
A protocol for K-multiple substring
matching ∗

Vadym Fedyukovych Vitaliy Sharapov

August 18, 2008

Abstract

A protocol is introduced to show K copies of a pattern string are em-

bedded is a host string. Commitments to both strings, and to offsets of

copies of the pattern in the host is input of Verifier. Protocol does not leak

useful information about strings, and is zero knowledge.

1 Preliminaries

We consider a string as a set of tuples of integers for each character and

it’s position. This can be elaborated by introducing a set of allowed char-

acters, and require positions to be continuous.

Definition 1 (Polynomial representation). String characteristic poly-

nomial is a mapping from all sets of character-position tuples to a ring of

polynomials over integers:

S : {(cj, ij)} → F(x, y; S) (1)

F(x, y; S) =
|S|

∏
j=1

(1 + xcj + yij) (2)

A related definition for graph characteristic polynomial appeared with

protocols for graph isomorphism and vertex coloring [Fed08].

Lemma 1 (Schwartz-Zippel [Sch80], a case of a univariate polynomial).

Probability to choose a root of a non-zero polynomial f (z) of degree

at most d by choosing some z = c at random from a set D

Pr [f (c) = 0 | c ∈R D] ≤
d

|D|

∗Extended abstract. This report to appear in ITaS’08 (in Russian).

1

A commitment scheme is a tuple of algorithms Gen(), Commit(), Open()
such that binding and hiding holds. An integer commitment scheme [DF02]

suggest a group of a hidden order. We use this scheme with an addi-

tional requirement of avoiding small divisors of order of the group by using

strong primes to produce module N. Protocols for this scheme achieve

soundness on assumption of hardness of Strong RSA problem, as well as

statistically indistinguishable simulated transcripts.

2 Protocol design

Let {(cPj, iPj)} be characters of pattern and their positions, {(cHj, iHj)}
be characters and positions of host, {ok} be offsets of copies of pattern at

the host, {rj} be flags assigned to characters of host. Let {CPj}, {IPj},

{CHj}, {IHj}, {Ok}, {Rj} be responses of a variant of Schnorr proto-

col [Oka92] with challenges (e, d, s) and initial random coins {αPj}, {βPj},

{αHj}, {βHj}, {γk}, {ρj}:

CPj = ecPj + αPj IPj = diPj + βPj (3)

CHj = ecHj + αHj IHj = diHj + βHj (4)

Ok = dok + γk (5)

Rj = srj + ρj (6)

Definition 2. Pattern string verification polynomial is a mapping from

all sets of tuples of integers {(CPj, IPj)} that are protocol responses for

characters of pattern and their positions, and all sets of integers {Ok} that

are responses for pattern positions in the host, and for protocol challenges

e, d to ring of polynomials over integers:

FP(x, y; SP) =
K

∏
k=1

LP

∏
j=1

(ed + xdCPj + ye(IPj + Ok)) (7)

Definition 3. Host string verification polynomial is a mapping from

all sets of tuples of integers {(CHj, IHj)} that are protocol responses for

characters of host and their positions, and all sets of integers {Rj} that

are responses for flags, and for protocol challenges s, e, d to ring of poly-

nomials over integers:

FH(x, y; SH) =
LH

∏
j=1

(eds + Rj(xdCHj + yeIHj)) (8)

We assign flags rj = 1 to characters of K non-overlapping copies of

pattern string in the host string, and rj = 0 to all other characters of host.

We say

SF = {j | rj = 1}

2

Consider expansion coefficients as follows:

FH(x, y; SH) = sLH F′
H(x, y) +

LH−1

∑
t=0

stvt (9)

F′
H(x, y) = (ed)LH−KLP ∏

j∈SF

(ed + xdCHj + yeIHj) (10)

F′
H(x, y) = (ed)LH−n

n

∑
l=0

elal(x, y) where n = KLP (11)

an(x, y) =
n

∑
m=0

dmbm(x, y) (12)

bn(x, y) =
K

∏
k=1

LP

∏
j=1

(1 + xcPj + y(iPj + ok)) (13)

Product in (10) is over characters of K copies of pattern in the host. Po-

sition of a character in the host was replaced at (13) with position of a

matching character in the pattern and offset of a copy of the pattern.

Consider another set of expansion coefficients:

FP(x, y; S) =
n

∑
l=0

ela′l(x, y) (14)

a′n(x, y) =
n

∑
m=0

dmb′m(x, y) (15)

b′n(x, y) =
K

∏
k=1

LP

∏
j=1

(1 + xcPj + y(iPj + ok)) (16)

It follows that

Lemma 2. There are at least K non-overlapping copies of the pattern

string in the host string if, and only if

bn(x, y) ≡ b′n(x, y) (17)

holds for top expansion coefficients of pattern and host verification

polynomials, and for some assignments of flags rj ∈ {0, 1} to char-

acters of the host.

Backward statement can be shown due to unique decomposition of

verification polynomials into relatively prime linear polynomials.

Verifier tests that (17) holds by choosing x = xc, y = yc at random,

and testing

bn(xc, yc) = b′n(xc, yc) (18)

with our protocol.

3

3 Protocol

Common input is commitment scheme parameters: (N, g, h), commit-

ment to pattern string:

{(WPj, MPj)}, j = 1 . . . LP

to host string:

{(WHj, MHj)}, j = 1 . . . LH

and to pattern offsets in host string:

{Qk}, k = 1 . . . K

Auxiliary input of Prover is characters and their positions of both strings,

offsets of pattern copies in the host, as well as random coins used to pro-

duce commitments:

{(cPj, iPj)}, {(cHj, iHj)}, {ok}

{(θPj, φPj)}, {(θHj, φHj)}, {λk}

such that

WPj = gcPj hθPj , MPj = giPj hφPj

WHj = gcHj hθHj , MHj = giHj hφHj

Qk = gok hλk

Prover shows there are at least K copies of pattern string in the host string

as follows:

1. Prover assigns flags rj = 1 to characters of text string that are

copies of pattern string, and rj = 0 to all other characters of text

string. Prover chooses random coins {ωj}, produces commitments:

Lj = grj hωj j = 1 . . . LH (19)

Prover sends {Lj} to Verifier.

2. Verifier chooses a challenge (xc, yc) from the interval at random, and

sends it to Prover.

3. Prover chooses random coins

{(βHj, µHj)}, {(βPj, µPj)}, {(γk, χk)} (20)

4

produces expansion coefficients {bm}, {b′m}:

n

∏
j=1

(z + xczcHj + yc(ziHj + βHj)) =
n

∑
m=0

zmbm (21)

K

∏
k=1

LP

∏
j=1

(z + xczcPj + yc((ziPj + βPj) + (zok + γk))) =
n

∑
m=0

zmb′m

(22)

chooses random coins (ζm, ζ ′m, ψ, τ, τ′), produces commitments:

Bm = gbm hζm , B′
m = gb′m hζ ′m m = 0 . . . n (23)

YPj = gβPj hµPj j = 1 . . . LP (24)

YHj = gβHj hµPj j = 1 . . . LH (25)

Xk = gγk hχk k = 1 . . . K (26)

Z = gψhτ (27)

Z′ = gψhτ′
(28)

Prover sends {Bm}, {B′
m}, {YPj}, {YHj}, {Xk}, Z, Z′ to Verifier.

4. Verifier chooses a non-zero challenge d at random from the interval,

and sends it to Prover.

5. Prover produces responses:

IHj = diHj + βHj, ΦHj = dφHj + µHj, j = 1 . . . LH (29)

IPj = diPj + βPj, ΦPj = dφPj + µPj, j = 1 . . . LP (30)

Ok = dok + γk, Λk = dλk + χk, k = 1 . . . K (31)

Ψ = dbn + ψ, Γ = dζn + τ, Γ′ = dζ ′n + τ′ (32)

chooses random coins ({(αHj, ηHj)}, {(αPj, ηPj)}), produces ex-

pansion coefficients {an}, {a′n}:

KLP

∏
j=1

(zd + xcd(zcHj + αHj) + ycz(IHj + dok)) =
n

∑
l=0

zlal (33)

K

∏
k=1

LP

∏
j=1

(zd + xcd(zcPj + αPj) + ycz(IPj + Ok)) =
n

∑
l=0

zla′l (34)

chooses random coins {πl}, {π′
l}, produces commitments:

Al = gal hπl , A′
l = ga′l hπ′

l l = 0 . . . (n − 1) (35)

TPj = gαPj hηPj j = 1 . . . LP (36)

THj = gαHj hηHj j = 1 . . . LH (37)

5

Prover sends {IHj}, {ΦHj}, {IPj}, {ΦPj}, {Ok}, {Λk}, Ψ, {Al},

{A′
l}, {TPj}, {THj} to Verifier.

6. Verifier chooses a non-zero challenge e at random from the interval,

and sends it to Prover.

7. Prover produces responses:

CHj = ecj + αHj, ΘHj = eθHj + ηHj (38)

CPj = ecj + αPj, ΘPj = eθPj + ηPj (39)

chooses random coins {ρj}, produces expansion coefficients {vt}:

LH

∏
j=1

(edz + (zrj + ρj)(xcdCHj + yceIHj)) =
LH

∑
t=0

ztvt (40)

produces expansion coefficients {(u1j, u0j)}:

(zrj + ρj)(z(rj − 1) + ρj) = u1jz + u0j (41)

chooses random coins {σt}, {δj}, {(ν1j, ν0j)}, produces commitments:

Vt = gvt hσt t = 0 . . . (LH − 1) (42)

Nj = gρj hδj j = 1 . . . LH (43)

E1j = gu1j hν1j , E0j = gu0j hν0j (44)

Prover sends {CHj}, {ΘHj}, {CPj}, {ΘPj}, {Vt}, {Nj}, {(E1j, E0j)}
to Verifier.

8. Verifier chooses a non-zero challenge s at random from the interval,

and sends it to Prover.

9. Prover produces responses

Rj = srj + ρj, j = 1 . . . LH (45)

Ωj = sωj + δj (46)

Ξj = sν1j + ν0j (47)

∆P = en
n

∑
m=0

dmζ ′m +
n−1

∑
l=0

elπ′
l (48)

∆H = sLH (en
n

∑
m=0

dmζm +
n−1

∑
l=0

elπl) +
LH−1

∑
t=0

stσt (49)

Prover sends {Rj}, {Ωj}, {Ξj}, ∆P, ∆H to Verifier.

6

10. Verifier tests responses to fit commitments:

gCPj hΘPjW−e
Pj = TPj gIPj hΦPj M−d

Pj = YPj (50)

gCHj hΘHjW−e
Hj = THj gIHj hΦHj M−d

Hj = YHj (51)

gOk hΛk Q−d
k = Xk (52)

gRj hΩj L−s
j = Nj (53)

tests flags to be from the right set (rj ∈ {0, 1}):

g−Rj(Rj−s)h−Ξj Es
1jE0j = 1 (54)

produces

UP =
K

∏
k=1

LP

∏
j=1

(ed + xcdCj + yce(Ij + Ok)) (55)

UH = (ed)−(LH−n)
LH

∏
j=1

(eds + Rj(xcdCj + yceIj)) (56)

Verifier accepts if

(a) {A′
l}, {B′

m} are commitments to expansion coefficients of pat-

tern verification polynomial:

g−UP h−∆P

(

n

∏
m=0

(B′
m)dm

)en
n−1

∏
l=0

(A′
l)

el
= 1 (57)

(b) {Al}, {Bm} are commitments to expansion coefficients of host

verification polynomial:

g−UH h−∆H

(

n

∏
m=0

(Bm)dm

)en
n−1

∏
l=0

(Al)
el

sLH

LH−1

∏
t=0

(Vt)
st

= 1

(58)

(c) top expansion coefficients committed at Bn, B′
n are the same

(bn = b′n):

gΨhΓB−d
n = Z (59)

gΨhΓ′
(B′

n)
−d = Z′ (60)

7

4 Protocol properties

It is clear honest Verifier always accepts for an honest Prover and com-

mitments such that there are at least K copies of pattern in the host.

Lemma 3 (Soundness). Probability for an honest Verifier to accept

for any polynomial Prover and any commitments such that there are

no or less than K copies of pattern string in host string while run-

ning protocol shown in section 3 is at most 2KLP+LH
q .

Lemma 4 (Zero knowledge). Protocol shown in section 3 has a simu-

lator, and is honest verifier statistical zero knowledge.

Proof. Consider a candidate simulator algorithm as follows. Given com-

mitment scheme parameters (N, g, h), challenges (xc, yc, d, e, s), and com-

mitments {(WPj, MPj)}, {(WHj, MHj)}, {Qk}, Verifier:

1. chooses group elements: {E1j}, {B′
m}, {A′

l}l=1...n−1, {Bm}, {Al},

{Vt}t=1...LH−1 at random;

2. chooses some {CPj}, {ΘPj}, {IPj}, {ΦPj}, {CHj}, {ΘHj}, {IHj},

{ΦHj}, {Ok}, {Λk}, {Rj}, {Ωj}, ∆P, ∆H, Ψ, Γ, Γ′ at random;

3. produces

TPj = gCPj hΘPjW−e
Pj YPj = gIPj hΦPj M−d

Pj (61)

THj = gCHj hΘHjW−e
Hj YHj = gIHj hΦHj M−d

Hj (62)

Xk = gOk hΛk Q−d
k (63)

Nj = gRj hΩj L−s
j (64)

E0j = gRj(Rj−s)hΞj E−s
1j (65)

UP =
K

∏
k=1

LP

∏
j=1

(ed + xcdCj + yce(Ij + Ok)) (66)

UH = (ed)−(LH−n)
LH

∏
j=1

(eds + Rj(xcdCj + yceIj)) (67)

A′
0 = gUP h∆P

(

n

∏
m=0

(B′
m)dm

)−en
n−1

∏
l=1

(A′
l)
−el

(68)

V0 = gUH h∆H

(

n

∏
m=0

(Bm)dm

)en
n−1

∏
l=0

(Al)
el

−sLH

LH−1

∏
t=1

(Vt)
−st

(69)

Z = gΨhΓB−d
n Z′ = gΨhΓ′

(B′
n)

−d (70)

8

Transcript simulated this way is statistically indistinguishable from all

protocol transcripts with the same challenges.

5 Discussion

Protocol introduced can be extended to show matching for 2D and 3D ob-

jects. Approximate matching can be another extension. Protocols of this

type may be developed for similar statements regarding pattern matching.

Protocol is expected to be useful in bioinformatics.

References

[DF02] Ivan Damgård and Eiichiro Fujisaki. A statistically-hiding in-

teger commitment scheme based on groups with hidden order.

In ASIACRYPT, pages 125–142, 2002.

[Fed08] Vadym Fedyukovych. Protocols for graph languages. In (sub-

mitted), 2008.

[Oka92] Tatsuaki Okamoto. Provably secure and practical identification

schemes and corresponding signature schemes. In CRYPTO,

pages 31–53, 1992.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of

polynomial identities. J. ACM, 27(4):701–717, 1980.

9

	Preliminaries
	Protocol design
	Protocol
	Protocol properties
	Discussion

