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Abstract Multivariate hash functions are a type of hash functions whose compression function is

explicitly defined as a sequence of multivariate equations. Olivier Billet etc. have designed the hash

function MQ-HASH and Jintai Ding etc. also propose a similar construction, which the security depends

on the difficulty of solving randomly drawn systems of multivariate equations over a finite field. Finding

preimage and collision can be reduced to solve the multivariate equations, which is a well known NP-hard

problem. To prove the security of MQ-HASH, the designer assume that a multivariate hash function is a

pseudo-random number generator. In this paper, we analyze the security of multivariate hash functions

and conclude that low degree multivariate functions such as MQ-HASH are neither pseudo-random nor

unpredictable. There may be trivial collisions and fixed point attacks if the parameter of the compression

function has been chosen. And they are also not computation-resistance, which makes MAC forgery easily.
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1 Introduction

Hash functions are easy-to-compute compression

functions that a variable length input and covert it

to a fixed-length output. It is used in digital sig-

nature and message authentication. A good hash

function is assume to be preimage resistance, sec-

ond pre-image resistance and collision resistance.

But when a hash function is used as message au-

thentication code, the property of computation-

resistance is also required. If a hash function f

is computation-resistance, then given zero or more

text-hash pairs (xi, h(xi)), it is computationally in-

feasible to compute any text-hash pair (x, h(x))

for any new input x 6= xi (including possibly for

h(x) = h(xi) for some i. This property is also

called the random oracle property[1]. A good hash

function should behave as a random oracle.

The most popular hash functions in use to-

day are MD5 and SHA-1, but they all are ded-

icated construction and the security of them are

hard to analysis. Recently there are some propos-

als to build a hash function on a hard mathemat-

ical problem[2][3]. Multivariate hash functions are

one of them the security based on the hardness of

solving a system of multivariate functions over a fi-

nite field F. Billet, Robshaw and Peyrin introduced

the multivariate hash function MQ-HASH[2], and

simultaneously Ding and Yang propose a similar

construction[3]. To prove the pre-image resistant
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of MQ-HASH, the author assume that a multivari-

ate quadratic function is a pseudo-random genera-

tor. But we will show this is not right. After the

proposal of multivariate hash functions, Aumasson

and Meier conclude that multivariate hash func-

tions over GF (2) of low degree are neither pseudo-

random nor unpredictable[5]. And NMAC message

authentication codes built on certain cubic multi-

variate hash function (which is a proposal of Ding

and Yang)[3] allow key recovery faster than by ex-

haustive search. There are also some trivial col-

lisions and near collisions if the polynomials are

sparse.

If a multivariate quadratic equation is used then

it is easy to find collision, since the first order differ-

entials of any quadratic polynomial is affine. This

fact leads to the designer to increase the order of

the polynomials, at the same time not to decrease

the efficiency very much. So the degree of MQ-

HASH is four and the order of Cubic Construction

by Ding and Yang is three. But the designer ignore

a fact that for polynomial equations of degree d,

the dth derivative is a constant. This implies that

low degree multivariate hash functions are neither

pseudo-random nor unpredictable[4], since we can

distinguish it between a random function by com-

pute the dth derivative. If the result is different

from previous, then we distinguish the hash be-

cause it is different from previous hash functions.

This result is regardless of the finite field F and only

needs negligible computation. For the MQ-HASH,

we needs 16 times of computation and for Cubic

Construction 8 times of computation is enough.

Our Work. In the next section we describe the

basic construction of MQ-HASH and Cubic Con-

struction. In section 3 we describe the higher order

differential of multivariate polynomials. Section 4

describes the trivial collisions and fixed point at-

tacks. Section 5 describe two methods to distin-

guish a multivariate hash function from random

functions. Section 6 studies the security of MACs

built on multivariate hash functions, Eventually we

give the conclusion in section 7.

2 MQ-HASH and Cubic Construction

The MQ-HASH is designed by Billet, Robshaw

and Peyrin. It is a Merkle-Damgard construction

with the compression function built on multivari-

ate hash functions. The input message M is ap-

pended a single bit ’1’ followed by as many ’0’ as

required to leave the message 64 bits short of a

multiple of the block length. The remaining 64

bits are then used for a representation of the length

of the input message M in bits. Assume that the

message M requires t blocks after padding and so

M = B1 ‖ · · · ‖ Bt.

At iteration i, for 1 6 i 6 t, the compres-

sion function is used to update the value vi−1 of

an v-bit chaining variable to vi and v0 is speci-

fied and fixed. Thus we have vi = h(vi−1, Bi).

The last chaining variable is used as the output

of the hash function. The compression function is

h(vi−1, Bi) = g ◦f(vi−1, Bi) while the first function

f : Fm+n 7→ Fr, for r > (m+n), expands the input,

while a second function g : Fr 7→ Fn compresses the

intermediate value and both f and g are quadratic.

The Cubic Construction is proposed by Ding

and Yang. It is similar to the MQ-HASH except

the compression function is built on cubic polyno-



mials. The compression function is h(vi−1, Bi) =

f(vi−1, Bi), while f : F2n 7→ Fn is consisting of n

cubic multivariate polynomials. Since the degree of

MQ-HASH is four and higher than the Cubic Con-

struction, hereafter we mainly concentrate on the

MQ-HASH.

In [?], finding preimage of MQ-HASH is re-

duced to inverting f and g, since the NP-hard of

MQ, it is very hard. To find a collision in MQ-

HASH, one method is to finding collisions of f and

the other is first finding collisions of g, then com-

puting preimages of the two intermediates. This

two method are both proven to be very hard.

3 Higher Order Derivatives of Multi-

variate Polynomials

Definition 2.1 (Higher order derivatives

[6][7])Let (S, +) and (T,+) be Abelian groups. For

a function f : S 7→ T , the derivative of f at the

point a ∈ S is defined as

∆af(x) = f(x + a)− f(x).

The i’th derivative of f at the point a1, · · · , ai is

defined as

∆(i)
a1,··· ,aif(x) = ∆ai(∆

(i−1)
a1,··· ,ai−1

f(x)).

Theorem 2.2 [6][7]From the definition of derivative

of multivariate functions, one can get the following

result.

f(x+a1+a2+. . .+an) =
n∑

i=0

∑
16j1...6ji6n

∆(i)
aj1

,...,aji
f(x).

Theorem 2.3 For any function f : S 7→ T with

degree d, the d-th derivative of f is a constant.

The proof of theorem 2.2 and 2.3 can be seen in

[6]. When considering multivariate functions over

GF (2) the points a1, . . . , ai must be linearly inde-

pendent for the i′th derivative not to be trivial zero.

The next step is to use higher order derivative

of multivariate function to attack the multivariate

hash functions. In fact, the attack is based on the

property that the d-th derivative of a multivariate

polynomials f with degree d is a constant. Sup-

pose we compute the d-th derivative of multivariate

function f(x) with degree d at point (a1, · · · , ad),

we get a constant C, which is independent of the

input x and only depends (a1, · · · , ad). One crucial

notion for the security of hash functions is their

pseudo-randomness, necessary for building secure

key-derivation schemes, and, obviously, to instanti-

ate pseudo-random functions. In [4] the definition

of pseudo-random and unpredictable are given. A

distribution of function is pseudo-random if it is

easy to sample functions according to the distribu-

tion and to compute their value and it is hard to tell

apart a function sampled according to this distri-

bution from a uniformly distributed function given

an adaptive access to the function as a black box.

To show the distribution of multivariate functions

is not pseudo-random, for a multivariate hash func-

tion f , we don’t know the algebraic normal form of

f and access it as a black box. Since we know

the degree d of the multivariate function before

hand, we compute the dth derivative for 2d inputs,

if the derivative is a constant, we can distinguish

the function sampled from a uniformly distributed

function.

In the other side, we can see the multivariate

hash function is not unpredictable. A distribution

of functions is unpredictable if it is easy to sample



functions according to the distribution and to com-

pute their value and for any efficient adversary that

is given an adaptive black-box access to a function

(sampled according to the distribution) it is hard

to compute the value of the function at any point

that was not queried explicitly. If we compute the

hash value of some points of multivariate hash func-

tions, it is easy to compute the value of a new point

without access the black box. This can be see in

the following corollary:

Corollary 2.4 For a multivariate hash function

F with degree d, the d-th derivative of F at point

(a1, · · · , ad) is a constant C satisfies:

C =
∑

εi∈{0,1},16i6d

(−1)ε1+···+εd+1 ·

F (x + ε1a1 + · · ·+ εdad). (1)

Thus, if ε1a1+· · ·+εdad 6= 0 when ε1+· · ·+εd > 0 ,

we can get the F value of a input x by the following

equation without access F :

F (x) =
∑

εi∈{0,1},16i6d
ε1+···+εd>0

(−1)ε1+···+εd+1 ·

F (x + ε1a1 + · · ·+ εdad)− C. (2)

Proof. We prove the result by induction on the

degree of F . For d = 1 the derivative of F at point

a1 is C = F (x + a1) − F (x) and satisfies equation

(1). Suppose (1) holds for d− 1. Then

C = ∆(d)
a1,··· ,ad

F (x)

= ∆d−1
a1,··· ,ad−1

(∆ad
F (x))

= ∆d−1
a1,··· ,ad−1

(F (x + ad)− F (x))

=
∑

εi∈{0,1},16i6d−1

(−1)ε1+···+εd−1+1 ·

(F (x + ad + ε1a1 + · · ·+ εd−1ad−1)

−F (x + ε1a1 + · · ·+ εd−1ad−1))

=
∑

εi∈{0,1},16i6d

(−1)ε1+···+εd+1 ·

F (x + ε1a1 + · · ·+ εdad).

Equation 2 can be got directly by equation 1. Note

that when ε1 + · · ·+ εd > 0, ε1a1 + · · ·+ εdad 6= 0 is

required, since if it doesn’t follows this condition,

then we have already known F (x) and needn’t to

do more. 2

4 Trivial Collisions and Fixed Point At-

tack

4.1 Trivial Collisions

In [5] the definition of density of a polynomial is

given. If we identify boolean functions with their

representative polynomial over GF (2), the weight

of a polynomial is defined as the number of non-null

coefficients in its algebraic normal form(ANF). The

number of square-free monomials in n variables of

degree in [0, d] is N(n, d) =
∑d

i=0

(
n
i

)
. The den-

sity of a polynomial of degree d in n variables is

the ratio between its weight and N(n, d), a random

system of density δ ∈ [0, 1] has its equations with

expected weight δN(n, d).

Consider a family F of multivariate hash func-

tions Fm+n 7→ Fn of density δ. Then for a random

h ∈ F , any given monomial appears in an arbitrary

component hi with probability δ. In particular, a

given degree 1 monomial xi appears in no single

component with probability (1−δ)n, when this hap-

pens , it is easy to see that h(0, . . . , xi = 0, . . . , 0) is

the same as h(0, . . . , xi = 1, . . . , 0). Consequently,

for any such pair of inputs, a collision like this oc-

curs in probability (1−δ)n. Moreover, by trying all

possible such pairs of input, one gets at least one



collision with probability p = 1− (1− (1−δ)n)n+m.

Aumasson and Meier observe that for all the pa-

rameters of the Cubic Construction proposed in [3],

p ' 1, hence with high probability at least one col-

lision can be found, while it only needs m+n times

of access the hash function.

When the field is GF (2), if each component hi

contains an even number of monomials, since the

constant monomial 1 appears with probability δ in

a given hi, the collision h(0, . . . , 0) = h(1, . . . , 1)

will hold with probability (1 − δ)n. For n = 160

and m = 160 in the Cubic Construction, this colli-

sion holds with probability 0.73.

In order to reduce the time cost of multivari-

ate hash function, Ding and Yang use the sparse

polynomials. They give a instance of multivariate

polynomials with density less of 0.2%. That is to

say, less than 0.2% of the coefficients are non-zero.

If this system is used in practice, there will exist

some input bits done’t effect the output bits. Thus

many trivial collisions will be found.

4.2 Fixed Point Attacks

In the origin construction of MQ-HASH, Billet,

Robshaw and Peyrin give an instance which the

chaining variable is 160 bits in length, the message

block at each iteration is 32 bits in length, the com-

pression function is Hi = F (Hi−1,M). Since the M

has only 32 bits, if we fixed Hi = Hi−1 = x, then

exhaustive search on the M , it is possible to find

an M satisfies:

x = F (x,M) (3)

The attack is called fixed point attack[8][9], if the

compression function has this property, it is possi-

ble to insert an arbitrary number of blocks equal

to M without modifying the hash code. And it

is also possible to producing collisions or a second

preimage with this attack. In the above instance

of MQ-HASH, to find an M satisfies equation ??,

we have 160 equations with 32 variables, so the

probability of success to find such a fixed point is

2−(160−32) = 2−128. Though this is impractical, it

implies it must be careful of choose a good param-

eter for the security of multivariate hash functions.

5 Two Distinguish Methods for Multi-

variate Hash Functions

In this section we describes two methods that can

distinguish the multivariate hash function from the

random functions. And we analysis the efficiency of

them. The first algorithm is given in [5] by comput-

ing the algebraic normal form of the multivariate

hash functions. The second method is to use higher

order differentials, which is more general, because

it works over any finite field while the first method

only work in GF (2).

Theorem 5.1 (Aumasson and Meier)For a

multivariate hash function F : GF (2)m+n 7→

GF (2)n with low degree d, if we seem a random

h ∈ F as a black box, computing the algebraic nor-

mal form of h can be achieved in
∑d

i=0

(
n
i

)
queries

to the box.

Proof. If we seem B as the challenge box with

components {Bi}06i6n, then Bi(0, . . . , 0) is equal

to the constant term of the algebraic normal form

of Bi, By querying B with all inputs of weight 1,

one can recovers all the linear terms of the alge-

braic normal forms of the Bis, using the knowl-



edge of the constant terms. If we know the all the

weight 1 terms, we can queries weight 2 then get

the quadratic monomials, continue doing this, we

eventually get the algebraic normal form of h in∑d
i=0

(
n
i

)
times. 2

Theorem 5.2 (Higher Order Differential)For

a multivariate hash function F : Fm+n 7→ Fn with

low degree d, if we seem F as a black box, we can

compute the dth derivative of F by 2d queries to

the box. If we get the constant derivative, we can

distinguish it between a random function.

Proof. This can be directly got from corollary 2.4.2

In theorem 5.1, the box is identified by com-

puting its algebraic normal form up to degree d,

then evaluating the system obtained, and query-

ing the box with a same input of degree > d. A

random function will have an output distinct from

the degree d system’s with probability 6 (1−2−n),

one identifies the box with high probability. With

this method, when the finite field is GF (2) one can

distinguish a random instance of MQ-HASH and

Cubic Construction from a random function with

respectively 225.74 and 222.38 black box queries.

Theorem 5.2 gives a more generic method to

distinguish the black box. And its efficiency de-

pends the degree of the multivariate polynomials

which is 2d. For the MQ-HASH, whose degree is

4, it needs 24 queries, while in the Cubic Construc-

tion, it only need 23 queries. Note theorem 5.1 only

works in GF (2), while theorem 5.2 works for any

fields, so it is more generic.

6 The Security of MACs Built on Mul-

tivariate Hash Functions

Usually a message authentication code algorithm

is constructed on MDC algorithms, by simply in-

cluding a secret key k as part of the MDC input.

A concern with this approach is that implicit but

unverified assumptions are often made about the

properties that MDCs have; in particular, while

most MDCs are designed to provide one-wayness

or collision resistance, the requirement of MAC al-

gorithm is different. The MAC algorithm must be

computation-resistance, that is, given zero or more

text-MAC pairs, it is computationally infeasible to

compute any new text-MAC without knowing the

key. The most popular MAC constructed from

MDC are Nested MACs(NMAC) and keyed-Hash

MACs(HMAC). Given a multivariate hash func-

tion F : Fm+n 7→ Fn with degree d, the NMAC

construction with a key (k1, k2), ki ∈ Fn is:

NMACk1,k2(x) = Fk1(Fk2(x)).

We assume that the iterated hash function has no

padding rule and the length of x is equal to one

message block. For the MQ-HASH and Cubic Con-

struction, the degree of the NMAC is 42 = 16 and

32 = 9 respectively. With the higher order dif-

ferential method, let an attacker have access to

NMACk1,k2 as a black box, with 216 and 29 queries

for the message of his selection respectively he can

compute the dth derivative, which is a constant,

then he queries 216 − 1 = 65535 and 29 − 1 = 511

times respectively again, he can make a new text-

MAC pair without knowing the secret key (k1, k2).



The HMAC construction with a secret k is:

HMACk(x) = F ((k ⊕ opad) ‖ F ((x⊕ ipad) ‖ x)).

Hence it needs to call the compression function at

least three times, the degree of HMAC is at least

d3. So in the MQ-HASH and Cubic Construction,

to make a success selective forgery, it needs 264 and

227 queries.

7 Conclusions

In this paper we have analyzed the weakness of low

degree multivariate hash functions, it shows that it

must be careful when a parameter of multivariate

hash function is chosen. We suggest that in order

to improve the security of multivariate hash func-

tion, the degree cannot be too low, and the field

GF (2) is not a good choice. But when the degree

is high and other fields are used, the efficiency will

be decreased. The other question is there may be

many weak instance about the random multivari-

ate polynomials. To deploy a good random system

is still an open problem.
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