
Argument of knowledge of a bounded error

Vadym Fedyukovych

August 18, 2008

Abstract

A protocol is introduced to show knowledge of a codeword of Goppa

code and Goppa polynomial. Protocol does not disclosure any useful

information about the codeword and polynomial coefficients. A related

protocol is introduced to show Hamming weight of an error is below a

threshold. Protocol does not disclosure codeword and weight of the error.

Verifier only uses commitments to codeword components and coefficients

while testing validity of statements. Both protocols are honest verifier zero

knowledge.

1 Introduction

Approximate matching over hidden data is an important practical prob-

lem. In particular, it may be challenging to show validity of a statement

about some data while keeping the data private. We are interested in pro-

ducing verifiable statements about private data. The well-known tech-

nique to produce verifiable statements is electronic signatures. However,

most signatures require exact matching for data signed and signing keys.

We introduce protocols to show that values committed are a codeword

of Goppa code and coefficients of Goppa polynomial, and that error weight

in a damaged codeword is below a threshold.

2 Preliminaries

Let q be a large prime, Fq be a finite field, Fq[z] be polynomial ring over

Fq. Let g(z) ∈ Fq[z] be a non-zero polynomial of degree T.

A codeword of Goppa code [8] is a N-tuple B = {b1 . . . bN}, bj ∈ Fq

such that
N

∑
j=1

bj

z − aj
≡ 0 (mod g(z)) (1)

for a set A = {a1, . . . aN} of different aj ∈ Fq. Polynomial g(z) is Goppa

polynomial, and A is a support set.

Let h, f ∈ G be two elements of order q such that log f (h) is not known

to Prover. Pedersen commitment [9] to a value x ∈ Fq with an accessory

value r ∈ Fq is (multiplicative notation)

M = hx f r (2)

A variant of Schnorr protocol [10] with two responses (for x and for r)

can be used to show knowledge of values committed. This commitment

scheme is computationally binding and information-theoretic hiding.

An interactive proof system [7] for a language L is an interactive

pair of Turing machines with a word X on common input tape such that

completeness and soundness holds. A party is honest if it follows the

protocol. Completeness is honest Verifier always accepts for an honest

Prover and a word from language. Soundness is honest Verifier accepts

for any Prover and a word not from language with only a negligible proba-

bility. An interactive argument [3, 4] is a proof system with an additional

auxiliary input tape for Prover with a witness to language membership on

it, and with soundness depending on infeasibility for a polynomial Prover

to solve a hard problem. A proof system is of knowledge [1] if an extrac-

tor algorithm exists that outputs the witness from Prover responses given

oracle access to Prover. A proof system is zero knowledge if a simulator

algorithm exists for Verifier that outputs a simulated transcript indistin-

guishable from a transcript of a protocol with a Prover for any word from

language. A proof system is honest verifier zero knowledge [2] if sim-

ulated transcript is indistinguishable from all protocol transcripts having

the same challenge. Protocols with binary challenges require repeating

to achieve small probability of cheating, while protocols with challenges

chosen from a set of a large cardinality achieve soundness in constant

round.

We observe Prover can only produce acceptable responses of Schnorr

protocol as estimates of a polynomial linear in challenge. We choose an

appropriate verification polynomial to test language membership for

values committed. Verification polynomial can be evaluated only using

responses and challenges of Schnorr protocol.

Let F(z) be a non-zero polynomial of degree n over a ring. Con-

sider a Verifier choosing a challenge c from a set S. Schwartz-Zippel

lemma [11] says that probability to choose a root of such a polynomial

(that is, F(c) = 0) at random is at most n
|S|

.

3 A protocol to show a codeword

Consider an equation equivalent to definition of Goppa codeword (1):

N

∑
j=1

bj

T

∑
k=1

gk

zk − ak
j

z − aj
∏
i 6=j

T

∑
m=0

gmam
i ≡ 0 (3)

g(z) =
T

∑
k=0

gkzk (4)

where {bj} are codeword components, and {gk} are coefficients of poly-

nomial g(z).

We verify that (3) holds by choosing some nonzero d ∈ Fq at random

as a challenge, and testing that it holds for z = d.

We consider a bivariate verification polynomial produced by substi-

tuting responses of Schnorr protocol in place of codeword components

and coefficients:

Γ(z, y) =
N

∑
j=1

(ybj + β j)
T

∑
k=1

(ygk + αk)
zk − ak

j

z − aj
∏
i 6=j

T

∑
m=0

(ygm + αm)am
i

(5)

Verification polynomial is of power N + 1 in y. This polynomial is of power

at most N if, and only if equation (3) holds for ({bj}, {gk}). We test that

Γ(d, y) can be reproduced with exactly N coefficients for y = c chosen as

another challenge. See protocol for multiplication [6] as a background.

Common input is group description, two group elements, support set

and Pedersen commitments: X = (q, h, f , {Vk}, {Wj}). Auxiliary input

of Prover is ({gk}, {θk}, {bj}, {φj}) such that:

Vk = hgk f θk , k = 0 . . . T (6)

Wj = hbj f φj , j = 1 . . . N (7)

Prover shows that values committed constitute Goppa polynomial and a

codeword with a protocol shown on Figure 1.

It can be shown that probability for an honest Verifier to accept for any

polynomial Prover and for any data committed that do not satisfy Goppa

codeword definition is at most T+N
q (over choices of Verifier).

4 A protocol to show a bounded error

Let {wj} be a damaged codeword with an error {ej}: wj = bj + ej. Con-

sider a Prover willing to show that |{j | ej 6= 0}| ≤ S for some S agreed

(S ≤ T). Verifier tests that error verification polynomial

Γ′(y) =
N

∏
j=1

(ybj + β j − ywj) (19)

is of power at most S in y. See protocol for set membership [6] as a back-

ground.

Common input is (q, h, f , {wj}, {Wj}), auxiliary input of Prover is

({bj}, {φj}) such that equations (6, 7) hold. Prover shows that

|{j | wj − bj 6= 0}| ≤ S (20)

for a codeword committed with a protocol shown on Figure 2.

It can be shown that probability for an honest Verifier to accept for

any polynomial Prover and an error of Hamming weight of more than S is

at most N
q (over choices of Verifier), on condition of taking logarithms is

hard for Prover.

5 Properties of protocols

Consider a case that (1) does not hold for {gk}, {bj} committed. Ac-

cording to Schwartz-Zippel lemma, probability for a Verifier to choose

some d ∈ Fq such that (1) holds for z = d is at most T−1
q ; verification

polynomial is of power N + 1 otherwise. It follows −Γ(d, y) + ∑
N
l=0 ylrl

is a non-zero polynomial for any {rl}. According to Schwartz-Zippel

lemma, probability for an honest Verifier to choose some c ∈ Fq such that

Γ(d, c) = ∑
N
l=0 clrl for any {rl} chosen by Prover is at most N+1

q .

Any Prover capable of producing a pair of responses (Ψ′
k, Θ′

k) that

pass (16) and are not estimates of linear polynomials

Ψ′
k 6= Ψk(c), Ψk(y) = ygk + αk (28)

Θ′
k 6= Θk(c), Θk(y) = yθk + ζk (29)

is also capable to solve for logh(g). The same holds for (Ωj, Φj) and (17).

We conclude protocol introduced achieve negligible soundness error N+T
q

without repeating.

Consider a case with an error {ej} of more than S weight. It fol-

lows −Γ′(y) + ∑
S
l=0 yl pl is non-zero for any choice of {pl}. According

to Schwartz-Zippel lemma, probability for an honest Verifier to choose

some c ∈ Fq such that Γ′(c) = ∑
S
l=0 cl pl for any {pl} chosen by Prover

is at most N
q (over random coins of Verifier).

Extractor algorithm for both protocols introduced is the same as one

for Schnorr protocol (rewinding procedure). Namely, Prover is requested

to produce two sets responses to two different challenges without choos-

ing another set of initial random coins.

Consider a simulator candidate algorithm for ’codeword’ protocol. Given

challenges (c, d), Verifier chooses some field elements for responses {Ψk}, {Ωj}, {Θk}, {Φj}, ∆

uniformly at random, and some group elements for Rl , l = 1 . . . N uni-

formly at random. Verifier produces Γ according to (15). Verifier produces

Uk = hΨk f Θk V−c
k Qj = hΩj hΦjW−c

j R0 = hΓ f ∆
N

∏
l=1

(Rl)
−cl

(30)

Simulated transcript is (d, {Uk}, {Qj}, {Rl}, c, {Ψk}, {Ωj}, {Θk}, {Φj}, ∆).

It is clear that distribution of transcript components is flat and is iden-

tical to that of any transcript with a Prover with the same challenges d, c.

Consider a simulator candidate algorithm for ’bounded error’ proto-

col. Given a challenge c, Verifier chooses some field elements for re-

sponses {Ωj}, {Φj}, ∆′ uniformly at random and some group elements

for Pl , l = 1 . . . S uniformly at random. Verifier produces Γ′ according

to (25). Verifier produces

Qj = hΩj hΦjW−c
j P0 = hΓ′

f ∆′
S

∏
l=1

(Pl)
−cl

(31)

Simulated transcript is ({Qj}, {Pl}, c, {Ωj}, {Φj}, ∆′).

It is clear that distribution of transcript components is flat and is iden-

tical to that of any transcript with a Prover with the same challenge c.

6 Discussion

Protocols introduced can be useful for watermarking.

References

[1] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge.

In CRYPTO, pages 390–420, 1992.

[2] Mihir Bellare, Silvio Micali, and Rafail Ostrovsky. The (true) com-

plexity of statistical zero knowledge. In STOC, pages 494–502,

1990.

[3] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum dis-

closure proofs of knowledge. J. Comput. Syst. Sci., 37(2):156–189,

1988.

[4] Gilles Brassard, Claude Crépeau, and Moti Yung. Everything in np

can be argued in perfect zero-knowledge in a bounded number of

rounds. In ICALP, pages 123–136, 1989.

[5] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of

partial knowledge and simplified design of witness hiding protocols.

In CRYPTO, pages 174–187, 1994.

[6] Vadym Fedyukovych. Proving polynomial identities (a presenta-

tion in Russian). In Information Security conference, Kiev, 2008.

Presentation available.

[7] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-

edge complexity of interactive proof systems. SIAM J. Comput.,

18(1):186–208, 1989.

[8] F. J. MacWilliams and N. J. A. Sloane. The theory of error-

correcting codes. North-Holland, 1977.

[9] Torben P. Pedersen. Non-interactive and information-theoretic se-

cure verifiable secret sharing. In CRYPTO, pages 129–140, 1991.

[10] Claus-Peter Schnorr. Efficient identification and signatures for

smart cards. In CRYPTO, pages 239–252, 1989.

[11] J. T. Schwartz. Fast probabilistic algorithms for verification of poly-

nomial identities. J. ACM, 27(4):701–717, 1980.

http://vf.org.ua/papers/puscha08/puscha08_VF_poly.pdf

Common input: (q, h, f , {aj}, {Vk}, {Wj}).

Prover input: ({gk}, {θk}, {bj}, {φj}) such that Vk = hgk f θk Wj = hbj f φj

Prover shows that ∑
N
j=1

bj

z−aj
≡ 0 (mod g(z)) for g(z) = ∑

T
k=0 gkzk

1. Verifier chooses a non-zero challenge d ∈ Fq at random, and sends it to

Prover.

2. Prover chooses (αk, ζk) ∈ F2
q, (β j, ηj) ∈ F2

q, µl ∈ Fq at random, pro-

duces initial commitments {Uk}, {Qj}, expansion coefficients {rl}, com-

mitments {Rl}:

Uk = hαk f ζk , k = 0 . . . T (8)

Qj = hβ j f ηj , j = 0 . . . N (9)

N

∑
j=1

(ybj + β j)
T

∑
k=1

(ygk + αk)
dk − ak

j

d − aj
∏
i 6=j

T

∑
m=0

(ygm + αm)am
i =

N

∑
l=0

ylrl

(10)

Rl = hrl hµl , l = 0 . . . N (11)

Prover sends ({Uk}, {Qj}, {Rl}) to Verifier.

3. Verifier chooses his second non-zero challenge c ∈ Fq at random, and

sends it to Prover.

4. Prover produces responses ({Ψk}, {Θk}, {Ωj}, {Φj}, ∆) and sends them

to Verifier

Ψk = cgk + αk Θk = cθk + ζk (12)

Ωj = cbj + β j Φj = cφj + ηj (13)

∆ =
N

∑
l=0

clµl (14)

5. Verifier produces

Γ =
N

∑
j=1

Ωj

T

∑
k=1

Ψk

dk − ak
j

d − aj
∏
i 6=j

T

∑
m=0

Ψmam
i (15)

Verifier accepts if

hΨk f Θk V−c
k = Uk (16)

hΩj hΦjW−c
j = Qj (17)

h−Γ f−∆
N

∏
l=0

(Rl)
cl

= 1 (18)

Figure 1: Protocol for codeword of Goppa code

Common input: (q, h, f , {wj}, {Wj}).

Prover input: ({bj}, {φj}) such that Wj = hbj f φj

Prover shows that |{j | ej 6= 0}| ≤ S

1. Prover chooses (β j, ηj) ∈ F
2
q, τl ∈ Fq at random, produces initial com-

mitments {Qj}, expansion coefficients {pl}, commitments {Pl}:

Qj = hβ j f ηj , j = 0 . . . N (21)

N

∏
j=1

(ybj + β j − ywj) =
S

∑
l=0

yl pl (22)

Pl = hpl hτl , l = 0 . . . S (23)

Prover sends ({Qj}, {Pl}) to Verifier.

2. Verifier chooses a non-zero challenge c ∈ Fq at random, and sends it to

Prover.

3. Prover produces responses ({Ωj}, {Φj}, ∆′) and sends them to Verifier

Ωj = cbj + β j Φj = cφj + ηj ∆′ =
S

∑
l=0

clτl (24)

4. Verifier produces

Γ′ =
N

∏
j=1

(Ωj − cwj) (25)

Verifier accepts if

hΩj hΦjW−c
j = Qj (26)

h−Γ′
f−∆′

S

∏
l=0

(Pl)
cl

= 1 (27)

Figure 2: Protocol for bounded error

	Introduction
	Preliminaries
	A protocol to show a codeword
	A protocol to show a bounded error
	Properties of protocols
	Discussion

