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Abstract

A protocol is introduced to show an upper bound for rank of a square

matrix.

1 Introduction

Prover shows his knowledge of matrix elements committed, as well as a

statement regarding the matrix with a protocol introduced in this report.

He shows that rank of the matrix is at most a threshold with responses

of a variant of Schnorr protocol [Oka92, Sch89]. Condition tested is root

multiplicity of characteristic function of another matrix with elements that

are Prover responses. Responses are validated with commitments to ma-

trix elements. Pedersen commitment scheme [Ped91] is used with this

protocol.

An upper bound for error in a damaged codeword of Goppa code (in

Hamming metric) can be shown with a related protocol [Fed08]. Set ap-

proximate matching can be shown with another related protocol [Fed07].

2 Preliminaries

Let Fq be a finite field with q elements. Let E = {eij} be a square matrix

of size n with elements from Fq, and let Λ = {λij} be an identity matrix:

λii = 1, λij = 0, j 6= i. Notation |E| is used for matrix determinant.

Definition 1. Matrix characteristic function is a mapping from all square

matrices to the ring of polynomials:

f (x; E) = |xΛ − E| (1)
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Commitment scheme it a tuple of algorithms Gen(), Commit(), Open()
such that binding and hiding holds. With homomorphic commitment

scheme one can open a linear combination of values committed. Some

commitment schemes also have protocols to show knowledge of values

committed. Pedersen commitment scheme is computationally binding

and unconditionally hiding, is additively homomorphic, and have an ar-

gument of knowledge protocol.

Interactive protocol is an interactive pair of algorithms such that

completeness and soundness holds. Soundness is unconditional for a

proof, and depends on hardness of a problem for an argument. Extractor

algorithm exists for some protocols that can produce auxiliary input of

Prover machine from Prover responses given oracle access to Prover. A

protocol with an extractor is of knowledge. Simulator algorithm exists

for some protocols that produces simulated transcript indistinguishable

from protocol transcript with a Prover. A protocol with a simulator is

zero knowledge. A protocol with a simulator producing transcripts in-

distinguishable from all protocol transcripts with the same challenges is

honest verifier zero knowledge.

Schwartz-Zippel lemma [Sch80] is the core of our verification tech-

nique and soundness proof.

3 Protocol

Lemma 1. For a square matrix E of rank k and size n

f (x; E) = xn−k fk(x) (2)

where fk(x) is a monic polynomial of power k.

We show x−(n−T) f (x; E) is a polynomial with a protocol introduced

in this report such that rank(E) ≤ T.

Let {Wij} be a set of commitments, and {Rij} be a set of responses of

Chaum-Pedersen protocol with a challenge c ∈ Fq:

Wij = geij hζij (3)

Rij = rij(c), rij(y) = yeij + αij (4)

Consider a matrix of polynomials: B(y) = {rij(y)}. It is clear that

f (xy; B(y)) =
n

∑
l=0

al(x)yl , an(x) ≡ f (x; E) (5)

Verifier tests that

f (xy; B(y)) ≡ ynxn−T
T

∑
s=0

xsbs +
n−1

∑
l=0

al(x)yl

2



for x = d and y = c chosen at random, and for some {al(x)}, {bs}.

Protocol is shown on Figure 1.

Lemma 2 (Soundness). Probability for a honest Verifier to accept

while running protocol shown on Figure 1 for any polynomial Prover

and any matrix E of rank more than T is at most 2n
q .

Proof. (Concise) Any Prover producing a pair of responses Rij, Θij other

than estimates of linear polynomials

fR(y) = yeij + αij, fΘ(y) = yζij + βij (6)

at y = c that fit (16) for some αij, βij, ζij

Rij 6= fR(c), Θij 6= fΘ(c) (7)

will also produce a solution to DL problem:

logh(g) = −
Rij − fR(c)

Θij − fΘ(c)
(8)

In the following we consider all responses Rij to be estimates of polynomi-

als linear in challenge. Any Prover running protocol shown on Figure 1

with any square matrix of rank more than T will result in estimating a

non-zero polynomial

F(y, x) = − f (xy; B(y)) + ynxn−T
T

∑
s=0

xsbs +
n−1

∑
l=0

al(x)yl (9)

It can be shown there is at most 2n
q probability for a honest Verifier to

choose roots of (9) at random. For all other cases it follows that either

F(y, x) ≡ 0 holds, or Prover can get logh(g) from his responses. From

F(y, x) ≡ 0 it follows (2) holds such that rank of the matrix is at most T.

Lemma 3 (Zero knowledge). Protocol shown of Figure 1 is honest ver-

ifier zero knowledge.

Proof. Simulator algorithm is shown of Figure 2. It is clear A has flat

distribution over group, and A has flat distribution over Fq, such that sim-

ulated transcript is identical to any protocol transcript with a Prover with

the same challenges c, d.
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4 Discussion

Protocol introduced may be useful with rank codes [Gab85, GL08]. Namely,

an error in a corrupted codeword may be shown to be of a low enough

weight, without disclosure of the codeword and the weight, and in zero

knowledge. To show a statement regarding rank of a non-square matrix,

Prover introduces additional rows chosen by Verifier at random to produce

a square matrix.
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Common input is group elements, commitments and a threshold: g, h ∈ G,

{Wij} ⊂ G, T ∈ N.

Auxiliary input of Prover is a square matrix committed: E = {eij}, {ζij} such

that Wij = geij hζij .
Prover shows rank(E) ≤ T as follows:

1. Prover produces {bs}, chooses {γs} at random, produces and sends {Bs}:

|xΛ − E| = xn−T
T

∑
s=0

bsxs, Bs = gbs hγs (10)

2. Verifier chooses at random and sends d ∈ Fq

3. Prover chooses {αij}, {βij}, {δl} at random from Fq, produces {al}, pro-
duces and sends {Qij}, {Al}:

Qij = gαij hβij i, j ∈ [1 . . . n] (11)

|dyΛ − B(y)| =
n

∑
l=0

aly
l, Al = gal hδl l ∈ [1 . . . n − 1] (12)

4. Verifier chooses at random and sends c ∈ Fq

5. Prover produces responses

Rij = ceij + αij, Θij = cζij + βij (13)

Ψ = cndn−T
T

∑
s=0

γsd
s +

n−1

∑
l=0

δlc
l (14)

6. Verifier produces

B(c) = {Rij}, fB =
∣

∣dcλij − B(c)
∣

∣ (15)

Verifier accepts if

gRij hΘijW−c
ij = Qij (16)

g− fB h−Ψ

(

T

∏
s=0

Bds

s

)cndn−T
n−1

∏
l=0

Acl

l = 1 (17)

Figure 1: Protocol for matrix rank upper bound
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1. Verifier chooses

{Rij}, {Θij}, Ψ i, j ∈ [1 . . . n] (18)

at random from Fq.

2. Verifier chooses

{Al}, {Bs} l ∈ [1 . . . n − 1] s ∈ [0 . . . T] (19)

at random from G.

3. Verifier produces

B = {Rij}, fB =
∣

∣dcλij − B
∣

∣ (20)

Qij = gRij hΘijW−c
ij (21)

A0 = g fB hΨ

(

T

∏
s=0

B−ds

s

)cndn−T
n−1

∏
l=1

A−cl

l (22)

Figure 2: Simulator for matrix rank protocol
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