
Efficient RFID authentication protocols based
on pseudorandom sequence generators

Jooyoung Lee and Yongjin Yeom

The Attached Institute of Electronics and Telecommunications Research Institute
Yuseong-gu, Daejeon, Korea 305-390

jlee05@ensec.re.kr

Abstract. In this paper, we introduce a new class of PRSGs, called par-
titioned pseudorandom sequence generators(PPRSGs), and propose an
RFID authentication protocol using a PPRSG, called S-protocol. Since
most existing stream ciphers can be regarded as secure PPRSGs, and
stream ciphers outperform other types of symmetric key primitives such
as block ciphers and hash functions in terms of power, performance
and gate size, S-protocol is expected to be suitable for use in highly
constrained environments such as RFID systems. We present a formal
proof that guarantees resistance of S-protocol to desynchronization and
tag-impersonation attacks. Specifically, we reduce the availability of S-
protocol to pseudorandomness of the underlying PPRSG, and the secu-
rity of the protocol to the availability. Finally, we give a modification of
S-protocol, called S∗-protocol, that provides mutual authentication of
tag and reader.

Keywords: authentication protocol, pseudorandom sequence generator, stream
cipher, RFID

1 Introduction

Low-cost RFID tags are rapidly becoming pervasive in our daily life. Well known
applications include electronic passports, contactless payments, product tracking
and building access control, to name a few. However, the small programmable
chips that passively respond to every reader have raised concerns among re-
searchers about privacy and security breaches. A considerable body of research
has been focused on providing RFID tags with cryptographic functionality, while
scarce computational and storage capabilities of low-cost RFID tags make the
problem challenging. Typically, RFID tags can only store hundreds of bits and
have 1000-10000 logic gates, with 200-2000 budgeted specifically for security. In
such an environment, cryptographic primitives should be implemented with low
clock frequency since a tag derives its power from a reader in a short period of
time.

In this paper, we focus on the issue of authentication. Our work begins with
the observation that stream ciphers are more efficient cryptographic primitives

than block ciphers and hash functions. In general, stream ciphers require the
fewest computational resources amongst traditional cryptographic primitives,
including block ciphers and hash functions, in terms of power, performance, and
gate size [9]. One approach to the construction of an authentication protocol
based on a stream cipher is to transform a stream cipher into a pseudorandom
function via a well-known construction of Goldreich et. al. [8], and use existing
protocols based on pseudorandom functions. In this way, we can obtain various
authentication protocols that guarantee both security and unlinkability. How-
ever, the construction based on the GGM construction might not be suitable for
RFID systems due to its inefficiency.

In this paper, we consider a direct construction of an authentication protocol
from a stream cipher. In order to capture the properties of existing stream ci-
phers useful in the construction of authentication protocols, we introduce a new
class of pseudorandom sequence generators, called partitioned pseudorandom se-
quence generators(PPRSGs). Informally speaking, a PPRSG is a pseudorandom
sequence generator that consists of two functions, respectively called an updating
function and a filtering function. Most existing stream ciphers can be regarded
as PPRSGs as seen in the next section. Using a secure PPRSG, we construct
an authentication protocol, called S-protocol, that provides resistance to desyn-
chronization and tag-impersonation attacks. We also present a modification of
S-protocol, called S∗-protocol, that provides mutual authentication of tag and
reader.

Contribution. The advantages of S-protocol are summarized as follows.

– S-protocol is mainly targeted at the use of stream ciphers. Based on a secure
stream cipher, S-protocol outperforms most existing authentication proto-
cols using hash functions or block ciphers, in terms of power, performance,
and gate size. Furthermore, S-protocol does not require key initialization
process of the underlying stream cipher, since each tag’s secret information
can be initialized as the internal state of the stream cipher, obtained after
key initialization process with a random secret key.

– Using a same stream cipher, we can construct S-protocols of various security
levels against online attacks. If a stream cipher outputs m′ bits in one clock,
then we can define PPRSGs associated with the stream cipher in a flexible
way, so that the filtering function outputs m = lm′ bits for any positive
integer l. As seen later, the parameter m determines the security level of the
S-protocol against online attacks. On the other hand, block ciphers or hash
functions always output fixed-size blocks. The block size might be unneces-
sarily large as compared to the security requirement of the target protocol.
This would result in computational overload on the tag-side.

– Availability and security of S-protocol is established by a formal proof. In
the proof, we assume a prevention-based model where the adversary has
unfettered access to oracles for a tag and a reader. The proof is not based
on the use of truly random numbers on the tag-side. Thus S-protocol does

not require any physical random number generator or that an independent
PRSG be equipped with a tag devcie.

We also point out some drawbacks of S-protocol.

– S-protocol does not provide untraceable identification. General-purpose au-
thentication protocols may or may not have support for untraceability, while
untraceability is considered as a core requirement of authentication protocols
for certain RFID applications.

– Since each tag’s secret information is updated every session, the back-end
databases of the system, if multiple, should be connected in real-time so as
to maintain synchronized with the tags.

Related work. The majority of authentication protocols for RFID are still
based on hash functions or block ciphers [2, 5, 6, 12, 17, 19–21]. Those works are
mainly focused on providing untraceable authentication protocols for RFID.
Lightweight implementation of existing block ciphers as well as new constructions
are widely studied [7, 13, 18]. As another direction, there have been a number
of protocols proposed based on new cryptographic primitives, among which a
series of HB-protocols are drawing a lot of attention due to their efficiency and
provable security [10, 14, 15]. In [16], the authors proposed an RFID protocol
based on a PRSG. We note that, if a stream cipher is used as a PRSG for their
protocol, an independent random number is required at each generation of a
message. However, a physical random number generator equipped in RFID tags
might not guarantee a sufficient level of randomness to support the security of
the protocol.

Organization. In the next section, we define a partitioned pseudorandom se-
quence generator, and present some examples of PPRSGs. In Section 3, we de-
scribe S-protocol in two steps. First, we define a tag and a reader as message-
driven deterministic algorithms. Based on the algorithms, we illustrate how they
exchange messages in each session. In Section 4, we prove the availability and
the security of S-protocol. In Section 5, we slightly modify S-protocol to present
S∗-protocol that provides mutual authentication of tag and reader. Section 6
concludes.

2 Partitioned pseudorandom sequence generator

In this section, we define a new class of pseudorandom sequence generators called
partitioned pseudorandom sequence generators. We first begin with the definition
of a pseudorandom sequence generator (in a concrete model).

Definition 2.1. Let d and L be positive integers such that d < L. A function
G : {0, 1}d → {0, 1}L is called a (t, ε)-pseudorandom sequence generator(PRSG)
if for every probabilistic Turing machine D of runtime ≤ t we have

|Pr
R

$←{0,1}L
[D (R) ⇒ 1]− Pr

K
$←{0,1}d

[D (G (K)) ⇒ 1]| ≤ ε.

Definition 2.2. Let d, m and L be positive integers such that m|L and d < L.
A (t, ε, L)-partitioned pseudorandom sequence generator(PPRSG) is a pair S =
(Up, F) of functions Up : {0, 1}d → {0, 1}d and F : {0, 1}d → {0, 1}m such that

GS : {0, 1}d −→ {0, 1}L

K 7−→
(
F(K)||F ◦Up(K)|| . . . ||F ◦Up(L

m−1)(K)
) (1)

is a (t, ε)-pseudorandom sequence generator. Functions Up and F are called an
update function and a filtering function, respectively.

Example 2.1. Let h : {0, 1}∗ → {0, 1}m be a random oracle. Then S = (Up,F)
such that

Up : {0, 1}d −→ {0, 1}d

K 7−→ (K + 1 mod 2d),

and
F : {0, 1}d −→ {0, 1}m

K 7−→ h(K),

is a PPRSG, since S generates a truly random sequence.

Example 2.2. Let E : {0, 1}k × {0, 1}m → {0, 1}m be a ideal block cipher. Then
S = (Up, F) such that

Up : {0, 1}k × {0, 1}m −→ {0, 1}k × {0, 1}m

(K, M) 7−→ (K, M + 1 mod 2m),

and
F : {0, 1}k × {0, 1}m −→ {0, 1}m

(K, M) 7−→ E(K, M),

is a PPRSG if L ¿ m2m/2(the birthday bound). Output feedback mode of a
block cipher is also a PPRSG.

Example 2.3. Let f : {0, 1}d → {0, 1}d × {0, 1} be a secure PRSG, denoted
f(K) = (f1(K), f2(K)) for K ∈ {0, 1}d. Then the stretching theorem implies
that S = (Up, F) such that

Up : {0, 1}d −→ {0, 1}d

K 7−→ f1(K),

and
F : {0, 1}d −→ {0, 1}

K 7−→ f2(K),

is a PPRSG if L is polynomial in d.

Example 2.4. Stream ciphers F-FCSR-H [1], Mickey [3], Trivium [4] and Grain [11],
finalized as the eSTREAM portfolio, can be regarded as PPRSGs, if an update
function and a filtering function are appropriately defined. For example, Grain-1
consists of a function that updates 160 bits of an internal state and a filtering
function that xors certain bits selected from the state. Here we assume that a
key initialization process fills the internal state of a stream cipher with uniform
random bits.

3 Description of S-protocol

3.1 Main idea

Let S = (Up,F) be a PPRSG and let a tag T and a reader R store variables
ST and SR, respectively, both initialized as a secret key K ∈ {0, 1}d. We can
consider a naive approach to the construction of an authentication protocol as
follows.

1. R sends “query” to T .
2. T sends M1 ← F(ST) to R.
3. If M1 = F(SR), then R sends M2 ← F(Up(SR)) to T .
4. If M2 = F(Up(ST)), then T updates ST ← Up2(ST) and sends M3 ← F(ST)

to R.
5. If M3 = F(Up2(SR)), then R updates SR ← Up2(SR) and accepts T .

In the above protocol, T and R alternately transmit F(Upi(K)), i = 0, 1, 2 . . . ,
over sessions, and ends up with a state of ST = SR for a successful session. Note
that T and R should exchange at least four messages in a session, in order to
prevent trivial replay attacks. However, the above protocol is still vulnerable to
a replay attack. An adversary might block message M3 transmitted from T to
R, and use messages M1 and M3 to impersonate T . If the adversary does not
mount an impersonation attack on R, then the blocking of message M3 would
lead to desynchronization of T and R. Therefore, we introduce two additional
flags rev and add on the reader-side to indicate the possibility of replay and
desynchronization attacks and control communications. R sets flag rev to one
once R has transmitted F(Up(SR)) for the current value of SR. If R fails to
authenticate T and a new session is initiated, then R sets flag add to one and
makes one more round in the session, in order to prevent replay attacks. Now
we are ready to present a formal description of S-protocol.

3.2 Formal description

For simplicity, we treat a reader and a back-end database as a single entity.
Thus we consider an RFID system that consists of one reader R and a multiple
number of tags, say Ti, i = 1, . . . , n. We model tag and reader functionalities as
deterministic Turing machines that store and update variables as follows.

– Each tag Ti, i = 1, . . . , n, stores a d-bit variable STi , which is initialized with
a random secret key Ki ∈ {0, 1}d.

– A reader R stores a variable SR,i and two auxiliary flags revi and addi for
each tag Ti. SR,i is initialized with the same key Ki as tag Ti, while revi

and addi are both initialized with “0” for every i = 1, . . . , n.

Focusing on a 1-1 communication between R and Ti, we simplify the notations
as T = Ti, SR = SR,i, ST = STi , rev = revi and add = addi. We now present a
specific description of tag and reader algorithms in Figure 1. The “init” message

can be regarded as an external signal or ID claim from a tag that initiates a new
session within a reader R. “rev = 1” indicates that the reader R has revealed
F (SR) for the current value of SR. “add = 1” requires that the reader R authen-
ticate the tag with an additional round of message exchange. We assume that the
special types of messages “init”, “query” and “accept” are distinguished from
any m bit binary sequence. We call the set of variables S = (ST , SR, rev, add)
the state of T and R, and define synchronization states as follows.

Definition 3.1. Tag T and reader R are said to be in a synchronization state
if their state satisfies F(SR) 6= F(Up2(SR)), F(Up2(SR)) 6= F(Up4(SR)), and one
of the following three conditions:

– Type 1: ST = SR and rev = 0
– Type 2: ST = SR and rev = 1
– Type 3: ST = Up2(SR) and rev = 1

In the next section, we prove that a tag and a reader remain in a synchroniza-
tion state except with a negligible probability even though a certain number of
oracle queries are made to the tag and the reader. This property guarantees the
completeness of S-protocol, together with the following theorem.

Theorem 3.1. Suppose that tag T and reader R are in a synchronization state
and R opens a new session on the message “init”. Then the session is completed
with the signal “accept” within 4 or 6 passes as seen in Figure 2. At the end of
the session, R and T reach a synchronization state of type 1.

Proof. First, suppose that T and R are in a synchronization state of type 1
and a new session is initiated with the message “init”. R sends a message
“query” to T . On the message “query”, T responds with M1 ← F (ST). Since
M1 = F (SR), R sets rev ← 1 and sends M2 ← F (Up(SR)) to T , where the
state transits into a synchronization state of type 2. Since M2 = F (Up(ST)), T
updates ST ← Up2(ST) and sends M3 ← F (ST) to R, where the state transits
into a synchronization state of type 3. Finally, R checks that M3 = F (Up2(SR)),
updates SR ← Up2(SR) and rev ← 0, and accepts the session. Note that add = 0
whenever rev = 0. Now the state of T and R transits into a synchronization
state of type 1.

Next, suppose that T and R are in a synchronization state of type 3 and a
new session is initiated with the message “init”. Since rev = 1, R sets add ←
1 and sends a message “query” to T . On the message “query”, T responds
with M1 ← F (ST). Since M1 = F (Up2(SR)) and add = 1, R updates SR ←
Up2(SR), add ← 0 and rev ← 1. R also sends M2 ← F (Up(SR)) to T , where the
state transits into a synchronization state of type 2. Since M2 = F (Up(ST)), T
updates ST ← Up2(ST) and sends M3 ← F (ST) to R, where the state transits
into a synchronization state of type 3. Finally, R checks that M3 = F (Up2(SR)),
updates SR ← Up2(SR) and rev ← 0, and accepts the session. The state of T
and R transits into a synchronization state of type 1. The proof is similar for
the synchronization state of type 2.

1: if A = “query” then
2: output F(ST)
3: else if A = F(Up(ST)) then
4: ST ← Up2(ST)
5: output F(ST)

(a) T on an incoming message A

1: if B = “init” then
2: if rev = 1 then add ←− 1
3: output “query”
4: else if B = F(SR) then
5: rev ←− 1
6: output F(Up(SR))
7: else if B = F(Up2(SR)) then
8: SR ←− Up2(SR)
9: rev ←− 0

10: if add = 0 then
11: output “accept”
12: else
13: add ←− 0
14: rev ←− 1
15: output F(Up(SR))

(b) R on an incoming message B

Fig. 1. Tag algorithm T and reader algorithm R.

4 Availability and security of S-protocol

4.1 Security against a desynchronization attack

We model a desynchronization-adversary A = A(q, t) as a probabilistic Turing
machine of run time t that makes total q queries to T and R. The goal of
desynchronization-adversary is to make the reader and tag’s state satisfy one of
the following three conditions.

– Type 1: SR = Up2(ST)
– Type 2: ST = Up4(SR) or (ST = Up2(SR) and rev = 0)
– Type 3: F(SR) = F(Up2(SR)) or F(Up2(SR)) = F(Up4(SR))

We call the above states desynchronization states. Informally speaking, the desyn-
chronization states are the three possible states that may occur when the previ-
ous state is a synchronization state, but the current state is not. For simplicity of
analysis, we assume that the reader R reveals at each query whether or not the
variable SR and rev are updated. It allows us to assume that A stops updating
the tag and reader’s state once the state comes into a desynchronization state
of type 1 or 2. In this way, the desynchronization states cover all the situations
such that T and R are not in a synchronization state (i.e., we do not need to
consider the case SR = Upi(ST) for i > 2 or ST = Upi(SR) for i > 4 as desyn-
chronization states). When AT ,R ends up with a desynchronication state, we
say that A succeeds in a desynchronization attack against T and R.

Now we would like to use a desynchronization-adversary A with a success
probability

δ = Pr
K

$←{0,1}d
[A succeeds in a desynchronization attack against T and R],

(2)

T (ST) R(SR)

“query”
oo

F (ST)

// SR ← Up2(SR)

F (Up(SR))
ST ← Up2(ST) oo

F (ST)
// SR ← Up2(SR)

“accept”

F (Up(SR))
ST ← Up2(ST) oo

F (ST)
// SR ← Up2(SR)

“accept”

Fig. 2. Message flow of S-protocol. The boxed statement is executed only if T and
R are in a synchronization state of type 3. The last two flows are executed only if T
and R are in a synchronization state of type 2, in which case the reader does not send
“accept” message as a response of the fourth flow.

for the construction of a distinguisher that determines whether a given (2q+3)m
bit sequence M = (M0, . . . ,M2q+2) is generated by a PPRSG S or truly at
random. We describe the distinguisher D using a game G(M) defined in Figure
3. The game G(M) is parameterized by the sequence M and includes procedures
that simulate tag and reader interfaces up to q queries by referring to M. The
variables cT and cR of the game G(M) record, respectively, the numbers of
updates of tag-side and reader-side internal state variables. (i.e., cT and cR,
respectively, correspond to ST and SR.) In procedure Finalize, G(M) returns the
value 1 if the current state, represented by cT and cR, is in a desynchronization
state.

The distinguisher D consists of A and G(·) as illustrated in Figure 4. On the
input sequence M, D runs A and responds to A’s queries by using procedures T
and R of the game G(M). At the end of execution, D outputs the value returned
in procedure Finalize of G(M). From the construction, the following estimate is
obvious.

Pr
K

$←{0,1}d
[G(GS(K))A ⇒ 1] = Pr

K
$←{0,1}d

[D(GS(K)) ⇒ 1] = δ. (3)

Game G(M)

procedure Initialize

1: cT , cR, rev, add, X ← 0

procedure T (A)

1: if A = “query” then
2: output McT

3: else if A = McT +1 then
4: cT ← cT + 2
5: output McT

procedure Finalize

1: if McR = McR+2 or McR+2 = McR+4 then
2: X ←− 1
3: else if cR = cT + 2 then
4: X ←− 1
5: else if cT = cR + 4 then
6: X ←− 1
7: else if cT = cR + 2 and rev = 0 then
8: X ←− 1
9: return X

procedure R(B)

1: if B = “init” then
2: if rev = 1 then add ←− 1
3: output “query”
4: else if B = McR then
5: rev ←− 1
6: output McR+1

7: else if B = McR+2 then
8: cR ←− cR + 2
9: rev ←− 0

10: if add = 0 then
11: output “accept”
12: else
13: add ←− 0
14: rev ←− 1
15: output McR+1

Fig. 3. Parameterized game G(M).

On the other hand, let us assume that M is a truly random L bit sequence
for L = (2q + 3)m. Let

P1 = PrM $←{0,1}L
[G(M)A sets cR = cT + 2], (4)

P2 = PrM $←{0,1}L
[G(M)A sets (cT = cR + 4) or (cT = cR + 2 ∧ rev = 0)], (5)

and

P3 = PrM $←{0,1}L
[G(M)A sets McR = McR+2 or McR+2 = McR+4]. (6)

Then we have

PrM $←{0,1}L
[D(M) ⇒ 1] = PrM $←{0,1}L

[G(M)A ⇒ 1] ≤ P1 + P2 + P3. (7)

Now the following lemma provides the estimation of P1, P2 and P3.

Lemma 4.1. Let P1, P2 and P3 be the probabilities, respectively defined by (4),
(5) and (6). Then we have P1 ≤ q/2m, P2 ≤ q/2m and P3 ≤ 2q/2m.

Fig. 4. Distinguisher with game G(·).

Proof. As for the probability P3, we have

P3 = PrM $←{0,1}L
[G(M)A sets McR

= McR+2 or McR+2 = McR+4]

≤
q−1∑

i=0

(
PrM $←{0,1}L

[M2i = M2i+2] + PrM $←{0,1}L
[M2i+2 = M2i+4]

)
=

2q

2m
.

In order to estimate the probability P1, we modify the game G(M) to define
G2 as shown in Figure 5. In G2, the parameter M is randomized in procedure
Initialize. Each index i ∈ I is associated with a set Zi that is used to record
every attempt of setting the counters cT and cR to the desynchronization state
of cR = cT + 2 = i. Note that procedures T (·) and R(·) of G2 compute exactly
the same responses as those of game G(M) for a random sequence M $← {0, 1}L,
with the only exception being that procedure of R(·) of G2 stores any message
it receives in the set ZcR (without any response) if the condition cT = cR holds.
Suppose that a desynchronization-adversary A sets cj

R = cj
T +2 on the j-th query

for the first time. Then the previous state should be such that cj−1
R = cj−1

T = cj
T

and the j-th query should be the message Mcj−1
R +2 transmitted to R(·). When

A interacts with game G2 in the same way (in terms of the random coins), the
j-th query Mcj−1

R +2 would be stored in Zcj−1
R +2 and procedure Finalize return

“1”. With this observation, we obtain the equality

PrM $←{0,1}L
[G(M)A sets cR = cT + 2] = Pr[GA2 ⇒ 1].

From now on, we fix every random coin of A. When a message B ∈ {0, 1}m

is added to Zi for i ∈ I, it holds that cT = cR = i − 2, which means proce-
dures T (·) and R(·) have not referred to the message block Mi. Note that the
reference of Mi in the line 9 of R(·) with cT < cR never happens in game G2.
Therefore it follows that each set Zi, i ∈ I, is determined by M0, . . . ,Mi−1,
denoted Zi(M0, . . . , Mi−1). Let

u = |{(Mi)i∈[0,2q+2] ∈ {0, 1}(2q+3)m : ∃ i ∈ I such that Mi ∈ Zi}|

procedure Initialize

1: cT , cR, rev, add ← 0
2: Zi ← ∅ for i ∈ I = {2, 4, . . . , 2q}
3: M $← {0, 1}L

procedure T (A)

1: if A = “query” then
2: output McT

3: else if A = McT +1 then
4: cT ← cT + 2
5: output McT

procedure Finalize

1: if ∃ i ∈ I such that Mi ∈ Zi then
2: return 1
3: else
4: return 0

procedure R(B)

1: if B = “init” then
2: if rev = 1 then add ←− 1
3: output “query”
4: else if cT = cR then

5: ZcR+2 ←− ZcR+2 ∪ {B}
6: else if B = McR then
7: rev ←− 1
8: output McR+1

9: else if B = McR+2 then
10: cR ←− cR + 2
11: rev ←− 0
12: if add = 0 then
13: output “accept”
14: else
15: add ←− 0
16: rev ←− 1
17: output McR+1

Fig. 5. Game G2. The boxed statement records every attempt of setting the counters
cT and cR to the desynchronization state of (cR = cT + 2).

be the number of sequences (Mi)i∈[0,2q+2] that result in an desynchronization
state of cR = cT + 2. Then we have the estimate

u ≤ 22qm
∑

(M0,M1)∈{0,1}2m

|Z2(M0, M1)|+ 2(2q−2)m
∑

(M0,...,M3)∈{0,1}4m

|Z4(M0, . . . , M3)|

+ . . . + 22m
∑

(M0,...,M2q−1)∈{0,1}2qm

|Z2q(M0, . . . , M2q−1)|

= 22m
∑

(M0,...,M2q−1)∈{0,1}2qm

(|Z2(M0, M1)|+ . . . + |Z2q(M0, . . . ,M2q−1)|)

≤ q2(2q+2)m, (8)

since the summand “|Z2(M0,M1)|+ . . . + |Z2q(M0, . . . , M2q−1)|” is not greater
than the number of queries. Therefore, we have

Pr[GA2 ⇒ 1] ≤ max
C

u

2(2q+3)m
≤ q2(2q+2)m

2(2q+3)m
=

q

2m
,

where C denotes the set of the random coins of A. The inequality for the proba-
bility P2 can be proved in a similar way, by using the modified game G3 defined
in Figure 6, where J = {1, 3, 5, . . . , 2q − 1}. ¤

Now we can prove the following theorem.

procedure Initialize

1: cT , cR, rev, add ← 0
2: Zi ← ∅ for i ∈ J = {1, 3, 5, . . . , 2q − 1}
3: M $← {0, 1}L

procedure T (A)

1: if A = “query” then
2: output McT

3: else if cT > cR then

4: ZcT +1 ← ZcT +1 ∪ {A}
5: else if cT = cR and rev = 0 then

6: ZcT +1 ← ZcT +1 ∪ {A}
7: else if A = McT +1 then
8: cT ← cT + 2
9: output McT

procedure Finalize

1: if ∃ i ∈ J such that Mi ∈ Zi then
2: return 1
3: else
4: return 0

procedure R(B)

1: if B = “init” then
2: if rev = 1 then add ←− 1
3: output “query”
4: else if B = McR then
5: rev ←− 1
6: output McR+1

7: else if B = McR+2 then
8: cR ←− cR + 2
9: rev ←− 0

10: if add = 0 then
11: output “accept”
12: else
13: add ←− 0
14: rev ←− 1
15: output McR+1

Fig. 6. Game G3. The boxed statements record every attempt of setting the counters
cT and cR and the flag rev to the desynchronization state of (cT = cR + 4) or (cT =
cR + 2 and rev = 0).

Theorem 4.1. Let S = (Up, F) be a (t, ε, L)-PPRSG for L = (2q + 3)m. For a
desynchronization-adversary A(t, q), we have

Pr
K

$←{0,1}d
[A succeeds in a desynchronization attack] ≤ 4q

2m
+ ε.

Proof. From the inequalities (3), (7) and Lemma 4.1, we can construct a distin-
guisher D such that

Pr
K

$←{0,1}d
[D(GS(K)) ⇒ 1] = δ,

and
PrM $←{0,1}L

[D(M) ⇒ 1] ≤ 4q

2m
.

Since the advantage of the distinguisher D is not greater that ε, we have

δ ≤ 4q

2m
+ ε,

which completes the proof. ¤
Remark 4.1. Our security proof is easily extended to a multi-tag setting, where
an adversary makes oracle queries to a multiple number of tags as well as a
reader.

4.2 Security against a tag-impersonation attack

We model a tag-impersonation-adversary A = A(q, t) as a probabilistic Turing
machine of run time t that makes total q queries to T and R. The execution of
A with T and R yields a transcript

T = (S0,T1,S1, . . . ,Sq−1,Tq,Sq)

of query-response pairs and states, where

Si = (Si
T , Si

R, revi, addi)

represents the state of T and R determined by the i-th query of A for 0 ≤ i ≤ q,
and

Ti = (M i
Q,M i

R, xi)

represents the query-response pair of the i-th query for 1 ≤ i ≤ q. Here M i
Q, M i

R

and xi ∈ {T ,R}, respectively, represent a query message, a response message
and the interface that the adversary made the query to.

Now suppose that the transcript T satisfies the following condition.

– There exist 1 ≤ i < j ≤ q such that
1. Ti = (“init”, ∗,R), Tj = (∗, “accept”,R), and
2. Mh

R 6= Mh′
Q for every i ≤ h < h′ ≤ j such that xh = T and xh′ = R.

Then we say that A succeeds in a tag-impersonation attack against T and R.
The above condition implies that the adversary A opened a new session with
“init” message, and derived “accept” message from the reader R without using
any response from the tag T . Now we show that a tag-impersonation-adversary
succeeding in a tag-impersonation attack results in a desynchronization state
between T and R. Suppose that the transcript T satisfies the above condition,
and Sj−1 is a synchronization state. Then we have three possible cases as follows.

Case 1. We assume that Sj−1
T = Sj−1

R . The “accept” message of Tj implies
that the variable SR is updated on the j-th query. The update results in a
desynchronization state with

Sj
R = Up2(Sj−1

R) = Up2(Sj−1
T) = Up2(Sj

T).

Case 2. We assume that Sj−1
T = Up2(Sj−1

R) and there is no update in the
variable ST between the i-th query and the j-th query. Then we have Si−1

T =
Sj−1
T . Suppose that the state Si−1 is a synchronization state of type 1 or 2, i.e.,

Si−1
T = Si−1

R . If Sj−1
R = Up2(Sj′

R) for some i− 1 ≤ j′ < j − 1, then we have

Sj′

T = Sj−1
T = Up2(Sj−1

R) = Up4(Sj′

R),

which is a desynchronization state of type 2 for Sj′ . If Sj−1
R = Si−1

R , then we
have

Up2(Sj−1
R) = Sj−1

T = Si−1
T = Si−1

R = Sj−1
R ,

which is a desynchronization state of type 3 for Sj−1. Finally, suppose that Si−1

is a synchronization state of type 3, i.e., Si−1
T = Up2(Si−1

R) and revi−1 = 1.
Since revi−1 = 1, we have addi = 1. Since the “accept” message is returned
only if add = 0, we have addj−1 = 0, which implies that the variable SR has
been updated before the (j−1)-th query. Since the j-th query results in another
update of SR, we can find j′ ∈ [i + 1, j] such that

Sj′

R = Up4(Si−1
R) = Up2(Si−1

T) = Up2(Sj′

T).

Case 3. We assume that Sj−1
T = Up2(Sj−1

R) and there is an update in the
variable ST between the i-th query and the j-th query. In order for the reader
to return the message “accept” for the j-th query, it should be the case that
M j

Q = F(Up2(Sj−1
R)) = F(Sj−1

T). Suppose that the h-th query, i ≤ h < j, updates
the variable Sh−1

T (6= Sj−1
T) as Sj−1

T . Then it follows that Mh
R = F(Sj−1

T), which
contradicts the second condition for the transcript to satisfy.

To summarize, we can construct a desynchronization adversary of success
probability at least δ from a tag-impersonation-adversary of success probability
δ. By Theorem 4.1, we obtain the following theorem.

Theorem 4.2. Let S = (Up, F) be a (t, ε, L)-PPRSG for L = (2q + 3)m. For a
tag-impersonation-adversary A(t, q), we have

Pr
K

$←{0,1}d
[A succeeds in a tag-impersonation attack] ≤ 4q

2m
+ ε.

5 S∗-protocol: modification for mutual authentication

Certain RFID systems might require reader authentication. In this section, we
slightly modify our protocol so that the resulting protocol, called S∗-protocol,
provides mutual authentication of tag and reader. As seen in Figure 7, there are
only two differences in tag and reader algorithms as compared to S-protocol.
One is that each tag stores and updates an auxiliary flag addT , and the other is
that a reader always set flags rev and add to zero on an “init” message. Then a
session of S∗-protocol is completed within 6 passes of messages as seen in Figure
8. It is easy to see that any desynchronization-adversary or tag-impersonation
adversary on S∗-protocol can be transformed, respectively, into a desynchroniza-
tion adversary or a tag-impersonation adversary on S-protocol. Now we model
a reader-impersonation-adversary A = A(q, t) as a probabilistic Turing machine
of run time t that makes total q queries to T and R. Let

T = (S0,T1,S1, . . . ,Sq−1,Tq,Sq)

1: if A = “query” then
2: addT ←− 1
3: output F(ST)
4: else if A = F(Up(ST)) then
5: ST ← Up2(ST)
6: if addT = 0 then
7: output (“accept”, F(ST))
8: else
9: addT ←− 0

10: output F(ST)

(a) T on an incoming message A

1: if B = “init” then
2: rev ←− 1
3: add ←− 1
4: output “query”
5: else if B = F(SR) then
6: rev ←− 1
7: output F(Up(SR))
8: else if B = F(Up2(SR)) then
9: SR ←− Up2(SR)

10: rev ←− 0
11: if add = 0 then
12: output “accept”
13: else
14: add ←− 0
15: rev ←− 1
16: output F(Up(SR))

(b) R on an incoming message B

Fig. 7. Tag algorithm T and reader algorithm R for mutual authentication. R inter-
prets a message of the form (“accept”, B) as B.

be a transcript obtained from the execution of A with T and R. Here

Si = (Si
T , addi

T , Si
R, revi, addi)

represents the state of T and R determined by the i-th query of A for 0 ≤ i ≤ q,
and

Ti = (M i
Q,M i

R, xi)

represents the query-response pair of the i-th query for 1 ≤ i ≤ q, as in the
previous section. If the transcript T satisfies the following condition, then we
say that A succeeds in a reader-impersonation attack against T and R.

– There exist 1 ≤ i < j ≤ q such that
1. Ti = (“query”, ∗, T), Tj = (∗, (“accept”, ∗), T), and
2. Mh

R 6= Mh′
Q for every i ≤ h < h′ ≤ j such that xh = R and xh′ = T .

The above condition implies that the adversary A has transmitted “query” mes-
sage, and derived “accept” message from the tag T without using any response
from the reader R. Now we show that an adversary succeeding in a reader-
impersonation attack results in a desynchronization state between T and R.

Case 1. We assume that there is no update in the variable SR between the
i-th query and the j-th query. Let Si be a synchronization state such that Si

T =
Upv(Si

R) for v = 0 or 2. Since addi
T = 1 and addj−1

T = 0, we have Sj−1
T =

Upu(Si
T) for some u ≥ 2. From the message M j

R = (“accept”, ∗), we see that

T (ST) R(SR)

“query”
oo

F (ST)

// SR ← Up2(SR)

F (Up(SR))
ST ← Up2(ST) oo

F (ST)
// SR ← Up2(SR)

F (Up(SR))
ST ← Up2(ST) oo

“accept”
F (ST)

// SR ← Up2(SR)
“accept”

Fig. 8. Message flow of S∗-protocol. The boxed statement is executed only if T and R
are in a synchronization state of type 3.

the variable Sj−1
T is updated on the j-th query, i.e., Sj

T = Up2(Sj−1
T). Then we

obtain a desynchronization state

Sj
T = Upu+2(Si

T) = Upv+u+2(Si
R) = Upv+u+2(Sj

R).

Case 2. We assume that there is an update in the variable SR between the
i-th query and the j-th query. If the h-th query, i ≤ h < j, is the last query
that makes an update of SR, then it should be the case Sh

R = Sj−1
R = Sj−1

T ,
since otherwise we could obtain a desynchronization state in either Sj−1 or
Sj . If Mh

R = “accept”, then revh is set to 0. Then the j-th query results in a
desynchronization state such that Sj

T = Up2(Sj
R) and revj = 0. Otherwise we

have
Mh

R = F(Up(Sh
R)) = F(Up(Sj−1

T)) = M j
Q,

which contradicts the second condition for the transcript to satisfy.
To summarize, we can construct a desynchronization adversary of success

probability at least δ from a reader-impersonation-adversary of success proba-
bility δ. By Theorem 4.1, we obtain the following theorem.

Theorem 5.1. Let S = (Up, F) be a (t, ε, L)-PPRSG for L = (2q + 3)m. For a
reader-impersonation-adversary A(t, q), we have

Pr
K

$←{0,1}d
[A succeeds in a reader-impersonation attack] ≤ 4q

2m
+ ε.

Remark 5.1. The flag rev can be removed in the reader algorithm 7(b) since
it does not affect any response or update of R. The flag rev is only used for
security proof.

6 Conclusion

In this paper, we have proposed S-protocol, an authentication protocol based on
a special class of PRSGs. We also have presented a formal proof of availability
and security of our protocol. Since most existing stream ciphers can be used as
a building block of S-protocol, S-protocol is expected to be suitable for use in
highly constrained environments such as RFID systems. We now pose two open
problems. One is to provide S-protocol with untraceability, as required in many
RFID applications. The other is to reduce the number of rounds of S-protocol
for more efficient communication. As a partial answer to the first question, we
might consider an approach where a tag does not claim its ID in an explicit way,
but a reader identifies the tag in a back-end data base by using the keystream
block transmitted in response to query message.

References

1. F. Arnault, T. P. Berger and C. Lauradoux, Update on F-FCSR stream cipher,
State of the Art of Stream Ciphers 2006(SASC 2006), Workshop Record, pp. 267–
277, February, 2006.

2. G. Avoine, P. Oechslin, A scalable and provably secure hash based RFID protocol,
Workshop on Pervasive Computing and Communication Security(PerSec) 2005,
March 2005.

3. S. Babbage and M. Dodd, The stream cipher MICKEY-128 2.0. eSTREAM,
ECRYPT Stream Cipher Project, 2006.

4. C. De. Canniere and B. Preneel, TRIVIUM-a stream cipher construction inspired
by block cipher design principles. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/030, 2005.

5. T. Dimitriou, A lightweight RFID protocol to protect against traceability and
cloning attacks, Conference on Security and Privacy for Emerging Areas in Com-
munication Networks(SecureComm) 2005, September 2005.

6. M. Feldhofer, S. Dominicus and J. Wolkerstorfer, Strong authentication for RFID
systems using the AES algorithm, Proceedings of CHES ’04, LNCS 3156, pp. 357–
370, 2004.

7. M. Feldhofer, J. Wolkerstorfer and V. Rijmen, AES implementation on a grain of
sand, Information Security, IEE Proceedings, vol. 152, no. 1, pp. 13–20, 2005.

8. O. Goldreish, S. Goldwasser and S. Micali, How to construct pseudorandom func-
tions, Journal of the ACM, 33(4), 1986.

9. T. Good and M. Benaissa, Hardware results for selected stream cipher candidates,
State of the Art of Stream Ciphers 2007(SASC 2007), Workshop Record, pp. 191–
204, February, 2007.

10. H. Gilbert, M. J. B. Robshaw and Y. Seurin, HB#: increasing the security and
efficiency of HB+, Eurocrypt 2008, LNCS 4965, pp. 361–378, Springer, 2008.

11. M. Hell, T. Johansson and W. Meier, Grain - a stream cipher for constrained
environments. eSTREAM, ECRYPT Stream Cipher Project, 2006.

12. D. Henrici and P. Müller, Hash-based enhancement of location privacy for radio-
frequency identification devices using varying identifiers, Workshop on Pervasive
Computing and Communication Security(PerSec) 2004, March 2004.

13. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, J. Kim and S. Chee, HIGHT: a new block cipher suitable for
low-resource device, Proceedings of CHES ’06, LNCS 4249, pp. 46–59, 2006.

14. A. Juels and S. A. Weis, Authenticating pervasive devices with human protocols,
Crypto 2005, LNCS 3126, pp. 293–308, Springer, 2005.

15. A. Kats and J. S. Shin, Parallel and concurrent security of the HB and HB+
protocols, Eurocrypt 2006, LNCS 4004, pp. 73–87, Springer, 2006.

16. T. van Le, M. Burmester and B. de Medeiros, Univerally composable and forward-
secure RFID authentication and authenticated key exchange, Proceedings of
the ACM Symposium on Information, Computer and Communications Secu-
rity(ASIACCS 2007), 2007.

17. M. Ohkubo, K. Suzuki and S. Kinoshita, Efficient hash-chain based RFID privacy
protection scheme, International Conference on Ubiquitous Computing - Ubicomp,
Workshop Privacy: Current Status ans Future Directions, September 2004.

18. A. Poschmann, G. Leander, K. Schramm and C. Paar, New light-weight crypto
algorithms for RFID, Proceedings of the 2007 IEEE International Symposium on
Circuits and Systems, 2007.

19. K. Rhee, J. Kwak, S. Kim and D. Won, Challenge-response based RFID authenti-
cation protocol for distributed database environment, International Conference on
Security in pervasive Computing(SPC) 2005, April 2005.

20. G. Tsudik, YA-TRAP: Yet another trivial RFID authentication protocol, Interna-
tional Conference on Pervasive Computing and Communications(PerCom 2006),
2006.

21. S.A. Weis, S.E. Sarma, R.L. Rivest and D.W. Engels, Security and Privacy As-
pects of Low-Cost Radio Frequency Identification Systems, Security in Pervasive
Computing, International Conference on Security in pervasive Computing(SPC)
2003, March 2003.

