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Abstract. This paper puts forward a new efficient construction for Multi-Receiver Signcryption
in the Identity-based setting. We consider a scenario where a user wants to securely send a message
to a dynamically changing subset of the receivers in such a way that non-members of the of this
subset cannot learn the message. The obvious solution is to transmit an individually signcrypted
message to every member of the subset. This requires a very long transmission (the number of
receivers times the length of the message) and high computation cost. Another simple solution
is to provide every possible subset of receivers with a key. This requires every user to store a
huge number of keys. In this case, the storage efficiency is compromised. The goal of this paper
is to provide solutions which are efficient in all three measures i.e. transmission length, storage of
keys and computation at both ends. We propose a new scheme that achieve both confidentiality
and authenticity simultaneously in this setting and is the most efficient scheme to date, in the
parameters described above. It breaks the barrier of ciphertext length of linear order in the number
of receivers, and achieves constant sized ciphertext, independent of the size of the receiver set. This
is the first Multi-receiver Signcryption scheme to do so. We support the scheme with security proofs
under a precisely defined formal security model.

Keywords: Multiple Receivers, Signcryption, Identity-Based Cryptography, Provable Security.

1 Introduction

Two fundamental tools of Public Key Cryptography are privacy and authenticity, achieved
through encryption and signatures respectively. Signcryption, introduced by Zheng [27], is a
cryptographic primitive that offers confidentiality and unforgeability simultaneously similar to
the sign-then-encrypt technique, but with lesser computational complexity and lower commu-
nication cost. The security notion for signcryption was first formally defined in 2002 by Baek
et al. in [3].

The concept of an Identity based (ID-based) cryptosystem was introduced by Shamir [22] in
1984. The idea is that users within a system could use their online identifiers (combined with
certain system-wide information) as their public keys. This greatly reduces the problems with
key management and provides a more convenient alternative to conventional public key infras-
tructure. Only in 2001 did first fully practical identity-based encryption (IBE) solution arise,
using bilinear mappings over elliptic curves [9].

ID-based signcryption schemes achieve the functionality of signcryption with the added advan-
tage that ID-based cryptography provides. In [18], Malone-Lee gave the first ID-based signcryp-
tion scheme. Since then, quite a few ID-based signcryption schemes have been proposed ([17],
[5], [12]). To date, some of the most efficient ID-based signcryption schemes are that of Chen et
al. [12], and Barreto et al. [5]
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1.1 Motivation

Assume that there are n receivers, numbered 1 to n, and that each of them keeps a private
and public key pair denoted by (ski, pki). A sender then encrypts a message M directed to
receiver i using pki for i = 1 to n and sends (C1, . . . Cn) as a ciphertext. Upon receiving the
ciphertext, receiver i extracts Ci and decrypts it using its private key ski. This setting of public
key encryption is generally referred to as Multi-receiver Public Key Encryption in literature.

The objective of a multi-receiver ID-based signcryption scheme is to efficiently broadcast a
single ciphertext to different receivers while achieving the security properties of authenticity and
unforgeability. In practice, broadcasting a message to multiple users in a secure and authenti-
cated manner is an important facility for a group of people who are jointly working on the same
project to communicate with one another. When we consider the case of an organization with
several managers, each of whom wants to securely send messages to employees of the company,
independently, the issue of message authentication will arise, apart from confidentiality.

1.2 Related Work

Multi-receiver Encryption. The concept of multi-receiver public key encryption was in-
dependently formalized by Bellare, Boldyreva, and Micali [7], and Baudron, Pointcheval, and
Stern [6]. Security of public key encryption in the single-receiver setting implies the security in
the multi-receiver setting. Hence, for example, one can construct a semantically secure multi-
receiver public key encryption scheme by simply encrypting a message under n different public
keys of a semantically secure single-receiver public key encryption scheme. But this is inefficient
in the sense that the process of encryption is performed n times. Later, Kurosawa [16] proposed
a technique called randomness re-use to improve the computational efficiency in multi-receiver
public key encryption schemes.

Multi-receiver Identity-Based Encryption. Chen, Harrison, Soldera, and Smart [11] con-
sidered conjunction and disjunction of private keys associated with multiple identities in Boneh
and Franklin’s IBE scheme. Regarding conjunction, users possesing all the private keys asso-
ciated with the identities that were used to encrypt a message can decrypt the ciphertext.
Considering disjunction, a user who possesses one of the private keys associated with identi-
ties that were used to encrypt the message can decrypt the ciphertext. [11] and [23] show how
Boneh and Franklin’s IBE scheme can be modified to solve the conjunction and disjunction
problems efficiently. However, these schemes are not supported by a formal security model and
appropriate proofs. Later Baek, Safavi-Naini and Susilo [2] considered this problem. Along with
a formal definition and security model for Multi-receiver Identity-Based Encryption, they pro-
posed a construction based on the Boneh-Franklin ID-based encryption scheme. This protocol
was proved secure in the random oracle model.

Multi-receiver ID-based Key Encapsulation. The notion of mKEM was introduced by
Smart in [24]. Later, in [4], the notion of mKEM was extended to multi-receiver identity based
key encapsulation (mID-KEM), i.e. mKEM in the identity-based setting. In [2] and [4], the
ciphertext size grows with the number of receivers. In [10], Chatterjee and Sarkar achieved a
controllable trade-off between the ciphertext size and the private key size: ciphertexts are of
size |S|/N , and private keys are of size N where S is the set of receivers and N a parameter
of the protocol (which also represents, in the security reduction, the maximum number of
identities that the adversary is allowed to target). Thus they introduced the first mID-KEM
protocols to achieve sub-linear ciphertext sizes. Very recently, Abdalla et al. proposed in [1] a
generic construction that achieves ciphertexts of constant size, but private keys of size O(n2

max).
Furukawa [20] and Delerablée [13] independently proposed an mID-KEM scheme which achieves
constant size ciphertext at the cost of the public key size growing linearly in the number of
receivers.
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Multi-receiver ID-based Signcryption. In the multi-receiver identity-based setting, we
are interested in the situation where there is not only a single sender to multiple receivers, but
also multiple senders. In such cases, it is desirable to achieve confidentiality and authenticity
simultaneously. To our knowledge, identity-based signcryption in the multi-receiver setting has
not been much treated in the literature. One might argue that by adding sender authentication
by using a secure digital signature scheme to a multi-receiver encryption scheme will achieve
this purpose. However, such combinations may suffer from hidden security weakness as observed
by Duan and Cao in [14]. Also, they proposed the first mIBSC scheme and specified the formal
security notions for the same. The multireceiver scheme proposed by Duan and Cao was shown
be insecure by C H Tan by demonstrating an attack on the confidentiality of duan et al.’s
scheme. Yu et al.[26] also proposed a mIBSC scheme in 2008. Sharmila et al. in [21] have shown
that the scheme by Yu et al. is not secure i.e. it is forgeable and is not confidential. Also they
have given a fix for Yu et al.’s scheme in [21]. To the best of our knowledge the scheme in [21]
is the only secure identity-based scheme available in literature till date.

1.3 Our Contribution

Following the above discussion, a natural question one can ask is how to design a multi-receiver
identity-based signcryption scheme that achieves both confidentiality and authenticity, and
broadcasts a message with a high-level of computational and storage efficiency and optimal
transmission length while retaining security. In this paper, we introduce an efficient scheme to
answer this question. The major advantage of our scheme is, it sends only three components
to all the receivers. That is the size of the ciphertext is a constant and is independent of the
number of receivers. However, all the other systems existing in the literature have ciphertext size
proportional to the number of receivers. But this is achieved at the cost of storage efficiency. The
size of the public key grows as the maximal size of the subset of receivers in the group (which
can be significantly less than the total number of people in the group). This construction, when
converted to a Broadcast Encryption scheme [15], is comparable to the Identity-Based Broadcast
Encryption (IBBE) schemes proposed by Furukawa [20] and Delerablée [13]. We also provide
formal security notions for Multi-receiver Identity-Based Signcryption (mIBSC) schemes and
formally prove the construction secure in the random oracle model by reducing its security to
standard assumptions related to the Bilinear Diffie Hellman Problems.

Remark It is a common practice in group oriented protocols to ignore the part of the
broadcast ciphertext that identifies the target subset of users. We distinguish between the set
identification transmission and the message signcryption transmission. Our goal is the study
of latter and their requirements. What is called ciphertext size usually refers to the size of the
header that corresponds to the message signcryption alone.

2 Preliminaries

Let G1 be an additive cyclic group of prime order p, with generators P and Q, and G2 be a
multiplicative cyclic group of the same order p.

2.1 Bilinear Pairing

A bilinear pairing is a map e : G1 ×G1 → G2 with the following properties.

– Bilinearity. For all P,Q,R ∈ G1,
• e(P + Q,R) = e(P,R)e(Q,R)
• e(P,Q + R) = e(P,Q)e(P,R)
• e(aP, bQ) = e(P,Q)ab



4 S. Sharmila Deva Selvi1, S. Sree Vivek1,, Rahul Srinivasan2, C. Pandu Rangan1,

– Non-Degeneracy. There exist P,Q ∈ G1 such that e(P,Q) 6= IG2 , where IG2 is the identity
element of G2.

– Computability. There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear maps that are
relevant to the protocol we discuss.

Let B = (p, G1, G2, GT , e(·, ·)) be a bilinear map group system such that G1 = G2 = G. Let
G0 ∈ G be a generator of G, and set g = e(G0, G0) ∈ GT .

l-Strong Diffie Hellman Problem (l − SDHP ) The l-Strong Diffie-Hellman problem
(l−SDHP ) in the group G consists of, given G0, sG0, s

2G0, . . . , s
lG0, finding a pair (c, 1

c+sG0)
with c ∈ Z∗

p.

Definition 1 The advantage of any probabilistic polynomial time algorithm A in solving the l−
SDHP in G is defined as Advl−SDHP

A = Pr
[
A(G0, sG0, s

2G0, . . . , s
lG0) = (c, 1

c+sG0) | c ∈ Z∗
p

]
The l-SDHP Assumption is that, for any probabilistic polynomial time algorithm A, the advan-
tage Advl−SDHP

A is negligibly small.

The General Diffie-Hellman Exponent Assumption We make use of the generalization
of the Diffie-Hellman exponent assumption due to Boneh, Boyen and Goh [8]. Let m, n be
positive integers and U, V ∈ Fp[X1, ..., Xn]m be two m-tuples of n-variate polynomials over
Fp. Thus, U and V are just two sets containing m multivariate polynomials each. We write
U = (u1, u2, ..., um) and V = (v1, v2, ..., vm) as tuples of polynomials and impose that u1 =
v1 = 1; that is, the constant polynomials 1. For a set Ω, a function h : Fp → Ω and vector
(x1, ..., xn) ∈ Fn

p , we write

h(U(x1, ..., xn)) = (h(u1(x1, ..., xn)), ..., h(um(x1, ..., xn))) ∈ Ωm

We use a similar notation for the m-tuple V . Let F ∈ Fp[X1, ..., Xn]. It is said that F depends
on (U, V ), which we denote by F ∈ 〈U, V 〉, when there exists a linear decomposition

F =
∑

1≤i,j≤m

ai,j · ui · uj +
∑

1≤i≤m

bi · vi, ai,j , bi ∈ Zp

Let U, V be as above and F ∈ Fp[X1, ..., Xn]. The (U, V, F )-General Diffie-Hellman Exponent
problems are defined as follows.

Definition 2 ((U, V, F )-GDHE) : Given the tuple

H(x1, ..., xn) =
(
[U(x1, ..., xn)]G0, gV (x1,...,xn)

)
∈ Gm ×Gm

T ,

(U, V, F )-GDHE asks to compute gF (x1,...,xn).

Definition 3 ((U, V, F)-GDDHE). Given H(x1, ..., xn) ∈ Gm × Gm
T as above and T ∈ GT ,

(U, V, F )-GDDHE problem is to decide whether T = gF (x1,...,xn).
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Definition 4 The advantage of any probabilistic polynomial time algorithm A in solving the
(U, V, F )−GDDHE problem in G is defined as

Adv
(U,V,F )−GDDHE
A = |Pr[A(U, V, F, gF (x1,...,xn)) = 1]− Pr [A(U, V, F, T ) = 1] |

The (U, V, F)-GDDHE Assumption is that, for any probabilistic polynomial time algorithm A,
the advantage Adv

(U,V,F )−GDDHE
A is negligibly small.

Complexity Bound in Generic Bilinear Groups We state the following upper bound in
the framework of the generic group model. We are given oracles to compute the induced group
action on G, GT , and an oracle to compute a non-degenerate bilinear map e : G × G → GT .
We refer to G as a generic bilinear group. The following theorem gives an upper bound on the
advantage of a generic algorithm in solving the decision (U, V, F )−GDDHE problem.

Theorem 1. Let U, V ∈ Fp[X1, ..., Xn] be two m-tuples of n-variate polynomials over Fp and
let F ∈ Fp[X1, ..., Xn]. Let dU (resp. dV , dF ) denote the maximal degree of elements of U (resp.
of V , F ) and pose d = max(2dU , dV , dF ). If F /∈ 〈U, V 〉 then for any generic-model adversary
A totalizing at most q queries to the oracles (group operations in G, GT and evaluations of e)
which is given H(x1, ..., xn) as input and tries to distinguish gF (x1,...,xn) from a random value
in GT , one has

Adv(A) ≤ (q + 2m + 2)2 · d
2p

We refer to [8] for a proof that (U, V, F ) − GDHE and (U, V, F ) − GDDHE have generic
security when F /∈ 〈U, V 〉. In our constructions, the order of the groups (p) that we consider is
exponential in the security parameter λ.

2.3 Multi-Receiver Identity-Based Signcryption(mIBSC)

A generic mIBSC for sending a single message to t users consists of the following probabilistic
polynomial time algorithms,

– Setup(k, N). Given a security parameter k and the size of the maximal set of receivers1

N , the Private Key Generator (PKG) generates the public parameters params and master
secret key MSK of the system.

– Extract(ID,MSK). Given an identity ID, the PKG computes the corresponding private
key SID

– Signcrypt(m, IDA, ID1, ID2, ....IDt, SA). To send a message m to (ID1, ID2, ....IDt), a
user with identity IDA runs this algorithm to obtain the signcrypted ciphertext σ.

– Designcrypt(σ, IDA, IDi, Si). When a user with identity IDi and private key Si receives
the signcrypted ciphertext σ and runs this algorithm to obtain either the plain text m or ⊥
according as whether σ was a valid signcryption from identity IDA to or not.

2.4 Security Model

The notion of semantic security of public key encryption was extended to identity-based sign-
cryption scheme by Malone-Lee in [18]. We describe the security models for confidentiality and
unforgeability below.

1 This input is optional. Certain specific schemes may not need this input
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Confidentiality The standard notion of Confidentiality for mIBSC schemes is Chosen Ci-
phertext Security (CCA) and Chosen Plaintext Security (CPA) against Static Adversaries.

A multi-receiver ID-based signcryption scheme is semantically secure against chosen ciphertext
attacks (IND-mIBSC-CCA) if no probabilistic polynomial time adversary A has a non-negligible
advantage in the following game.

1. Setup : The challenger C runs the Setup algorithm to generate the master public key params
and the master secret key MSK. He gives params to the adversary A. The adversary A
outputs the set of target identities S∗ = {ID∗

1, ID∗
2, . . . , ID∗

t }.
2. In the first phase, A makes polynomially bounded number of queries to the following oracles.

(a) Extract Oracle (OExtract) — A produces an identity ID and queries for the secret key
of ID. The Extract Oracle returns SID to A provided ID /∈ S∗.

(b) Signcrypt Oracle (OSigncrypt) — A produces a message m, sender identity IDA and
a list of receiver identities ID1, ID2, . . . , IDt. C computes the secret key SA by using
Extract(IDA,MSK) and returns to the adversary A, the signcrypted ciphertext σ by
using Signcrypt (m, IDA, ID1, ID2, . . . , IDt, SA).

(c) Designcrypt Oracle (ODesigncrypt) — A produces a sender identity IDA, receiver
identity IDB and a signcryption σ. The challenger C computes the secret key SB from
Extract(IDB,MSK), returning the result of Designcrypt (σ, IDA, IDB, SB) to A. The
result returned is ⊥ if σ is an invalid signcrypted ciphertext from IDA to IDB.

3. A produces two messages m0 and m1 of equal length from the message space M and an
arbitrary sender identity ID∗

A. The challenger C flips a coin, sampling a bit b ← {0, 1}
and computes σ∗ = Signcrypt (mb, ID∗

A, ID∗
1, ID∗

2, . . . , ID∗
t , S

∗
A). σ∗ is returned to A as

challenge signcrypted ciphertext.
4. A is allowed to make polynomially bounded number of new queries as in Step 2 with the

restrictions that it should not query the Designcryption Oracle for the designcryption of σ∗

and the Extract Oracle for the secret keys of any of {ID∗
1, ID∗

2, . . . , ID∗
t }, but he is allowed

to query the secret key of the sender ID∗
A.

5. At the end of this game, A outputs a bit b′. A wins the game if b′ = b.

We define the advantage of the adversary A as

AdvmIBSC−CCA
A = |Pr

[
b = b′

]
− 1

2
|

Note. We analogously define security against chosen plaintext attacks (IND-mIBSC-CPA) by
preventing the adversary from issuing Designcryption Queries in the above game.

Unforgeability A signcryption scheme is existentially unforgeable under chosen message at-
tack (EUF-mIBSC-CMA) if no probabilistic polynomial time adversary A has a non-negligible
advantage in the following game.

1. The challenger C runs the Setup algorithm to generate the master public and private keys
params and MSK respectively. C gives system public parameters params to A. A outputs
the target identity ID∗ on which he would like to be challenged.

2. The adversary A makes polynomially bounded number of queries to the oracles as described
in Step 2 of the confidentiality game with the constraint that no Extract query is made on
ID∗.

3. FinallyA produces a signcrypted ciphertext σ∗ along with the receivers’ identities ID∗
1, ID∗

2, . . . , ID∗
t .

A wins the game if
– The result of Designcrypt(σ∗, ID∗

A, ID∗
i ) for some 1 ≤ i ≤ t results in a valid message

m∗.
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– No query to OSigncrypt involved m∗, ID∗
A and any set of receivers. Here the adversary A

is allowed the private keys of

Note. The above definitions for security in the sense of Confidentiality and Unforgeability only
model the case where the adversary is static. We can analogously define security against adaptive
adversaries by not posing the restriction of specifying the set that the adversary is going to attack
beforehand. Modeling a scheme that is secure against adaptive adversaries is an open problem

2.5 mIBSC

In this section, we present a scheme that achieves constant-sized ciphertexts and private keys.
The size of the public keys is that of the maximal subset of receivers.

mIBSC has the following algorithms.

– Setup(λ, N) The security parameter of the scheme is λ and N is the maximal size of the set
of receivers. G1, G2 are two groups of prime order p, where |p| = λ. P and Q are generators
of G1 and e is a bilinear map defined as e : G1×G1 → G2. Let n0 and n1 denote the number
of bits required to represent an identity and a message respectively. Three hash functions
H1 : {0, 1}n0 → Z∗

p, H2 : {0, 1}n1 ×G2 → Z∗
p, H3 : G2 → {0, 1}(n1)+|G1| are used. The PKG

chooses s ∈R Z∗
p and computes R = sP and g = e(P,Q). The public parameters are

params = 〈G1, G2, R, Q, sQ, s2Q, . . . , sNQ, g, e(·, ·),H1,H2,H3〉.

The Master Secret Key is

MSK = 〈s, P 〉.

– Extract(ID,MSK) The public key and private key of identity ID are H1 (ID) and SID =
1

H1(ID)+sP respectively.

– Signcrypt(m, IDA, ID1, ID2, . . . , IDt, SA) Suppose A wants to signcrypt a message m to t
receivers with identities ID1, ID2, . . . , IDt. User A does the following.
1. Choose r uniformly and random from Z∗

p

2. Compute the following.
(a) α = gr

(b) X = −rR
(c) h = H2 (m, α)
(d) ZA = (r + h) SA

(e) c = m‖ZA ⊕H3 (α)
(f) y =

[∏t
i=1(s + H1 (IDi))

]
rQ

3. The signcrypted ciphertext is σ = 〈c,X, y,L〉, where L is the list of receivers who can
decrypt the message.

– Designcrypt(σ, IDA, IDi, Si) A receiver with identity IDi uses his secret key Si to design-
crypt σ = 〈c,X, y,L〉 from IDA as follows.
1. Compute the following.

(a) α′ =
[
e (Si, y) .e

(
X, 1

s

[∏t
j=1,j 6=i (s + H1 (IDj))−

∏t
j=1,j 6=i H1 (IDj)

]
Q

)] 1Qt
j=1,j 6=i

H1(IDj)

(b) m‖Z ′
A = c⊕H3 (α′)

(c) h = H2 (m,α′)
2. If α′ = e (Z ′

A, (H1 (IDA) Q + sQ)) g−h, return m. Otherwise, return ⊥.
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Note : To compute the above expression 1
s

[∏t
j=1,j 6=i (s + H1 (IDj))−

∏t
j=1,j 6=i H1 (IDj)

]
Q,

knowledge of s or 1/s is not needed. The expression
[∏t

j=1,j 6=i (s + H1 (IDj))−
∏t

j=1,j 6=i H1 (IDj)
]
Q

is a polynomial of degree (t − 1) in s WITHOUT a constant term and thus the expression
1
s

[∏t
j=1,j 6=i (s + H1 (IDj))−

∏t
j=1,j 6=i H1 (IDj)

]
Qis a polynomial say f(s), of degree (t−2)

in s. Since sQ, s2Q, . . . , s(t−2)Q where t ≤ N , are all available in master public parameters
params, f(s)Q can be computed. Thus, 1

s

[∏t
j=1,j 6=i (s + H1 (IDj))−

∏t
j=1,j 6=i H1 (IDj)

]
Q

= f(s)Q can be computed without the knowledge of s.

Correctness. It is easy to see that the above decryption algorithm is consistent. Indeed, if σ is
a valid ciphertext to IDi,

β = e (Si, y) .e(X,
1
s
[

t∏
j=1,j 6=i

(s + H1 (IDj))−
t∏

j=1,j 6=i

H1 (IDj)]Q)

= e (P,Q)r·{Qt
j=1,j 6=i[s+H1(IDj)]−[

Qt
j=1,j 6=i(s+H1(IDj))−

Qt
j=1,j 6=i H1(IDj)]}

= gr·
Qt

j=1,j 6=i H1(IDj)

Hence, α = β

1Qt
j=1,j 6=i

H1(IDj)

Security Properties

Definition 5 ((U, V, F )−GDDHE). Let B = (p, G1, G2, e(, )) be a bilinear map group system
and let f and g be two coprime polynomials with pairwise distinct roots, of respective orders l
and t. Let P0 and Q0 be generators of G1. Given(

P0, sP0, . . . , s
l−1P0 s.f(s)P0, s

2.f(s)P0, s
3.f(s)P0 γ.s.f(s)P0

Q0, sQ0, . . . , s
N+3Q0 γ.s.g(s)Q0

)
and T ∈ G2, solving the (U, V, F ) − GDDHE problem consists of deciding whether T is equal
to e(P0, Q0)γ·f(s) or is some random element of G2.

Corollary 1 (Generic security of (U, V, F )−GDDHE). For any probabilistic algorithm A that
totalizes of at most q queries to the oracles performing the group operations in G1, G2 and the
bilinear map e(·, ·),

AdvGDDHE(U, V, F,A) ≤ (q + 2(l + N + 9) + 2)2 · d
2p

with d = 2 ·max(N + 3, l + 1).

Proof. Refer Appendix C

Theorem 2. Assume that an IND-mIBSC-CCA adversary A has an advantage ε against mIBSC,
asking at most l extraction queries. Then there is an algorithm R to solve the (U, V, F ) −
GDDHE problem with advantage
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ε′ ≥ ε/2

Proof. Refer Appendix A

Theorem 3. Assume that an EUF-mIBSC-CMA adversary A making l extraction queries,
qHi

queries to random oracles Hi (i= 1,2,3) and qsc signcryption queries, has an advantage
ε ≥ 10(qsc + 1)(qsc + qH2

)/2k has an advantage ε against mIBSC. Then there is an algorithm
R to solve the (l + N)− SDHP with advantage

ε′ ≥ 1/9

Proof. Refer Appendix B

3 Conclusion

To the best of our knowledge identity-based multireceiver signcryption schemes reported in
literature are [14][26]. However, Tan [25] has broken the scheme reported in [14] and Sharmila
et al. have shown the flaws in [26] and given the fix for the same. Hence the only existing
correct scheme is the scheme reported in [21]. This paper makes a significant improvement over
the scheme in [21] and hence this is by far the best scheme available till date. We also formally
prove the security of these schemes in the sense of confidentiality and unforgeability, based on
the l − SDHP and the GDDHE assumptions. The major flaws in all the broken systems are
all related to the insider security of the schemes. In the scheme proposed in this paper we have
specifically addressed the issue and designed the scheme with proven insider security.

To our knowledge, no public key multi-receiver encryption scheme is known to resist fully
adaptive adversaries. We leave this as an open problem. Another interesting problem would be
to design a scheme that is secure under weaker assumptions and achieves efficiency comparable
to ours.

Storage Cost Computational Cost -
Scheme Public Key Private Key No. of pairings for Header

Size2 Size (Signcryption, Designcryption) Size3 Status

Duan and Cao [14] O(1) O(1) (1,4) O(t) Broken
Yu et al.[26] O(1) O(1) (1,3) O(t) Broken

Sharmila et al.[21] O(1) O(1) (1,3) O(t) Secure
Our Construction 3 O(N) O(1) (0,3) O(1) Secure
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A Proof of Theorem 2

Both the adversary and the challenger are given as input N, the maximal size of a set of included
users S, and l the total number of extraction queries and q the total number of random oracle
queries that can be issued by the adversary. Algorithm R is given as input a group system
B = (p, G1, G2, e(, )), and a (U, V, F ) − GDDHE instance in B . We thus have f and g, two
coprime polynomials with pairwise distinct roots, of respective orders l and t respectively , and(

P0, sP0, . . . , s
l−1P0 s.f(s)P0, s

2.f(s)P0, s
3.f(s)P0 γ.s.f(s)P0

Q0, sQ0, . . . , s
N+2Q0 γ.s.g(s)Q0

)
and T ∈ G2 , which is either is equal to e(P0, Q0)γ·f(s) or to some random element of G2

Notations.

– f(X) =
∏l

i=1(X + xi)
– g(X) =

∏l+t
i=l+1(X + xi)
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– fi(x) = f(x)
x+xi

for i ∈ [1, l], which is a polynomial of degree l − 1

Init Phase: The adversary A outputs a t-set S∗ = {ID∗
1, ..., ID∗

t } of identities that he wants
to attack.
Setup Phase: To generate the system parameters, R formally sets P = f(s)P0 (i.e. without
computing it) and sets

– Q = Q0

– R = s.f(s)P0 = sP

– g = e(P0, Q0)f(s) = e(P,Q)

R then defines the Public Key PK as Q, sQ, s2Q, . . . , sNQ,R, g. Note R cannot compute
the value of P .
Query phase 1: At any time the adversary A can query the following random oracles. To
respond to these queries, R maintains three lists LH1 ,LH2 ,LH3 .

1. H1 Queries: The list LH1 contains at the beginning: (∗, xi)
l
i=1 (IDi, xi)

l+t
i=l+1 (we choose to

note * an empty entry in LH1). When the adversary issues a hash query on identity IDi,
– If IDi already appears in the list LH1 , R responds with the corresponding xi.
– Otherwise, R picks an xi for some (∗, xi) in LH1 , returns H(IDi) = xi, and completes

the list with (IDi, xi).
2. Extraction query (IDi): The challenger runs Extract on IDi /∈ S∗ and forwards the resulting

private key to the adversary. To generate the keys,
– IfA has already issued a hash query on IDi, thenR uses the corresponding xi to compute

SIDi = fi(s)P0 = 1
s+xi

P

– Otherwise, R sets H(IDi) = xi, computes the corresponding SIDi exactly as above, and
completes the list LH1 for IDi.

3. H2 queries: To respond to these queries R maintains a list of tuples called the LH2 list. Each
entry in the list is a tuple of the form (mi, αi, hi). Initially the list is empty. To respond to
query (mi, αi) algorithm R does the following:
– If the query (mi, αi) already appears in the list in a tuple (mi, αi, hi) then respond with

H2(mi, αi) = hi.
– Otherwise, R just picks a random hi ← Z∗

p and adds the tuple (mi, αi, hi) to the list
– It responds to A with H2(mi, αi) = hi.

4. H3 queries: To respond to these queries R maintains a list of tuples called the LH3 list. Each
entry in the list is a tuple of the form (αi, hi). Initially the list is empty. To respond to query
αi algorithm R does the following:
– If the query αi already appears in the list in a tuple (αi, hi) then respond with H3(αi) =

hi.
– Otherwise, R just picks a random hi ← {0, 1}n where n is the number of bits in a

message and adds the tuple (αi, hi) to the list
– It responds to A with H3(αi) = hi.

5. Signcryption Queries : Of the form (m, IDA, ID1, ID2, . . . , IDn) If IDA /∈ S∗, R proceeds
as in normal Signcrypt algorithm. Otherwise, he does the following
– Pick r ∈R Z∗

p and set ZA = r.sP

– Pick h ∈R Z∗
p

– Compute y = r (s(xA + s)− h)
∏n

i=1(s + xi)Q and X = r. (s(s + xA)− h) sP

– Computes α = e(ZA, (s + xA)Q).g−h·r and picks a random string V of length same as
the message

– Returns 〈m‖ZA ⊕ V,X, y〉 and enters the tuples (m,α, h · r) and (α, V ) in L2 and L3

respectively.



12 S. Sharmila Deva Selvi1, S. Sree Vivek1,, Rahul Srinivasan2, C. Pandu Rangan1,

As one can see, the returned ciphertext will pass off as a valid one as

e(ZA, (s + xA)Q).g−h·r = gr·(s(s+xA)−h)

= e (Si, y) .e

X,
1
s

 n∏
j=1,j 6=i

(s + H1 (IDj))−
n∏

j=1,j 6=i

H1 (IDj)

Q


6. Designcryption Queries : Of the form (σ, IDA, IDi) R retrieves ZA from σ and searches L2

for an entry of the form (mj , αj , hj) and corresponding entry αj , Vj from list L3 that satisfies
the follo wing condition,

m‖ZA = c⊕ Vj

αj = e(ZA,H1(IDA)Q + sQ) · g−hj

If such an entry is present, R returns mj . Otherwise, returns ⊥.
We note that if σ is a valid ciphertext, then hj is the correct value of H2(mj , αj). If A has
queried the H2 oracle for these values, then an entry of the form (mj , αj , hj) will be present
in L2, which R retrieves. The only other case in which A produces a valid ciphertext is by
correctly guessing the hash value. In a perfect simulation, this ciphertext using the correct
guessed value should pass of as a valid one. But in our simulation, this does not happen.
However we note that this event occurs only with a probability of 1/p which is of the order
of 1/2k, which is negligible in the security parameter k.

Challenge Phase: When A decides that phase 1 is over, he gives two messages m0 and m1

and a sender’s identity IDA, algorithm R sets α = T , picks random c and responds with
the challenge ciphertext σ∗ = 〈c,X, y,L〉 where X = r.s.f(s)P0, y = γ.s.g(s)Q0. Note that if
T = gγ , then (X, y) is a valid encryption of α = gγ , although σ∗ may not be a valid ciphertext.
Query phase 2: The adversary continues to issue queries with the constraint that no extraction
query is made on IDi for IDi ∈ S∗
Guess Phase: Finally, the adversary A outputs a guess b
R ignores the answer and searches LH3 for an entry of the form (T, ∗). If present, he outputs

1 (indicating that T = gγ). Otherwise, he outputs 0.

We note that if (X, y) is a valid encryption of T , then an adversary with a non-negligible
advantage in the above game must have issued a H3 query on T , in which case an entry of the
form (T, ∗) will be present in LH3 .

AdvGDDHE
R (U3, V3, F3) = Pr

[
b = b′|real

]
− Pr

[
b = b′|random

]
=

1
2
·AdvmIBSC−CCA

A

B Proof of Theorem 3

Let l be the maximum number of extraction queries that can be queried by the adversary A and
N be the maximal size of the receiver set. Algorithm R takes as input (Q, sQ, s2Q, . . . , sl+NQ)
and aims to find a pair (c, 1

c+sQ). In a setup phase, it builds a generator G ∈ G1, such that it
knows l − 1 pairs (xi,

1
xi+sG) for x1, . . . , xl−1 ∈R Z∗

p.To do so,

– It picks β ∈R Z∗
p and sets P = βQ

– It picks x1, x2, . . . , xl−1 ∈R Z∗
p and expands f(z) =

∏l−1
i=1(z + xi) to obtain c0, c1, . . . , cl−1 ∈

Z∗
p so that f(z) =

∑l−1
i=0 ciz

i.
– It sets generators H =

∑l−1
i=0 ci(siQ) = f(s)Q and G = βH = f(s)P . It computes

∑l
i=1 ci−1(siQ) =

sH, s2H, . . . , sNH and g = e(G, H) and makes 〈sG,H, sH, s2H, s3H, . . . , sNH, g = e(G, H)〉
public.
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– For 1 ≤ i ≤ l − 1, R expands fi(z) = f(z)
(z+xi)

=
∑l−2

i=0 diz
i and β · fi(s)P = 1

xi+sG

A inputs ID∗ on which it would like to challenged and a set of receivers ID∗
1, ID∗

2, . . . , ID∗
t . R

is then ready to answer A’s queries along the course of the game. It first initializes a counter i
to 1. For simplicity, we assume that queries to H1 are distinct, and that any query involving an
identifier ID is preceded by the random oracle query H1(ID).

1. H1 queries on an identity ID : R returns a random x∗ ∈R Z∗
p if ID = ID∗. Otherwise, R

answers x = xi and increments i. R stores (ID, x) in a list LH1 .
2. H2 queries: To respond to these queries R maintains a list of tuples called the LH2 list. Each

entry in the list is a tuple of the form (mi, αi, hi). Initially the list is empty. To respond to
query (mi, αi) algorithm R does the following:
– If the query (mi, αi) already appears in the list in a tuple (mi, αi, hi) then respond with

H2(mi, αi) = hi.
– Otherwise, R just picks a random hi ← Z∗

p and adds the tuple (mi, αi, hi) to the list
– It responds to A with H2(mi, αi) = hi.

3. H3 queries: To respond to these queries R maintains a list of tuples called the LH3 list. Each
entry in the list is a tuple of the form (αi, hi). Initially the list is empty. To respond to query
αi algorithm R does the following:
– If the query αi already appears in the list in a tuple (αi, hi) then respond with H3(αi) =

hi.
– Otherwise, R just picks a random hi ← {0, 1}n where n is the number of bits in a

message and adds the tuple (αi, hi) to the list
– It responds to A with H3(αi) = hi.

4. Key extraction queries on ID 6= ID∗: R recovers the matching pair (ID, x) from L1 and
returns the previously computed 1

s+xG. Note : No extraction query on ID∗ can be made.
5. Signcryption query on (m, IDA, ID1, ID2, . . . , IDn): If IDA 6= ID∗, proceed normally as in

the Signcrypt algorithm. Else R does the following
– Picks r, h← Z∗

p and a random string V of length equal to that of the message.
– Computes ZA = r.G
– Computes y = r(x∗ + s− h)

∏n
i=1(xi + s)H

– Computes X = rs(x∗ + s− h)G
– Computes α = e(ZA, (x∗ + s)H)g−h·r

– Adds the tuple (h · r, m, α) in L2 and (V, α) in L3

– Returns the ciphertext 〈c = m‖ZA ⊕ V,X, y〉.
As one can see, the returned ciphertext will pass off as a valid one as

e(ZA, (s + xA)H).g−h·r = gr·(s+x∗−h)

= e (Si, y) .e

X,
1
s

 n∏
j=1,j 6=i

(s + H1 (IDj))−
n∏

j=1,j 6=i

H1 (IDj)

H


6. Designcryption Queries : Queries of the form (σ, IDA, IDi). R searches L2 for an entry of

the form (mj , αj , hj) and retrieves ZA from c = m‖ZA ⊕ α and checks whether it satisfies
the following condition

αj = e(ZA,H1(IDA)Q + sQ) · g−hj

If such an entry is present, R returns mj . Otherwise, he returns ⊥.
We note that if σ is a valid ciphertext, then hj is the correct value of H2(mj , αj), for
some (mj , αj). If A has queried the H2 oracle with these values, then an entry of the
form (mj , αj , hj) will be present in L2, which R retrieves. The only other case in which A
can produce a valid ciphertext is by correctly guessing the hash value of (mj , αj) without
querying it. In a perfect simulation, this ciphertext using the correct guessed value should
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pass of as a valid one. But in our simulation, this does not happen, and we return ⊥. However
we note that this event occurs only with a probability of 1/p which is of the order of 1/2k,
which is negligible in the security parameter k.

We are ready to apply the forking lemma that essentially says the following: consider a scheme
producing signatures of the form (M,α, h, ZA), where each of α, h, ZA corresponds to one of the
three moves of a honest-verifier zero-knowledge protocol. In our setting, from a forger A, we
build an algorithm A′ that replays A a sufficient number of times to obtain two suitable forgeries
(M∗, α, h1, Z1), (M∗, α, h2, Z2) on ID∗. The reduction then works as follows. The simulator R
runs A to obtain two forgeries (M∗, α, h1, Z1), (M∗, α, h2, Z2) for the same message M∗ and
commitment α. At this stage, R recovers the pair (ID∗, x∗) from list L1. If both forgeries
satisfy the verification equation, we obtain the relations

e(Z1, QID∗)e(G, H)−h1 = e(Z2, QID∗)e(G, H)−h2

with QID∗ = H1(ID∗)H+sH = (x∗+s)H. Then, it comes that e((h1−h2)−1(Z1−Z2), QID∗) =
e(G, H) and hence T ∗ = (h1−h2)−1(Z1−Z2) = 1

w∗+sG From T ∗,R first obtains a−1, a0, . . . , al−2

for which f(z)
(z+x∗) = a−1

(z+x∗) +
∑l−2

i=0 aiz
i and eventually computes

σ∗ =
1

a−1

[
T ∗ −

l−2∑
i=0

ais
iP

]
=

1
x∗ + s

P

and β−1 · σ∗ = 1
x∗+sQ before returning the pair (x∗, 1

x∗+sQ) as a result.

We note as in [19], if AdvmIBSC3
A ≥ 10(qsc + 1)(qsc + qH2

)/2k, where l extraction queries, qHi

queries to random oracles Hi (i= 1,2,3) and qsc signcryption queries are made, then

Adv
(l+N)−SDHP
R ≥ 1/9

C Intractability of (Ui, Vi, Fi) − GDDHE

In this section, we prove the intractability of distinguishing the two distributions involved in
the (Ui, Vi, Fi)−GDDHE problems in the proofs of Theorems 2, 4 and 6.

In order to prove Corollaries 1, 2 and 3, we need to prove the intractability of (Ui, Vi, Fi)−
GDDHE problem for i = 1, 2, 3 and then subsequently use the result of Theorem 1. We consider
the case when G1 = G2 = G and thus pose Q0 = βP0 Our problem can be reformulated as
(P,Q, F )−GDHE where

P =
(

1, s, s2, . . . , sl−1, s.f(s), s2.f(s), s3.f(s), γ.s.f(s)
β, s.β, s2.β. . . . , sN+2.β, γ.β.g1(s), γ.β.g2(s), γ.β.g3(s), . . . , γ.β.gk(s)

)
Q = 1
F = γ.β.f(s)

We have k = 1, 2 or 3 and deg(gi) = 1, 3 or t for Corollaries 1,2 and 3 respectively. Degree
of f is l. We have to show that F is independent of (P,Q), i.e. that no coefficients {ai,j}ni,j=1

and b1 exist such that F =
∑n

i,j=1 ai,jpipj + b1q1 where the polynomials pi and q1 are the one
listed in P and Q above. By making all possible products of two polynomials from P which are
multiples of γ.β, we want to prove that no linear combination among the polynomials from the
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list R below leads to F :

R =



γ.β.s.f(s), γ.β.s2.f(s), γ.β.s3.f(s), . . . , γ.β.sN+3.f(s),
γ.β.g1(s), γ.β.s.g1(s), . . . , γ.β.sl−1.g1(s)
γ.β.g2(s), γ.β.s.g2(s), . . . , γ.β.sl−1.g2(s)

. . .

. . .

. . .
γ.β.gk(s), γ.β.s.gk(s), . . . , γ.β.sl−1.gk(s)

γ.β.s.f(s).g1(s), γ.β.s.f(s).g2(s), . . . , γ.β.s.f(s).gk(s)
γ.β.s2.f(s).g1(s), γ.β.s2.f(s).g2(s), . . . , γ.β.s2.f(s).gk(s)
γ.β.s3.f(s).g1(s), γ.β.s3.f(s).g2(s), . . . , γ.β.s3.f(s).gk(s)


Note that the every polynomial on the last three lines can be written as

γ.β.sj .f(s).gi(s) =
i=deg(gi)∑

i=0

ci.γ.β.si+jf(s)

for j = 1, 2, 3 and thus as a linear combination of the polynomials from the first line. We there-
fore simplify the task, by finding a linear combination of the elements of the list R′ below, which
leads to f(s)

R′ =



s.f(s), s2.f(s), . . . , sN+3.f(s),
g1(s), s.g1(s), . . . , sl−1g1(s)
g2(s), s.g2(s), . . . , sl−1g2(s)

. . .

. . .

. . .
gk(s), s.gk(s), . . . , sl−1gk(s)


Any linear combination can be written as

f(s) = A(s).f(s) + B1(s)g1(s) + B2(s)g2(s) + . . . + Bk(s)gk(s)

where A and B are polynomials such that A(0) = 0, deg(A) ≤ N + 3 and deg(B) ≤ l− 1. Since
f and gi are coprime by assumption, we must have f/Bi. Since deg(f) = l and deg(Bi) ≤ l− 1
this implies Bi = 0 for 1 ≤ i ≤ k. Hence A = 1 which contradicts A(0) = 0. Therefore

Fi /∈ 〈Pi, Qi〉 for i = 1,2,3


