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Abstract 

In this paper, a block-cipher, Integrated Encryption System (IES), to be implemented in 

bit-level is presented that requires a 252-bit secret key. In IES, there exist at most sixteen 

rounds to be implemented in cascaded manner. RPSP, TE, RPPO, RPMS, RSBM, RSBP 

are the six independent block-ciphering protocols, that are integrated to formulate IES. A 

round is constituted by implementing one of the protocols on the output produced in the 

preceding round. The process of encryption is an interactive activity, in which the 

encryption authority is given enough scope of flexibility regarding choice of protocols in 

any round. However no protocol can be used in more than three rounds. Formation of key 

is a run-time activity, which gets built with the interactive encryption process proceeds. 

Results of implementation of all six protocols in cascaded manner have been observed 

and analyzed. On achieving a satisfactory level of performance in this cascaded 

implementation, IES and its schematic and operational characteristics have been 

proposed. 
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1 Introduction 

The proposed cipher, Integrated Encryption System (IES), is a 252-bit private-key 

based 16-round block-cipher that is capable of working in interactive mode on bit-

streams of up to around 1 MB size. Rounds in IES are constituted through six 



independent encryption tools, which are being termed here as “Building Blocks”. Six 

building blocks are termed as follows: 

1. RPSP (Recursive Positional Substitution based on Prime-Nonprime of cluster) 

2. TE (Triangular Encryption technique) 

3. RPPO (Recursive Paired Parity Operation) 

4. RPMS (Recursive Positional Modulo-2 Substitution technique) 

5. RSBP (Recursive Substitutions of Bits through Prime-nonprime detection of    

sub-stream) 

6. RSBM (Recursive Substitutions of Bits through Modulo-2 detection of sub-

stream) 

On the basis of proposed schematic and operational characteristics, IES executes 

the task of encryption, and consequently a 252-bit key is generated at run-time that is to 

be kept secret. The invulnerability of the key against possible attacks because of the long 

key-space and the underlying complexity of the 16-round mathematical approach 

followed during encryption make IES a reasonably strong cipher and compatible enough 

with existing private-key based ciphers in the world of cryptography [1] [4] [5] [9] [10]. 

Six building blocks are presented in section 2. A simple cascaded approach of 

implementing all building blocks is presented in section 3. Section 4 is a proposal of IES 

that includes its principles, schematic characteristics, and operational, along with a 

proposal of 252-bit key. Section 5 concludes the entire approach. References are stated in 

section 6. 

 

2 Building Blocks of IES 

Correctness of all building blocks is mathematically well-proved and they have 

two things in common; all are block-ciphers and all are to be implemented in bit-level. 

Discussion on how these building blocks are handled in IES is made in detail in section 4. 

In this section, the process of converting one bit-stream into the corresponding encrypted 

bit-stream through all six building blocks has been presented respectively in sections 2.1, 

2.2, 2.3, 2.4, 2.5 and 2.6. 

 

 



2.1 The Building Block, RPSP 

RPSP involves in generating a cycle. A generating function, g(s, t), used to 

generate a target block (t) from a source block (s), is applied for a block in the first 

iteration. The rules to be followed while applying the generating function g(s, t) are as 

follows: 

1.  A bit in the position i (1 <= i <= n-2) in the block s becomes the bit in the position 

(n-i) in the block t, if (n-i) is a non-prime integer. 

2.  A bit in the position i (1 <= i <= (n-2)) in the block s becomes the bit in the 

position j (1 <= j <= (n-i-1)) in the block t, where j is the precedent prime integer 

(if any) of (n-i), if (n-i) is a prime integer. 

3.  A bit in the position n in the block s remains in the same position in the block t 

4.  A bit in the position (n-2) in the block s is transferred in the block t to the position 

unoccupied by any bit after rules 1, 2 and 3 are applied. 

The same generating function is applied to all the subsequent blocks. After a finite 

number of such iterations, the source block is regenerated. 

If all blocks are not taken of the same size, the number of iterations required to 

regenerate the source block itself for one block may not be the same for another block. 

These varying numbers of iterations are synchronized by evaluating the least common 

multiple (LCM) of all these numbers. If for all the blocks, iterations are applied for 

number of times exactly equal to the value of the LCM, it can be ensured that for each of 

the blocks its respective source block will be generated. 

The value of the LCM is the total number of iterations required to complete the 

tasks of encryption as well as decryption. Therefore any intermediate value between 1 

and the value of the LCM may be considered as the number of iterations performed 

during the process of encryption. For the purpose of decryption the same process is to be 

applied for the remaining number of times [4]. 

 

 

 



2.2 The Building Block, TE 

We consider a block S = s
0

0 s
0
1 s

0
2 s

0
3 s

0
4 s

0
5 … s

0
n-2 s

0
n-1 of size n bits, where s

0
i = 

0 or 1 for 0 <= i <= (n-1).  

Starting from MSB (s
0

0) and the next-to-MSB (s
0
1), bits are pair-wise XORed, so 

that the 1
st
 intermediate sub-stream S

1
 = s

1
0 s

1
1 s

1
2 s

1
3 s

1
4 s

1
5 … s

1
n-2 is generated 

consisting of (n-1) bits, where s
1
j = s

0
j ⊕ s

0
j+1 for 0 <= j <= n-2, ⊕ stands for the exclusive 

OR operation. This 1
st
 intermediate sub-stream S

1
 is also then pair-wise XORed to 

generate S
2
 = s

2
0 s

2
1 s

2
2 s

2
3 s

2
4 s

2
5 … s

2
n-3, which is the 2

nd
 intermediate sub-stream of 

length (n-2). This process continues (n-1) times to ultimately generate S
n-1

 = s
n-1

0, which 

is a single bit only. Thus the size of the 1
st
 intermediate sub-stream is one bit less than the 

source sub-stream; the size of each of the intermediate sub-streams starting from the 2
nd

 

one is one bit less than that of the sub-stream wherefrom it was generated; and finally the 

size of the final sub-stream in the process is one bit less than the final intermediate sub-

stream. Figure 2.2.1 shows the generation of an intermediate sub-stream S
j+1

 = s
j+1

0 s
j+1

1 

s
j+1

2 s
j+1

3 s
j+1

4 s
j+1

5 … s
j+1
n-(j+2) from the previous intermediate sub-stream S

j
 = s

j
0 s
j
1 s
j
2 s
j
3 

s
j
4 s

j
5 … s

j
n-(j+1). The formation of the triangular shape for the source sub-stream S = s

0
0 

s
0

1 s
0
2 s

0
3 s

0
4 s
0
5 …  s

0
n-2 s

0
n-1 is shown in figure 2.2.2. 
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Figure 2.2.1 

Generation of an Intermediate Sub-Stream in TE 
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Figure 2.2.2 

Formation of a Triangle in TE 

 

Corresponding to figure 2.2.2, a total of four options are available to form a target 

block from the source block S = s
0
0 s

0
1 s

0
2 s

0
3 s

0
4 s

0
5 …  s

0
n-2 s

0
n-1. These options are 

shown in table 2.2.1. Figure 2.2.3 shows the same diagrammatically [3] [4] [6]. 

Table 2.2.1 

Options for choosing Target Block from Triangle 

Option 

Serial No. 

Target Block Method of Formation 

001 s
0

0 s
1
0 s

2
0 s

3
0 s

4
0 s

5
0  … s

n-2
0 s
n-1

0 Taking all the MSBs starting 

from the source block till the last 

block generated 

010 s
n-1

0 s
n-2

0 s
n-3

0 s
n-4

0 s
n-5

0 … s
1

0 s
0
0 Taking all the MSBs starting 

from the last block generated till 

the source block 

011 s
0
n-1 s

1
n-2 s

2
n-3 s

3
n-4 s

4
n-5  … s

n-2
1 s
n-1

0 Taking all the LSBs starting from 

the source block till the last block 

generated 

100 s
n-1

0 s
n-2

1 s
n-3

2 s
n-4

3 s
n-5

4  … s
1
n-2 s

0
n-1 Taking all the LSBs starting from 

the last block generated till the 

source block 
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Figure 2.2.3 

Diagrammatic Representation of Options for choosing Target Block from Triangle 

 

2.3 The Building Block, RPPO 

Let P = s
0

0 s
0
1 s

0
2 s

0
3 s

0
4 … s

0
n-1 is a block of size n in the plaintext. Then the first 

intermediate block I1 = s
1

0 s
1
1 s

1
2 s

1
3 s

1
4 … s

1
n-1 can be generated from P in the following 

way: 

 s
1

0 = s
0

0 

 s
1
i = s

1
i-1 ⊕ s

0
i, 1 <= i <= (n-1); ⊕ stands for the exclusive OR operation. 

Now, in the same way, the second intermediate block I2 = s
2

0 s
2

1 s
2
2 s

2
3 s

2
4 … s

2
n-1 

of the same size (n) can be generated by: 

 s
2

0 = s
1

0 

 s
2

i = s
2
i-1 ⊕ s

1
i, 1 <= i <= (n-1). 

After this process continues for a finite number of iterations, which depends on 

the value of n, the source block P is regenerated. 

If the number of iterations required to regenerate the source block is assumed to 

be I, the generation of any intermediate or the final block can be generalized as follows: 



  s
j
0 = s

j-1
0 

 s
j
i = s

2
i-1 ⊕ s

j-1
i, 1 <= i <= (n-1); where 1 <= j <= i. 

In this generalized formulation system, the final block, which in turn is the source 

block, is generated when j = i. 

Figure 2.3.1 pictorially represents this technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.1 

Pictorial Representation of the RPPO Technique 

 

The entire scheme is a combination of encryption and decryption. Obviously, for 

the source block, P, if I iterations are required to complete the cycle, and the intermediate 

block generated after N iterations is considered as the encrypted block, (I-N) more 

iterations would be required to decrypt the encrypted block [2] [4]. 

 

2.4 The Building Block, RPMS 

The algorithm to generate the encrypted block here can be presented through a 

pseudo code as follows [4] [6]: 

P = s
0

0   s
0

1  s
0

2  s
0

3  …            s
0
n-1 

 

  ⊕⊕⊕⊕  ⊕⊕⊕⊕  ⊕⊕⊕⊕ 
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0  s
1

1  s
1
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1
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1
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2
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I3 = s
3

0  s
3

1  s
3

2  s
3

3   …           s
3
n-1 

 

… … … … … … … … … … … … 

Ij = s
j
0  s

j
1  s

j
2  s

j
3   …           s

j
n-1 



Evaluate:  DL, the decimal equivalent, corresponding to the source block S = 

s0 s1 s2 s3 s4 … sL-1. 

Set:  P = 0. 

LOOP: 

 Evaluate:  Temp = Remainder of DL-P / 2. 

 If Temp = 0 

  Evaluate:  DL-P-1 = DL-P / 2. 

  Set:   tP = 0. 

 Else  

If Temp = 1 

 Evaluate:  DL-P-1 = (DL-P + 1) / 2. 

Set:   tP = 1. 

Set:  P = P + 1. 

If (P > (L – 1)) 

   Exit. 

ENDLOOP 

 

2.5 The Building Block, RSBP 

Following is the stepwise approach to be followed to encrypt the source bit-

stream using this building block [1] [4] [9] [10]: 

Step 1: Decompose the source stream, say, into a finite number of blocks, each 

preferably of the same size, say, L. 

Step 2: Calculate the total number of primes and non-primes in the range of 0 to 

(2
L
-1). Accordingly, find minimum how many bits are required to 

represent each of these two numbers. 

Step 3 to step 5 are to be applied for all the blocks. 

Step 3: For the block under consideration, calculate the decimal number 

corresponding to that. Say, it is D. 

Step 4: Find out if D is prime or nonprime. If D is a prime, the code value for that 

block is 1 and if not so, it is 0. 



Step 5: In the series of primes or non-primes (whichever be applicable for D) in 

the range of 0 to (2
L
-1), find the position of D. Represent this position in 

terms of binary values. This is the rank of this block. 

After repeating these steps (3, 4 and 5) for all the blocks, following steps 

are to be followed. 

Step 6: Say, there are N number of blocks. In the target stream of bits, put all the 

N code values one by one starting from the MSB position. So, in the target 

stream, the first N bits are code values for N blocks. 

Step 7: For putting all the rank values in the target stream, we are to start from the 

N
th

 bit from the MSB position and then to come back bit-by-bit. 

Immediately after the N
th

 bit, put the rank value of the N
th

 block, followed 

by the rank value of the (N-1)
th

 block, and so on. In this way, the rank 

value of the first block will be placed at the last. 

Step 8: Combining all the code values as well as the rank values, if the total 

number of bits in the target stream is not a multiple of 8, then to make it 

so, at most 7 bits may have to be inserted. Insertion of these extra bits is to 

be started from the (N+1)
th

 position. So, a maximum of 7 right shifting 

operations may have to be performed in the (N+1)
th

 position, where that 

many 0’s are inserted. 

 

2.6 The Building Block, RSBM 

Following is the set of steps to be followed for calculating the code value and the 

rank value of a certain block, and also to arrange these values to form the encrypted bit-

stream [1] [4] [9] [10]. 

Step 1: For the block under consideration, say, of the length of L, calculate the 

corresponding decimal number. Say, it is D. 

Step 2: Find out if D is odd or even. If D is odd, the code value for that block is 1 

and if not so, it is 0. 

Step 3: In the series of natural odd or even numbers (whichever be applicable for 

D) in the range of 0 to (2
L
-1), find the position of D. Represent this 



position in terms of binary values, which will require (L-1) bits. This is the 

rank of this block. 

These three steps are to be repeated for all blocks, the number of which is, 

say, N. After finding all the N code values and the N rank values, those are 

to be integrated using the following set of steps. 

Step 4: In the target stream of bits, put all the N code values one by one starting 

from the MSB position. So, in the target stream, the first N bits are code 

values for N blocks. 

Step 5: For putting all the rank values in the target stream, we are to start from the 

N
th

 bit from the MSB position and then to come back bit-by-bit. 

Immediately after the N
th

 bit, put the rank value of the N
th

 block, followed 

by the rank value of the (N-1)
th

 block, and so on. In this way, the rank 

value of the first block will be placed at the last. 

 

3 A Simple Cascaded Approach of implementing all Building Blocks 

This section provides a simple cascading approach of implementing all these six 

building blocks in a fixed sequence without having any special schematic or operational 

characteristics [4] [7] [8]. Figure 3.1 exhibits the steps followed during the encryption 

process. The sample file TLIB.EXE is encrypted through 6-phased cascading approach to 

generate FOX6.EXE. 

Here the source file TLIB.EXE is first encrypted using the RPSP encryption 

technique with the unique size of each block is inputted as 8 bits. As the result, 

FOX1.EXE is generated.  

FOX1.EXE is then encrypted using the TE encryption technique with the unique 

block size being fixed as 64 bits. As the result, FOX2.EXE is generated. 

Next FOX2.EXE is encrypted for inputted unique block size of 16 bits using the 

RPMS encryption technique. As the result, FOX3.EXE is generated. 

FOX3.EXE is then fed into the RSBP encryption technique with the fixed block 

size of 8 bits. As the result, FOX4.EXE is generated. 

Then the RSBM encryption technique is used to encrypt FOX4.EXE using the 

fixed block size of 8 bits. As the result, FOX5.EXE is generated. 



 

 

 

 

     

       Inputted 

   (8 bits)  

             Encrypted File using RPSP (FOX1.EXE) 

    

    Setting 

 

 Encrypted File using TE (FOX2.EXE) 

 

 

 Inputted 

  (16 bits) 

 

 Encrypted File using RPMS (FOX3.EXE) 
 

   Setting 

 

 

 Encrypted File using RSBP (FOX4.EXE) 
 

   Setting 

 

 

 Encrypted File using RSBM (FOX5.EXE) 
 

 Setting 

 

 

  

 Encrypted File using RPPO 

 

 

 

 

Figure 3.1 

Steps followed during Cascaded Encryption 

 

Source File  

(TLIB.EXE) 

RPSP 

Encryption Technique 

Unique 

Block Size 

TE 

Encryption Technique 

RPMS 

Encryption Technique 

RSBP 

Encryption Technique 

RSBM 

Encryption Technique 

RPPO 

Encryption Technique 

Fixed Block Size of 

64 Bits 

Unique 

Block Size 

Fixed Block Size of 8 

Bits 

Fixed Block Size of 8 

Bits 

Cascaded itself with Block 

Sizes being 2
n
, n ranging 

from 3 to 8 

Final Encrypted File 

(FOX6.EXE) 



It has been analyzed and observed that even this simplest form of cascaded 

approach requires a 58-bit key for an error-free decryption. 

In figure 3.2, in the structure of the 58-bit key, a total of 9 segments exist. Out of 

these, the first 6 segments, each with 3 bits, are used to identify the exact sequence of 

techniques followed during encryption. As there are 6 techniques, a 3-bit segment is 

required to identify any of those. The 7
th

 segment is of 20 bits of size, used to store the 

size of the source file in base-2 format, which is sufficient to accommodate the file size 

information of a file with 1.04 MB size approximately. This information is required while 

decrypting using the RSBP decryption technique. The final two segments, each of 10-bit 

size, are required to store the unique block sizes used during the implementation of the 

RPSP and the RPMS techniques. For the remaining four techniques, this information is 

not required here since those implementations have been done for fixed block sizes. 

Table 3.1 

Result of Cascaded Implementation 

Source  

File 

(Size in 

Bytes) 

File 

applying 

RPSP 

(C.S.V.) 

File 

applying 

TE 

(C.S.V.) 

File 

applying 

RPMS 

(C.S.V.) 

File 

applying 

RSBP 

(C.S.V.) 

Changed 

File 

(Size in 

Bytes) 

File 

applying 

RSBM 

(C.S.V.) 

File 

applying 

RPPO 

(C.S.V.) 

UNZIP.EXE 

(23044) 

F11.EXE 

(49310) 

F12.EXE 

(18417) 

F13.EXE 

(17338) 

F14.EXE 

(26068) 

24380 F15.EXE 

(22351) 

F16.EXE 

(24489) 

TCDEF.EXE 

(11611) 

F21.EXE 

(63115) 

F22.EXE 

(33517) 

F23.EXE 

(37118) 

F24.EXE 

(48593) 

12171 F25.EXE 

(48206) 

F26.EXE 

(53202) 

WIN.COM 

(24791) 

F11.COM 

(99157) 

F12.COM 

(52643) 

F13.COM 

(45311) 

F14.COM 

(400444) 

24283 F15.COM 

(222935) 

F16.COM 

(171505) 

KEYB.COM 

(19927) 

F21.COM 

(78263) 

F22.COM 

(59081) 

F23.COM 

(49197) 

F24.COM 

(121713) 

20332 F25.COM 

(77737) 

F26.COM 

(101565) 

HIDCI.DLL 

(3216) 

F11.DLL 

(12914) 

F12.DLL 

(9583) 

F13.DLL 

(8841) 

F14.DLL 

(9221) 

3433 F15.DLL 

(8446) 

F16.DLL 

(9553) 

PFPICK.DLL 

(58368) 

F21.DLL 

(210525) 

F22.DLL 

(174781) 

F23.DLL 

(169556) 

F24.DLL 

(189747) 

61350 F25.DLL 

(192864) 

F26.DLL 

(244145) 

USBD.SYS 

(18912) 

F11.SYS 

(135449) 

F12.SYS 

(96371) 

F13.SYS 

(95886) 

F14.SYS 

(98424) 

20140 F15.SYS 

(92551) 

F16.SYS 

(118467) 

IFSHLP.SYS 

(3708) 

F21.SYS 

(15685) 

F22.SYS 

(7162) 

F23.SYS 

(6297) 

F24.SYS 

(15258) 

3889 F25.SYS 

(10257) 

F26.SYS 

(10566) 

ARITH.CPP 

(9558) 

F11.CPP 

(10842) 

F12.CPP 

(16595) 

F13.CPP 

(12375) 

F14.CPP 

(13045) 

10056 F15.CPP 

(12906) 

F16.CPP 

(12081) 

START.CPP 

(14557) 

F21.CPP 

(80174) 

F22.CPP 

(53041) 

F23.CPP 

(19420) 

F24.CPP 

(40349) 

15293 F25.CPP 

(47043) 

F26.CPP 

(32577) 

 

Apart from the 58-bit key-space, the results observed in this cascaded approach in 

terms of graphical layout of frequency distribution of characters in pairs of source and 



encrypted files, Chi square values are inspiring. Table 3.1 is just an extract from all the 

results obtained in this regard. Here the term, C. S. V. stands for (Pearsonian) Chi Square 

Value. 

All results shown in table 3.1 establish the fact that there exists no tendency of a 

steady progress in chi square value between the source file and the file last generated 

during encryption. In each case, the Chi Square value obtained is very high in comparison 

with the standard value. Hence it can be said that the intermediate files generated are 

heterogeneous in nature with 1% uncertainty, and as a result, it can be concluded that the 

cascaded scheme ensures high degree of security. Moreover, as it has been observed that 

even for this simple cascading, it requires a 58-bit key space to enable to have the correct 

decryption. Therefore it is easy to conclude that with the availability of having much 

more flexibility in the process of cascading, comparatively much longer key space may 

be generated. Accordingly, it was understood that offering more flexibility in the 

interactive encryption process will result in having a larger key-space, and hence to 

constitute a much more effective encryption system. To avail the following options, many 

more bits are to be added in the key space: 

• Not to fix the unique block size; to input it only during the implementation for all 

techniques 

• Allowing source size to be more than 1.04 MB 

• Allowing one technique to be implemented more than once 

• Allowing larger unique size for blocks 

• Allowing varying block lengths at least for some techniques 

• Allowing the choosing of option in implementing the TE encryption technique 

• Allowing the choosing of the number of iterations to be performed during the 

process of encryption using the RPPO and the RPSP techniques 

An integration of all six building blocks in more effective manner is what is 

attempted in IES. 
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Figure 3.2 

Structure of a 58-Bit Key with 9 Segments 

 

4 The Proposal of Integrated Encryption System (IES) 

This section presents a proposal of an integrated data encryption system on the 

basis of the principle of cascading using the six proposed techniques [4]. Section 4.1 

points out the principles of the proposed system. Different schematic characteristics of 

the system are enlisted in section 4.2. Section 4.3 mentions different operational 

characteristics of the system. Section 4.4 presents the structure of the secret key to be 

used in the system. 

 



4.1 Principles of IES 

Following are the basic principles of the system: 

• The fixation of the secret key is a run-time activity, during the process of 

encryption. 

• Following the schematic restrictions (discussed in section 4.2) applicable to the 

encryption process, the task of encryption can be carried out and with each and 

every activity, the key space is upgraded 

• During the process of decryption, the key generated at the end of encryption, is to 

be followed in each activity. 

 

4.2 Schematic Characteristics of IES 

The proposed system is a 16-level cascaded approach. Following points simplify 

the proposed concept to be followed during the process of encryption: 

• Different proposed encryption techniques could be implemented altogether a 

maximum total of 16 times, although the encryption authority is given the 

flexibility to deserve the right to terminate the process of encryption after any 

number of implementations. 

• Each proposed encryption technique could be implemented for a maximum 3 

times, ranging from “no implementation at all” to 3 implementations.   

• For each technique, during each implementation, a unique block length is to be 

considered and that should not exceed 512 bits. This length should depend on the 

choice of the encryption authority, so that it is to be inputted to the system. 

• For each technique, during different implementations, different unique block sizes 

could be considered, but each of those must not exceed 512 bits. 

• While using building blocks, RPSP or RPPO, the number of iterations to be 

performed during the process of encryption is exactly integral half of the total 

number of iterations required to complete the cycle. 

 

 



4.3 Operational Characteristics of IES 

During the operational phase of the encryption process, the system is to provide 

following facilities: 

• At any point of time during the cascaded encryption, following steps are to be 

used sequentially to finalize a particular technique to be implemented: 

• The encryption authority selects a technique. 

• The system provides the corresponding chi square value between the 

original file and the file that would be generated if the technique is 

applied. 

• The encryption authority, may be on judging the value, either finalizes this 

implementation or cancels it to move to any other technique. 

• With the finalization of each step during this cascaded implementation, the secret 

key, which is stored in a data file, is upgraded and the encryption authority is 

given the option to view the key at any point of time. 

• If the encryption authority attempts to violet any of the schematic characteristics 

during the cascaded implementation, the system rejects this attempt by visualizing 

the reason of this rejection. 

• The option for the termination of the cascading process is always to be available 

in the system, so that at any time the encryption authority can select this option, 

and, on confirmation, the termination can be granted. 

 

4.4 Structure of the Secret Key for the Integrated System 

Section 4.4.1 points out different criteria required to be fulfilled for the formation 

of efficient secret key. Section 4.4.2 is a discussion on the different proposed segments in 

the secret key. Finally, section 4.4.3 shows the proposed format for the secret key. 

 

4.4.1 Criteria for an Efficient Key Generation 

For the purpose of constructing a secret key, a perfect key management is needed, 

the objective of which is not to unnecessarily increase the key space, but to accommodate 



all necessary information in the key in an efficient manner, so that the following set of 

criteria is satisfied: 

• No ambiguity: There should be no mismatch between the schematic 

characteristics to be followed and the information stored in the key. 

• Easiness in accessing information: All relevant information should be 

accommodated in the key as much adjacent as possible. 

• No repetition in providing information: Directly or even indirectly there should 

not be repetition of any information. 

• Proper invalidation: In certain situation, if any segment in the key becomes 

nonfunctioning, then that should be accommodated tactfully by perfectly invalid 

value. 

Considering all these schematic characteristics and different criteria to be 

fulfilled, the structure of the 252-bit secret key has been proposed. 

 

4.4.2 Formation of Different Segments in the 252-bit key  

This section presents the way different segments in the 252-bit key are to be 

formed. 

1. Segment to identify the encryption technique: Since there are 6 building 

blocks, a 3-bit segment is needed to identify a building block. For instance, table 

4.4.2.1 shows one arbitrarily fixed set of ID values. 

Table 4.4.2.1 

Arbitrarily chosen ID Values for Different Building Blocks 

Building 

Block 

Assigned 

ID Value 

Building 

Block 

Assigned 

ID Value 

RPSP 001 RPMS 100 

TE 010 RSBM 101 

RPPO 011 RSBP 110 

 

An ID value of “000” indicates implementation of no building block. 



2. Segment to identify Block Size: As per the schematic characteristic, since the 

maximum block size can be 512 bits, a 9-bit segment is needed to express the 

unique block size used, with the assumption that the size of an N-bit block is 

represented by the 9-bit binary value corresponding to (N-1). For example, if the 

unique block size is 64 bits (N = 64), the 9-bit binary value expressing this size 

would be “001111111”, which is the 9-bit binary value corresponding to 63 (N-1 

= 63). The formation of this segment is based on the principle that the block size 

of 0 bit is impossible. 

The 252-bit proposed key, starting from the MSB position, first accommodates 

the segment 1 (of 3 bits) and the segment 2 (of 9 bits) for the first encryption technique 

implemented, and since there can be maximum 16 implementations, altogether the first 

16 x (3+9) = 192 positions are preserved for accommodating the values of these two 

segments for 16 implementations. “No implementation” is indicated by “000”. For 

example, if there are only three implementations applied, in the sequence of RPPO, 

RSBM, and RSBP, with unique block sizes of 16 bits, 64 bits, and 128 bits respectively, 

then in the 192-bit structure, the first 3 x (3+9) = 36 bits using table 4.4.2.1, would be as 

the following: 

011/000001111/101/000111111/110/001111111 

 

 

 

 

  

                                                                                                 Block size of 128 bits 

                                                                                             RSBP (3
rd

 implement) 

 

 Block size of 64 bits 

 RSBM (2
nd

 implement) 

  

 Block size of 16 bits 

                                                                           RPPO (1
st
 implement) 

 

Now, the first segment for each of the remaining probable 13 implementations is 

to be accommodated by “000” to indicate “no implementation” and hence, the respective 



2
nd

 segments are all immaterial, although it is advisable to put 9-bit null value 

(“000000000”) in each of those segments, to avoid any sort of confusion. 

3. Segment to identify Source File Size: During the process of decryption, the 

decryption authority must have the original file size to decrypt a file encrypted by 

applying the RSBP encryption technique. So, it is the responsibility during the 

process of encryption to fill in this 20-bit segment with the original file size. 

4. Segment to identify Size of File, on which RSBP is to be implemented second 

time: Because each RSBP decryption technique requires the size of the file on 

which the corresponding RSBP encryption was implemented, another 20-bit 

segment is allocated for that purpose. 

5. Segment to identify Size of File, on which RSBP is to be implemented third 

time: This 20-bit segment is allocated for the same reason as in 4. Since the 

RSBP encryption technique, like all other techniques, can be implemented at most 

3 times, there is no need of any more segment for storing size of any intermediate 

file. 

Now, a 20-bit segment used for storing file size can store a file of size 

approximately up to 1.04 MB, and also the fact of “size alteration” following the 

RSBP encryption technique is to be considered. With this consideration, it can be 

pointed out that this structure of key would work successfully for a source file of 

up to 1 MB size. 

 

4.4.3 Proposed Structure of 252-Bit Key for IES 

On the basis of the discussion in section 4.4.2, figure 4.4.3.1 shows the proposed 

format. 
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5 Final Discussion and Conclusion on the Entire Approach 

The approach of cascading plays a vital role in formulating an encryption system, 

as it involves a series of operations, which plays a leading role in enhancing security. The 

correct implementation of the proposed IES is expected to be an asset in the field of 

cryptography. Over times, in the field of cryptography, a number of ciphering protocols 

have been evolved. In terms of invulnerability against possible attacks to key, the 

proposed 252-bit IES is more secured than existing ciphers like 56-bit DES (Data 

Encryption Standard), 128-bit AES (Advanced Encryption Standard), 128-bit IDEA 



(International Data Encryption Algorithm), or even 168-bit triple DES. The introduction 

of interactive mode while doing encryption offers more run-time involvement of the 

encryption authority. Consequently, in spite of using a ciphering protocol that is open to 

the world of cryptanalysis, the authority can apply a lot of its own jurisdiction in 

implementing the protocol.  
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