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Abstract – We have implemented in FPGA recently published class of public key algorithms –
MQQ, that are based on quasigroup string transformations. Our implementation achieves decryption
throughput of 399 Mbps on an Xilinx Virtex-5 FPGA that is running on 249.4 MHz. The encryption
throughput of our implementation achieves 44.27 Gbps on four Xilinx Virtex-5 chips that are running
on 276.7 MHz. Compared to RSA implementation on the same FPGA platform this implementation
of MQQ is 10,000 times faster in decryption, and is more than 17,000 times faster in encryption.
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1 Introduction

The most popular Public Key Cryptosystem (PKC) schemes are the Diffie and Hellman (DH) key
exchange scheme based on the hardness of discrete logarithm problem [4], the Rivest, Shamir and
Adleman (RSA) scheme based on the difficulty of integer factorization [21], and the Koblitz and
Miller (ECC – Elliptic Curve Cryptography) scheme based on the discrete logarithm problem in an
additive group of points defined by elliptic curves over finite fields [14, 17]. There are two common
characteristics of these well known PKCs (DH, RSA and ECC): 1. their speed – which frequently is a
thousand times lower than the symmetric cryptographic schemes, 2. their security – which relies on
one of two hard mathematical problems: efficient computation of discrete logarithms and factorization
of integers.

Several other ideas have been proposed during the last 30 years, such as:

• Trapdoor functions that are based on multivariate quadratic polynomials such as that of Mat-
sumoto and Imai (MIA) [11], Stepwise Triangular Scheme (STS) (i.e. Birational Permutation
Schemes) by Shamir [22], Hidden Field Equations (HFE), by Patarin [18, 19], and Unbalanced
Oil and Vinegar (UOV) by Kipnis et al., [12];

• McEliece PKC based on error correcting codes [16];

• Rabin’s digital signature method [20];

• PKCs based on lattice reduction problems [1, 8] and on lattice problems over rings such as
NTRU [10];
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• PKCs based on braid groups [13];

Recently a new public key scheme called MQQ which is based on multivariate quadratic polynomi-
als and quasigroup string transformations was proposed by Gligoroski et al., [6, 7]. According to the
authors of MQQ, that scheme has potential to be as fast as a typical block cipher. In this paper we
are describing an implementation in Xilinx Virtex-5 FPGA that actually confirms the original claims
by the authors of MQQ.

Organization of the paper is the following: In Section 2 we give a brief description of the MQQ
algorithm. The hardware implementation of MQQ encryption is described in Section 3, and the
hardware implementation of MQQ decryption is described in Section 4. A comparative analysis of
our implementation with RSA and AES is given in Section 5. Conclusions are given in Section 6.

2 Preliminaries

In this section we will briefly describe the MQQ algorithm. More detailed description the reader
can find in [6, 7]. Since it is based on quasigroups we give several definitions about quasigroups.
Additional information about quasigroups reader can find in [2, 3, 15, 23].

Definition 1 A quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃!x, y ∈ Q) u ∗ x = v & y ∗ u = v. (1)

It follows from (1) that for each a, b ∈ Q there is a unique x ∈ Q such that a ∗ x = b. Then we
denote x = a\∗ b where \∗ is a binary operation in Q (called a left parastrophe of ∗) and the groupoid
(Q, \∗) is a quasigroup too. The algebra (Q, ∗, \∗) satisfies the identities

x \∗ (x ∗ y) = y, x ∗ (x \∗ y) = y. (2)

Consider an alphabet (i.e., a finite set) Q, and denote by Q+ the set of all nonempty words (i.e.,
finite strings) formed by the elements of Q. In this paper, depending on the context, we will use
two notifications for the elements of Q+: a1a2 . . . an and (a1, a2, . . . , an), where ai ∈ Q. Let ∗ be a
quasigroup operation on the set Q. For each l ∈ Q we define two functions el,∗, dl,∗ : Q+ → Q+ as
follows:

Definition 2 Let ai ∈ Q, M = a1a2 . . . an. Then
el,∗(M) = b1b2 . . . bn ⇐⇒

b1 = l ∗ a1, b2 = b1 ∗ a2, . . . , bn = bn−1 ∗ an,

dl,∗(M) = c1c2 . . . cn ⇐⇒
c1 = l ∗ a1, c2 = a1 ∗ a2, . . . , cn = an−1 ∗ an,

i.e., bi+1 = bi ∗ ai+1 and ci+1 = ai ∗ ai+1 for each i = 0, 1, . . . , n− 1, where b0 = a0 = l.

The functions el,∗ and dl,∗ are called the e–transformation and the d–transformation of Q+ based
on the operation ∗ with leader l respectively, and their graphical representations are shown in Fig. 1.
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Figure 1: Graphical representations of the el,∗ and dl,∗ transformations



Theorem 1 If (Q, ∗) is a finite quasigroup, then el,∗ and dl,\∗ are mutually inverse permutations of
Q+, i.e.,

dl,\∗(el,∗(M)) = M = el,∗(dl,\∗(M))

for each leader l ∈ Q and for every string M ∈ Q+. ¥

The authors of MQQ in [6, 7] noticed that when a quasigroup is represented as a Boolean function,
then there exists a special class of quasigroups, called multivariate quadratic quasigroups (MQQs).
Those MQQs can be of different types.

Definition 3 A quasigroup (Q, ∗) of order 2d is called Multivariate Quadratic Quasigroup (MQQ) of
type Quadd−kLink if exactly d− k of the Boolean polynomials fi are of degree 2 (i.e., are quadratic)
and k of them are of degree 1 (i.e., are linear), where 0 ≤ k < d.

Theorem 2 ([6, 7]) Let A1 = [fij ]d×d and A2 = [gij ]d×d be two d × d matrices of linear Boolean
expressions, and let b1 = [ui]d×1 and b2 = [vi]d×1 be two d× 1 vectors of linear or quadratic Boolean
expressions. Let the functions fij and ui depend only on variables x1, . . . , xd, and let the functions
gij and vi depend only on variables xd+1, . . . , x2d. If

Det(A1) = Det(A2) = 1 in GF (2) (3)

and if
A1 · (xd+1, . . . , x2d)T + b1 ≡ A2 · (x1, . . . , xd)T + b2 (4)

then the vector valued operation ∗vv(x1, . . . , x2d) = A1 · (xd+1, . . . , x2d)T + b1 defines a quasigroup
(Q, ∗) of order 2d that is MQQ. ¥

In [6, 7] there are defined several algorithms for generating MQQs, for key generation, for en-
cryption and for decryption. However, in this paper we will present only algorithms (and parts of
algorithms) that are important for implementing decryption and encryption. We refer the reader to
[6, 7] for other algorithms and for more detailed description of MQQ.

One important part of the MQQ algorithm is the use of the bijection of Dobbertin. Dobbertin has
proved [5] that the function Dob(X) = X2m+1+1 + X3 + X is a bijection in GF (22m+1). Moreover it
is multivariate quadratic too. In our implementation of MQQ public key cryptosystem we have used
the bijection of Dobbertin for m = 6 i.e. a bijection in GF (213). From hardware resources point of
view this means that for implementing the bijection of Dobbertin for m = 6 (actually its inverse) we
need 213 × 13 = 106496 bits of ROM.

The algorithm for decryption/signing by the use of the private key (T, S, ∗1, . . . , ∗8) is defined in
Table 1.

The algorithm for encryption with the public key is straightforward application of the set of n
multivariate polynomials P = {Pi(x1, . . . , xn) | i = 1, . . . , n} over a vector x = (x1, . . . , xn), i.e.,
y = P(x).

In order to implement MQQ encryption in FPGA we have presented the mapping y = P(x) as
a matrix-vector multiplication, where the operation “+” is the logical XOR operation and where
multiplication of two variables is actually the logical AND operation. Namely, every Pi(x1, . . . , xn)
can be represented as:

Pi(x1, . . . , xn) = ai,0,0 +
n∑

j=1

ai,j,0xj +
n−1∑

j=1

n∑

k=j+1

ai,j,kxk−jxk

where ai,j,k ∈ {0, 1}. That means that we can represent the encryption as:

y = P(x) ≡ y = A ·X



Algorithm for decryption with the private
key (T, S, ∗1, . . . , ∗8)

Input: A vector y = (y1, . . . , yn).
Output: A vector x = (x1, . . . , xn) such that P(x) = y.

1. Set y′ = T−1(y).
2. Set W = (y′1, y′2, y′3, y′4, y′5, y′6, y′11, y′16, y′21, y′26, y′31,

y′36, y′41).
3. Compute Z = (Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11,

Z12, Z13) = Dob−1(W ).
4. Set y′1 ← Z1, y′2 ← Z2, y′3 ← Z3, y′4 ← Z4, y′5 ← Z5,

y′6 ← Z6, y′11 ← Z7 y′16 ← Z8, y′21 ← Z9,
y′26 ← Z10, y′31 ← Z11 y′36 ← Z12, y′41 ← Z13.

5. Represent y′ as y′ = Y1 . . . Yk where Yi are vectors
of dimension 5.

6. By using the left parastrophes \i of the quasigroups ∗i,
i = 1, . . . , 8, obtain x′ = X1 . . . Xk, such that:
X1 = Y1, X2 = X1 \1 Y2, X3 = X2 \2 Y3 and
Xi = Xi−1 \3+((i+2)mod 6) Yi.

7. Compute x = S−1(x′).

Table 1: Algorithm for decryption
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Note that the Boolean matrix A is the public key and it is an n × (1 + n + n(n−1)
2 ) matrix, and the

vector X is an (1 + n + n(n−1)
2 )× 1 vector obtained from the vector x = (x1, . . . , xn).

3 Hardware design of the encryption procedure

In this and in the following section we will describe a hardware implementation of 160–bit MQQ
encryption and decryption. Our goal was to prove or disprove the claim of the authors of MQQ
that it can have operational speed that is same as that of the block ciphers. To achieve that goal,
we have implemented 160–bit MQQ in VHDL, and have constructed a parallel design, where every
component in the design completes its computation in as minimum as possible clock cycles, and with
small duration of each cycle. We have used Xilinx Virtex-5 FPGA family and its synthesizing tool
“ISE Foundation 10.1”.

One of the biggest problems that we faced in this part was the size of the public key (the matrix
A) and the goal to finish the matrix-vector multiplication as fast as possible. For 160–bit MQQ, the
Boolean matrix A has 160 rows and 12881 columns. Although theoretically it is possible to perform a



Figure 2: Architecture for encryption.

matrix-vector operation in one cycle, performing operations on the whole matrix in one single FPGA
was a source of constant compiler warnings and complete compiler blackouts. And since our work can
be seen as a “proof of a concept” to simplify the computations we decided to put the public key into
a ROM. For real operational and flexible use of MQQ, Virtex-5 would offer a plenty of RAM.

Figure 2 shows the complete architecture for the entire encryption process, which includes four
identical hierarchies; each one contains three main hardware operative parts, named: “Divider”, “Hy-
brid ROM” and “Hybrid DEMux”. Dividing (splitting) the public key A in four parts, i.e. its splitting
in four FPGA chips that work in parallel was done in order to overcome synthesizing difficulties with
the big public key A in ROM in one chip.

So, the idea is to implement a matrix-vector multiplication A · X in a classical block manner,
where we represented the matrix A as

A =




A1

A2

A3

A4


 ,

where every submatrix Ai, i = 1, 2, 3, 4 is a 40 × 12881 Boolean matrix. The operation Ai · X is
realized in the i-th FPGA chip.

The component “Divider” consists of four operative parts, and is shown in Figure 3. The role of
this part is to transfer the input data of 160 bits from “REG 1” and by using “Combinational AND
Gates” block to expand the input data into 12881 bits. Then those 12881 bits go to “Register Y” to
adjust the synchronization between the data bits (a technique described in Xilinx Virtex-5 user guide
[24]). After this, the data are divided in two parts by the multiplexer Hybrid Mux. This multiplexer
has two kinds of inputs, first 80 inputs have 160 bits as a data width and the last input has 81 bits.
Similar is with its output, i.e. it has two branches: first has 160 bits and the second has 81 bits.

The second component “Hybrid ROM” contains 44 operative parts, and its implementation is
shown in Figure 4. This part has 40 ROMs (according to 40 rows of the submatrix Ai) and a compo-
nent “Parallel ROM”. All of them are used in parallel. The output of these ROMs goes directly with
the output of the “Divider” in the components “Combinational Logic Gates 1” and “Combinational
Logic Gates 2” as shown in Figure 4. The matrix-vector multiplication is realized in these two com-
ponents by using AND and XOR gates between the outputs of ROMs and “Divider”. The output of
the component “Hybrid ROM” has two sequences, 40 bits each.



Figure 3: Internal architecture of the “Divider” component.

The role of the third component “Hybrid DEMux” is to finalize the matrix-vector multiplica-
tion that is started in the component “Hybrid ROM”. It has four operative parts. Its implementa-
tion is shown in Figure 5. The output from the “Hybrid ROM” component goes directly to “Hy-
brid DEMux”. The term “Hybrid” comes from the specifics of the de-multiplexer “DEMux”, because
this “DEMux” has two inputs. The output of the DEMux will go to the component “Combinational
Logic Gates 3” through the “Register Z” component. This register is used to keep the synchronization
between data (see [24]). Then the output of “Combinational Logic Gates 3” goes again to another
synchronization register “Register W” in order to keep the synchronization of the final output.

This implementation of the MQQ encryption is fully pipelined. It takes initially 82 cycles to
encrypt 160 input bits, but then, the encryption engine can output 160 bits in every cycle.

4 Hardware design of the decryption procedure

Figure 6 shows the complete architecture for the entire decryption procedure described in Table
1. It has four main hardware components: “Private Matrix T−1”, “Sequencer”, ”Dobbertin” and
“Private Matrix S−1”. Actually the first and the fourth component are structurally the same (with
different Boolean matrices T and S).

The structure of the first and the fourth component, “Private Matrix T−1” and “Private Matrix
S−1” is shown in Figure 7. It implements Steps 1 and Step 7 from the decryption algorithm described
in Table 1. It has 160 parts and each part computes a dot product between two Boolean vectors of
length 160. One vector is the input vector of 160 bits and the other vector is one row from the private
matrix T−1 or S−1 placed as a fixed ROM. The role of the operation “+” in this computation of the
dot product is a logical XOR (represented by the “Bit by bit XOR” components in the Figure 7), and
the role of multiplication is the logical AND operation (represented by the “AND Gate” parts in the
Figure 7). The output of these parallel 160 dot products have to go to the next phase through the
component “Register X” to keep the synchronization between the data (see [24]).

The second component “Dobbertin ROM” is shown in Figure 8. It takes the data which come
from “Private Matrix T−1”. Actually it changes just 13 bits, which positions are determined in Step
2, Step 3 and Step 4 in the decryption algorithm described in Table 1 and computes the inverse
Dobbertin function in GF (213). The realization of this component is a simple lookup table reading
from a ROM with 213 entries and it outputs 13 bits. The output of this component, goes to the third
component “Sequencer”.

The third component “Sequencer” is shown in Figure 9. This is the most complex part and it
implements the Step 5 and the Step 6 from the decryption algorithm described in Table 1. This part
contains 32 5–bit registers, 2 Multiplexers, a Master ROM, a control component, a “DEMux 1× 32”
component and two counters.

The internal structure of the “Master ROM” component is shown in Figure 10. It has 8 ROMs



Figure 4: Internal architecture of the “Hybrid ROM” component.



Figure 5: Internal architecture of the “Hybrid DEMux” component.

Figure 6: Architecture for decryption.

Figure 7: Internal architecture of the “Private Matrix” component.



Figure 8: The “Dobbertin ROM” component.

Figure 9: Internal architecture of the “Sequencer” component.



Figure 10: Internal architecture of the “Master ROM” component.

that work in parallel, one control component one 5–bit counter and one 8× 1 multiplexer.
This implementation of the MQQ decryption takes 100 cycles to decrypt 160 input bits.

5 Performance comparison

We have realized MQQ public key scheme in Virtex-5 chip: xc5vfx70t-2-ff1136. The summary of the
synthesizing of our VHDL implementation of the 160–bit MQQ using the Xilinx tool “ISE Foundation
10.1” is given in Table 2.

MQQ public key scheme has a property to be highly parallelized and that property can be evidently
demonstrated in its hardware realization. On the other hand, all popular public key algorithms
(RSA, DH, ECC, DSA, ECDSA) have essentially a sequential nature. Thus, using highly parallelized
hardware such as FPGA, the speed difference between MQQ and those popular public key algorithms
is five orders of magnitude. More concretely, implemented in FPGA, MQQ is more than 10,000 times
faster than DSA, RSA or ECDSA, and is comparable or even faster than the symmetric block cipher
AES.

In Table 3 we compare the speed of 160–bit MQQ with the speed of 1024–bit RSA realized in
Xilinx Virtex-5 FPGA chip by the company “Helion Technology Limited” [9]. In the same table we
also give the speed of AES (128–bit key) realized in Xilinx FPGA chip in the same Virtex-5 family
and by the same company.



Slice
registers LUTs

Initial delay
(ns)

Cycles per
operation

Max.
frequency
(MHz)

Encryption
(for each

chip)
13,137 25,285 3.614 1 276.7

Decryption 1,148 6,993 4.010 100 249.4

Table 2: Synthesis Results for 160–bit MQQ realized in Virtex-5 chip xc5vfx70t-2-ff1136

Algorithm name
1024-bit RSA,

encrypt/decrypt
160–bit MQQ,

encrypt/decrypt
128–bit AES,

encrypt/decrypt

FPGA type Virtex-5,
XC5VLX30-3

Virtex-5,
XC5VFX70T-2 Virtex-5

Frequency 251 MHz 276.7 / 249.4
MHz

325 MHz

Throughput 40 Kbps 44.27 Gbps /
399.04 Mbps

3.78 Gbps

Table 3: Hardware performances of 1024–bit RSA, 160–bit MQQ and 128–bit AES on Xilinx Virtex-5
FPGAs

6 Conclusions

We have implemented in FPGA a 160–bit instance of the newly published public key scheme MQQ.
The results of our implementation show that in hardware, MQQ public key algorithm in encryption
and decryption (that means also in verification and signing) can be as fast as a typical block cipher
and is several orders of magnitude faster than most popular public key algorithms like RSA, DH or
ECC.
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