y

j

= 1 and w

i;j

= 0 ;

��(p

(j)

) if y

j

2 f0; ?g and w

i;j

= 1 ;

�(1� p

(j)

) if y

j

2 f0; ?g and w

i;j

= 0 :

(1)

Note that this soring rule was used in a preeding work [7℄ to redue the ode

lengths of Tardos odes.

Then, instead of omparing users' sores with a threshold, our traing algo-

rithm simply outputs one of the users with the highest sore. This modi�ation

is in fat an improvement, due to Proposition 2.4. Note that the way of hoosing

just one user from the users with the highest sore may be arbitrarily designed,

sine our seurity proof overs any possible way for this hoie.

Note that sores determined by the above rule are in general not expliitly

representable on omputer, therefore we also need some approximations of these

values. For this purpose, we enumerate the values of the symmetri (in the

sense of De�nition 3.3) bias distribution P (whih is either the distribution

P

GL



itself or its approximation) in inreasing order as p

0

; p

1

; : : : ; p

k

, and �x an

approximated value U

i

of eah �(p

i

). Now by the symmetry property of P , we

have 1�p

i

= p

k�i

, therefore the value U

k�i

(denoted by U

0

i

for simpliity) is an

approximated value of �(1 � p

i

). In this setting, we modify the above soring

rule (1) for bitwise sores as follows:

S

(j)

i

=

8

>

>

>

<

>

>

>

:

U

�

if y

j

= 1 and w

i;j

= 1 ;

�U

0

�

if y

j

= 1 and w

i;j

= 0 ;

�U

�

if y

j

2 f0; ?g and w

i;j

= 1 ;

U

0

�

if y

j

2 f0; ?g and w

i;j

= 0 ;

where p

(j)

= p

�

: (2)

Our seurity proof also onsider the e�ets of this approximation.
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4 Code lengths and error probabilities of our

odes

For our odes proposed in Setion 3, in this setion we give a bound of traing

error probabilities and a formula of ode lengths (Theorem 4.2), whih show

that our odes are -seure. Proofs of the results will be provided in Setion 7.

First, we present some notations and terminology. Let P be a symmetri

bias distribution (see De�nition 3.3), whih is either the distribution P

GL



in

De�nition 3.2 or its approximation. Let p

0

; p

1

; : : : ; p

k

, U

i

, and U

0

i

be as de�ned

in the last paragraph of Setion 3.3. Put

� = �(p

0

) :

Let

Æ

0

= max

0�i�k

j�(p

i

)� U

i

j = max

0�i�k

j�(1� p

i

)� U

0

i

j ;

i.e. the bound of approximation errors of the bitwise sores. Then we de�ne the

tolerane rate � of our ode by

� = Æ

0

+ 2�Æ ;

where the value Æ is that appearing in Æ-Marking Assumption (De�nition 3.1).

For eah 1 � ` �  and 0 � x � `, put

R

`;x

= maxf0; E

�

p

x

(1� p)

`�x

�

x�(p) � (`� x)�(1 � p)

��

g ;

R

`

= `E

h

(1� p)

`�1=2

p

1=2

i

�

`�1

X

x=1

�

`

x

�

R

`;x

;

where the expetation values E[�℄ are taken over the values p of P . Then �x

a value R suh that 2� � R � R

`

for all 1 � ` � . Moreover, de�ne the

following funtions

B

1

(t) =

e

t�

+ �

2

e

�t=�

�

2

+ 1

; B

2;`

(t) = 1 +

e

t`�

� 1� t`�

`�

2

� 2tR ;

�(t) = t(1� log t) ;

where log denotes the natural logarithm, and put

T

`

= B

1

(�`)B

2;`

(�)e

2�`�

for eah 1 � ` �  ;

where � > 0 is an appropriately hosen parameter (see below). These fun-

tions have the following properties, from whih it follows that the values T

`

are

positive and bounded below from zero. The proofs will be given in Setion 7.

Lemma 4.1. 1. For t > 0, B

1

(t) is an inreasing funtion and B

1

(t) > 1.

2. For eah 1 � l � , the funtion B

2;`

(t) (t > 0) takes the minimum value

at t = (`�)

�1

log(1 + 2R�), and B

2;`

(t) > 1=2.

Now our bound of error probabilities and our formula of ode lengths are

summarized as follows. The proofs will be given in Setion 7. Moreover, some

numerial examples onerning this result will be provided in Setion 5.
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Theorem 4.2. Let 0 < " < 1, and hoose � > 0 so that NT



m

< 1. Let ` be

the number of pirates. We put Æ-Marking Assumption (De�nition 3.1) and No

Leakage Assumption (De�nition 2.2).

1. If ` � , T



� T

0

and NT

0

m

< 1, then the traing error probability of our

ode, using the soring rule (2) instead of (1), is not more than �(NT

0

m

).

Hene our ode is -seure with "-error if �(NT

0

m

) � ".

2. Let a > 1 suh that " � ae

1�a

(e.g. a = 10=9 for " � 0:99). Then our

ode is -seure with "-error if the ode length satis�es that

m � �

1

logT



�

log

N

"

+ log

a

a� 1

+ log log

a

"

�

(3)

(note that T



< 1 by our assumption, therefore �(logT



)

�1

= j logT



j

�1

).

This result implies that, for the sake of reduing ode lengths, the parameter

� should be hosen so that the value T



beomes as small as possible (note that

the funtion �(t) is inreasing for 0 < t < 1). Sine it seems very diÆult to

determine the optimal value �

optimal

of the parameter � for a general ase, here

we instead give (by a heuristi approah) a simple formula �

formula

of nearly

optimal values of �. The de�nition of �

formula

is

�

formula

=

1

�

2

j

1

log

�

1 +

2�



(R� �j

1

�)

�

; (4)

where

j

1

= 2:40482 � � � (5)

denotes the smallest positive zero of the 0th-order Bessel funtion J

0

(t) =

P

1

i=0

(�1)

i

(t=2)

2i

=(i!)

2

of the �rst kind. The examples in Setion 5 suggest

that the formula (4) is \pretty good", though it is not optimal.

The asymptoti behavior of the ode lengths of our odes will be investigated

in Setion 6.

5 Numerial examples

This setion is devoted to numerial examples of our -seure odes, where 

varies as  = 2, 3, 4, 6, and 8, and to omparison of our odes with previously

proposed -seure odes [5, 6, 7, 8℄.

5.1 Approximations of bias distributions and soring fun-

tions

The former part of Table 1 shows an approximation P of the bias distribution

P

GL



for eah , where olumns entitled `p' and `q' denote, respetively, the values

of P and the emerging probabilities of the orresponding values. Note that

these distributions P are symmetri in the sense of De�nition 3.3. Moreover,

approximations U

i

of values of the funtion � are given in the latter part of

Table 1. Now the bound Æ

0

of the approximation error is Æ

0

= 0 for  � 2, and

Æ

0

= 10

�5

for  � 3. Table 2 shows approximations of the values of R and �.
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Table 1: Approximations of the bias distributions P

GL



and bitwise sores

 p q  p q

1; 2 0:50000 1:00000 7; 8 0:06943 0:24833

3; 4 0:21132 0:50000 0:33001 0:25167

0:78868 0:50000 0:66999 0:25167

5; 6 0:11270 0:33201 0:93057 0:24833

0:50000 0:33598

0:88730 0:33201

 U

0

U

1

U

2

U

3

2 1

4 1:93187 0:51763

6 2:80590 1 0:35639

8 3:66101 1:42485 0:70182 0:27314

Table 2: Auxiliary values for our examples

 2 3 4 6 8

R 0:50000 0:40823 0:40823 0:37796 0:36291

� 1:00000 1:93188 1:93188 2:80591 3:66102

5.2 Calulation of ode lengths

Table 3 shows the ode lengths of our odes under Æ-Marking Assumption (Def-

inition 3.1). Here we set the tolerane late � = Æ

0

+ 2�Æ to 0:01; namely, our

odes are still -seure even if mÆ � m=(200�) bits in undetetable positions are

ipped or erased. In the table, we onsider the following three ases:

� Case 1: N = 100 and " = 10

�11

,

� Case 2: N = 10

9

and " = 10

�6

,

� Case 3: N = 10

6

and " = 10

�3

.

In this example, we alulate the ode lengths by using the �rst part of Theorem

4.2 and a numerial alulation, instead of a slightly looser formula (3) in the

seond part of Theorem 4.2. The ode length shown in the �rst row for eah

 in Table 3 is alulated by using the optimal value �

optimal

determined by a

numerial searh. On the other hand, the ode length in the seond row for

eah  in Table 3 is derived by using the formula (4) instead of �

optimal

. This

table shows that the ode lengths derived from (4) are not very apart from the

ones derived from �

optimal

, namely the formula (4) is a good approximation of

�

optimal

.

A similar table (Table 4) is also given for the ase under the Marking As-

sumption instead of the Æ-Marking Assumption (or equivalently, Table 4 deals

with the ase that Æ = 0). Again, the ode lengths derived from the parameters

in (4) are not very apart from the ones derived from �

optimal

.

5.3 Comparison of our ode lengths with other odes

Tables 3 and 4 also show the ode lengths 100

2

dlog(N=")e of Tardos odes [8℄ for

the same settings (exept that the lengths of Tardos odes for the ases in Table 3

9



Table 3: Length omparison under Æ-Marking Assumption (where � = 0:01)

Values in parentheses are ode lengths alulated by using �

formula

instead of

�

optimal

.

 Case 1 Case 2 Case 3 Case 4 �

optimal

Ours 403 444 273

2 (404) (444) (274) 0:16921

Tardos 12400 14000 8400

% 3:25 3:17 3:25 2:97

Ours 1514 1646 1014

3 (1630) (1771) (1091) 0:057404

Tardos 28800 31500 18900

% 5:26 5:23 5:37 4:89

Ours 2671 2879 1774

4 (2672) (2880) (1775) 0:034093

Tardos 51200 56000 33600

% 5:22 5:14 5:28 4:81

Ours 7738 8244 5079

6 (7743) (8249) (5082) 0:013798

Tardos 115200 126000 75600

% 6:72 6:54 6:72 6:13

Ours 16920 17879 11015

8 (16934) (17894) (11024) 0:0071633

Tardos 211200 224000 134400

% 8:01 7:98 8:20 7:47

10



Table 4: Length omparison under Marking Assumption (here � = Æ

0

)

Values in parentheses are ode lengths alulated by using �

formula

instead of

�

optimal

.

 Case 1 Case 2 Case 3 Case 4 �

optimal

Ours 373 410 253

2 (374) (411) (253) 0:17549

Tardos 12400 14000 8400

% 3:01 2:93 3:01 2:74

Ours 1309 1423 877

3 (1390) (1511) (931) 0:061345

Tardos 28800 31500 18900

% 4:55 4:52 4:64 4:23

Ours 2190 2360 1454

4 (2190) (2360) (1454) 0:037405

Tardos 51200 56000 33600

% 4:28 4:21 4:33 3:95

Ours 5546 5909 3640

6 (5547) (5909) (3641) 0:016111

Tardos 115200 126000 75600

% 4:81 4:69 4:81 4:39

Ours 10469 11062 6815

8 (10469) (11062) (6816) 0:0089586

Tardos 211200 224000 134400

% 4:96 4:94 5:07 4:62
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are derived under Marking Assumption instead of Æ-Marking Assumption), and

the perentages of our ode lengths relative to those of Tardos odes. Moreover,

we also give (as \Case 4") the perentages in the limit ase N="!1 (i.e. N !

1 or "! 0). For the limit ase, we use the formula (3) for ode lengths of our

odes, therefore the perentagem=

�



2

dlog(N=")e

�

onverges to�

�



2

logT



�

�1

=

�



2

j logT



j

�

�1

whenN="!1. These two tables show that our odes have muh

shorter ode lengths than Tardos odes. Moreover, our ode lengths are also

signi�antly shorter than a preeding improvement [5, 6℄ of Tardos odes. In

fat, numerial examples in [5, 6℄ show that the ode lengths in [5, 6℄ are more

than 30% of those of Tardos odes for  � 8.

On the other hand, it is proved in [7℄ that the ode lengths of Tardos odes

(under Marking Assumption) an be redued to �

2

=2% � 4:93% of the original

by using the symmetrized soring rule (1), provided we put a ertain statistial

assumption on distributions of innoent users' sores (see [7℄ for details). It is

worth notiing that, despite the unonditional seurity of our odes (that is, our

seurity proof holds without suh a statistial assumption), our ode lengths

shown in Tables 3 and 4 are almost the same as, or even shorter than, the

lengths given in [7℄ (i.e. 4:93% of Tardos odes) for many ases. Moreover, the

unonditionally -seure ode lengths given in [7℄ are �

2

% � 9:87% of lengths

of Tardos odes, and our ode lengths are shorter than their ode lengths for

every ase shown in the two tables.

6 Asymptoti behavior of our ode lengths

In this setion, we investigate an asymptoti behavior of ode lengths m of

our -seure odes in the limit ase  ! 1. More preisely, we show that

m � K

2

log(N=") for some K <1 when  ! 1, and determine the onstant

fator K (Theorem 6.3). Note that the fator K is 100 for Tardos odes.

6.1 The results

In our analysis, we use the following asymptoti properties of the bias distribu-

tions P

GL



, whih are proved in [5℄:

Lemma 6.1 ([5℄). If P = P

GL



, then R = min

1�`�

R

`

! 1=� and �=! 1=j

1

when !1, where j

1

is as de�ned in (5).

Following Lemma 6.1, we hoose an approximation P of P

GL



for eah  suh

that R ! 1=�, �= ! 1=j

1

and � ! �

0

when  ! 1, where 0 � �

0

< 1.

(Although the values R, � and � depend on , we omit subsripts `' in the

notations for simpliity.) In partiular, � ! 1 when  ! 1. Note that

�

0

� (2�)

�1

by our assumption 2� � R for eah  (see Setion 4).

We use the formula (3) for ode lengths and the formula (4) for the parameter

�. Now we have N="! 1 when ! 1, sine " � 1 and N � . Thus by (3),

the ratio m=

�



2

log(N=")

�

onverges (when  ! 1) to the same value as the

limit of �1=

�



2

logT



�

, whenever the latter onverges. Sine



2

logT



= 

2

logB

1

(�) + 

2

logB

2;

(�) + 2�

3

� ;
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it suÆes to alulate the limit of eah term in the right-hand side. Now put

A = 1 +

2�



(R� �j

1

�) and A

0

= 1 +

2

j

1

�

1

�

��

0

�

;

therefore A! A

0

> 1 when !1. Then for the third term, we have

2�

3

� =



2

�

2

�

2�

j

1

logA! 2j

1

�

0

logA

0

when !1 :

In the remaining argument, we use the following lemma, whih will be proved

in Setion 6.2:

Lemma 6.2. Let f() and g() be real-valued funtions.

1. If 

2

(f()� 1)! a 2 R when !1, then 

2

log f()! a when !1.

2. If f() ! a and g() ! 0 when  ! 1, 0 < a < 1, and g() 6= 0 for all

suÆiently large , then (f()

g()

� 1)=g()! log a when !1.

Owing to the �rst part of Lemma 6.2, it now suÆes to determine the limit

of the values 

2

(B

1

(�) � 1) and 

2

(B

2;

(�)� 1). First, we have



2

(B

1

(�)� 1) =



2

�

2

�

�

2

�

2

+ 1

 

A

=(�j

1

)

� 1�



�j

1

�

A

�=(�

3

j

1

)

� 1

�=(�

3

j

1

)

!

:

Sine A! A

0

> 1 when !1, the seond part of Lemma 6.2 implies that

lim

!1



2

(B

1

(�)� 1) = j

1

2

� 1 � (A

0

0

� 1� 1 � logA

0

) = j

1

2

(A

0

� 1� logA

0

)

(reall that � !1 when !1). On the other hand, we have



2

(B

2;

(�)� 1) =



�

�

1

�

�

A

=(�j

1

)

� 1�



�j

1

logA

�

�



2

�

2

�

2R

j

1

logA :

Sine A

=(�j

1

)

� 1� (�j

1

)

�1

 logA is bounded when !1, we have

lim

!1



2

(B

2;

(�) � 1) = 0� j

1

2

�

2=�

j

1

logA

0

= �

2j

1

�

logA

0

:

Hene by the �rst part of Lemma 6.2, we have

lim

!1



2

logT



= j

1

2

(A

0

� 1� logA

0

)�

2j

1

�

logA

0

+ 2j

1

�

0

logA

0

= �j

1

2

(A

0

logA

0

�A

0

+ 1) ;

therefore lim

!1

m=

�



2

log(N=")

�

= j

1

�2

(A

0

logA

0

� A

0

+ 1)

�1

. The right-

hand side is a dereasing funtion of A

0

> 1, therefore an inreasing funtion of

�

0

� 0. Hene it is optimal for dereasing the value to set �

0

= 0.

Summarizing, we have the following result (assuming Lemma 6.2):

Theorem 6.3. In this setting, by putting A

0

= 1 + 2=(j

1

�) where j

1

is as

de�ned in (5), the asymptoti behavior of lengths m of our odes is given by

m � K

2

log(N=") where K =

1

j

1

2

(A

0

logA

0

�A

0

+ 1)

� 5:35310 � � � :
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As a omparison with other odes, the onstant fator K is K = 100 for

Tardos odes [8℄, K � 20:6021 for odes in [5℄, K � 20 for odes in [1℄, and

K � 9:87 for odes in [7℄. Theorem 6.3 shows that our asymptoti ode lengths

are signi�antly shorter than those for the above odes. Note also that K � 4:93

for odes in [7℄ under a ertain statistial assumption (f. Setion 5.3), and that

our asymptoti ratios are lose to that value though our seurity proof does not

require suh an additional assumption.

6.2 Proof of Lemma 6.2

Here we give a proof of Lemma 6.2 to omplete the proof of Theorem 6.3.

of Lemma 6.2. For the �rst part of Lemma 6.2, note that f()! 1 when !1

sine 

2

(f() � 1) is bounded. First, if the set f

�1

(1) = f j f() = 1g is

bounded, then we have 

2

log f() = 

2

(f() � 1) � (f() � 1)

�1

log f() for all

suÆiently large , and lim

!1

(f()�1)

�1

log f() = lim

x!1

(x�1)

�1

logx = 1

by L'Hôpital's Rule, therefore our laim follows. Seondly, if the set f

�1

(1) is

not bounded, then a must be 0, sine there is an in�nite sequene 

1

; 

2

; : : :

diverging to1 suh that f(

i

) = 1 for all i. Now we de�ne another funtion f()

by f() = f() if f() 6= 1 and f() = e



�3

if f() = 1. This funtion satis�es

that f() 6= 1 for any  and 

2

(f()� 1)! 0 when !1, sine 

2

(e



�3

� 1) =

(e



�3

� 1)=

�2

! 0 when  ! 1 by L'Hôpital's Rule. Thus 

2

log f() ! 0

when  !1 by the above argument, while we have 

2

log f() = 0 if f() = 1.

Hene we have 

2

log f()! 0 when !1, therefore our laim follows.

From now, we prove the seond part of Lemma 6.2. First note that, if f()

is onstantly equal to a, then we have

lim

!1

(f()

g()

� 1)=g() = lim

x!0

(a

x

� 1)=x = log a

by L'Hôpital's Rule. Now for a general ase, for any 0 < � < a, we have

0 < a�� < f() < a+� for all suÆiently large  sine f()! a when !1.

This implies that

(a� �)

g()

� 1

g()

<

f()

g()

� 1

g()

<

(a+ �)

g()

� 1

g()

(6)

for any suÆiently large . By the above argument, the left-hand side and the

right-hand side of (6) onverge to log(a� �) and log(a+ �), respetively, when

!1. Thus

log(a� �) � lim inf

!1

f()

g()

� 1

g()

� lim sup

!1

f()

g()

� 1

g()

� log(a+ �) : (7)

By taking the limit � ! 0, both the left-hand side and the right-hand side

onverge to log a, therefore the middle two terms are both equal to log a. This

means that (f()

g()

� 1)=g() also onverges to log a.

Hene the proof of Lemma 6.2 is onluded.

7 Proofs of results in Setion 4

In this setion, we give the proofs of our results in Setion 4. First, in Setion

7.1 we prove Lemma 4.1. Seondly, in order to prove Theorem 4.2, we present
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in Setion 7.2 a key lemma for the proof, and we show in Setion 7.3 some

properties of distributions of the users' sores. Setion 7.4 is the body of the

proof of Theorem 4.2. Finally, in Setion 7.5, we give a proof of the key lemma

presented in Setion 7.2.

7.1 Proof of Lemma 4.1

In this subsetion, we prove Lemma 4.1. The �rst part of Lemma 4.1 an be

proved by an easy analysis. Namely, we have B

0

1

(t) = �(e

t�

�e

�t=�

)=(�

2

+1) > 0

for t > 0 sine � > 0, therefore B

1

(t) is inreasing for t > 0, and B

1

(t) > B

1

(0) =

1 for t > 0.

From now, we prove the seond part of Lemma 4.1. The �rst laim, namely

B

2;`

(t) takes the minimum value for t > 0 at t = t

0

= (`�)

�1

log(1 + 2R�),

is proved by a straightforward analysis. For the remaining laim, it suÆes to

show that B

2;`

(t

0

) > 1=2. We have

B

2;`

(t

0

) = 1 +

4R

2

`

f(s) , where f(t) =

t� (1 + t) log(1 + t)

t

2

and s = 2R� :

Now we use the following two lemmas:

Lemma 7.1. We have f(t) > �1=2 for t > 0.

Proof. First, by putting g(t) = (t+2) log(t+1)�2t, a diret alulation implies

that f

0

(t) = g(t)t

�3

. Now we have g

0

(t) = log(t + 1) + (t + 1)

�1

� 1 and

g

00

(t) = (t+ 1)

�1

� (t+ 1)

�2

> 0 for t > 0, therefore g

0

(t) > g

0

(0) = 0 for t > 0

and g(t) > g(0) = 0 for t > 0. Thus f(t) is inreasing for t > 0. Moreover, we

have lim

t!0

f(t) = �1=2 by applying L'Hôpital's Rule twie. Hene the laim

follows.

Lemma 7.2. We have R � 1=2.

Proof. Reall our assumption given in Setion 4 that 2� � R � R

`

0

for all

1 � `

0

� . In partiular, R � R

1

= E

�

(1� p)

1=2

p

1=2

�

. Now the laim follows

from the fat that

p

(1� p)p � 1=2 for any 0 < p < 1.

By these two lemmas, we have B

2;`

(t

0

) > 1+(1=`) � (�1=2) � 1=2 (note that

2R� > 0). Hene the proof of Lemma 4.1 is onluded.

7.2 A key lemma

In this subsetion, we present the following inequality regarding two random

variables, whih will be a key ingredient of our proof of Theorem 4.2:

Lemma 7.3. Let g

1

and g

2

be two real-valued random variables on the same

probability spae, and G(x) = Pr(g

2

� x) (x 2 R) the distribution funtion of

g

2

. Suppose that we are given a weakly dereasing funtion ' : R ! R

�0

(where

R

�0

denotes the set of nonnegative real numbers) and a right-ontinuous, weakly

inreasing funtion F : R ! R

�0

satisfying the following onditions:

1. we have G(x) � F (x) for all x 2 R, and lim

x!�1

F (x) = 0,
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2. for any �nite losed interval I � R and any "

0

> 0, there exists a � > 0

suh that Pr(g

1

� x

1

j x

1

� g

2

< x

2

) � '(x

1

) + "

0

whenever x

1

; x

2

2 I,

0 < x

2

� x

1

< � and Pr(x

1

� g

2

< x

2

) > 0.

Then Pr(g

1

� g

2

) �

R

R

'dF , where the integral in the right-hand side is the

Lebesgue-Stieltjes integral (see e.g. [4℄) with respet to the funtion F .

The proof of this lemma will be given in Setion 7.5.

7.3 Lemmas on distributions of users' sores

In this subsetion, we give two lemmas onerning distributions of the sores of

users in our odes, whih will be used in our proof of Theorem 4.2. These lemmas

and their proofs presented below are based on the ones for similar properties

given in [3, 6, 8℄.

Our �rst lemma onerns the sores of innoent users:

Lemma 7.4. Let u

i

be an innoent user, and z 2 R. Then for any �xed

bias parameter P , any pirated odeword y, and any � > 0, the sore S

i

of u

i

alulated by the rule (1) satis�es

Pr(S

i

� z j P; y) = Pr(e

�S

i

� e

�z

j P; y)

� E

�

e

�S

i

j P; y

�

e

��z

� B

1

(�)

m

e

��z

;

where the onditional probabilities and the onditional expetation are taken over

hoies of the odeword w

i

of the user u

i

.

Proof. The �rst equality in the statement is obvious, while the former of the

two inequalities is derived from Markov's Inequality. For the latter of the two

inequalities, sine eah bit in w

i

is hosen independently of eah other, we

have E

�

e

�S

i

j P; y

�

=

Q

m

j=1

E

h

e

�S

(j)

i

j P; y

i

. Now we de�ne a funtion f(t) for

0 < t < 1 by f(t) = te

�

p

(1�t)=t

+(1� t)e

��

p

t=(1�t)

. Note that E

h

e

�S

(j)

i

j P; y

i

is equal to f(p

(j)

) if y

j

= 1 and to f(1 � p

(j)

) if y

j

2 f0; ?g. By putting

� = �=

p

t(1� t), a straightforward alulation shows that

f

0

(t) =

e

��

p

t=(1�t)

2

�

(2� �)e

�

� 2� �

�

(note that

p

(1� t)=t = �=��

p

t=(1� t)), while an elementary analysis implies

that (2��)e

�

�2�� < 0 for any � > 0. Thus f

0

(t) < 0 for 0 < t < 1, therefore

f(p

(j)

) � f(p

0

) and f(1 � p

(j)

) � f(p

0

) sine p

(j)

� p

0

and 1 � p

(j)

� p

0

by the assumption that P is symmetri (see De�nition 3.3). Finally, we have

f(p

0

) = B

1

(�) by the hoie of �. Hene the laim follows.

On the other hand, our seond lemma onerns the sores of the pirates:

Lemma 7.5. Fix an arbitrary pirates' strategy satisfying Marking Assumption.

Let S

i

denote the sore of a pirate u

i

alulated by the rule (1). Let S

pmax

denote

the maximum of the S

i

among the ` pirates u

i

, and S

psum

denote the sum of

the ` sores S

i

. Then for any z 2 R and any � > 0, we have

Pr(S

pmax

� z) � Pr(S

psum

� `z) = Pr(e

��S

psum

� e

��`z

)

� E

�

e

��S

psum

�

e

�`z

� B

2;`

(�)

m

e

�`z

;
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where the probabilities and the expetation are taken over hoies of the bias

parameter P , the pirates' odewords w

i

, and the pirated odeword y.

Proof. The laim exept the last inequality E

�

e

��S

psum

�

e

�`z

� B

2;`

(�)

m

e

�`z

follows from Markov's Inequality and easy arguments. In order to prove the

above inequality, we investigate the value E

�

e

��S

psum

�

. In this proof, we assume

for simpliity that u

1

; : : : ; u

`

are the ` pirates.

By No Leakage Assumption (De�nition 2.2), the �xed (probabilisti) pirates'

strategy satis�es that Pr(y j w;P ) = Pr(y j w) for any bias parameter P , any

olletion w = (w

i

)

i

of the pirates' odewords, and any pirated odeword y.

Thus we have Pr(P;w; y) = Pr(P )Pr(w j P )Pr(y j w), therefore

E

�

e

��S

psum

�

=

X

w

X

y

E

(P )

�

e

��S

psum

Pr(w j P )

�

Pr(y j w) ; (8)

where E

(P )

[�℄ denotes the expetation value taken over hoies of P .

Put x

j

= #fi 2 f1; : : : ; `g j w

i;j

= 1g for eah 1 � j � m. Then, sine eah

w

i;j

depends solely on p

(j)

and is hosen independently of eah other, we have

e

��S

psum

Pr(w j P ) = e

��

P

m

j=1

P

`

i=1

S

(j)

i

m

Y

j=1

`

Y

i=1

Pr(w

i;j

j p

(j)

)

=

Y

j

�

e

��

P

i

S

(j)

i

(p

(j)

)

x

j

(1� p

(j)

)

`�x

j

�

:

Sine the j-th term of the produt in the right-hand side depends on p

(j)

but

not on p

(j

0

)

for other j

0

, and eah p

(j)

is hosen independently aording to the

same bias distribution P , we have (for any w and y)

E

(P )

�

e

��S

psum

Pr(w j P )

�

=

m

Y

j=1

E

(p

(j)

)

h

e

��

P

i

S

(j)

i

(p

(j)

)

x

j

(1� p

(j)

)

`�x

j

i

;

where E

(p

(j)

)

[�℄ denotes the expetation value taken over the values p

(j)

of P .

Now note that

P

i

S

(j)

i

= L

x

j

;p

(j)

if y

j

= 1 and

P

i

S

(j)

i

= �L

x

j

;p

(j)

if y

j

2 f0; ?g,

where L

x;p

= x�(p)� (`� x)�(1� p). Then we have

E

(P )

�

e

��S

psum

Pr(w j P )

�

�

m

Y

j=1

max

�

fN

0;x

j

; N

1;x

j

g ;

where

N

0;x

= E

(p)

�

e

�L

x;p

p

x

(1� p)

`�x

�

; N

1;x

= E

(p)

�

e

��L

x;p

p

x

(1� p)

`�x

�

and max

�

takes the �rst term N

0;x

j

if x

j

= 0, the seond term N

1;x

j

if x

j

= `,

and the maximum of N

0;x

j

and N

1;x

j

if 1 � x

j

� `� 1 (this de�nition of max

�

reets the Marking Assumption; i.e. y

j

must be 0 if x

j

= 0, and 1 if x

j

= `).

This bound does not depend on y, and both N

0;x

j

and N

1;x

j

depend solely on

17



x

j

. Thus by substituting it into (8) we have

E

�

e

��S

psum

�

�

X

w

m

Y

j=1

max

�

fN

0;x

j

; N

1;x

j

g

=

X

x

1

;:::;x

m

m

Y

j=1

�

`

x

j

�

m

Y

j=1

max

�

fN

0;x

j

; N

1;x

j

g

=

m

Y

j=1

`

X

x

j

=0

�

`

x

j

�

max

�

fN

0;x

j

; N

1;x

j

g =

 

`

X

x=0

�

`

x

�

M

x

!

m

;

where M

0

= N

0;0

, M

`

= N

1;`

and M

x

= maxfN

0;x

; N

1;x

g for 1 � x � `� 1.

Sine jL

x;p

j � `� for any value p of P and any 0 � x � `, an elementary

analysis shows that e

��L

x;p

� 1 � �L

x;p

+ r(�`�)�

2

L

x;p

2

, respetively, where

r(t) = (e

t

�1� t)=t

2

(note that this r(t) is an inreasing funtion, where we put

r(0) = lim

t!0

r(t) = 1=2). Thus we have

M

x

� E

(p)

�

p

x

(1� p)

`�x

�

� �E

(p)

�

p

x

(1� p)

`�x

L

x;p

�

+ r(�`�)�

2

E

(p)

�

p

x

(1� p)

`�x

L

x;p

2

�

+ 2�R

`;x

for 1 � x � `� 1 (see Setion 4 for the de�nition of R

`;x

), while

M

0

� E

(p)

�

p

0

(1� p)

`�0

�

+ �E

(p)

�

p

0

(1� p)

`�0

L

0;p

�

+ r(�`�)�

2

E

(p)

�

p

0

(1� p)

`�0

L

0;p

2

�

and

M

`

� E

(p)

�

p

`

(1� p)

`�`

�

� �E

(p)

�

p

`

(1� p)

`�`

L

`;p

�

+ r(�`�)�

2

E

(p)

�

p

`

(1� p)

`�`

L

`;p

2

�

:

Note that

P

`

x=0

�

`

x

�

p

x

(1 � p)

`�x

= 1,

P

`

x=0

�

`

x

�

p

x

(1 � p)

`�x

L

x;p

= 0, and

P

`

x=0

�

`

x

�

p

x

(1� p)

`�x

L

x;p

2

= `. Then we have

`

X

x=0

�

`

x

�

M

x

� 1 + 2�E

(p)

�

p

0

(1� p)

`�0

L

0;p

�

+ r(�`�)�

2

`+ 2�

`�1

X

x=1

R

`;x

= 1� 2�`E

(p)

h

p

1=2

(1� p)

`�1=2

i

+ r(�`�)�

2

`+ 2�

`�1

X

x=1

R

`;x

= 1 + r(�`�)�

2

`� 2�R

`

� B

2;`

(�) :

Thus we have E

�

e

��S

psum

�

� B

2;`

(�)

m

, therefore the laim follows.

7.4 Proof of Theorem 4.2

In this subsetion, we give a proof of Theorem 4.2 assuming Lemma 7.3. Let

� be an arbitrary pirates' strategy satisfying Æ-Marking Assumption, and let

y denote a pirated odeword generated by �. Then we de�ne another pirates'

strategy �

0

, whose output is denoted by y

0

, in the following manner: The j-th

bit y

0

j

is equal to j-th bit of the odeword of any pirate if the j-th position

18



is undetetable, and y

0

j

= y

j

otherwise. Note that this �

0

satis�es Marking

Assumption, and y and y

0

di�er in at most mÆ positions owing to Æ-Marking

Assumption on �.

In this proof, let S

i

denote the sore of a user u

i

determined by y and the

soring rule (2), and let S

0

i

denote the sore of u

i

determined by y

0

and the rule

(1). Let S

imax

and S

0

imax

denote the maximum of S

i

and of S

0

i

, respetively,

among the innoent users u

i

. We de�ne S

pmax

and S

0

pmax

similarly for the

pirates instead of innoent users. Then the error probability of our ode with

the pirates' strategy � is not more than the probability Pr(S

pmax

� S

imax

)

regardless of the way of hoosing the output user from the users with the highest

sore. Now note that

jS

(j)

i

� S

0

i

(j)

j �

(

Æ

0

+ � if y

j

6= y

0

j

;

Æ

0

if y

j

= y

0

j

;

therefore jS

i

� S

0

i

j � mÆ

0

+mÆ� = m�. Thus we have

Pr(S

pmax

� S

imax

) � Pr(S

0

pmax

� S

0

imax

+ 2m�) :

Put g

1

= S

0

imax

+2m� and g

2

= S

0

pmax

, both of whih are random variables

on the same probability spae. Let G(x) = Pr(g

2

� x) be the distribution

funtion of g

2

, therefore G(x) � 1. Now given a parameter � > 0, de�ne a

funtion F (x) by

F (x) =

(

B

2;`

(�)

m

e

�`x

if x � Z

2

;

1 if x � Z

2

;

where

Z

2

= �

m

�`

logB

2;`

(�)

(note that B

2;`

(�) � 1=2 by Lemma 4.1). Then F (x) is a ontinuous, weakly

inreasing funtion suh that lim

x!�1

F (x) = 0, and we have G(x) � F (x) by

Lemma 7.5. Namely, the �rst ondition in Lemma 7.3 is now satis�ed.

On the other hand, de�ne another funtion '(x) by

'(x) =

(

NB

1

(�`)

m

e

��`x+2�`m�

if x � Z

1

;

1 if x � Z

1

;

where � is the given positive parameter and

Z

1

=

logN +m logB

1

(�`)

�`

+ 2m�

(note that B

1

(�`) > 1 by Lemma 4.1). Then '(x) is a weakly dereasing

funtion and '(x) > 0, and we have Pr(g

1

� x j P; y

0

) � '(x) for any bias

parameter P and any pirated odeword y

0

by Lemma 7.4 (where we put � = �`).

Now we give the following lemma:

Lemma 7.6. The seond ondition in Lemma 7.3 is satis�ed.
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Proof. It suÆes to show that, for any �nite losed interval I � R, we have

Pr(g

1

� x

1

j x

1

� g

2

< x

2

) � '(x

1

) whenever x

1

; x

2

2 I , x

1

< x

2

and

Pr(x

1

� g

2

< x

2

) > 0. Let w

p

and w

i

denote the olletions of odewords

of the pirates and of the innoent users, respetively. Then for any P , w

p

, w

i

and y

0

, we have Pr(y

0

j P;w

i

; w

p

) = Pr(y

0

j P;w

p

) by No Leakage Assumption

(De�nition 2.2), and Pr(w

i

j P;w

p

) = Pr(w

i

j P ) sine users' odewords are

hosen independently with eah other. This implies that

Pr(g

1

� x

1

; x

1

� g

2

< x

2

)

=

X

P;w

p

;w

i

;y

0

; g

1

�x

1

; x

1

�g

2

<x

2

Pr(P;w

p

; w

i

; y

0

)

=

X

P;w

p

;w

i

;y

0

; g

1

�x

1

; x

1

�g

2

<x

2

Pr(P )Pr(w

p

j P )Pr(w

i

j P )Pr(y

0

j P;w

p

)

=

X

P;w

p

;y

0

; x

1

�g

2

<x

2

Pr(P )Pr(w

p

j P )Pr(y

0

j P;w

p

)

X

w

i

; g

1

�x

1

Pr(w

i

j P )

=

X

P;w

p

;y

0

; x

1

�g

2

<x

2

Pr(P;w

p

; y

0

) � Pr(g

1

� x

1

j P; y

0

)

�

X

P;w

p

;y

0

; x

1

�g

2

<x

2

Pr(P;w

p

; y

0

)'(x

1

) = '(x

1

)Pr(x

1

� g

2

< x

2

)

(reall that Pr(g

1

� x

1

j P; y

0

) � '(x

1

) by the argument before Lemma 7.6).

Thus we have Pr(g

1

� x

1

j x

1

� g

2

< x

2

) � '(x

1

). Hene the laim holds.

By Lemma 7.6, the onditions in Lemma 7.3 are satis�ed. Therefore Lemma

7.3 implies that Pr(g

2

� g

1

) �

R

R

'dF , where the right-hand side is the

Lebesgue-Stieltjes integral (see e.g. [4℄). Now note that Z

1

� Z

2

if and only

if NT

`

m

� 1. Thus in the ase that NT

`

m

� 1, we have

Z

R

'dF =

Z

(�1;Z

1

℄

dF +

Z

(Z

1

;Z

2

℄

'dF +

Z

(Z

2

;1)

'dF :

Sine F is di�erentiable on the interval (�1; Z

2

℄, F is onstant on (Z

2

;1),

and lim

x!�1

F (x) = 0, it follows from properties of Lebesgue-Stieltjes integral

that

Z

R

'dF =

Z

Z

1

�1

F

0

(x) dx +

Z

Z

2

Z

1

'(x)F

0

(x) dx + 0

= F (Z

1

) +

Z

Z

2

Z

1

�`NT

`

m

dx

= NT

`

m

+ �`NT

`

m

(Z

2

� Z

1

) = �(NT

`

m

) :

Summarizing, the error probability of our odes (under Æ-Marking Assumption

and the soring rule (2)) is not more than �(NT

`

m

) if the number of pirates is

` and NT

`

m

� 1.

Now note that T

`

� T



for any 1 � ` �  (sine eah of B

1

(�`), B

2;`

(�) and

e

2�`�

is inreasing as ` is getting larger) and �(t) is an inreasing funtion for

0 < t � 1. Thus if T



� T

0

and NT

0

m

< 1, then whenever the number of the

pirates is ` � , we have NT

`

m

� NT

0

m

< 1 and the error probability is not

more than �(NT

0

m

). Hene the �rst part of Theorem 4.2 is proved.
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From now, we prove the seond part of Theorem 4.2. For a given 0 < " < 1,

we introdue a funtion �

"

(t) = �(t) � ", whih is inreasing, ontinuous and

onave up for 0 < t < 1. Sine lim

t!+0

�

"

(t) = �" < 0 and lim

t!1�0

�

"

(t) =

1� " > 0, there exists a unique 0 < t

0

< 1 suh that �

"

(t

0

) = 0. Now if a > 1

and " � ae

1�a

, then we have

�

"

("=a) =

"

a

�

1� log

"

a

�

� " �

"

a

� a� " � 0 ;

therefore t

0

� "=a < 1. Moreover, put

t

1

=

"

a

�

�

"

("=a)

�

0

"

("=a)

=

a� 1

a

"

log(a=")

> 0 ;

whih is the x-interept of the tangent line of the urve y = �

"

(x) in the x-y

plane at x = "=a. Sine "=a � t

0

, and �

"

(t) is inreasing and onave up,

we have t

1

� t

0

, therefore �

"

(t

1

) � 0. Thus we have �(NT



m

) � �(t

1

) � "

whenever NT



m

� t

1

, or equivalently, whenever the inequality (3) is satis�ed.

Hene the proof of Theorem 4.2 (assuming Lemma 7.3) is onluded.

7.5 Proof of Lemma 7.3

Finally, to omplete the proof of Theorem 4.2, we give a proof of Lemma 7.3.

First, we reall the following well-known fats used in our proof:

Proposition 7.7. If ' is a weakly dereasing funtion on a �nite interval in

R, then the number of points of disontinuities of ' is either �nite or ountably

in�nite.

Theorem 7.8. Let (
; �) be a measurable spae, f'

i

g

1

i=1

a sequene of mea-

surable funtions on 
, and ' a funtion on 
 suh that lim

n!1

'

n

= '.

1. (Bounded Convergene Theorem) If �(
) < 1 and there is a on-

stant M > 0 suh that j'

n

(!)j < M for any n and any ! 2 
, then ' and

eah '

n

are �-integrable and lim

n!1

R




'

n

d� =

R




'd�.

2. (Monotone Convergene Theorem) If 0 � '

n

(!) � '

n+1

(!) for any

n and any ! 2 
, then lim

n!1

R




'

n

d� =

R




'd� (this inludes the ase

that both terms are 1).

Our proof of Lemma 7.3 is done by showing the following two properties:

1. Pr(g

1

� g

2

) �

R

R

'dG,

2.

R

R

'dG �

R

R

'dF .

7.5.1 Proof of the �rst property

We show that Pr(g

1

� g

2

) �

R

R

'dG. We denote the ommon underlying

probability spae for g

1

and g

2

by 
, and denote the values of g

1

and of g

2

at

! 2 
 by g

1

(!) and by g

2

(!), respetively. First, we have

Pr(g

1

� g

2

) = 1� Pr(g

1

< g

2

) = 1� lim

n!1

Pr(g

1

< g

2

; �n � g

2

< n) : (9)
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Sine ' is weakly dereasing, Proposition 7.7 implies that the set A

n

of the

points of disontinuities of ' in the interval [�n; n) is either �nite or ountably

in�nite. Enumerate the elements of A

n

as a

(n)

1

, a

(n)

2

, and so on. Then for eah

integer k � 1, we de�ne �nite sets D

(n)

k

by

D

(n)

k

= f�n+ i=2

k

j 0 � i � n2

k+1

g [ fa

(n)

i

j 1 � i � kg

and enumerate the points in D

(n)

k

in inreasing order as d

(n)

k;0

< d

(n)

k;1

< � � � <

d

(n)

k;`

n;k

. Now we have the following properties:

D

(n)

k

� D

(n)

k+1

; d

(n)

k;0

= �n and d

(n)

k;`

n;k

= n for any k ; (10)

for eah k; we have d

(n)

k;i

� d

(n)

k;i�1

� 2

�k

for every i : (11)

Now we use the following lemma:

Lemma 7.9. In this setting, for any n we have

f! 2 
 j g

1

(!) < g

2

(!); �n � g

2

(!) < ng

= lim

k!1

`

n;k

G

i=1

f! 2 
 j g

1

(!) < d

(n)

k;i�1

� g

2

(!) < d

(n)

k;i

g ;

where the symbol `t' in the right-hand side means the disjoint union.

Proof. Sine eah summand in the right-hand side is disjoint with eah other

and is ontained in the left-hand side by (10), our remaining task is to show that

any element ! in the left-hand side is inluded in the right-hand side. Choose

M > 0 suh that 2

�M

< g

2

(!) � g

1

(!). Then for any k � M , it follows from

(11) that D

(n)

k

intersets with the interval (g

1

(!); g

2

(!)℄, thus there exists an

index i suh that g

1

(!) < d

(n)

k;i�1

� g

2

(!) < d

(n)

k;i

. This means that ! belongs to

the set in the right-hand side. Hene the laim holds.

By Lemma 7.9, the right-hand side of (9) is equal to

1� lim

n!1

lim

k!1

`

n;k

X

i=1

Pr(g

1

< d

(n)

k;i�1

� g

2

< d

(n)

k;i

)

= 1� lim

n!1

lim

k!1

`

n;k

X

i=1

�

Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

)

� Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

; g

1

� d

(n)

k;i�1

)

�

:

(12)

For an interval I = [�n; n℄ and any "

0

> 0, take a � > 0 as in the seond

ondition in the statement of Lemma 7.3. Then by (10) and (11), for any

suÆiently large k, we have d

(n)

k;i�1

; d

(n)

k;i

2 I and d

(n)

k;i

� d

(n)

k;i�1

< � for every i,

therefore the seond ondition in Lemma 7.3 implies that

Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

; g

1

� d

(n)

k;i�1

) � ('(d

(n)

k;i�1

) + "

0

)Pr(d

n

k;i�1

� g

2

< d

(n)

k;i

)
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for every i. Thus the right-hand side of (12) is less than or equal to

1� (1� "

0

) lim

n!1

lim

k!1

`

n;k

X

i=1

Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

)

+ lim

n!1

lim

k!1

`

n;k

X

i=1

'(d

(n)

k;i�1

)Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

) :

(13)

By (10), the seond term in (13) is equal to

(1� "

0

) lim

n!1

lim

k!1

Pr(�n � g

2

< n) = (1� "

0

) lim

n!1

Pr(�n � g

2

< n) = 1� "

0

:

Thus the right-hand side of (12) is less than or equal to

"

0

+ lim

n!1

lim

k!1

`

n;k

X

i=1

'(d

(n)

k;i�1

)Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

) : (14)

Sine "

0

> 0 is arbitrary, taking the limit "

0

! 0 implies that the right-hand

side of (12) is less than or equal to

lim

n!1

lim

k!1

`

n;k

X

i=1

'(d

(n)

k;i�1

)Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

) : (15)

Moreover, if �

G

denotes the measure on R indued by the funtion G (thus

�

G

((a; b℄) = G(b)�G(a)), then Pr(d

(n)

k;i�1

� g

2

< d

(n)

k;i

) is equal to

lim

t!+0

Pr(d

(n)

k;i�1

� t < g

2

� d

(n)

k;i

� t)

= lim

t!+0

�

G

�

(d

(n)

k;i�1

� t; d

(n)

k;i

� t ℄

�

= �

G

�

lim

t!+0

(d

(n)

k;i�1

� t; d

(n)

k;i

� t ℄

�

= �

G

�

[d

(n)

k;i�1

; d

(n)

k;i

)

�

:

Now de�ne '

n;k

=

P

`

n;k

i=1

'(d

(n)

k;i�1

)�

[d

(n)

k;i�1

;d

(n)

k;i

)

for k � 1 (where �

A

denotes

the harateristi funtion of a set A), whih is a nonnegative, �

G

-measurable

funtion on R. Then by the above argument, the right-hand side of (15) is equal

to

lim

n!1

lim

k!1

`

n;k

X

i=1

'(d

(n)

k;i�1

)�

G

�

[d

(n)

k;i�1

; d

(n)

k;i

)

�

= lim

n!1

lim

k!1

Z

R

'

n;k

d�

G

: (16)

Now we use the following lemma:

Lemma 7.10. In this setting, we have lim

k!1

'

n;k

= '�

[�n;n)

.

Proof. Sine both funtions '

n;k

and '�

[�n;n)

take the value 0 outside the

interval [�n; n), it suÆes to show that lim

k!1

'

n;k

(x) = '(x) for any �n �

x < n. First, if �n � x < n and x 2 A

n

, then x 2 D

(n)

k

for any suÆiently

large k by the de�nition of D

(n)

k

, therefore '

n;k

(x) = '(x) for any suÆiently
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large k by the de�nition of '

n;k

(note that x 6= n = d

(n)

k;`

n;k

by (10)). Thus the

laim holds in this ase.

On the other hand, assume that �n � x < n and x 62 A

n

. Take an arbitrary

� > 0. Then by the hoie of x, there is a �

�

> 0 suh that j'(x

0

)� '(x)j < �

whenever �n � x

0

< n and jx

0

� xj < �

�

. Now by an argument similar to the

proof of Lemma 7.9, it follows from (11) that for any suÆiently large k, we

have d

(n)

k;i�1

� x < d

(n)

k;i

and x� d

(n)

k;i�1

< d

(n)

k;i

� d

(n)

k;i�1

< �

�

for some i, therefore

'

n;k

(x) = '(d

(n)

k;i�1

) and j'

n;k

(x) � '(x)j = j'(d

(n)

k;i�1

)� '(x)j < � for this i by

the above argument. This means that lim

k!1

'

n;k

(x) = '(x). Hene the laim

holds.

Note that �

G

(R) = 1, and '

n;k

� '(�n) sine d

(n)

k;0

= �n and ' is weakly

dereasing. Thus lim

k!1

R

R

'

n;k

d�

G

=

R

R

'�

[�n;n)

d�

G

by Lemma 7.10 and

Bounded Convergene Theorem (Theorem 7.8). Moreover, sine ' is non-

negative, we have lim

n!1

R

R

'�

[�n;n)

d�

G

=

R

R

'd�

G

by Monotone Conver-

gene Theorem (Theorem 7.8). Thus the right-hand side of (16) is equal to

R

R

'd�

G

=

R

R

'dG.

Summarizing, we have Pr(g

1

� g

2

) �

R

R

'dG, as desired.

7.5.2 Proof of the seond property

From now, we show that

R

R

'dG �

R

R

'dF , whih onludes the proof of

Lemma 7.3. First, we introdue some notations. We de�ne

R

0

= R [ fa

�

j a 2 Rg [ f�1;1

�

g

and extend the order < on R to R

0

by �1 < a

�

< a < b

�

< 1

�

for every

a; b 2 R suh that a < b. Put

(a; b℄ = fx 2 R j a < x � bg for any a; b 2 R

0

(for example, we have (a

�

; b

�

℄ = [a; b) in the usual notation for a; b 2 R).

Moreover, for eah H 2 fF;Gg, write H(a

�

) = lim

b!a�0

H(b) for any a 2 R,

H(�1) = lim

b!�1

H(b), and H(1

�

) = lim

b!1

H(b). Then for any a; b 2 R

suh that a � b, we have �

H

((a

�

; b

�

℄) = H(b

�

) � H(a

�

) sine (a

�

; b

�

℄ =

lim

t!+0

(a� t; b� t℄ (note that �

H

((a; b℄) = H(b) � H(a) by the de�nition of

�

H

). By similar arguments, it follows that

�

H

((a; b℄) = H(b)�H(a) for any a; b 2 R

0

suh that a � b ; (17)

where we put H(b)�H(a) = 0 in the ase that a = b (even if H(a) = �1).

For any n � 1, de�ne I

n;i

= fx 2 R j i2

�n

� '(x) < (i + 1)2

�n

g for

eah 1 � i � 4

n

� 1, and I

n;4

n

= fx 2 R j '(x) � 2

n

g. Then, sine '

is weakly dereasing, eah I

n;i

is a (possibly empty or in�nite) interval in R.

Moreover, for eah n, there exist �

n;i

2 R

0

(for 1 � i � 4

n

+ 1) suh that

�1 = �

n;4

n

+1

� �

n;4

n

� � � � � �

n;2

� �

n;1

and I

n;i

= (�

n;i+1

; �

n;i

℄ for eah

1 � i � 4

n

. We have �

H

(I

n;i

) = H(�

n;i

) �H(�

n;i+1

) for eah H 2 fF;Gg by

(17). Now put  

n

=

P

4

n

i=1

i2

�n

�

I

n;i

, whih is a nonnegative, �

F

-measurable and

�

G

-measurable simple funtion on R. Then for eah H 2 fF;Gg, the integral
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R

R

 

n

d�

H

is equal to

4

n

X

i=1

i2

�n

�

H

(I

n;i

)

=

4

n

�1

X

i=1

i2

�n

(H(�

n;i

)�H(�

n;i+1

)) + 2

n

(H(�

n;4

n

)�H(�1))

=

4

n

X

i=1

H(�

n;i

)

�

i

2

n

�

i� 1

2

n

�

� 2

n

H(�1) =

4

n

X

i=1

H(�

n;i

)

2

n

� 2

n

H(�1)

(this equality holds even if H(�

n;i

) = 1 for an index i, in whih ase all the

terms are 1). By the �rst ondition in Lemma 7.3, we have G(�

n;i

) � F (�

n;i

)

for every i, and G(�1) = F (�1) = 0. Thus we have

Z

R

 

n

d�

G

=

4

n

X

i=1

G(�

n;i

)

2

n

�

4

n

X

i=1

F (�

n;i

)

2

n

=

Z

R

 

n

d�

F

:

To onlude the proof, we need the following lemma:

Lemma 7.11. We have  

n

�  

n+1

for any n, and lim

n!1

 

n

= '.

Proof. First we show that  

n

(x) �  

n+1

(x) for any x 2 R. Sine  

n

(x) �

2

n

by de�nition, it suÆes to onsider the ase that  

n+1

(x) < 2

n

, namely

x 62

S

4

n+1

i=2

2n+1

I

n+1;i

. Now if 2 � i � 2

2n+1

� 1 and x 2 I

n+1;i

, then we have

x 2 I

n;bi=2

and  

n

(x) = bi=22

�n

� i2

�n�1

=  

n+1

(x). On the other hand, if

x 62

S

2

2n+1

�1

i=2

I

n+1;i

, then we have '(x) < 2

�n

, therefore  

n

(x) = 0 �  

n+1

(x).

Hene we have  

n

�  

n+1

.

Seondly, we show that lim

n!1

 

n

(x) = '(x) for any x 2 R. By de�nition

of  

n

, we have 0 � '(x) �  

n

(x) < 2

�n

whenever '(x) < 2

n

. Now for any

x 2 R and any � > 0, we have '(x) < 2

n

and 2

�n

< � for all suÆiently large

n, therefore j'(x)� 

n

(x)j < � for all these n. This means that  

n

(x) onverges

to '(x) when n!1. Hene the laim holds.

This lemma and Monotone Convergene Theorem (Theorem 7.8) imply that

Z

R

'dG =

Z

R

'd�

G

= lim

n!1

Z

R

 

n

d�

G

� lim

n!1

Z

R

 

n

d�

F

=

Z

R

'd�

F

=

Z

R

'dF :

Hene the proof of Lemma 7.3 is onluded.

8 Conlusion

In this artile, we proposed a onstrution of -seure �ngerprinting odes for

every , whih improves reent disrete variants [3, 5, 6℄ of Tardos's -seure

odes [8℄. Our seurity proof was given under an assumption weaker than the

usual Marking Assumption. The ratio of the ode length divided by the value



2

log(N="), where N is the number of the users and " is the error probability,
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onverges to approximately 5:35 when  goes to in�nity, and the ratio is further

smaller in some ases for  � 8. Thus we have shown that the lengths of our

odes are signi�antly shorter than the lengths of -seure odes in [3, 5, 6, 8℄,

and also shorter than the lengths of -seure odes reently proposed by [7℄ in

the ase without the statistial assumption introdued in [7℄.
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