
Iterative Probabilistic Reconstruction of RC4

Internal States

Jovan Dj. Golić∗ and Guglielmo Morgari†

Abstract

It is shown that an improved version of a previously proposed iterative probabilis-
tic algorithm, based on forward and backward probability recursions along a short
keystream segment, is capable of reconstructing the RC4 internal states from a rela-
tively small number of known initial permutation entries. Given a modulus N , it is
argued that about N/3 and N/10 known entries are sufficient for success, for consecu-
tive and specially generated entries, respectively. The complexities of the correspond-
ing guess-and-determine attacks are analyzed and, e.g., for N = 256, the data and
time complexities are (conservatively) estimated to be around D ≈ 241, C ≈ 2689 and
D ≈ 2211, C ≈ 2262, for the two types of guessed entries considered, respectively.

Keywords Guess-and-determine attacks, internal state reconstruction, iterative algo-
rithms, probabilistic cryptanalysis, RC4

1 Introduction

RC4 [10] is a well known software-oriented stream cipher, which is widely used for data
encryption on the Internet within the standardized SSL/TLS protocol, in wireless networks
within the standardized WEP and WPA protocols, as well as in many commercial products.
Given a parameter n (nominally, n = 8), the internal state of RC4 consists of a permutation
S of 2n different n-bit words and two pointer n-bit words i and j, which, at each time, define
the positions of two words in the permutation to be swapped to produce the permutation
at the next time. The i pointer is generated by a counter and both pointers are set to
to zero initially. At each time, the output of RC4 is an n-bit word which is taken from
an appropriate position in the permutation table S. For experimental investigation, it is
convenient to define a more general RC4 family [8], where, given an integer N , the internal
state consists of a permutation of all elements of ZN = {0, 1, . . . , N − 1} and two pointers
taking values in ZN , while all the operations remain the same, with the modulus N instead
of 2n.

∗J. Dj. Golić is with Security Innovation, Telecom Italia, Via Reiss Romoli 274, 10148 Turin, Italy (Email:
jovan.golic@telecomitalia.it).

†G. Morgari is with Telsy Elettronica e Telecomunicazioni, Corso Svizzera 185, 10149 Turin, Italy (Email:
guglielmo.morgari@telsy.it).

1

In practical applications, RC4 keystream generator is used together with a key schedul-
ing or initialization algorithm, which combines a preshared secret key with an initial value
(IV), transmitted in the clear, into a secret session key defining the initial permutation for
keystream generation. In [2] and some follow-up papers, it is shown that the key scheduling
algorithm [10] is vulnerable to secret key reconstruction attacks from a number of known
IV’s and the corresponding initial keystream bytes if the IV is concatenated to the preshared
secret key. In [9] and [1], it is shown that relatively short secret keys can be reconstructed
from the initial permutation of RC4 by a probabilistic analysis.

The huge internal state size of log2(N !N2) bits very likely results in high periods and
renders the complexity of time-data-memory tradeoff attacks far beyond the practical limits.
Due to the simplicity of the next-state function, RC4 keystream generator is shown to be
vulnerable to a number of statistical distinguishing attacks, starting from a linear statisti-
cal distinguisher [3] up to a digraph repetition distinguisher [7]. However, this is not the
case when it comes to published attacks aiming at reconstructing an internal state from
known keystream. Note that the initial state (permutation) of RC4 can be recovered from
any reconstructed internal state by reversing the next-state function. The internal state
reconstruction problem for RC4 is thus very difficult and any progress in this direction is
practically very important.

Two algorithms for reconstructing the initial state or any internal state of RC4 from a
short keystream segment are proposed in [5]. One is a search algorithm consisting in the
sequential search through the values of the internal state components that are consistent
with a given keystream segment, with backtracking in case of found contradictions. Its
approximate time complexity can be computed recursively and turns out to be slightly
smaller than the time of searching through the square root of all possible initial states. For
example, for N = 256, the complexity is about 2779, to be compared with the internal state
size of about 1700 bits. If a number of consecutive entries of the initial permutation table are
assumed to be known, then the complexity reduces and tables of the resulting systematically
computed complexities are given in [6].

The other algorithm from [5] is a probabilistic algorithm consisting in a recursive forward
computation of the approximate a posteriori probabilities of the internal state components
given a keystream segment. Its time complexity is about 26n (N6) steps each consisting of
computing a small number of real number operations. However, it can recover the initial
permutation only if a sufficient number of its consecutive entries are assumed to be known,
which is estimated to be about 155 for N = 256. So, the resulting guess-and-determine
attack appears to be less effective than the one corresponding to the search algorithm.

In a recent unrefereed publication [8], the starting point is an observation that the com-
plexity of the search algorithm [5] significantly reduces if an internal state is such that both
the pointers are known during the search. To this end, it is proposed to search for special
internal states that contain a pattern consisting of two pointer values and a number, d, of
known permutation entries that result in w known consecutive values of the j pointer, where
the ratio w/d is as large as possible. Such patterns, which are here called (d, w) patterns,
can be obtained in precomputation time with the complexity much smaller than the attack
complexity and it is argued that constructing such patterns may be feasible for N = 256.
To find such a pattern, a long keystream, i.e., a high data complexity is needed. However,
in order to detect a chosen pattern along a keystream without running the search algorithm,

2

some additional properties of the pattern are required and, because of that, the conjectured
existence of such patterns for larger N (e.g., for N = 256) may be questionable. Accordingly,
the conjectured time and data complexities around 2241 for N = 256 are not very reliable.
Besides, it is overlooked that the additional properties are not shift invariant, which implies
that the i pointer value also needs to be matched apart from the j pointer value. Hence, the
data complexity is in fact N times higher, i.e., around 2248.

Another probabilistic algorithm for the internal state reconstruction from a short key-
stream is proposed in [4]. It is pointed out that in the probabilistic model in which the
internal state components are assumed to be independent, the expressions for the a posteriori
probabilities given in [5] are in fact approximations since the two so-called ‘change of state’
and ‘observation of output symbol’ effects should be considered simultaneously rather than
separately. Accordingly, the new expressions derived in [4] are expected to be more effective,
especially in the case when the j pointer values are unknown. Another observation in [4]
is that since the assumed probabilistic model is only approximate, it would make sense
to recursively compute the a posteriori probabilities also in the backward direction, apart
from the forward direction. It is hence suggested in [4] that the resulting iterative algorithm
consisting of a number of rounds, where, in each round, the a posteriori probabilities are first
computed forwards and then backwards, could be more effective in that a smaller number
of permutation entries may be required to be known for success, while keeping essentially
the same time complexity of about N5 steps per iteration (i.e., about 2N6 steps per round).
The conducted preliminary experiments for N = 8, 16 indicate that this indeed may be the
case, but are clearly insufficient for extrapolation to larger N .

The main objective of this paper is to continue the study of iterative probabilistic algo-
rithms, to propose a number of improvements, and to estimate more reliably the number of
known permutation entries that are required for success in the guess-and-determine scenario.
This is achieved for two types of patterns: the consecutive d patterns, where a number d of
consecutive permutation entries are assumed to be known, and the special (d, w) patterns
[8], where d known permutation entries result in w known consecutive values of the j pointer
and w is maximal. Systematic experimental analysis, conducted for N ≤ 68, leads us to con-
jecture that asymptotically, for larger N , about d = N/3 and d = N/10 permutation entries
are sufficient for success in the case of consecutive and special patterns, respectively. For
smaller N , less entries are required in both the cases. The data and time complexities of the
corresponding guess-and-determine internal state reconstruction attacks are then estimated
to be around D = 29, C = 2717 and D = 2215, C = 2266, for the basic versions, and D ≈ 241,
C ≈ 2689 and D ≈ 2211, C ≈ 2262, for the optimized versions, respectively.

A description of RC4 keystream generator is briefly recalled in Section 2 and the forward
and backward recursions for the iterative probabilistic analysis are outlined in Section 3.
The corresponding improved iterative probabilistic algorithm is described in Section 4 and
the obtained experimental results are presented in Section 5, whereas the supporting graphs
of the success probabilities are given in the Appendix. The basic and optimized versions
of the resulting guess-and-determine internal state reconstruction attacks are discussed in
Section 6. A summary and conclusions are given in Section 7.

3

2 Description of RC4 Keystream Generator

Given a modulus N , the internal state of RC4 at time t consists of a permutation (table)
St = (St[l])

N−1
l=0 of N elements of ZN and two pointers it and jt taking values in ZN . The

output Zt of RC4 at time t is also an integer from ZN . Initially, we have i0 = j0 = 0, whereas
the initial permutation S0 is defined by the secret key in a way which is irrelevant for this
paper. For every t ≥ 1, the next-state and output functions of RC4 are defined by

it = it−1 + 1, jt = jt−1 + St−1[it] (1)

St[it] = St−1[jt], St[jt] = St−1[it] (2)

Zt = St[St[it] + St[jt]] (3)

respectively, where the additions are modulo N . The output sequence is thus Z = (Zt)
∞

t=1.

3 Iterative Probabilistic Analysis

In a probabilistic model where the initial permutation S0 is chosen randomly according to
the a priori uniform probability distribution, our ideal objective would be to compute the a
posteriori probabilities Pr{S0[i]|Z

T
1 }, 0 ≤ i ≤ N − 1, given a kestream segment ZT

1 , where
Zt2

t1 = Zt1 , . . . , Zt2. For simplicity, unless specified otherwise, we keep the same notation
for random variables and their values. If T ≈ N , then these probabilities should be close
to 0 or 1, which would imply a successful reconstruction of the initial permutation. Since
the exact computation does not appear to be feasible, we proceed by computing recursively
in time the approximate a posteriori probabilities for the internal state components, i.e.,
for the individual permutation entries St[i], 0 ≤ i ≤ N − 1, and the pointer jt, under the
independence assumption that, at each time, the components are mutually independent,
except for the constraint that the permutation entries have to be all different.

More precisely, according to [4], we use the forward recursions for Pr{St[i]|Z
t
1}, 0 ≤ i ≤

N − 1, and Pr{jt|Z
t
1}, for t = 1, . . . , T , and the backward recursions for Pr{St[i]|Z

T
t+1},

0 ≤ i ≤ N − 1, and Pr{jt|Z
T
t+1}, for t = T − 1, . . . , 0. The forward recursions can start from

arbitrary a priori probability distributions Pr{S0[i]}, 0 ≤ i ≤ N − 1, and j0 = 0 (or j0 = j,
for any given j), while the backward recursions can start from arbitrary a priori probability
distributions Pr{ST [i]}, 0 ≤ i ≤ N − 1, and Pr{jT}. The essence of the iterative algorithm
[4] is to compute initially the forward recursions starting from the uniform probability dis-
tributions and then to alternatively compute the backward and forward recursions along the
keystream segment, each time using the last a posteriori probability distributions computed
by the previous forward/backward recursions as the a priori probability distributions for
the current backward/forward recursions. Computing in both directions is expected to be
advantageous because the recursions and the resulting probabilities are approximate rather
than exact, due to the underlying independence assumption.

4

3.1 Forward Recursions

Let Pt[i](k) = Pr{St[i] = k|Zt
1}, pt(k) = Pr{jt = k|Zt

1}, Pt = (Pt[i](k))N−1
i,k=0, and pt =

(pt(k))N−1
k=0 , for 0 ≤ t ≤ T , where, initially, P0[i](k) = Pr{S0[i] = k} and p0(k) = δ0,k, where

δi,k is the Kronecker delta symbol (or p0(k) = δj,k). Pt and pt are called the probability
matrices, where Pt has rows indexed by i and columns indexed by k. Then the forward
recursion for Pt[i](k), in terms of Pt−1 and pt−1, can be put into the form:

Pt[i](k) ∝
∑

a,b,c

Pr{St[i] = k, Zt | jt−1 = a − b, St−1[it] = b, St−1[a] = c, St−1[i] = k, Zt−1
1 } ·

pt−1(a − b)Pt−1[it](b)
Pt−1[a](c)

1 − Pt−1[a](b)

Pt−1[i](k)

1 − Pt−1[i](b) − Pt−1[i](c)
(4)

(where formally 0/0 = 0). It is assumed that Pt−1[a](c) and Pt−1[i](c) are included only if
a 6= it and that Pt−1[i](k) is included only if i 6= it, a (where jt = a). The proportionality
constant is determined from the normalization requirement

∑

k

Pt[i](k) = 1. (5)

Similarly, the forward recursion for pt(k), in terms of Pt−1 and pt−1, can be put into the
following form:

pt(k) ∝
∑

b,c

Pr{jt = k, Zt | jt−1 = k − b, St−1[it] = b, St−1[k] = c, Zt−1
1 } ·

pt−1(k − b)Pt−1[it](b)
Pt−1[k](c)

1 − Pt−1[k](b)
, (6)

where Pt−1[k](c) is included only if k 6= it, and the proportionality constant is determined
from the normalization requirement

∑

k

pt(k) = 1. (7)

The conditional probabilities in the first lines of (4) and (6) are derived in [4], by dis-
tinguishing between 15 and 5 cases, respectively, depending on the values of i, it, jt, and
σ = St−1[it] + St−1[jt] being equal to or different from each other. Each iteration of (4) and
(6) requires N5 and N3 computational steps, where each step consists of a small number of
real number operations, respectively.

3.2 Backward Recursions

Let P ′

t [i](k) = Pr{St[i] = k|ZT
t+1}, p′t(k) = Pr{jt = k|ZT

t+1}, P ′

t = (P ′

t [i](k))N−1
i,k=0, and

p′t = (p′t(k))N−1
k=0 , for 0 ≤ t ≤ T , where, initially, P ′

T [i](k) = Pr{ST [i] = k} and p′T (k) =
Pr{jT = k}. Then the backward recursions for P ′

t [i](k) and p′t(k), in terms of P ′

t+1 and p′t+1,

5

can be put into the form, respectively:

P ′

t [i](k) ∝
∑

a,b,c

Pr{St[i] = k, Zt+1 | jt+1 = a, St+1[it+1] = b, St+1[a] = c, St+1[i] = k, ZT
t+2} ·

p′t+1(a)P ′

t+1[it+1](b)
P ′

t+1[a](c)

1 − P ′

t+1[a](b)

P ′

t+1[i](k)

1 − P ′

t+1[i](b) − P ′

t+1[i](c)
(8)

p′t(k) ∝
∑

b,c

Pr{jt = k, Zt+1 | jt+1 = k + c, St+1[it+1] = b, St+1[k + c] = c, ZT
t+2} ·

p′t+1(k + c)P ′

t+1[it+1](b)
P ′

t+1[k + c](c)

1 − P ′

t+1[k + c](b)
. (9)

In (8), it is assumed that P ′

t+1[a](c) and P ′

t+1[i](c) are included only if a 6= it+1 and that
P ′

t+1[i](k) is included only if i 6= it+1, a (where jt+1 = a). In (9), P ′

t+1[k + c](c) is included
only if k + c 6= it+1 (where jt+1 = k + c). The proportionality constants are determined from
analogous normalization requirements. The conditional probabilities in the first lines of (8)
and (9) are derived in [4], by distinguishing between 15 and 5 cases, respectively, depending
on the values of i, it+1, jt+1, and σ = St+1[it+1] + St+1[jt+1] being equal to or different from
each other. Each iteration of (8) and (9) requires N5 and N3 computational steps, where
each step consists of a small number of real number operations, respectively.

4 Iterative Probabilistic Algorithms

The basic iterative algorithm [4] consists of rounds, where in each round the last computed
probability matrices PT and pT by the forward recursions are used as the initial probability
matrices P ′

T and p′T for the backward recursions and the last computed probability matrix
P ′

0 by the backward recursions is used as the initial probability matrix P0 for the forward
recursions, while p0 is kept unchanged in each round (as j0 is fixed), respectively. One pass
of the forward and backward recursions is called Forward and Backward, respectively. The
time complexity of each round is thus around 2N6 steps, provided that T ≈ N .

In the first round, if no element of the initial permutation S0 is known, then the initial
probability matrix P0 of Forward would be defined as uniform, i.e., P0 = U , where all
elements of the (uniform) matrix U are equal to 1/N . However, experiments show that
such an algorithm cannot be successful. Accordingly, in the guess-and-determine scenario,
a number of elements of S0 need to be known or guessed correctly. In [5], [4], the known
elements are S0[i], 1 ≤ i ≤ d. In general, if d elements of S0 are known, then the initial
probability matrix P0 is defined as P0 = Gd, where the (guessed) matrix Gd contains d 1’s
corresponding to the known elements, N − 1 0’s in each row and column corresponding to
a known element, and the remaining entries equal to 1/(N − d). After a (small) number
of rounds, the last obtained probability matrix P ′

0 represents a soft estimate of the initial
permutation S0 that produced the given keystream segment ZT

1 . A hard estimate of S0 is
then obtained by rounding off the probabilities to the binary values.

6

The main problem addressed in this paper is to determine the minimal d that is suf-
ficient for a successful reconstruction of S0. To this end, on the basis of some theoretical
considerations and conducted numeorous experiments, we first propose a number of improve-
ments to the basic iterative algorithm described above. The iterative probabilistic algorithm
incorporating the improvements is denoted as IPA.

Consecutive and Special Patterns: An internal state pattern is defined as a partially

specified internal state. More precisely, for a pattern P = (i, j, (pk, vk)
d
k=1), an internal

state at time t, (it, jt, St), is said to be compliant with P (or vice versa) if (it, jt) = (i, j)
and St[pk] = vk, 1 ≤ k ≤ d. An initial consecutive pattern [5], [4] is then defined as
P = (0, 0, (k, vk)

d
k=1), and a consecutive pattern is defined as P = (i, j, (i + k, vk)

d
k=1), where

the addition is modulo N . Such patterns are here also called d patterns. It follows that if
an internal state is compliant with a consecutive pattern, then the subsequent d values of
the j pointer are uniquely determined, which means that one can then update the (partially
known) internal state at least d times, before the value of the j pointer is lost. As already
noted in [5], if a value of the j pointer is known, then the forward iterative update of the
a posteriori probabilities is more effective, and the same is true for the backward iterative
update. This is why consecutive patterns are important, and initial consecutive patterns
are more effective as the value of the j pointer then does not have to be guessed. Since
consecutive patterns are generic, the required keystream length is very short, i.e., T ≈ N .

In addition, one may use the special (d, w) patterns proposed in [8] which ensure that
the subsequent w values of the j pointer are uniquely determined. If w is maximal given d,
then such a pattern is called in [8] a maximum (w-generative d-order) pattern. A reliable
conjecture regarding maximum patterns justified in [8] is that w/d ≈ 6, for moderately large
d, while, for smaller d, this ratio is somewhat smaller than 6. Accordingly, maximum patterns
are expected to considerably increase the effectivenes of iterative probabilistic algorithms, in
comparison with consecutive patterns. However, since a special pattern is fixed, then a very
long keystream segment is required for such a pattern to be found along the keystream.

Hard Preprocessing: Given a keystream segment ZT
1 , we determine the extended pat-

tern Pd̄,w̄, for both consecutive and special patterns, w̄ ≥ d̄ ≥ d, where the extended pa-
rameters w̄ and d̄ are defined as the maximal numbers of the pointer j values and the
permutation entries at any time 0 ≤ t ≤ w̄, respectively, that are uniquely determined by
ZT

1 if the guessed pattern P is compliant with S0. Consequently, d̄, w̄, and Pd̄,w̄ are computed
in the preprocessing stage, by running the next-state function forwards and backwards for
a (small) number of rounds as long as the j pointer is known and by updating the internal
state at each time t according to Zt and (3) if St[it] is known (where St[jt] = St−1[it] is known
since jt and jt−1 are known). This way, d̄ values of St are determined and stored for each
0 ≤ t ≤ w̄. The preprocessing algorithm is stopped if the internal state is not updated any
more in a full forward or backward pass. A pattern P that is not compliant with S0 may
yield inconsistencies already at this stage.

Hard Reset of Backward: Known j pointer values are included automatically in For-
ward. It is advantageous to include them also in Backward, and this can be achieved by
hard resetting Backward only at time t = w̄, by replacing p′t and the corresponding rows
and columns of P ′

t by the binary vectors corresponding to known jt and known entries of St

determined by hard preprocessing, respectively, and by renormalizing the rows.
Soft Preprocessing: Run one round of Forward from P0 = Gd̄ and one round of Back-

7

ward from P ′

T = U and uniform p′T , and then perform termwise multiplication of the com-
puted probability matrices (Pt · P

′

t and pt · p
′

t) and row normalization to obtain P̃t and p̃t,
respectively, for each 0 ≤ t ≤ T . It is assumed that hard reset of Backward is applied. The
rationale for this operation can be found in the approximate expressions

Pr{St[i]|Z
T
1 } ∝ Pr{St[i]|Z

t
1} · Pr{St[i]|Z

T
t+1} (10)

Pr{jt|Z
T
1 } ∝ Pr{jt|Z

t
1} · Pr{jt|Z

T
t+1}. (11)

The expressions are only approximate, because the Markov chain property does not hold for
the internal state components, but only for the internal state as a whole. The obtained soft
reset probability matrices are used as described below.

Modifying Initial Probability Matrix of Forward: In the first round, start For-

ward from P̃0, and in subsequent rounds, start Forward from the last permutation prob-
ability matrix of Backward modified by P̃0 by using termwise multiplication (P ′

0 · P̃0) and
row normalization.

Soft Zero Row Reset: During the iterations of the iterative algorithm, even if the
guessed pattern is compliant with S0, at times it may happen that the all-zero rows occur
in the probability matrices of Forward or Backward. This, wrong convergence to partially
inconsistent values, which is due to repeated iterations of approximate recursions for the
probabilities, may be dealt with by resetting each all-zero row occuring at time t with the
corresponding row of the soft reset probability matrices P̃t and p̃t, except when all the rows
of Pt or P ′

t are zero, in which case the iterative algorithm is stopped.
Soft Inconsistent Column Reset: The permutation probability matrices Pt and P ′

t

of Forward and Backward are approximations of the corresponding matrices of exact prob-
abilities for individual permutation entries at time t, respectively. These exact probability
matrices, which are infeasible to compute directly, are doubly stochastic matrices, satisfying
the condition that the sum of entries in each row and column is equal to 1. Experiments
confirm that it is more effective to perform row than column normalization in each iteration
of the iterative algorithm, as described above. However, an improvement is obtained if at
each time t, inconsistent columns are replaced by the corresponding columns of the soft
reset probability matrix P̃t, and all the rows are then renormalized. A column is considered
inconsistent with a doubly stochastic matrix if the sum of entries is too small or too large
(e.g., if the sum is out of the range [0.1, 1.9]).

5 Experimental Results

The main objective of the experiments was to estimate the minimal d that is needed for
the IPA to successfully recover the whole initial permutation S0 from a short keystream
segment of length T = N , provided that S0 is compliant with a known initial consecutive d
pattern or a known special maximum (d, w) pattern [8]. Implications for guess-and-determine
cryptanalytic attacks, where the patterns need to be guessed, are discussed in Section 6.

Accordingly, we conducted two sets of experiments, related to initial consecutive and
special maximum patterns, respectively. In the former case, for each assumed value of N

8

and each assumed value of d, we ran the IPA for a number of randomly generated S0 and then
estimated the corresponding probabilities of success as a function of d given N , where a d
pattern is derived from S0. Similarly, in the latter case, for each assumed (d, w) pattern and
each assumed value of N , we ran the IPA for a number of randomly generated S0 and (i0, j0)
that are compliant with the pattern, and then estimated the corresponding probabilities
of success as a function of N given a (d, w) pattern. An experiment was considered to
be successful if the IPA was able to reconstruct S0. The values of the parameters are
chosen according to the time complexity N6, given the PC computational power available.
For simplicity, the number of rounds was 5 in all the experiments, but it was noted that
increasing the number of rounds tended to improve the success probabilities to some extent.

5.1 Initial Consecutive Patterns

The values of N, d tested for initial consecutive patterns are given in Table 1. For each N ,
the values of d are chosen so as to encompass the success probabilities close to 0.5 or smaller.
For each N , the average number of conducted experiments per each value of d is also shown.

Table 1: Experiments with initial consecutive patterns

N 16 24 32 40 48 56 64

d [2, 5] [5, 8] [8, 11] [10, 15] [12, 18] [14, 20] [16, 22]
Exp 1000 100 100 38 21 19 24

d0 4.10 6.86 9.72 12.74 15.89 18.93 21.59
a 0.26 0.34 0.42 0.63 0.59 0.82 0.71

Graphs of the obtained success probabilities are displayed in Fig. 1 in the Appendix.
Each graph is expected to be an increasing function of d that reaches the value 0.5 for a
threshold d = d0, to be numerically estimated. To this end, for d around d0, such a graph
can be approximated as the exponential function p(d) = (1 + âd−d0)−1, â < 1, where the
parameters d0 and â, which depend on N , can be estimated by applying the standard linear
regression method to the function (d − d0) log â = log (p(d)−1 − 1). However, to find an
approximation for large |d − d0|, which will be used in Section 6, it is more realistic to

use the exponential function p(d) = (1 + a(d−d̂0)2 sgn(d−d̂0))−1, a < 1, which corresponds to
the cumulative distribution of a normal distribution. The linear regression method is then
applied to the function

√

log a−1(d − d̂0) = sgn (p(d) − 0.5)
√

| log (p(d)−1 − 1)|.
The computed values of d0 and a, as functions of N , are shown in Table 1. It thus

appears that d0/N is a slowly increasing function of N that stabilizes around 1/3 already
for N ≥ 48. On the other hand, it is natural to expect that for large N , the minimal d0

required for success is proportional to N .

Conjecture 1 For consecutive d patterns, the minimal value of d that is sufficient for the
IPA success probability to be about 0.5 is around N/3 for N ≥ 48.

9

In each experiment, we also computed the parameters w̄ and d̄ in the hard preprocessing
stage and found that in most cases, w̄ was equal to or just slightly bigger than d and that
the success probability was not significantly correlated to d̄.

5.2 Special Maximum Patterns

The maximum (d, w) patterns and N tested are given in Table 2. Given a pattern, the values
of N are chosen so as to encompass the success probabilities close to 0.5 or smaller. The
description of the patterns is given in [8] and is irrelevant for this paper. For each pattern,
the average number of conducted experiments per each value of N is also shown.

Table 2: Experiments with special maximum patterns

(d, w) (4, 15) (5, 21) (6, 27) (7, 31) (8, 37)

N [24, 30] [34, 40] [43, 48] [50, 56] [60, 68]
Exp 100 59 21 23 11

N0 27.67 35.86 44.24 51.08 59.07
b 0.82 0.82 0.84 0.82 0.98

Graphs of the obtained success probabilities are displayed in Fig. 2 in the Appendix.
Each graph is expected to be a decreasing function of N that reaches the value 0.5 for a
threshold N = N0, to be numerically estimated. To this end, for N around N0, such a graph
can be approximated as the exponential function p(N) = (1 + b̂N0−N)−1, b̂ < 1, where the
parameters N0 and b̂, which depend on the special pattern, can be estimated by applying
the linear regression method to the function (N0 − N) log b̂ = log (p(N)−1 − 1). Similarly,
an approximation for large |N − N0|, which will be used in Section 6, is obtained by using

the exponential function p(N) = (1+ b(N−N̂0)2 sgn(N̂0−N))−1, b < 1, and by applying the linear
regression method to

√

log b−1(N̂0 − N) = sgn (p(N) − 0.5)
√

| log (p(N)−1 − 1)|.
The computed values of N0 and b, for the tested special patterns, are shown in Table 2.

The obtained values of N0 are consistent with a conclusion that N0/w is a slowly increasing
function of w that stabilizes around 5/3 for large w. (We also performed experiments for other
special (d, w) patterns, which confirm that the success probability predominantly depends
on w and weakly on d.) If we utilize a plausible conjecture [8] for maximum patterns that
w/d ≈ 6 for large d, then we obtain that N0/d ≈ 10 is sufficient for success for large d.
On the other hand, it is natural to expect, also for maximum patterns, that the minimal d0

required for success is proportional to N , for large N .

Conjecture 2 For maximum (d, w) patterns and large N , the minimal value of w that is
sufficient for the IPA success probability to be about 0.5 is around 0.6N and, accordingly, the
corresponding minimal value of d is around N/10 (e.g., for N ≥ 256).

In each experiment, we also computed the parameters w̄ and d̄ in the hard preprocessing
stage and found that in many cases, w̄ was considerably bigger than w and that the success
probability, while not significantly correlated to d̄, was somewhat correlated to w̄.

10

6 Guess-and-Determine Attacks

6.1 Basic Versions

In the guess-and-determine scenario, no element of S0 is known and, hence, the initial con-
secutive d patterns need to be tested exhaustively in order to find the one compliant with
S0, which will then result in the reconstruction of S0 with a success probability p, depending
on N and the adopted value of d. As there are N (d) = N(N − 1) · · · (N − d + 1) such
patterns, the IPA algorithm, with a maximum number r of rounds, is then repeated N (d)

times on the same keystream segment of length T = N . Note that each guessed pattern is
easily tested for correctness by comparing the given keystream segment with the one pro-
duced from the reconstructed S0. The required data and time complexities are then D = N
and C = 2rN6N (d), respectively. For simplicity, we here neglect the reduction in C due
to the fact that the patterns not compliant with S0 can possibly be detected already in
the hard preprocessing stage or before the completion of all r rounds, when the all-zero
probability matrix is obtained. To achieve the success probability close to 1, the algorithm
can be repeated O(1/p) times on distinct keystream segments. The average time and data
complexities are thus increased 1/p times, which is very small if p is around 0.5.

For special maximum (d, w) patterns, the situation is essentially different, because the
IPA needs to be repeated for every position in the keystream sequence until an internal state
compliant with the assumed pattern is found. The guesses to be tested thus relate to the
times. In fact, since the (d, w) property is preserved under the shift operation (i + τ, j +
τ, (pk + τ, vk)

d
k=1), where the addition is modulo N , at time t, a shifted pattern such that

i + τ = it is tested. Under the assumption that the cycle of internal states generated from
S0 is sufficiently long, the required keystream length is on average D = NN (d), because the
value of the j pointer needs to be matched too. The average data and time complexities are
then D = NN (d)/p and C = 2rN7N (d)/p, respectively, where p is the success probability.

Under the Conjectures 1 and 2, for the consecutive and maximum patterns, the required
values of d are d ≈ N/3 and d ≈ N/10, for moderately large N , respectively. In this
case, we can use the numerical approximation N (d) ≈ Nde−d2/(2N). The average data and
time complexities then become D = 2N , C ≈ 4rNN/3+6e−N/18 and D ≈ 2NN/10+1e−N/200,
C ≈ 4rNN/10+7e−N/200, respectively.

For example, for N = 256, we can assume that d = 86 and d = 26 for the two types
of patterns, respectively. For r = 5, we then get D = 29, C = 2716.95 and D = 2215.1,
C = 2266.43, respectively.

6.2 Optimized Versions

For initial consecutive patterns, instead of choosing d ≈ d0 and the success probability p
around 0.5, we can choose a smaller d and the success probability p much smaller than
0.5. The average data complexity then increases 1/p times, i.e., D = N/p, whereas the
average time complexity C = 2rN6N (d)/p may decrease or increase, depending on how
fast p decreases as d decreases. Experimental results from Section 5.1 indicate that 1/p
can be approximated as 1/p ≈ a−(d−d0)2 , for d < d0, where, in view of Table 1 and also
theoretically, the parameter a < 1 is expected to slowly increase with N . Therefore, C can

11

be approximated as:

C ≈ 2re−d2/(2N)Nd+6a−(d−d0)2 . (12)

Given the values from Table 1, it follows that C decreases as d decreases from d0, reaches
a minimum point for d = dopt, and then increases as d further decreases. This means that
by choosing d = dopt, we obtain the minimal time complexity Cmin at the cost of increasing
the data complexity. If we neglect the slowly varying factor e−d2/(2N), then we get that
d0 − dopt ≈ log2 N/(2 log2 a−1) and, hence,

Cmin ≈ 2rN6N (d0)N− log2 N/(4 log2 a−1), (13)

whereas Dopt ≈ N1+log2 N/(4 log2 a−1).
For example, for N = 256, in light of Table 1, we can (conservatively) assume that

a ≈ 0.7, so that d0 − dopt ≈ 8. Then, for d = 78, we get optimized complexities Dopt ≈ 240.93

and Cmin ≈ 2689.30. However, very likely, the parameter a is closer to 1, so that the achievable
complexities are lower.

For special maximum patterns, we can similarly decide to choose N bigger than N0 and
get the success probability p much smaller than 0.5. In fact, in practice, where N is given,
we can choose d smaller than d0 ≈ N/10 hoping that the data complexity D = NN (d)/p
and the time complexity C = 2rN7N (d)/p may then both become smaller. Whether this
is at all possible depends on how fast 1/p increases as d decreases. Note that 1/D is the
probability of finding an internal state compliant with the pattern that results in a successful
reconstruction of the whole internal state by the IPA. Experimental results from Section 5.2
indicate that 1/p can be approximated as 1/p ≈ b−(N−N0)2 , for N > N0, or, alternatively, as
a function of d given N , as 1/p ≈ b−100(d−d0)2 , for d < d0 = N/10. In view of Table 2 and
also theoretically, the parameter b < 1 is expected to slowly increase with N . Therefore, the
common factor of D and C can be approximated as:

N (d)/p ≈ e−d2/(2N)Ndb−100(d−d0)2 (14)

which, similarly as in (12), is minimized for d0 − dopt ≈ log2 N/(200 log2 b−1). Now, if b
is close to 1 so that d0 − dopt is approximately at least 1, then we can get a reduction of
both the complexities. Note that, unlike the consecutive patterns, here there is no tradeoff
between data and time complexities, but the expected reduction may be less significant.

For example, for N = 256, in light of Table 2, we can (conservatively) assume that b ≈
0.97, so that d0−dopt ≈ 1. Then, for d = 25, we get optimized complexities Dopt ≈ 2210.65 and
Cmin ≈ 2261.97. However, very likely, the parameter b is closer to 1, so that the complexities
are in fact lower. The reduction of the time complexity is much lower than in the case of
initial consecutive patterns, because the values of d are much smaller, for a given N .

7 Conclusions

It is shown that an iterative probabilistic algorithm (IPA), based on forward and backward
recursive computations of a posteriori probabilities of the internal state components given a
short keystream segment, has a high potential for recovering the whole RC4 internal states

12

from a relatively small number of known initial permutation entries, in about N6 compu-
tational steps, for a modulus N . This is experimentally verified for two types of patterns
of known entries, that is, consecutive patterns and special maximum patterns introduced in
[8]. Systematic experiments conducted support a conjecture that only around N/3 and N/10
known entries are sufficient for a successful reconstruction, for the two types of patterns, re-
spectively. Apart from the data given in the current version of the paper, the conducted
experiments also include data for larger N , that is, for N = 72, 80 in the case of initial
consecutive patterns and for the special maximum (9,42) pattern. They will be presented in
the final version of the paper.

In guess-and-determine cryptanalytic attacks, the entries required to be known need
to be guessed and the corresponding data and time complexities are then shown to be
around D = 2N , C ≈ 4rNN/3+6e−N/18 and D ≈ 2NN/10+1e−N/200, C ≈ 4rNN/10+7e−N/200,
respectively, where r is the number of IPA rounds. Moreover, in the optimized versions, the
complexities can be further improved by choosing a smaller number of guessed entries, so that
the corresponding IPA success probability p is reduced, and by repeating the IPA on about
1/p distinct keystream segments. For N = 256, the complexities are thus (conservatively)
estimated to be around D ≈ 241, C ≈ 2689 and D ≈ 2211, C ≈ 2262, for the two types of
patterns, respectively.

It thus turns out that, for special maximum patterns, the data complexity is considerably
lower than that from [8]. The time complexity may possibly be reduced by introducing
additional properties of the special patterns as in [8], which might allow a faster detection
of inconsistent patterns, but the attacks would then become complicated and based on
additional conjectures.

Appendix: Graphs of Success Probabilities

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16
24
32
40
48
56
64

Figure 1: IPA success probabilities for initial consecutive patterns.

13

20 25 30 35 40 45 50 55 60 65 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4
5
6
7
8

Figure 2: IPA success probabilities for special maximum patterns.

References

[1] E. Biham and Y. Carmeli, “Efficient reconstruction of RC4 secret keys from internal
states,” Technical Report CS-2008-06, Technion, Haifa, Israel, 2008.

[2] S. Fluhrer, I. Mantin, and A. Shamir, “Weakness in the key scheduling algorithm of
RC4,” Selected Areas in Cryptography - SAC ’01, Lecture Notes in Computer Science,
vol. 2259, pp. 1-24, 2001.

[3] J. Dj. Golić, “Linear statistical weakness of alleged RC4 keystream generator,” Advances
in Cryptology - EUROCRYPT ’97, Lecture Notes in Computer Science, vol. 1233, pp.
226-238, 1997.

[4] J. Dj. Golić, “Iterative probabilistic cryptanalysis of RC4 keystream generator,” Infor-
mation Security and Privacy - ACISP 2000, Lecture Notes in Computer Science, vol.
1841, pp. 220-233, 2000.

[5] L. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege, “Analysis meth-
ods for (alleged) RC4,” Advances in Cryptology - ASIACRYPT ’98, Lecture Notes in
Computer Science, vol. 1514, pp. 327-341, 1998.

[6] I. Mantin, “Analysis of the stream cipher RC4,” Master Thesis, The Weizmann Institute
of Science, Rehovot, Israel, 2001.

14

[7] I. Mantin, “Predicting and distinguishing attacks on RC4 keystream generator,” Ad-
vances in Cryptology - EUROCRYPT ’05, Lecture Notes in Computer Science, vol.
3494, pp. 491-506, 2005.

[8] A. Maximov and D. Khovratovich, “New state recovering attack on RC4,” Cryptology
ePrint Archive, Report 2008/017, 2008.

[9] G. Paul and S. Maitra, “Permutation after RC4 key scheduling reveals the secret key,”
Selected Areas in Cryptography - SAC ’07, Lecture Notes in Computer Science, vol.
4876, pp. 360-377, 2007.

[10] R. L. Rivest, “The RC4 encryption algorithm,” RSA Data Security, Inc., Mar. 1992.

15

