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Abstract. In this paper, we present a new authenticated key exchange(AKE) protocol and
prove its security under the random oracle assumption and the computational Diffie-Hellman(CDH)
assumption. In the extended Canetti-Krawczyk model, there has been no known AKE protocol
based on the CDH assumption. Our protocol, called NAXOS+, is obtained by slightly modify-
ing the NAXOS protocol proposed by LaMacchia, Lauter and Mityagin. We establish a formal
security proof of NAXOS+ in the extended Canetti-Krawczyk model using as a main tool the
trapdoor test presented by Cash, Kiltz and Shoup.
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1 Introduction

Key exchange protocols are cryptographic protocols that allow two parties that share no secret
information in common to establish a secret key via public communication. The most famous
example is the classic Diffie-Hellman(DH) key exchange protocol that marked the birth of
modern cryptography [9]. However, the original DH protocol did not provide authentica-
tion of the communicating parties, suffering from active attacks such as a man-in-the-middle
attack. The quest for an authenticated key exchange(AKE) protocol, that not only allows
parties to compute a shared key but also ensures authenticity of the parties, has resulted in
a considerable amount of research both in security models and protocols [3–5, 10–15, 21, 23].

Security models. A well known security model for authenticated key exchange is the
Cannetti-Krawczyk(CK) model [5]. The CK model lies in a family of indistinguishability-
based proof models including the Bellare-Rogaway model [4], Bellere-Pointcheval-Rogaway
model [3], and their variants. Choo, Boyd and Hitchcock compared these various security
models, and concluded that the CK model offers the strongest definition of security with
some modification of the model [7]. However, all these models commonly based on a strong
assumption that the adversary is not allowed to obtain certain secret information about the
session that is being attacked. As a result, AKE protocols secure in the CK model still might
be vulnerable to key-compromise impersonation attacks or the leakage of ephemeral private
keys. Especially, the latter attack might be practical in a scenario where the random number
generator used by a party is compromised.

Krawczyk later provided a stronger version of the CK model that not only guarantees
resilience to the above attacks, but also achieves weak perfect forward secrecy [11]. However,
this stronger version still does not include attacks such as revelation of both ephemeral pri-
vate keys or both static private keys. Recently, LaMacchia, Lauter and Mityagin proposed an



elegant security model, called henceforth eCK model, that captures all these security proper-
ties [13]. Informally speaking, the only corruption powers that an adversary is not allowed for
in the eCK model are those that would trivially break an authentication protocol. For this
reason, the eCK model is currently regarded as the strongest security model.

AKE protocols and security assumptions. One of the most famous and standardized
AKE protocols is the MQV protocol proposed by Law, Menezes, Qu, Solinas and Van-
stone [15]. However, the construction of the MQV protocol was not based on a formal security
proof. In [11], Krawczyk slightly modified the MQV protocol to obtain the HMQV protocol.
He presented a formal security proof of the HMQV protocol in the stronger version of the CK
model, under the random oracle assumption, the gap Diffie-Hellman(GDH) assumption and
the knowledge of exponent assumption [2]. The NAXOS protocol is the first AKE protocol
whose security is established in the eCK model [13]. One shortcoming of the protocol is that it
requires 4 exponentiations per party compared to 2.5 exponentiations for MQV and HMQV.
Motivated by this observation, Ustaoğlu presented the CMQV protocol that achieves both
efficiency and security [23]. The security proof of NAXOS and CMQV uses only the random
oracle assumption and the GDH assumption, which are weaker than the security assumptions
of HMQV.

Focusing on the attempts to weaken the security assumptions in the analysis of AKE
protocols, Okamoto proposed an AKE protocol that is proven secure without the random
oracle assumption [21]. However, the proof depends upon a rather strong assumption of the
existence of πPRFs. The AKE protocol T S3 proposed by Jeong, Katz and Lee [10] uses
only the decisional Diffie-Hellman(DDH) assumption and the existence of secure message
authentication codes, while we note that the security model is much weaker than the eCK
model.

Contribution. We observe that AKE protocols that are proven secure in the eCK model
commonly use the GDH assumption. The gap Diffie-Hellman problem, first introduced in
[22], is to solve the computational Diffie-Hellman problem with a decision Diffie-Hellman
oracle. Obviously, the GDH assumption is not weaker than the CDH assumption, while the
equivalence of the two hardness assumptions still remains open. Motivated by this observation,
we present a new authenticated key exchange protocol such that the only security assumptions
are the random oracle assumption and the CDH assumption. We obtain our protocol, called
NAXOS+, by slightly modifying the NAXOS protocol. Compared to the original NAXOS
protocol, NAXOS+ requires only one more exponentiation per party. On the other hand,
our protocol enjoys a simple and tight security reduction compared to those of HMQV and
CMQV. The security proof is very similar to that of NAXOS. One main difference is that we
implement the decisional Diffie-Hellman oracle using the trapdoor test, recently presented by
Cash, Kiltz and Shoup [8].

Organization. In the next section, we present a formal description of the security assump-
tions and the eCK model. We describe the NAXOS+ protocol in Section 3, and prove its
security in Section 4. In Section 5, we provide one-pass and three-pass variants of NAXOS+
as well as discussions on certain security aspects.



2 Preliminaries

2.1 Assumption

Let G = 〈g〉 denote a multiplicative cyclic group of prime order q, generated by g ∈ G. The
discrete logarithm function DLOG(·) in G takes as input an element U ∈ G and returns u ∈ Zq

such that U = gu. The computational Diffie-Hellman function CDH(·, ·) takes as input a pair
of elements (U, V ) ∈ G2 and returns gDLOG(U)·DLOG(V ).

Let G∗ denote the set of non-identity elements in G. The advantage of an algorithm S
in solving the discrete logarithm (DLOG) problem, Advdlog(S), is defined to be the prob-
ability that, given U

$← G∗, S correctly returns DLOG(U). Similarly, the advantage of an
algorithm S in solving the computational Diffie-Hellman(CDH) problem, Advcdh(S), is the
probability that, given as input (U, V ) $← (G∗)2, S correctly returns CDH(U, V ). It is obvious
that any DLOG solver can be used in solving the CDH problem. We say that G satisfies
the CDH assumption if no feasible adversary can solve the CDH problem with non-negligible
probability.

2.2 Extended Canetti-Krawzcyk Security Model

In this section, we describe the eCK model focusing on two pass AKE protocols in the random
oracle model. We slightly modify the original model by introducing explicit session identifiers.
We believe that the explicit identifiers would render a simpler description of AKE protocols,
especially for those of three or more passes. We are using the same framework in [17]. For
further details on the eCK model, we refer to [13, 23].

Parties. We fix a set P of n parties, each of which is modeled as a probabilistic Turing
machine that makes queries to a set H = (H1, . . . ,Hl) of independent random oracles. Each
partyA ∈ P is represented by a distinct string of a fixed length, say µ. WhenA ∈ P appears in
a protocol flow or as an argument to a function, we mean the string which names the party.
We assume that each party A stores a static public/private key pair (pkA, skA), together
with a certificate that binds the public key to that party. However, we do not assume that the
certification authority(CA) requires parties to prove possession of their static private keys.

An instance of the protocol executed by a party is called a session. When a party A
creates a new session, A chooses a distinct index i from a set I of indices, and assigns a session
identifier sid = (A, i) ∈ SID to the session, where we denote SID = {0, 1}µ × I. Creation of
a session is made via an incoming message that has one of the forms (A,B) ∈ {0, 1}2µ and
(A, (B, j), Y ) ∈ {0, 1}µ × SID× {0, 1}∗. When A creates a session on a message of the form
(A,B), A is called the initiator of the session, otherwise the responder of the session. The
behavior of a party A is illustrated in Fig. 1. Note that each session sid is associated with
the following three variables.

– esk sid (sometimes denoted eskA). Stores an ephemeral private key of λ bits used in the
computation of the session key for a constant λ.

– Tsid . Records the transcript of the session. The variable takes its value from the set T =
({0, 1}µ)2 × {init, resp} × ({−} ∪ {0, 1}∗)2, where “−” is a special symbol not in {0, 1}∗
that means there is no message associated with the position. Tsid = (A,B, role, X, Y )
means that A executes the session with B as the second party. role = init means that A



is an initiator, and role = resp a responder. X represents an outgoing message from A,
and Y an incoming message to A. We call A the owner of the session, and B the peer of
the session.

– Ksid . Stores the session key of λ bits.

We say that a session sid is complete if Tsid does not contain the symbol “−”. For a complete
session sid with Tsid = (A,B, role, X, Y ), its matching session is defined as a session sid∗ such
that Tsid∗ = (B,A, role ′, Y, X) or (B,A, role′, Y,−), and role 6= role ′. An equivalent session of
sid is defined as a session side such that Tside = Tsid .

Remark 1. For most of existing AKE protocols, the probability that a session sid has an
equivalent session that is not sid itself is negligible. Similarly, each session has more than one
matching session only with negligible probability.

if msg in = (A,B) then
Create a session sid = (A, i), Generate esk sid

Compute an ephemeral public key X, Tsid ← (A,B, init, X,−)
return (B, (A, i), X)

else if msg in = (A, (B, j), Y ) then
Create a session sid = (A, i), Generate esk sid

Compute an ephemeral public key X, Tsid ← (A,B, resp, X, Y )
Compute Ksid

return ((B, j), (A, i), X)
else if msg in = ((A, i), (B, j), Y ) and T(A,i) = (A,B, init, X,−) for some X
then

T(A,i) ← (A,B, init, X, Y )
Compute Ksid

Fig. 1. Behavior of a party A on an incoming message msg in

Adversaries. An adversary M is modeled as a probabilistic Turing machine that makes
oracle queries to honest parties as well as the set H of random oracles. It means that the
adversary is able to control all communications between parties by sending arbitrary messages
to a party on behalf of another party, obtaining responses from the party and/or making
decisions about their delivery. In order to capture possible leakage of private information, we
assume that an adversary is allowed to make the following additional oracle queries.

– EstablishParty(A). Registers an additional party A not in P together with a static public
key on the adversary’s own choice. The parties registered by EstablishParty(·) queries are
called dishonest, while the parties in P called honest. We assume that the adversary is
able to totally control dishonest parties.

– StaticKeyReveal(A). Reveals a static private key of an honest party A.
– EphemeralKeyReveal(sid). Reveals an ephemeral private key of a session sid owned by an

honest party.
– SessionKeyReveal(sid). Reveals a session key of a complete session sid owned by an honest

party.



Experiment. Initially, the adversary M is given a set P of honest parties. M makes any
sequence of the oracle queries described above. At any time in the experiment, M selects
a complete session sid ∈ SID owned by an honest party and makes a query Test(sid). On
the query, that is made only once during the experiment, the experiment answers C ←
SessionKeyReveal(sid) or C

$← {0, 1}λ with the same probability. At the end of the experiment,
M guesses whether the challenge C is random or not. If the test session is clean and if M
makes a correct guess, then we say that M wins the experiment.

Definition 1. Let sid be a complete session with Tsid = (A,B, role, X, Y ), and let sid∗ and
side denote a matching session and an equivalent session of sid, respectively. sid is called
clean if A and B are honest parties, and if none of the following conditions hold.

1. M makes a SessionKeyReveal(side) query,
2. M makes a SessionKeyReveal(sid∗) query, if sid∗ exists,
3. M makes StaticKeyReveal(A) and EphemeralKeyReveal(side) queries,
4. M makes StaticKeyReveal(B) and EphemeralKeyReveal(sid∗) queries, if sid∗ exists,
5. M makes a StaticKeyReveal(B) query, if sid∗ doesn’t exists.

Definition 2 (eCK security [13]). The advantage of the adversary M in the AKE exper-
iment with AKE protocol Π is defined as

Advake
Π (M) = Pr[M wins]− 1

2
.

We say that an AKE protocol is secure in eCK model if matching sessions compute the same
session keys and no efficient adversary M has more than a negligible advantage in winning
the above experiment.

2.3 Trapdoor test

Since we use the trapdoor test as a basic tool for our security proof, we state the theorem
without proof. For further details on the proof and its applications, we refer to [8].

Theorem 1 (Trapdoor test [8]). Let G be a cyclic group of prime order q, generated by
g ∈ G. Suppose U1, r, s are independent random variables, where U1 takes values in G, and
each of r, s is uniformly distributed over Zq, and define the random variable U2 = gs/U r

1 .
Further, suppose that Y , Z1, Z2 are random variables taking values in G, each of which is
independent of r. Then we have

1. U2 is uniformly distributed over G,
2. U1 and U2 are independent,
3. the probability that the truth value of

Zr
1Z2 = Y s

does not agree with the truth value of

(CDH(Y, U1) = Z1) ∧ (CDH(Y, U2) = Z2)

is at most 1/q.



3 NAXOS+ AKE protocol

The NAXOS+ AKE protocol uses a group G = 〈g〉 of prime order q such that the CDH
assumption holds, and two hash functions H1 : {0, 1}λ×Z∗q → Z∗q and H2 : {0, 1}∗ → {0, 1}λ,
where Z∗q = Zq\{0}, λ is a constant such that q = O(2λ), and H1 and H2 are modeled as
independent random oracles. For the simplicity of description, we assume there is a natural
embedding from G to {0, 1}∗. Using the framework of an AKE protocol illustrated in Section
2.2, the NAXOS+ AKE protocol is described as follows.

Static public/private key pair. For each party A, a static private key skA ∈ Z∗q is assigned
uniformly at random. The corresponding public key is defined as pkA = gskA ∈ G∗. When a
party registers its static public key to the CA, the CA checks if the public key is contained in
G∗, and issues the associated certificate. We assume that each party learns the other’s public
key via the certificate whenever a new session is initiated.

Ephemeral public/private key pair. For each session sid , a partyA generates an ephemeral
private key esk sid ∈ {0, 1}λ uniformly at random. The corresponding public key is defined as
X = gH1(eskA,skA) ∈ G. We assume that each party checks if the other’s ephemeral public key
is contained in G∗ on receipt of the key. Note that the value H1(eskA, skA) is not regarded
as an ephemeral key, since H1(eskA, skA) can be computed from eskA and skA whenever
needed.

Session key. In the end of a session sid such that Tsid = (A,B, role, X, Y ), its session key is
defined as Ksid = H2(σ), where

σ = (CDH(pkA, pkB)),CDH(pkA, Y ), CDH(X, pkB), CDH(X,Y ),A,B) ,

if role = init, and

σ = (CDH(pkA, pkB)),CDH(X, pkB), CDH(pkA, Y ), CDH(X,Y ),B,A) ,

if role = resp. Fig. 2 depicts the protocol in a simplified form.

Remark 2. The “public key validation” prevents potential leakage of private information as
shown in invalid-curve attacks [1] and small subgroup attacks [16, 19]. Especially, Menezes and
Ustaoğlu demonstrates the importance of public key validation by investigating the effects of
omitting public-key validation in HMQV and MQV [18, 19]. As long as the underlying group
is cryptographically strong, public key validation provides some assurance that computations
involving its static and ephemeral private keys do not reveal any information about the key
itself [18, 19, 23].

4 Security of NAXOS+

In this section, we present a formal security proof of NAXOS+ protocol under the CDH
assumption and the random oracle assumption.

Let M be an AKE adversary against NAXOS+ who runs in time t and involves n honest
parties. We let k denote the number of sessions that M activates in honest parties, and let



A B

eskA
$← {0, 1}λ X

X ← gH1(eskA,skA) −−−−−−−−−−−−−−−−−−−−→

Y eskB
$← {0, 1}λ

←−−−−−−−−−−−−−−−−−−−− Y ← gH1(eskB,skB)

B : K ← H2(pk
skB
A , pk

H1(eskB,skB)
A , XskB , XH1(eskB,skB),A,B)

A : K ← H2(pk
skA
B , Y skA , pk

H1(eskA,skA)
B , Y H1(eskA,skA),A,B)

Fig. 2. NAXOS+ AKE protocol

m1 and m2 respectively denote the number of queries that M makes to H1 and H2. We now
start by observing that since the session key of the test session is computed as K = H2(σ)
for some 6-tuple σ, the adversary has only two ways to distinguish K from a random string.

– A1: At some point, M queries H2 on the same 6-tuple σ.
– A2: M forces the establishment of another session key that is computed as K = H2(σ)

for the same 6-tuple σ, and then reveal the session key.

The input σ determines the transcript of the session; The session should be either a matching
session or an equivalent session of the test session. Since M is not allowed to make queries
to reveal any session key of the matching sessions or equivalent sessions, event A2 could not
occur. Therefore we conclude that

Advake
NAXOS+(M) ≤ Pr[A1] +

1
2

(1− Pr[A1])− 1
2
, (1)

or
2Advake

NAXOS+(M) ≤ Pr[A1]. (2)

Now we define the following three events.

– E1: There exists an honest party B such that M makes a random oracle query H1(∗, skB),
either before or without making a query StaticKeyReveal(B).

– E2: E1 does not occur, A1 occurs and the test session has a matching session.
– E3: E1 does not occur, A1 occurs and the test session has no matching session.

Then we have
Pr[A1] ≤ Pr[E1] + Pr[E2] + Pr[E3]. (3)

Case 1. In this case, we suppose Pr[E1] = max(Pr[E1], Pr[E2],Pr[E3]), and construct a
DLOG solver S that uses the adversary M as a subroutine. Given a challenge V ∈ G, S
prepares n parties. One party, we call B, is selected at random and assigned static public key
pkB = V . The remaining n − 1 parties are assigned random static key pairs. The solver S
initiates M on this set of parties and awaits the actions of M. When M makes a query to
any party except B, S follows the protocol description. S is also able to respond to the queries
EstablishParty(·) and Test(·) faithfully. Thus we only describe how S simulates the party B
and responds to the other oracle queries including the random oracles H1 and H2.



– Simulation of B: On the incoming messages (B,A) and (B, (A, j), X), S creates a new ses-
sion sid = (B, i) and selects a random ephemeral key esk (B,i) ∈ {0, 1}λ. S selects ri, si ∈ Zq

independently and uniformly at random, except in the case of esk (B,i) = esk (B,i′) for some
previous session (B, i′). For the exception, S sets ri = ri′ and si = si′ . Then S presents
M with the outgoing messages (A, (B, i), gsi/V ri) for (B,A) and ((A, j), (B, i), gsi/V ri)
for (B, (A, j), X), respectively. On the incoming message ((B, i), (A, j), X), S makes no
response.

– StaticKeyReveal(A): If A = B, then S aborts. Otherwise, S submits the static private key
that S has generated in the initialization phase.

– EphemeralKeyReveal(sid): S submits the value esk sid selected for sid.
– SessionKeyReveal(sid): S submits the value Ksid selected as follows.

• If sid is not owned by B, then S is able to compute the input σ such that Ksid = H2(σ).
Then S computes H2(σ) following the recipe of H2 described below.

• If sid is owned by B, then S checks if there is a previous session with the same transcript
as sid , in which case the previous session key is selected as Ksid .

• Otherwise, let Tsid = (B,A, role, gsi/V ri , X) and role = resp. Then the session key
should be computed as Ksid = H2(σ), where

σ =
(

CDH(pkA, V ), CDH(pkA,
gsi

V ri
), CDH(X, V ),CDH(X,

gsi

V ri
),A,B

)
.

S checks if H2 was queried with (W1,W2, Z1, Z2,A,B) such that

W ri
1 W2 = pk si

A and Zri
1 Z2 = Xsi ,

in which case the answer to that query is selected as the session key. If no such query
was made, then S assigns a random value to Ksid . For the case role = init, Ksid is
selected in an analogous way.

– H1(x, y): S checks if gy ?= V . If this is the case, S succeeds in computing DLOG(V ).
Otherwise, S submits a random value by lazy sampling.

– H2(σ): S submits the value H2(σ) selected as follows.
• S checks if H2 was queried with the same input before, in which case the answer to

the previous query is selected as H2(σ).
• If σ = (W1,W2, Z1, Z2,A,B) for some A, Wj and Zj , j = 1, 2, then S checks if

SessionKeyReveal(·) was queried with any sid of Tsid = (B,A, resp, gsi/V ri , X) such
that

W ri
1 W2 = pk si

A and Zri
1 Z2 = Xsi ,

in which case the session key is selected as H2(σ). For the case σ = (W1, Z1,W2, Z2,B,A)
for some A, Wj and Zj , j = 1, 2, H2(σ) is selected in an analogous way.

• Otherwise, S selects a random value as H2(σ).

We observe the probability that some trapdoor test yields an incorrect answer is at most
2km2/q. If every trapdoor test is correct, S perfectly simulates the M’s environment until
M queries StaticKeyReveal(B). Since in a perfect simulation M will query H1(∗,DLOG(V ))
without first issuing a StaticKeyReveal(B) query with probability Pr[E1]/n, we can estimate
the success probability of S as follows.

Advdlog(S) ≥ Pr[E1]
n

− 2km2

q
≥ 2

3n
Advake

NAXOS+(M)− 2km2

q
. (4)



Note that the solver S runs in time

tS = O(t + nλ + kλ︸ ︷︷ ︸
preparation of
public keys

+

simulation of H1︷ ︸︸ ︷
m1λ + m2

1 + k2 + m2kλ + m2
2 + k2

︸ ︷︷ ︸
simulation of H2

and SessionKeyReveal(·)

), (5)

since a group exponentiation takes time O(λ).

Case 2. In this case, we suppose Pr[E2] = max(Pr[E1], Pr[E2],Pr[E3]), and construct a
Diffie-Hellman solver S that uses the adversaryM as a subroutine. Given challenges U, V ∈ G,
S prepares n parties and assigns random static key pairs. S faithfully responds to any query
fromM, with the only difference being that S chooses two sessions sid and sid∗ independently
and uniformly at random, and sets their ephemeral public keys as

U = gH1(esksid ,skA) and V = gH1(esksid∗ ,skB). (6)

Here we suppose sessions sid and sid∗ are owned by A and B, respectively.
With probability 2Pr[E2]/k2, one of the two sessions is the test session, the other its

matching session, andM queries H2 with σ = (∗, ∗, ∗, Z, ∗, ∗) such that Z = CDH(U, V ). Since
S cannot check if Z

?= CDH(U, V ), S selects one query uniformly at random from the set of
m2 queries that it makes to H2. Now the only remaining concern is that M distinguishes the
simulated experiment from a true experiment. The only way to do so is to query (esk sid , skA)
or (esk sid∗ , skB) to H1, and check if the equalities (6) hold. Since sid is a clean session, M
should query for at most one of the values in each pair (esk sid , skA) and (esk sid∗ , skB). If
M reveals esk sid via an EphemeralKeyReveal(·) query, then M cannot query (esk sid , skA) to
H1 since we exclude the possibility of event E1. Without an EphemeralKeyReveal(·) query,
M cannot obtain any information about esk sid since esk sid is used in only one session. The
same argument applying to esk sid∗ , we conclude that the probability that M correctly makes
a random guess for one of esk sid and esk sid∗ , and then query the random oracle H1 with
(esk sid , skA) or (esk sid∗ , skB) is at most (k + m1) /2λ−1. Now the success probability and the
run time of S are estimated as

Advcdh(S) ≥ 2Pr[E2]
m2k2

(
1− k + m1

2λ−1

)
≥ 4Advake

NAXOS+(M)
3m2k2

(
1− k + m1

2λ−1

)
, (7)

and
tS = O

(
t + nλ + kλ + m2

1 + m2
2 + k2

)
, (8)

respectively.

Case 3. In this case, we suppose Pr[E3] = max(Pr[E1], Pr[E2], Pr[E3]), and construct a CDH
solver S that uses the adversary M as a subroutine. Given challenges U, V ∈ G, S prepares n
parties. One party, we call B, is selected at random and assigned static public key pkB = V .
The remaining n−1 parties are assigned random static key pairs. S also chooses a session sid
uniformly at random, and sets its ephemeral public key as U = gH1(esksid ,skA). The simulation
of S is exactly the same as Case 1, with the only difference being that S does not check if it
obtained DLOG(V ) on a query H1(x, y), and S aborts if SessionKeyReveal(·) is queried with
sid .



Now S perfectly simulates the random oracle H2 except with probability 2km2/q. In a
perfect simulation of M’s environment, with probability Pr[E3]/nk, sid is the test session
with a peer B, and M queries H2 with σ = (∗, ∗, Z, ∗,A,B) or σ = (∗, Z, ∗, ∗,B,A) such
that Z = CDH(U, V ). Since S cannot check if Z

?= CDH(U, V ), S selects one query uniformly
at random from the set of m2 queries that it makes to H2. The only remaining possibility
that we should exclude is that M queries (esk sid , skA) to H1, and check if the equality
U = gH1(esksid ,skA) holds. This event occurs with probability at most (k + m1) /2λ−1, on the
condition that event E3 occurs with the test session sid and B is the peer of sid . Therefore
we can estimate the success probability of S as follows.

Advcdh(S) ≥ Pr[E3]
m2nk

(
1− k + m1

2λ−1

)
− 2km2

q

≥ 2 Advake
NAXOS+(M)
3m2nk

(
1− k + m1

2λ−1

)
− 2km2

q
. (9)

The solver S runs in time

tS = O
(
t + nλ + kλ + m2

1 + m2kλ + m2
2 + k2

)
. (10)

To summarize, we obtain the following theorem.

Theorem 2. If H1 and H2 are independent random oracles, and G is a group where the
CDH assumption holds, then the NAXOS+ AKE protocol satisfies eCK security.

5 Discussion

One-pass variant of NAXOS+ Here we present a natural one-pass variant of NAXOS+.
For a detailed description of the eCK model for one-pass AKE protocols, we refer to [23].
Figure 3 depicts the protocol in a simplified form. The security is proved under the GDH
assumption, while the security under the CDH assumption is open.

A B

eskA
$← {0, 1}λ X

X ← gH1(eskA,skA) −−−−−−−−−−−−−−−−−−−−→

A : K ← H2(pk
skA
B , pk

H1(eskA,skA)
B ,A,B)

B : K ← H2(pk
skB
A , XskB ,A,B)

Fig. 3. One-pass variant of NAXOS+

Three-pass variant of NAXOS+ The two-pass NASOX+ protocol does not provide as-
surance that the intended communicating peer has computed the session key. To address this
issue, we add one more pass of message to NAXOS+ to obtain a three-pass variant, called



NAXOS+C. NAXOS+C involves a message authentication code(MAC) to construct a confir-
mation message. The MAC is generated by an additional hash function H3 : {0, 1}∗ → {0, 1}λ,
independent from H1 and H2. The NAXOS+C protocol also provides for full perfect forward
secrecy. Figure 4 depicts the protocol in a simplified form.

A B

eskA
$← {0, 1}λ X

X ← gH1(eskA,skA) −−−−−−−−−−−−−−−−−−−−→
eskB

$← {0, 1}λ

(Y, tB) Y ← gH1(eskB,skB)

Check tB = H3(σ, resp) ←−−−−−−−−−−−−−−−−−−−− tB ← H3(σ, resp)

tA
tA ← H3(σ, init) −−−−−−−−−−−−−−−−−−−−→ Check tA = H3(σ, init)

B : σ ← (pk skB
A , pk

H1(eskB,skB)
A , XskB , XH1(eskB,skB),A,B), K ← H2(σ)

A : σ ← (pk skA
B , Y skA , pk

H1(eskA,skA)
B , Y H1(eskA,skA),A,B), K ← H2(σ)

Fig. 4. Three-pass variant of NAXOS+

Precomputation of static pairwise keys Any pair of parties A and B might precompute
their pairwise static key CDH(pkA, pkB) in order to reduce the on-line computational overload
required during a session. In this case, the possibility of revelation of the pairwise static key
should be captured in the security model. By slightly modifying the eCK model and the
security proof of NAXOS+, we can prove that if every party is honest, then NAXOS+ remains
secure against revelation of the pairwise static key.

Post-specified peer model In general, AKE protocols are analyzed in the pre-specified peer
model, wherein it is assumed that a party knows the identifier of its intended communicating
peer when it commences a run of the protocol. On the other hand, in the post-specified
peer model which is introduced by Canetti and Krawczyk [6], a party initiates a new session
knowing only a destination address of the communicating peer, and learns the peer’s identifier
during the execution of the protocol. Recently, Menezes and Ustaoğlu compared the Canetti-
Krawczyk pre- and post-specified peer models, and demonstrated that security in one model
does not guarantee security or even executability in the other model [20]. As an example,
they presented an unknown key-share attack on the HMQV protocol in the post-specified
peer model.

The NAXOS+ protocol is easily adapted with minor changes to be executable in the
post-specified peer model. Furthermore, the resulting protocol resists the unknown key share
attack presented in [20] since the identifiers of the communicating parties are included in the
key derivation function.
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