
An Efficient Authenticated Key Exchange Protocol with a
Tight Security Reduction

Jooyoung Lee and Choon Sik Park

The Attached Institute of Electronics and Telecommunications Research Institute
Yuseong-gu, Daejeon, Korea 305-390

{jlee05,csp}@ensec.re.kr

Abstract. In this paper, we present a new authenticated key exchange(AKE) protocol, called
NETS, and prove its security in the extended Canetti-Krawczyk model under the random oracle
assumption and the gap Diffie-Hellman(GDH) assumption. Our protocol enjoys a simple and
tight security reduction compared to those of HMQV and CMQV without using the Forking
Lemma. Each session of the NETS protocol requires only three exponentiations per party, which
is comparable to the efficiency of MQV, HMQV and CMQV.

Key words: authenticated key exchange, Gap Diffie-Hellman assumption, extended Canetti-
Krawzcyk model

1 Introduction

Key exchange protocols are cryptographic protocols that allow two parties that share no secret
information in common to establish a secret key via public communication. The most famous
example is the classic Diffie-Hellman(DH) key exchange protocol that marked the birth of
modern cryptography [7]. However, the original DH protocol did not provide authentica-
tion of the communicating parties, suffering from active attacks such as a man-in-the-middle
attack. The quest for an authenticated key exchange(AKE) protocol, that not only allows
parties to compute a shared key but also ensures authenticity of the parties, has resulted in
a considerable amount of research both in security models and protocols [3–5, 8–13, 19, 22].

Security models. A well known security model for authenticated key exchange is the
Cannetti-Krawczyk(CK) model [5]. The CK model lies in a family of indistinguishability-
based proof models including the Bellare-Rogaway model [4], Bellere-Pointcheval-Rogaway
model [3], and their variants. Choo, Boyd and Hitchcock compared these various security
models, and concluded that the CK model offers the strongest definition of security with
some modification of the model [6]. However, all these models commonly based on a strong
assumption that the adversary is not allowed to obtain certain secret information about the
session that is being attacked. As a result, AKE protocols secure in the CK model still might
be vulnerable to key-compromise impersonation(KCI) attacks or the leakage of ephemeral
private keys(LEP). Especially, the latter attack might be practical in a scenario where the
random number generator used by a party is compromised.

Krawczyk later provided a stronger version of the CK model that not only guarantees re-
silience to the above attacks, but also achieves weak perfect forward secrecy(wPFS) [9]. How-
ever, this stronger version still does not include attacks such as revelation of both ephemeral
private keys or both static private keys. Recently, LaMacchia, Lauter and Mityagin proposed
an elegant security model, called henceforth eCK model, that captures all these security prop-
erties [11]. Informally speaking, the only corruption powers that an adversary is not allowed



for in the eCK model are those that would trivially break an authentication protocol. For this
reason, the eCK model is currently regarded as the strongest security model.

AKE protocols and security assumptions. One of the most famous and standardized
AKE protocols is the MQV protocol proposed by Law, Menezes, Qu, Solinas and Van-
stone [13]. However, the construction of the MQV protocol was not based on a formal security
proof. In [9], Krawczyk slightly modified the MQV protocol to obtain the HMQV protocol.
He presented a formal security proof of the HMQV protocol in the stronger version of the
CK model, under the random oracle assumption, the gap Diffie-Hellman(GDH) assumption
and the knowledge of exponent assumption(KEA1) [2]. The NAXOS protocol is the first AKE
protocol whose security is established in the eCK model [11]. One shortcoming of the protocol
is that it requires 4 exponentiations per party compared to 2.5 exponentiations for MQV and
HMQV. Motivated by this observation, Ustaoğlu presented the CMQV protocol that achieves
both efficiency and security [22]. The security proof of NAXOS and CMQV uses only the
random oracle assumption and the GDH assumption, which are weaker than the security
assumptions of HMQV.

Focusing on the attempts to weaken the security assumptions in the analysis of AKE
protocols, Okamoto proposed an AKE protocol that is proven secure without the random
oracle assumption [19]. However, the proof depends upon a rather strong assumption of the
existence of πPRFs. The AKE protocol T S3 proposed by Jeong, Katz and Lee [8] uses
only the decisional Diffie-Hellman(DDH) assumption and the existence of secure message
authentication codes, while we note that the security model is much weaker than the eCK
model. In [15], Lee and Park proposed the NAXOS+ protocol and proved its security under
the CDH assumption. A major drawback of NAXOS+ is that each session of the protocol
requires 5 exponentiations per party, showing less efficiency compared to existing protocols.

Contribution. In [22], the author posed an open problem of finding an AKE protocol that
“acheives the performance of MQV and at the same time enjoys a security reduction that
is as tight as the security reduction for NAXOS.” We provide for a partial answer to the
problem by presenting a new AKE protocol, called NETS. NETS is proven secure in the
extended Canetti-Krawczyk model under the random oracle assumption and the gap Diffie-
Hellman(GDH) assumption. NETS enjoys a simple and tight security reduction, which is
similar to the proof of NAXOS. Furthermore, each session of the NETS protocol requires
only 3 exponentiations per party, which is comparable to the efficiency of MQV, HMQV and
CMQV. Table 1 compares the existing AKE protocols in terms of efficiency, security and
underlying assumptions. Here RO is short for the random oracle assumption, and the other
abbreviations are described in the text.

Remark 1. We note that the input to the key derivation function is computed by simultaneous
double exponentiation for MQV, HMQV and CMQV. As analyzed in [22], the computation
can be speeded up via Shamir’s algorithm, reducing the cost by 0.75 exponentiations on
average. Unfortunately, the speed up does not apply to the NETS protocol.

Organization. In the next section, we present a formal description of the security assump-
tions and the eCK model. We describe the NETS protocol in Section 3, and prove its security
in Section 4. Section 5 concludes.



Protocol Efficiency Security Assumptions

MQV 2.5 unproven -
HMQV 2.5 CK, wPFS, KCI, LEP KEA1, GDH, RO
KEA+ 3 CK, KCI GDH, RO
NAXOS 4 eCK GDH, RO
CMQV 3 eCK GDH, RO

NAXOS+ 5 eCK CDH, RO
NETS 3 eCK GDH, RO

Table 1. Protocol comparison

2 Preliminaries

2.1 Assumption

Let G = 〈g〉 denote a multiplicative cyclic group of prime order q, generated by g ∈ G. We
define the following three functions, called respectively the discrete logarithm function, the
computational Diffie-Hellman function, and the decisional Diffie-Hellman function.

DLOG : G −→ Zq

U 7−→ u such that U = gu,
(1)

CDH : G2 −→ Zq

(U, V ) 7−→ gDLOG(U)·DLOG(V ),
(2)

and
DDH : G3 −→ Zq

(U, V,W ) 7−→
{

1, if CDH(U, V ) = W ,
0, otherwise.

(3)

Let G∗ denote the set of non-identity elements in G. The advantage of an algorithm S in
solving the discrete logarithm (DLOG) problem, Advdlog(S), is defined to be the probability
that, given U

$← G∗, S correctly returns DLOG(U). Similarly, the advantage of an algorithm
S in solving the gap Diffie-Hellman(GDH) problem, Advgdh(S), is the probability that, given
as input (U, V ) $← (G∗)2 and oracle access to DDH(·, ·, ·), S correctly returns CDH(U, V ). We
say that G satisfies the GDH assumption if no feasible adversary can solve the GDH problem
with non-negligible probability.

2.2 Extended Canetti-Krawzcyk Security Model

In this section, we describe the eCK model focusing on two pass AKE protocols in the random
oracle model. We slightly modify the original model by introducing explicit session identifiers.
We believe that the explicit identifiers would render a simpler description of AKE protocols,
especially for those of three or more passes. We are using the same framework in [15]. For
further details on the eCK model, we refer to [11, 22].



Parties. We fix a set P of n parties, each of which is modeled as a probabilistic Turing
machine that makes queries to a set H = (H1, . . . ,Hl) of independent random oracles. Each
partyA ∈ P is represented by a distinct string of a fixed length, say µ. WhenA ∈ P appears in
a protocol flow or as an argument to a function, we mean the string which names the party.
We assume that each party A stores a static public/private key pair (pkA, skA), together
with a certificate that binds the public key to that party. However, we do not assume that the
certification authority(CA) requires parties to prove possession of their static private keys.

An instance of the protocol executed by a party is called a session. When a party A
creates a new session, A chooses a distinct index i from a set I of indices, and assigns a session
identifier sid = (A, i) ∈ SID to the session, where we denote SID = {0, 1}µ × I. Creation of
a session is made via an incoming message that has one of the forms (A,B) ∈ {0, 1}2µ and
(A, (B, j), Y ) ∈ {0, 1}µ × SID× {0, 1}∗. When A creates a session on a message of the form
(A,B), A is called the initiator of the session, otherwise the responder of the session. The
behavior of a party A is illustrated in Fig. 1. Note that each session sid is associated with
the following three variables.

– esk sid (sometimes denoted eskA). Stores an ephemeral private key of λ bits used in the
computation of the session key for a constant λ.

– Tsid . Records the transcript of the session. The variable takes its value from the set T =
({0, 1}µ)2 × {init, resp} × ({−} ∪ {0, 1}∗)2, where “−” is a special symbol not in {0, 1}∗
that means there is no message associated with the position. Tsid = (A,B, role, X, Y )
means that A executes the session with B as the second party. role = init means that A
is an initiator, and role = resp a responder. X represents an outgoing message from A,
and Y an incoming message to A. We call A the owner of the session, and B the peer of
the session.

– Ksid . Stores the session key of λ bits.

We say that a session sid is complete if Tsid does not contain the symbol “−”. For a complete
session sid with Tsid = (A,B, role, X, Y ), its matching session is defined as a session sid∗ such
that Tsid∗ = (B,A, role ′, Y, X) or (B,A, role′, Y,−), and role 6= role ′. An equivalent session of
sid is defined as a session side such that Tside = Tsid .

Remark 2. For most of existing AKE protocols, the probability that a session sid has an
equivalent session that is not sid itself is negligible. Similarly, each session has more than one
matching session only with negligible probability.

Adversaries. An adversary M is modeled as a probabilistic Turing machine that makes
oracle queries to honest parties as well as the set H of random oracles. It means that the
adversary is able to control all communications between parties by sending arbitrary messages
to a party on behalf of another party, obtaining responses from the party and/or making
decisions about their delivery. In order to capture possible leakage of private information, we
assume that an adversary is allowed to make the following additional oracle queries.

– EstablishParty(A). Registers an additional party A not in P together with a static public
key on the adversary’s own choice. The parties registered by EstablishParty(·) queries are
called dishonest, while the parties in P called honest. We assume that the adversary is
able to totally control dishonest parties.

– StaticKeyReveal(A). Reveals a static private key of an honest party A.



if msg in = (A,B) then
Create a session sid = (A, i), Generate esk sid

Compute an ephemeral public key X, Tsid ← (A,B, init, X,−)
return (B, (A, i), X)

else if msg in = (A, (B, j), Y ) then
Create a session sid = (A, i), Generate esk sid

Compute an ephemeral public key X, Tsid ← (A,B, resp, X, Y )
Compute Ksid

return ((B, j), (A, i), X)
else if msg in = ((A, i), (B, j), Y ) and T(A,i) = (A,B, init, X,−) for some X
then

T(A,i) ← (A,B, init, X, Y )
Compute Ksid

Fig. 1. Behavior of a party A on an incoming message msg in

– EphemeralKeyReveal(sid). Reveals an ephemeral private key of a session sid owned by an
honest party.

– SessionKeyReveal(sid). Reveals a session key of a complete session sid owned by an honest
party.

Experiment. Initially, the adversary M is given a set P of honest parties. M makes any
sequence of the oracle queries described above. At any time in the experiment, M selects
a complete session sid ∈ SID owned by an honest party and makes a query Test(sid). On
the query, that is made only once during the experiment, the experiment answers C ←
SessionKeyReveal(sid) or C

$← {0, 1}λ with the same probability. At the end of the experiment,
M guesses whether the challenge C is random or not. If the test session is clean and if M
makes a correct guess, then we say that M wins the experiment.

Definition 1. Let sid be a complete session with Tsid = (A,B, role, X, Y ), and let sid∗ and
side denote a matching session and an equivalent session of sid, respectively. sid is called
clean if A and B are honest parties, and if none of the following conditions hold.

1. M makes a SessionKeyReveal(side) query,
2. M makes a SessionKeyReveal(sid∗) query, if sid∗ exists,
3. M makes StaticKeyReveal(A) and EphemeralKeyReveal(side) queries,
4. M makes StaticKeyReveal(B) and EphemeralKeyReveal(sid∗) queries, if sid∗ exists,
5. M makes a StaticKeyReveal(B) query, if sid∗ doesn’t exists.

Definition 2 (eCK security [11]). The advantage of the adversary M in the AKE exper-
iment with AKE protocol Π is defined as

Advake
Π (M) = Pr[M wins]− 1

2
.

We say that an AKE protocol is secure in eCK model if matching sessions compute the same
session keys and no efficient adversary M has more than a negligible advantage in winning
the above experiment.



3 NETS AKE protocol

The NETS AKE protocol uses a group G = 〈g〉 of prime order q such that the GDH as-
sumption holds, and two hash functions H1 : {0, 1}λ × Z∗q → Z∗q and H2 : {0, 1}∗ → {0, 1}λ,
where Z∗q = Zq\{0}, λ is a constant such that q = O(2λ), and H1 and H2 are modeled as
independent random oracles. For the simplicity of description, we assume there is a natural
embedding from G to {0, 1}∗. Using the framework of an AKE protocol illustrated in Section
2.2, the NETS AKE protocol is described as follows.

Static public/private key pair. For each party A, a static private key skA ∈ Z∗q is assigned
uniformly at random. The corresponding public key is defined as pkA = gskA ∈ G∗. When a
party registers its static public key to the CA, the CA checks if the public key is contained in
G∗, and issues the associated certificate. We assume that each party learns the other’s public
key via the certificate whenever a new session is initiated.

Ephemeral public/private key pair. For each session sid , a partyA generates an ephemeral
private key esk sid ∈ {0, 1}λ uniformly at random. The corresponding public key is defined as
X = gH1(eskA,skA) ∈ G. We assume that each party checks if the other’s ephemeral public key
is contained in G∗ on receipt of the key. Note that the value H1(eskA, skA) is not regarded
as an ephemeral key, since H1(eskA, skA) can be computed from eskA and skA whenever
needed.

Session key. In the end of a session sid such that Tsid = (A,B, role, X, Y ), its session key is
defined as Ksid = H2(σ), where

σ = (CDH(pkAX, pkBY ),CDH(X,Y ), X, Y,A,B) ,

if role = init, and

σ = (CDH(pkAX, pkBY ),CDH(X,Y ), Y, X,B,A) ,

if role = resp. Fig. 2 depicts the protocol in a simplified form.

Remark 3. The “public key validation” prevents potential leakage of private information as
shown in invalid-curve attacks [1] and small subgroup attacks [14, 17]. Especially, Menezes and
Ustaoğlu demonstrates the importance of public key validation by investigating the effects of
omitting public-key validation in HMQV and MQV [16, 17]. As long as the underlying group
is cryptographically strong, public key validation provides some assurance that computations
involving its static and ephemeral private keys do not reveal any information about the key
itself [16, 17, 22].

4 Security of NETS protocol

In this section, we present a formal security proof of NETS protocol under the GDH assump-
tion and the random oracle assumption.

Let M be an AKE adversary against NETS who runs in time t and involves n honest
parties. We let k denote the number of sessions that M activates in honest parties, and let



A B

eskA
$← {0, 1}λ X

X ← gH1(eskA,skA) −−−−−−−−−−−−−−−−−−−−→

Y eskB
$← {0, 1}λ

←−−−−−−−−−−−−−−−−−−−− Y ← gH1(eskB,skB)

B : K ← H2((pkAX)skB+H1(eskB,skB), XH1(eskB,skB), X, Y,A,B)

A : K ← H2((pkBY )skA+H1(eskA,skA), Y H1(eskA,skA), X, Y,A,B)

Fig. 2. NETS AKE protocol

m1 and m2 respectively denote the number of queries that M makes to H1 and H2. We now
start by observing that since the session key of the test session is computed as K = H2(σ)
for some 6-tuple σ, the adversary has only two ways to distinguish K from a random string.

– A1: At some point, M queries H2 on the same 6-tuple σ.
– A2: M forces the establishment of another session key that is computed as K = H2(σ)

for the same 6-tuple σ, and then reveal the session key.

The input σ determines the transcript of the session; The session should be either a matching
session or an equivalent session of the test session. Since M is not allowed to make queries
to reveal any session key of the matching sessions or equivalent sessions, event A2 could not
occur. Therefore we conclude that

Advake
NETS(M) ≤ Pr[A1] +

1
2

(1− Pr[A1])− 1
2
, (4)

or
2Advake

NETS(M) ≤ Pr[A1]. (5)

Now we define the following three events.

– E1: There exists an honest party B such that M makes a random oracle query H1(∗, skB),
either before or without making a query StaticKeyReveal(B).

– E2: E1 does not occur, A1 occurs and the test session has a matching session.
– E3: E1 does not occur, A1 occurs and the test session has no matching session.

Then we have
Pr[A1] ≤ Pr[E1] + Pr[E2] + Pr[E3]. (6)

Case 1. In this case, we suppose Pr[E1] = max(Pr[E1], Pr[E2],Pr[E3]), and construct a
DLOG solver S that uses the adversary M as a subroutine. Given a challenge V ∈ G, S
prepares n parties. One party, we call B, is selected at random and assigned static public key
pkB = V . The remaining n − 1 parties are assigned random static key pairs. The solver S
initiates M on this set of parties and awaits the actions of M. When M makes a query to
any party except B, S follows the protocol description. S is also able to respond to the queries
EstablishParty(·) and Test(·) faithfully. Thus we only describe how S simulates the party B
and responds to the other oracle queries including the random oracles H1 and H2.



– Simulation of B: On the incoming messages (B,A) and (B, (A, j), X), S creates a new
session sid = (B, i) and selects a random ephemeral key esk (B,i) ∈ {0, 1}λ. S selects Yi ∈ G
independently and uniformly at random, except in the case of esk (B,i) = esk (B,i′) for some
previous session (B, i′). For the exception, S sets Yi = Yi′ . Then S presents M with
the outgoing messages (A, (B, i), Yi) for (B,A) and ((A, j), (B, i), Yi) for (B, (A, j), X),
respectively. On the incoming message ((B, i), (A, j), X), S makes no response.

– StaticKeyReveal(A): If A = B, then S aborts. Otherwise, S submits the static private key
that S has generated in the initialization phase.

– EphemeralKeyReveal(sid): S submits the value esk sid selected for sid.
– SessionKeyReveal(sid): S submits the value Ksid selected as follows.

• If sid is not owned by B, then S is able to compute the input σ such that Ksid = H2(σ).
Then S computes H2(σ) following the recipe of H2 described below.

• If sid is owned by B, then S checks if there is a previous session with the same transcript
as sid , in which case the previous session key is selected as Ksid .

• Otherwise, let Tsid = (B,A, role, Yi, X) and role = resp. Then the session key should
be computed as Ksid = H2(σ), where

σ = (CDH(pkAX, pkBYi), CDH(X, Yi), X, Yi,A,B) .

S checks if H2 was queried with (W1,W2, X, Yi,A,B) such that

DDH(pkAX, pkBYi,W1) = 1 and DDH(X, Yi,W2) = 1,

in which case the answer to that query is selected as the session key. If no such query
was made, then S assigns a random value to Ksid . For the case role = init, Ksid is
selected in an analogous way.

– H1(x, y): S checks if gy ?= V . If this is the case, S succeeds in computing DLOG(V ).
Otherwise, S submits a random value by lazy sampling.

– H2(σ): S submits the value H2(σ) selected as follows.
• S checks if H2 was queried with the same input before, in which case the answer to

the previous query is selected as H2(σ).
• If σ = (W1,W2, Z1, Z2,A,B) for some A, Wj and Zj , j = 1, 2, then S checks if

SessionKeyReveal(·) was queried with any sid of Tsid = (B,A, resp, Yi, X) such that

DDH(pkAX, pkBYi,W1) = 1 and DDH(X, Yi,W2) = 1,

in which case the session key is selected as H2(σ). For the case σ = (W1, Z1,W2, Z2,B,A)
for some A, Wj and Zj , j = 1, 2, H2(σ) is selected in an analogous way.

• Otherwise, S selects a random value as H2(σ).

Now S perfectly simulates theM’s environment untilM queries StaticKeyReveal(B). Since
in a perfect simulationM will query H1(∗,DLOG(V )) without first issuing a StaticKeyReveal(B)
query with probability Pr[E1]/n, we can estimate the success probability of S as follows.

Advdlog(S) ≥ Pr[E1]
n

≥ 2
3n

Advake
NETS(M). (7)

Note that the solver S runs in time

tS = O(t + nλ + kλ︸ ︷︷ ︸
preparation of
public keys

+

simulation of H1︷ ︸︸ ︷
m1λ + m2

1 + k2 + m2k + m2
2 + k2

︸ ︷︷ ︸
simulation of H2

and SessionKeyReveal(·)

), (8)

since a group exponentiation takes time O(λ).



Case 2. In this case, we suppose Pr[E2] = max(Pr[E1], Pr[E2],Pr[E3]), and construct a
Diffie-Hellman solver S that uses the adversaryM as a subroutine. Given challenges U, V ∈ G,
S prepares n parties and assigns random static key pairs. S faithfully responds to any query
fromM, with the only difference being that S chooses two sessions sid and sid∗ independently
and uniformly at random, and sets their ephemeral public keys as

U = gH1(esksid ,skA) and V = gH1(esksid∗ ,skB). (9)

Here we suppose sessions sid and sid∗ are owned by A and B, respectively.
With probability 2Pr[E2]/k2, one of the two sessions is the test session, the other its

matching session, andM queries H2 with σ that contains CDH(U, V ) as a substring. However,
we have to exclude the possibility that M distinguishes the simulated experiment from a
true experiment. The only way to do so is to query (esk sid , skA) or (esk sid∗ , skB) to H1,
and check if the equalities (9) hold. Since sid is a clean session, M should query for at
most one of the values in each pair (esk sid , skA) and (esk sid∗ , skB). If M reveals esk sid via
an EphemeralKeyReveal(·) query, then M cannot query (esk sid , skA) to H1 since we exclude
the possibility of event E1. Without an EphemeralKeyReveal(·) query, M cannot obtain any
information about esk sid since esk sid is used in only one session. The same argument applying
to esk sid∗ , we conclude that the probability that M correctly makes a random guess for one
of esk sid and esk sid∗ , and then query the random oracle H1 with (esk sid , skA) or (esk sid∗ , skB)
is at most (k + m1) /2λ−1. Now the success probability and the run time of S are estimated
as

Advcdh(S) ≥ 2Pr[E2]
k2

(
1− k + m1

2λ−1

)
≥ 4 Advake

NETS(M)
3k2

(
1− k + m1

2λ−1

)
, (10)

and
tS = O

(
t + nλ + kλ + m2

1 + m2
2 + k2

)
, (11)

respectively.

Case 3. In this case, we suppose Pr[E3] = max(Pr[E1], Pr[E2], Pr[E3]), and construct a CDH
solver S that uses the adversary M as a subroutine. Given challenges U, V ∈ G, S prepares n
parties. One party, we call B, is selected at random and assigned static public key pkB = V .
The remaining n−1 parties are assigned random static key pairs. S also chooses a session sid
uniformly at random, and sets its ephemeral public key as U = gH1(esksid ,skA). The simulation
of S is exactly the same as Case 1, with the only difference being that S does not check if it
obtained DLOG(V ) on a query H1(x, y), and S aborts if SessionKeyReveal(·) is queried with
sid .

Now S perfectly simulates the random oracle H2. In a perfect simulation of M’s environ-
ment, with probability Pr[E3]/nk, sid is the test session with a peer B, and M queries H2

with σ that contains (CDH(pkAU, V Yi),CDH(U, Yi)) as a substring. Since

CDH(pkAU, V Yi) = CDH(pkA, V )CDH(pkA, Yi)CDH(U, V )CDH(U, Yi), (12)

and CDH(pkA, V ) and CDH(pkA, Yi) are obtained using the exponent skA, S can com-
pute CDH(U, V ). The only remaining possibility that we should exclude is that M queries
(esk sid , skA) to H1, and check if the equality U = gH1(esksid ,skA) holds. This event occurs
with probability at most (k + m1) /2λ−1, on the condition that event E3 occurs with the test



session sid and B is the peer of sid . Therefore we can estimate the success probability of S
as follows.

Advcdh(S) ≥ Pr[E3]
nk

(
1− k + m1

2λ−1

)

≥ 2Advake
NETS(M)
3nk

(
1− k + m1

2λ−1

)
. (13)

The solver S runs in time

tS = O
(
t + nλ + kλ + m2

1 + m2k + m2
2 + k2

)
. (14)

Remark 4. When we compute CDH(U, V ) from the equality (12), we can cancel the term
CDH(U, Yi) since CDH(U, Yi) is included in the key derivation function. Due to this property,
we are not required to use the Forking lemma.

To summarize, we obtain the following theorem.

Theorem 1. If H1 and H2 are independent random oracles, and G is a group where the
CDH assumption holds, then the NETS AKE protocol satisfies eCK security.

5 Conclusion

We presented a new authenticated key exchange protocol, called NETS, and prove its security
in the extended Canetti-Krawczyk model under the random oracle assumption and the gap
Diffie-Hellman assumption. Each session of the NETS protocol requires only three exponenti-
ations per party, which is comparable to the efficiency of MQV, HMQV and CMQV. A main
advantage of NETS over these protocols is a simple and tight security proof. NETS can be
easily modified to a three-pass variant to provide for key confirmation and full perfect forward
secrecy. However, we note that NETS does not have a natural one-pass variant.

References

1. Antipa A., Brown D., Menezes A., Struik R., Vanstone S.: Validation of elliptic curve public keys. In:
Desmedt Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 211–223. Springer, Heidelberg (2003)

2. Bellare M., Palacio A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols.
In: Franklin M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004)

3. Bellare M., Pointcheval D., Rogaway P.: Authenticated key exchange secure against dictionary attacks.
In: Pitzmann B. (ed.) EUROCRYPT 2001. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2001)

4. Bellare M., Rogaway P.: Entity authentication and key distribution. In: Stinson D.R. (ed.) CRYPTO 1993,
LNCS, vol. 773, pp. 110–125. Springer, Heidelberg (1994)

5. Canetti R., Krawczyk H.: Analysis of key-exchange protocols and their use for building secure channels.
In: Piftzmann B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001).
Full version available at http://eprint.iacr.org/2001/040

6. Choo K.K., Boyd C., Hitchcock Y.: Examining indistinguishability-based proof models for key establish-
ment protocols. In: Roy B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg
(2005)

7. Diffie W., Hellman H.: New directions in cryptography. IEEE transactions of Information Theory,
vol. 22(6): 644–654 (1976)

8. Jeong, I.R., Katz, J., Lee, D.H.: One-round protocols for two-party authenticated key exchange. In: Jakob-
sson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 220–232. Springer, Heidelberg (1999)



9. Krawczyk H.: HMQV: A high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). Full version available at
http://eprint.iacr.org/2005/176.

10. Kudla, C., Paterson, K.C.: Modular security proofs for key agreement protocols. Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 549–565 (2005)

11. LaMacchia K., Lauter K., Mityagin A.: Stronger security of authenticated key exchange. In: Susilo W.,
Liu J.K., Mu Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)

12. Lauter K., Mityagin, A.: Security analysis of KEA authenticated key exchange. In: Yung M., Dodis Y.,
Kiayias A., Malkin T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 378–394. Springer, Heidelberg (2006)

13. Law L, Menezes A, Qu M., Solinas J., Vanstone S.: An efficient protocol for authenticated key agreement.
Designs, Codes and Cryptography, vol. 28:119–134 (2003)

14. Lim C., Lee P.: A key recovery attack on discrete log-based schemes using a prime order subgroup. In:
Desmedt Y.G. (ed.) CRYPTO 1994. LNCS, vol. 1294, pp. 249–263. Springer, Heidelberg (1994)

15. Lee J., Park J.: Authenticated Key Exchange Secure under the Computational Diffie-Hellman Assumption.
Preprint (2008)

16. Menezes A.: Another look at HMQV. Journal of Mathematical Cryptology, vol. 1(1): 148–175 (2007)
17. Menezes A., Ustaoğlu B.: On the importance of public-key validation in the MQV and HMQV key agree-

ment protocols. In: Lange T. (ed.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg
(2006)

18. Menezes A., Ustaoğlu B.: Comparing the pre- and post-specified peer models for key agreement. In: Mu
Y., Susilo W., Seberry J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 53–68. Springer, Heidelberg (2008)

19. Okamoto T.: Authenticated key exchange and key encapsulation in the standard model. Kurosawa, K.
(ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484 (2007)

20. Okamoto T., Poincheval D.: The Gap-Problems: A new class of problems for the security of cryptogrphic
schemes. In: Kim K. (ed.) PKC 2001, LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

21. Poincheval D., Stern J.: Security arguments for digital signatures and blind signatures. Journal of Cryp-
tology, vol. 13(3): 361–396 (2000)

22. Ustaoğlu B.: Obtaining a secure and efficient key agreement protocol for (H)MQV and NAXOS. Designs,
Codes and Cryptography, vol. 46(3): 329–342 (2008)


