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Abstract Cryptanalytic time memory tradeoff algorithms are generic one-way func-
tion inversion techniques that utilize pre-computation. Even though the online time
complexity is known up to a small multiplicative factor for any tradeoff algorithm,
false alarms pose a major obstacle in its accurate assessment.

In this work, we study the expected pre-image size for an iteration of functions
and use the result to analyze the cost incurred by false alarms. We are able to present
the expected online time complexities for the Hellman tradeoff and the rainbow table
method in a manner that takes false alarms into account. We also analyze the effects
of the checkpoint method in reducing false alarm costs.

The ability to accurately compute the online time complexities will allow one to
choose their tradeoff parameters more optimally, before starting the expensive pre-
computation process.
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1 Introduction

Cryptanalytic time memory tradeoffs were first introduced by Hellman [11] as an at-
tack on blockciphers. Since then, much progress has been made, with [1, 3–8, 10, 12,
13, 16] being a very partial list of works contributing to the theoretic aspects of the
tradeoff algorithms. There are also numerous works on their applications and imple-
mentations. Today, the tradeoff algorithms are understood as techniques for quickly
inverting generic one-way functions, and since much of cryptanalysis can be ex-
pressed as the process of inverting an appropriate one-way function, time memory
tradeoff technique is a valuable tool for cryptography.
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Any cryptanalytic tradeoff algorithm works in two stages. In the pre-computation
phase, the one-way function is iteratively computed and a digest of the computation
is stored in tables of total size smaller than the complete dictionary. When a specific
image point to be inverted is given, the online phase algorithm returns a pre-image of
the target in time shorter than what is taken by an exhaustive search.

An analysis of the storage and online time complexities is usually provided with
any published tradeoff algorithm. For example, the tradeoff curve TM2

� N2 gives
the complexity of the original Hellman tradeoff, where N is the size of space on which
the one-way function is defined. That is, for any T and M satisfying the tradeoff curve,
the Hellman tradeoff algorithm, when run with appropriate parameters, enables one
to finds a pre-image of the inversion target in online time T , utilizing a pre-computed
table of size M.

Tradeoff curves for various tradeoff algorithms are typically true only up to a
small multiplicative factor. This is largely due to the effects of what are called false
alarms, which make it difficult to give an exact expression for the time complexity T .
The online phase is an iterative process that is occasionally interrupted when a certain
collision is found. Sometimes the collision leads to the target inversion, but this does
not happen in most of the cases. Such a non-useful interruption is said to be a false
alarm and resolving whether the collision is useful or a false alarm requires time.

Most previous analyses of the online time complexities concentrated on the main
iterative process and the added cost of dealing with false alarms was either neglected
or roughly argued as being relatively small. For example, the original work by Hell-
man gave a heuristic argument that false alarms can increase the online computa-
tion by 50% at the most. On the other hand, the paper presenting the rainbow table
method [16], which is the tradeoff method most widely known to the public, cites ex-
periment results of observing 75% of cryptanalytic effort spent on false alarms. There,
concerning false alarms, only a heuristic comparison to the distinguished point trade-
off method is given. Thus, it is apparent that the extra cost incurred by false alarms is
not well understood, and this contributes a certain degree of uncertainty to the online
time complexity.

Obtaining an accurate assessment of the online time complexity is meaningful
for at least two reasons. The first concerns parameter selection for tradeoff imple-
mentation. Running time of the online phase cannot be measured through tests until
a tradeoff table is ready, and since table creation is a time consuming process, exper-
imenting with various parameters and tweaking them for maximum performance is
very uncomfortable, to say the least. This is especially true with the rainbow table
method, where the huge table cannot be broken down into smaller pieces for test-
ing. One cannot measure the online time complexity with fake tables either, because
these show different false alarm behavior. Thus, to find implementation parameters
that would optimally obtain the online performance one needs, without going through
the expensive trial and error process, one needs to be able to compute and predict the
online complexity corresponding to a given set of parameters.

The second need for understanding the online complexities concerns comparisons
between tradeoff algorithms. To choose the tradeoff algorithm that is optimal for the
situation in hand and the available resources, one needs to be able to compare tradeoff
algorithms. This is not a straightforward task with our current knowledge of the on-
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line complexity. For example, the tradeoff curve for the rainbow table method [16] is
TM2

�

1
2 N2 and this was argued as evidence of its superiority by a factor of two over

the Hellman tradeoff, whose tradeoff curve is TM2
� N2. But the later work [4] as-

serted otherwise, mentioning differences in applicable storage reduction techniques.
So, even though the behaviors of various tradeoff algorithms are known in terms of
rough tradeoff curves, as the performance of these tradeoff algorithms differ mostly
by a small factor, a fair comparison between algorithm performances is not an easy
task. The apparent difficulty is that of not knowing what the optimal storage tech-
nique is for each tradeoff algorithm, but analysis into such matters quickly reveals
that this is intimately related to the online time complexity. Aggressive storage re-
duction through ending point truncation results in increased online time, in a manner
that resembles the workings of the false alarms.

In this work, we give a more accurate assessment of the online time complexity,
taking the effects of false alarms into account. The original Hellman tradeoff and both
the perfect and non-perfect versions of the rainbow table method are considered. We
do not require the rainbow tables to be maximal. A corresponding analysis under the
application of the checkpoint technique [1], that reduces the effects of false alarms,
is also given.

To the best of our knowledge, the only previous attempt at a rigorous analysis
of false alarms appears in [1]. That work presents results on the very special case of
maximal perfect rainbow tables, which is difficult to use in practice, due to its high
pre-computation cost. The current work will provide a more realistic view of the cost
incurred by false alarms and the resulting total online time complexity.

The rest of the paper is organized as follows. We start with a very brief review
of the main concepts surrounding time memory tradeoffs in the next section. In Sec-
tion 3, we consider an image set corresponding to a random input set under an it-
eration of functions and study its expected pre-image size. These results are used
to analyze the cost of false alarms in Section 4. This is the main contribution of this
paper. Section 5 deals with the checkpoint technique. Test results that support our the-
ory are provided in Section 6. The final section summarizes this paper and provides
comments on possible future developments of this work.

2 Time memory tradeoff algorithms

Let us start by making the inversion problem more explicit. A one-way function
F : � � � acting on a finite set � is fixed. Then, one is given a target image
point F�x� �� and asked to find x. There are also situations where one is given an
image point y � Im�F� and asked to find an x �� such that F�x� � y. The differ-
ence between the two problems, which has mostly been ignored in the time memory
tradeoff literature, is whether the objective is to obtain the solution or any solution to
the inversion problem. For example, consider the problem of inverting the password
hash of a user on a specific computer system. Obtaining any pre-image would suffice
in breaking into the user’s account on the system, but obtaining the password would
allow breakage into other systems on which the same user is suspected of using the
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same password. In this paper, we focus on the the version of the inversion problem,
but the any version can also be approached in a similar manner.

We shall not explain the explicit tradeoff algorithms and ask readers to refer to
the original papers on the Hellman tradeoff [11] and the rainbow table method [16].
Here, we only list and fix the basic terminologies. Notation of this section will be used
throughout the paper and, from now on, we shall refer to the rainbow table method
simply as the rainbow tradeoff.

A Hellman chain, for a one-way function F :� �� , is of the form

spi � xi�0
F
�� xi�1

F
�� �� �

F
�� xi�t � epi �1 � i� m�� (1)

The Hellman table ��spi�epi��
m
i�1 is sorted on the ending points epi, or a hash table

technique is used, to make table lookups easier. We have omitted the reduction func-
tions, as we shall mostly deal with a single Hellman table. The complete set of m
chains, consisting of m rows and t�1 columns, is a Hellman matrix. The positive in-
teger parameters m and t are chosen to satisfy mt2 � c��� �, with positive constant c�
neither very large nor too close to zero. The matrix stopping rule refers to the c� � 1
case, which is what is almost always used.

Likewise, we have the notions of a rainbow chain

spi � xi�0
F1�� xi�1

F2�� �� �
Ft�� xi�t � epi �1 � i� m�� (2)

a rainbow table, and a rainbow matrix. For rainbow tradeoffs, it is usual to take
mt � c��� � with constant c�, once again, close to 1. A rainbow table is perfect if all
its ending points are distinct. A maximal perfect rainbow table is one containing the
maximal number of possible rows. A rainbow tradeoff using perfect rainbow tables
will be referred to as a perfect rainbow tradeoff.

Our inversion target will always be y � F�x� throughout the paper. If the current
end Fk�y� of the Hellman tradeoff’s online chain

y F
�� F�y� F

�� F2�y� F
�� �� �

F
�� Fk�y�

of length k matches an ending point epi, we have an alarm. If an alarm involv-
ing epi shows the property Ft�k�1�spi� �� x, it is said to be a false alarm. Notice
that Ft�k�1�spi� � x is not guaranteed by the weaker condition Ft�k�spi� � y. The
weaker condition is checked first and the stronger condition is checked outside the
tradeoff algorithm, only when the weaker condition is satisfied. There is a corre-
sponding notion of false alarms for rainbow tradeoffs. False alarms are caused by
merges between the online chain and a pre-computed chain.

Checkpoint [1] is a technique for resolving false alarms without regenerating the
pre-computed chain, applicable to both Hellman and rainbow tradeoffs. The idea is
to choose a fixed, say k-th, column of the pre-computation matrix and supplement
a 1-bit information about xi�k, for each i, in the pre-computed table. When an alarm
sounds during the online phase, the corresponding information is computed for the
online chain. If the online chain and the pre-computed chain had merged somewhere
between the checkpoint and the ending point, there is a possibility that a comparison
of checkpoint information will filter out the false alarm.
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Let us briefly return to the the versus any pre-image versions of the inversion
problem. Given a pre-computed tradeoff table and the inversion target y� F�x�, the
former problem of looking for x will end successfully if and only if x appears among
the pre-computation matrix entries, excluding the ending points. The latter problem
is solved if and only if y is found among matrix entries excluding the starting points.
This difference needs to be kept in mind for any rigorous analysis of tradeoff algo-
rithms.

Throughout this paper, the one-way function F :� �� being considered will
always act on a set� of size N. We always assume N to be large. A Hellman matrix
is denoted by �� and a rainbow matrix by ��. Any Hellman matrix or rainbow matrix
will consist of m rows and t � 1 columns. The parameters m and t are to satisfy an
appropriate mt2 � c�N or mt � c�N and are assumed to be reasonable in the sense
that 1 � m� t � N. The k-th column �xi�k�

m
i�1 of the pre-computation matrix will be

written as ��k or ��k.

3 Pre-image under function iteration

In this section, we present information concerning the size of a pre-image set under
an iteration of functions. Throughout this section F : � � � will be a random
function.

3.1 Preliminary definitions and notation

We denote the u-times iteration of F by Fu � F Æ � � � ÆF . It is well known [9, 15] that
if m0-many distinct random inputs are subject to Fu, the expected image size mu can
be computed through the recursion

mk�1

N
� 1� exp

�
�

mk

N

�
�k � 0�1� � � � �u�1�� (3)

For example, setting m0 � N, one can conclude that m1
N � 1� 1

e of the total space is
expected to belong to the image space of F . We will use the closed form approxima-
tion

mk

N
�

1
N�m0� k�2

� (4)

which can be found1 in [2].
For a Hellman table with m0t2 � c�N, the above approximation shows

mt �
N

N�m0� t�2
�

m0

1� c��2t
� m0

�
1�

c�
2t
�
�c�

2t

�2
��� �

�
�m0� (5)

This implies that the number of collisions among ending points is very small com-
pared to the total number of rows. Thus the behavior of the Hellman tradeoff will
depend very little on whether or not we replace the merging chains with new chains.

1 The statement in the referenced paper is different, but this it due to multiple typographic errors. The
version presented here can easily be obtained by following through their proofs.
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Hence, in our further discussions of the Hellman tradeoff, we shall assume that
the Hellman matrix was created with m0 � m distinct starting points and that the
resulting mt � m ending points are distinct. This insures, in particular, that all points
within each column ��k are distinct.

An i-node for a mapping is an element of the range space with exactly i-many
pre-images. Still referring to the random function F :� �� , it is known [9] that
the ratio of i-nodes among� is expected to be

pi �
1
e
�

1
i!
� (6)

Notice that p0 �
1
e , the ratio of nodes with no pre-images, is in good agreement with

our previous figure of 1� 1
e for the total image space ratio.

The i-node ratio expectation (6) is only guaranteed to be a good approximation
only when the set size N is large compared to i. In fact, there cannot be any i-nodes
for i �N, so that these pi should be zero. But since 1

i! is very small at these large i, we
shall use pi as given by (6), for all i � Z�0. Similarly, our various future definitions
will be vacuous for large i, and arguments not strictly correct, but we shall ignore
them, and they will not cause any trouble in the end result.

For each non-negative integers i and k, let us write

�k�i�F� �
�

y �� � y is an i-node under Fk�
� (7)

�k�i�F� �
�

x �� � Fk�x� ��k�i�F�
�

(8)

to denote the set of i-nodes and pre-images of i-nodes, associated to the mapping Fk.
The characters� and� reflect the role of� as domain and range, respectively. The
dependence of these two sets on F will usually be omitted.

An elements of�k�i�F� will be referred to as an �Fk� i�-node and we shall say that
an element of �k�i�F� produces an �Fk� i�-node. The probability of a random point
from the range space� �� to be an �Fk� i�-node is denoted by

pk�i �
��k�i�

N
� (9)

Note that the values of p1�i has already been stated as pi in (6). Since every point
of �k�i has i-many pre-images under Fk, the probability of a random point from the
domain � �� to produce an �Fk� i�-node is i pk�i.

A more rigorous definition for the pk�i would express this as an average of
��k�i�F��

N
over all functions F :� �� , but we refrained from going into this complicated ex-
pression and simply took F to be a random function, at the beginning of this section.
Many of our future statements presenting explicit values should be understood in the
same context. They are averages over all function F :� �� , or equivalently, what
we can expected from a random function, rather than for any fixed function.

For each non-negative integer k, we fix a notation

�k�x� �
∞

∑
i�0

pk�i x
i
�

for the formal power series relating to �Fk� i�-node ratios.
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Lemma 1 We have�0�x� � x and�1�x� � Exp�x�1�, where Exp�x� is the formal
power series ∑∞

i�0
1
i!x

i.

Proof As F0 is the identity map, we have p0�1 � 1 and p0�i � 0 for all other i. This
implies the first statement. The second statement follows from the value of p1�i as
given by (6) and the identity 1

e Exp�x� � Exp�x�1� of formal power series. ��

3.2 Node size correlation under function iteration

The generating function�k�x� was defined to be a formal power series. As we know
that each pk�i, being a probability value, is bounded, it is clear that�k�x� converges
for any �x�� 1. Before showing that�k�x� is convergent for all real number inputs x,
we shall present a certain conditional probability.

Proposition 1 The probability for a random �Fv� j�-node to be an �Fu�v� i�-node is
approximately

p
� u
��

v
��i

�
� � v

�� j�
�
� ∑

i1�����i j�i
pu�i1 pu�i2�

� � � pu�i j �

Here, the summation indices i1, . . . , i j are to run over non-negative integers. When
j � i� 0, the degenerate sum is interpreted to be 1. When j � 0 with i � 0, the empty
sum is interpreted to be zero.

Proof Fix any single j-node z for Fv and consider its j-many pre-images, which we
name y1, y2, . . . , y j. Suppose each yk is an �Fu� ik�-node. Then z is an i-node for Fu�v

if and only if i1� � � �� i j � i. When i�N, the events of each yk being an �Fu� ik�-node
may be seen as being independent of each other, and we may write pu�i1 pu�i2�

� � � pu�i j

as an approximation for the probability of the product event. For large i, both sides
of the equation are very small and these will not cause trouble later. By summing
the probability for these product events over all j-many indices that add up to i, we
obtain the full conditional probability. ��

By the law of alternatives, it is clear that

pu�v�i �
∞

∑
j�0

p
� u
��

v
��i

�
� � v

�� j�
�
� pv� j� (10)

The next result, relying heavily on this observation, allows us to compute the formal
power series�k�x� inductively from�1�x�.

Proposition 2 The generating functions for node ratios satisfy the recurrence rela-
tion

�u�v�x� ��v
�
�u�x�

�
�



8

Proof Combining the definition of�u�v�x� with identity (10), one can state that

�u�v�x� �∑
i

pu�v�i xi

�∑
i

�
∑

j

p
� u
��

v
��i

�� � v
�� j�

�
� pv� j

�
xi

�∑
j

pv� j

�
∑
i

p
� u
��

v
��i

�� � v
�� j�

�
xi
�

�

Here, the last expression is an infinite sum of formal power series, which is not de-
fined in general, but the condition ∑ j pv� j � 1 justifies its use.

Now, notice that the coefficient of xi in�u�x� j is exactly the right hand side of
the equation appearing in Proposition 1, so that the above is equal to

∑
j

pv� j�u�x�
j ��v

�
�u�x�

�
�

This completes the proof. ��

During the proof of this theorem, we referred to the coefficient of a certain power
series. As this notion will appear frequently in this paper, we fix a notation for this.
Given any power series� �x� � ∑i ai xi, we shall write �� �x��i for ai, the coefficient
of xi in � �x�.

The above theorem, together with Lemma 1, shows that �k�x� is equal to a
k-times iterated composition of�1�x� � Exp�x� 1�. Since the formal power series
Exp�x�1� converges to the real number value exp�x�1� for any real number x, we
know �k�x� is convergent for any real number x and non-negative integer k. This
allows us to view�k as a function defined on the set of all real numbers.

It is clear that each function �k is injective. Hence, they have corresponding
inverse functions, defined on suitable subsets of the real field. Since�0 is the identity
function, in view of the relation�u�v�x� ��v

�
�u�x�

�
, we shall write�

�k for the
inverse function of�k.

The following lemma is an easy corollary to the above proposition and shows
how iterated image size is related to the function�k.

Lemma 2 Let D0 �� be a set consisting of m0 randomly chosen points. Set Dk �
Fk�D0� and let mk be the expected size of Dk. Then the set sizes are related by

1�
mk�u

N
��u

�
1�

mk

N

�

for all non-negative k and all u	�k.

Proof Recalling Lemma 1, we can rewrite (3) in the form

1�
mk�1

N
� exp

��
1�

mk

N

�
�1

�
��1

�
1�

mk

N

�

As Proposition 2 shows that�u is equal to u-times iterations of�1, the result is true
for non-negative integers u. The negative case is obtained by applying the inverse
function�

�u to both sides of the positive case equation. ��
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The proof for the next lemma is almost identical to the proof for approxima-
tion (4) appearing in [2].

Lemma 3 The formal power series�k�x�, seen as a function, can be approximated
by

�k�x�� 1�
2�1� x�

2� k�1� x�
�

The approximation is also valid for negative integers k.

Proof Let us treat the non-negative k first. By Proposition 2 and Lemma 1, we may
write

�k�1�x� � Exp��k�x��1�� 1���k�x��1��
1
2
��k�x��1�2 and �0�x� � x�

Let us temporarily use the notation �x�k� � 1��k�x�. Notice that we have inter-
changed the position of k and x so that the new object seems more like a function of
k rather than x. We rewrite the above as

�x�k�1���x�k���
1
2
�x�k�

2 with �x�0� � 1� x� (11)

The Euler method states that the sequence in k, defined by the above difference equa-
tion, approximates the solution to the differential equation

d
dk
�x�k� ��

1
2
�x�k�

2 with �x�0� � 1� x� (12)

We can use this the other way around and state that the solution

�k�x� �
1

1��x�0�� k�2
(13)

to the differential equation (12) approximates the sequence defined through (11). The
solution (13) is equivalent to the claimed first statement.

To treat the negative case, note that the function

�̃k�x� :� 1�
2�1� x�

2� k�1� x�

satisfies the relation �̃u�v�x� � �̃v��̃u�x��, for any integers u and v. As �̃0 is
the identity function, this implies that �̃

�k is a good approximation for the inverse
function�

�k, where it is defined. This is the second statement of this lemma. ��

We have obtained a closed form approximation for function �k�x�. Even though
each i-node ratio pk�i can be explicitly computed from the recursion formula (10) and
Proposition 1, the power series�k�x� and this lemma secures this information in a
more useable state.

Recall from freshman calculus that for any given power series � �x�, within its
radius of convergence, the function� �x� is differentiable and the derivative is given
by

�
��x� �

∞

∑
k�1

k �� �x��k xk�1� (14)
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where we are using the notation introduced below Proposition 2. In the other direc-
tion, one must also have

∞

∑
k�1

1
k

�
β k�αk��� �x��k�1 �

� β

α
� �x�dx� (15)

when the integration boundaries α and β lie within the radius of convergence.
Note that since �k�x� is convergent for all x, we may freely differentiate this

function any number of times or integrate over any finite interval. For later use, we
state the following two lemmas. Both can be shown true using Proposition 2 and
Lemma 1, through induction on k. We can also check the second of these more di-
rectly, but approximately, with Lemma 3.

Lemma 4 We have� �

k�x� ��1�x��2�x� � � ��k�x�, for all k.

Lemma 5 We have�k�1� � 1,� �

k�1� � 1, and� ��

k �1� � k, for all k.

We now state conditional probabilities of slightly different nature from that of
Proposition 1. The subtle difference is in whether the random selection is done at
the domain or at the range space. Comparing these probabilities with those given in
Appendix B will show how careful we should be in treating random selection.

Proposition 3 Let x be a random point from domain � . Set y � Fu�x� and z �
Fv�y�. Note that z is never a 0-node for Fu�v.

1. Assuming z to be an �Fu�v� i�-node, the probability for y to be an �Fu�k�-node is

p
� u
��k �

��� u
��

v
��i

�
�

k pu�k

i pu�v�i

∞

∑
j�1

j pv� j ∑
k�i2�����i j�i

pu�i2 � � � pu�i j �

2. Assuming z to be an �Fu�v� i�-node, the probability for z to be an �Fv� j�-node is

p
�
�

v
�� j

��� u
��

v
��i

�
�

j pv� j

i pu�v�i

∞

∑
k�1

k pu�k ∑
k�i2�����i j�i

pu�i2 � � � pu�i j �

In the statements above, the summation indices are to be taken from the non-negative
integers. Any sum with an empty index set is interpreted to be zero and any sum with a
degenerate index description is interpreted to be one. For example, k� i2� � � �� i j � i
gives an empty index set when k � i with j � 1. The same condition is degenerate
when k � i with j � 1.

Proof Assuming y to be an �Fu�k�-node and z to be an �Fv� j�-node at the same time,
the probability for z to be an �Fu�v� i�-node is

p
�

u
��

v
��i

����
u
��k �

�
v
�� j

�
� ∑

k�i2�����i j�i

pu�i2 � � � pu�i j � ��u�x�
j�1�i�k�
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Recall from discussion below (9) that the probabilities for a random input to create
an �Fu

�k�-node or an �Fv
� j�-node are k pu�k and j pv� j , respectively. Hence the prob-

ability for a random input to create an �Fu�v
� i�-node can be expressed as the sum

i pu�v�i � ∑
k� j

k pu�k � j pv� j � p
�

u
��

v
��i

����
u
��k �

�
v
�� j

�
� (16)

In fact, as a secondary check, one may follow through the next sequence of equalities.

RHS of (16)�∑
k� j

�� �

u�x��k�1 � ��
�

v�x�� j�1 � ��u�x�
j�1�i�k

�∑
k

�� �

u�x��k�1 �
�
∑

j

�� �

v�x�� j�1�u�x�
j�1

�
i�k

�∑
k

�� �

u�x��k�1 �
�
�

�

v��u�x��
�

i�k

�
�
�

�

u�x��v
���u�x��

�
i�1 �

��
�v��u�x��

�
�
�

i�1

� �� �

u�v�x��i�1 � i pu�v�i�

Here, we have applied (14) multiple times and also used Propositions 2.
The two claimed probabilities are suitable partial sums of (16), divided by the

probability of creating an �Fu�v
� i�-node. ��

3.3 Equivalence under function iterations

Let us define two points x�x� �� to be Fk-equivalent, if Fk�x� �Fk�x��. This is triv-
ially an equivalence relation. As an example use of this notion, recalling notation (8),
one can say that any point of �k�i is Fk-equivalent to i-many points, including itself.

In this subsection, we will work out the number of points that are Fk-equivalent
to a set of m randomly chosen points. The single point case is relatively easy.

Lemma 6 Given a random point x � � from the domain, the point y � Fu�x� is
expected to be Fv-equivalent to v�1 points.

Proof Given a random x �� , the image Fu�v�x� is an �Fu�v
� i�-node with proba-

bility i pu�v�i. Thus the probability for Fu�x� to be Fv-equivalent to j-many nodes can
be written as

∑
i

p
	
�

v
�� j

��� u
��

v
��i



� i pu�v�i�

through the law of alternatives, and the expectation we seek is

∑
j

j
�

∑
i

p
	
�

v
�� j

��� u
��

v
��i



� i pu�v�i

�
�

Applying Proposition 3, we see that this is equal to

∑
i� j

j2 pv� j ∑
k

k pu�k ∑
k�i2�����i j�i

pu�i2 � � � pu�i j
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�∑
i� j

��
x� �

v�x�
���

j�1 ∑
k

�� �
u�x��k�1 � ��u�x�

j�1�i�k

�∑
i� j

��
x� �

v�x�
���

j�1 �
�
�

�
u�x��u�x�

j�1�
i�1

�∑
i

�
�

�
u�x�∑

j

��
x� �

v�x�
���

j�1�u�x�
j�1

�
i�1

�∑
i

�
�

�
u�x�

��
x� �

v�x�
���

x��u�x�

�
i�1

�∑
i

��
�u�x��

�
v��u�x��

���
i�1

�
��
�u�x��

�
v��u�x��

��	
x�1

� v�1�

Multiple applications of Lemma 5 is needed for the last equality. ��

Let x �� be random and consider y � Fk�x�. By substituting m0 � N into (4),
we can state that the ratio of the complete Fk-image space size over the input space
size is 2

k�2 . It is tempting to say that, on average, image point y will have � 2
k�2 �

�1 �
k
2 �1 pre-images, implying that x is Fk-equivalent to k

2 �1 points. On the other hand,
restricting Lemma 6 to the u � 0 case tells us that x is expected to be Fk-equivalent
to k�1 points.

The apparent contradiction arises from the careless use of random selection. The
random choice of x leads to non-uniform choice among the image points. Those
image points with larger pre-image sets are more likely to be taken than other image
points. Lemma 6 presents the pre-image size of an image point y � Fk�x� that was
obtained with random input x. This is different from the pre-image size of a random
point taken from the image space.

This dependance on where the random choice is being made is even more evident
in the following lemma.

Lemma 7 Let D0 �� be a set of m0 randomly chosen points. The expected number
of �Fk

� i�-nodes in Fk�D0� is

Npk�i



1�

�
1�

m0

N

�i

�

Proof Consider the process of choosing points of the Fk-image space through ran-
dom selection of points in its domain. As discussed earlier, since the probability of an
image point being selected will depend on the number of its pre-images, this will not
produce a random distribution of image points. On the other hand, note that random
selection within �k�i will lead to uniform distribution in the corresponding image
space�k�i.

As already mentioned multiple times, we have
��k�i�

N � i pk�i, and the number of
elements belonging to D0��k�i is expected to be m0 i pk�i. Modeling F as a random
function, we can interpret

Fk�D0��k�i� � Fk�D0���k�i
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as a set obtained by drawing �m0 i pk�i�-many points from�k�i, uniformly at random,
with replacements. Thus the size of this image set is expected to be

��k�i�
�

1�
�

1�
1

��k�i�

�m0 i pk�i
�

� Npk�i

�
1�

�
1�

1
Npk�i

�m0 i pk�i
�
� Npk�i

�
1�

�
1�

m0

N

�i�
�

which is the stated claim. ��

Remark 1 During the proof of Lemma 7 we have utilized the explicit expected values
E�D0 ��k�i� � m0 i pk�i and E���k�i�� � Npk�i as the number of certain objects in
computing another expected value. Such an argument is not strictly correct. A correct
proof would involve conditional expectations and compute an iterated expectation to
arrive at the claim, but we shall not do this here. Our final evidence that this proof
reflects the reality is the simulation result given in Section 6. The current remark will
apply also to many of our later proofs.

Since Lemma 6 show that a single random point is Fk-equivalent to k�1 points,
we may conclude that for small m0, the number of points Fk-equivalent to m0 random
points will be m0�k�1�. For large m0, this will no longer be true, as some of the m0

points will be equivalent to each other. Let us discuss this in more detail.

Lemma 8 Let D0 �� be a set of m0 randomly chosen points. The number of points
that are Fv-equivalent to points of Du � Fu�D0� is expected to be

N
�

1��u
�
1�

m0

N

�
�v

�

�
�u

�
1�

m0

N

���
� N

�
1�

u�v

∏
k�u

�k
�
1�

m0

N

��
�

Proof By Lemma 7, the number of �Fu�v
� i�-nodes in Fu�v�D0� is expected to be

Npu�v�i

�
1�

�
1�

m0

N

�i�
�

Thus, the expected equivalence size we are looking for can be computed as

∑
i

Npu�v�i

�
1�

�
1�

m0

N

�i�
∑

j

j � p
�
�

v
�� j

��	 u
��

v
��i

�

� N ∑
i

1
i

�
1�

�
1�

m0

N

�i�
∑

j
j2 pv� j ∑

k

k pu�k ∑
k�i2�����i j�i

pu�i2 � � � pu�i j

� N ∑
i

1
i

�
1�

�
1�

m0

N

�i���
�u�x��

�

v��u�x��
	
�



i�1

�

Here, the first equality was obtained through Proposition 3 and computation for the
second equality is identical to that done in the proof of Lemma 6. Now, by (15), this
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is equal to

N
� 1

1�
m0
N

�
�u�x��

�

v��u�x��
�
�

dx

� N
�
�u�x��

�

v��u�x��
�1

1�
m0
N

� N�N�u
�
1�

m0

N

�
�v

�

�
�u

�
1�

m0

N

��
�

Here, the last equality relies on Lemma 5. We can complete the proof by applying
Lemma 4. ��

For applications to tradeoffs, it is more useful to have the above equivalence count
given in terms of the image space size rather than the input size.

Proposition 4 Let D0 � � be a set of randomly chosen points. If the number of
distinct elements in Dt � Ft�D0� is mt , then the pre-image of Dt under Fk is expected
to be of size

mt�1� k�
�
1�

mtk
4N

�
�

Proof With m0 set to the size of D0, Lemma 8 implies that the pre-image size we are
looking for is

N
�

1�
t

∏
i�t�k

�i
�
1�

m0

N

�	
� (17)

The condition of the proposition implies

�t
�
1�

m0

N

�
� 1�

mt

N
�

Recalling the notation��k for the inverse function of�k, the above can be rewritten
as

�i
�
1�

m0

N

�
��i�t

�
1�

mt

N

�
�

and (17) becomes

N
�

1�
0

∏
j��k

� j
�
1�

mt

N

�	
� (18)

When Lemma 3 is applied, there is a series of cancelations within the product term
and this simplifies to

mt�1� k�
�

1�
mtk

2�2N�mt�

�
�

The stated result is an approximation of this value. ��

Once again, we emphasize that the randomness in this proposition refers to the selec-
tion of inputs rather than to the selection within the image space. Another proof for
this proposition is given in Appendix C.
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Lemma 9 Let t � s� u� v be a sum of non-negative integers and choose a set of
random points D0 � � of size m0. For each z � Dt � Ft�D0�, randomly choose
a w � D0 such that Ft�w� � z. The collection of the chosen pre-images w will be
called D̄0. Then, the number of points that are Fu-equivalent to points of D̄s �Fs�D̄0�
is expected to be

N
� 1

�s�1�
m0
N �

�
x� �

u�x�
�
�

�
�

v

�
�u�x�

�
dx�

Proof The diagram below may be of help in following through this proof.

w x y zFs Fu FvD̄0 D̄s D̄t

D0 Ds
�Dt

Consider the intermediate image set Ds � Fs�D0� and let ms be its size. Since we
are taking F to be a random function, Ds is a set of random points from � . So, by
Lemma 7, the expected number of �Fu�v

� i�-nodes in Dt � Fu�v�Ds� is

Npu�v�i

�
1�

�
1�

ms

N

�i�
�

Now suppose z � D̄t � Ft�D̄0� �Dt is an �Fu�v
� i�-node, let w � D̄0 be the corre-

sponding input element that was chosen. Set x � Fs�w� and y � Fu�x�. Then x � D̄s

is a random input that produces the �Fu�v
� i�-node z. By Proposition 3, the probability

for y to be an �Fu
�k�-node is

p
� u
��k �

��� u
��

v
��i

�
�

k pu�k

i pu�v�i
∑

j
j pv� j ∑

k�i2�����i j�i

pu�i2 � � � pu�i j �

The expected equivalence size we want to find is

∑
i

�
# of �Fu�v

� i�-nodes in D̄t

�
∑
k

k � p
� u
��k �

��� u
��

v
��i

�
�

and our discussion so far shows that this may be computed through

∑
i

Npu�v�i

�
1�

�
1�

ms

N

�i�
∑
k

k �
k pu�k

i pu�v�i
∑

j
j pv� j ∑

k�i2�����i j�i

pu�i2 � � � pu�i j �

This is equal to the following sequence of equations.

N ∑
i

1
i

�
1�

�
1�

ms

N

�i�
∑
k

��
x� �

u�x�
�
�
�

k�1 ∑
j

�� �

v�x�� j�1 �
�
�u�x�

j�1�
i�k

� N ∑
i

1
i

�
1�

�
1�

ms

N

�i�
∑
k

��
x� �

u�x�
�
�
�

k�1 �
�
�

�

v��u�x��
�

i�k
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� N ∑
i

1
i

�
1�

�
1�

ms

N

�i���
x� �

u�x�
�
�

�
�

v

�
�u�x�

��
i�1

� N
� 1

1�ms
N

�
x� �

u�x�
�
�

�
�

v

�
�u�x�

�
dx

The last equality follows from (15). To arrive at our claim, it now suffices to substitute

1�
ms

N
��s

�
1�

m0

N

�
�

as given by Lemma 2. ��

Proposition 5 Let t � s�u�v be a sum of non-negative integers and choose a set of
random points D0 �� . Suppose Dt �Ft�D0� is of size mt , and for each z � Dt , ran-
domly choose a w � D0 such that Ft�w� � z. The collection of chosen pre-images w
will be called D̄0. Then, the pre-image of Fs�u�D̄0� under Fu is expected to be of size

mt�u�1��
u�u�2�

v2

�
mtv�2N ln

�
1�

mtv
2N

��
�

Proof Combining Lemma 9 and Lemma 2, we can state the pre-image size as

� 1

�
��u�v��1�

mt
N �

N
�
x� �

u�x�
�
�

�
�

v

�
�u�x�

�
dx�

When the approximation given by Lemma 3 is applied, the above indefinite integral
becomes

4N�u2�uv�2u� v�

v�u� v�
�
2��u� v��1� x�

�� 2Nu�u�2�
v2 ln

� 2�u�1� x�
2��u� v��1� x�

�
�

After the integration boundaries are placed in this equation with�
��u�v��1�

mt
N � as

given by Lemma 3, the result simplifies to

mt�u2�uv�2u� v�
v

�
2Nu�u�2�

v2 ln
�

1�
mtv
2N

�
�

This is equal to what is claimed. ��

4 Cost of false alarms

Let us use results of the previous section to quantify the effects of false alarms. We
shall show that, under typical parameters, the Hellman, perfect rainbow, and non-
perfect rainbow tradeoffs, spend 14.3%, 25.8%, and 27.6% of the total online time in
resolving false alarms, respectively.

As with any analysis of tradeoff algorithms, we shall model F as a random func-
tion during our arguments.
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4.1 Hellman tradeoff

Hellman tradeoff utilizes multiple tables with usually one of these containing the cor-
rect answer. Unless all the tables are processed in parallel, we will end up producing
the full length online chain for most of the Hellman tables that we start search on. So
we shall state our cost claims in terms of single table processing, rather than for the
whole online phase. If needed, one can readily obtain the expected total cost from the
success probability of a single table and the cost per table.

Recall that the k-th column of a Hellman matrix is denoted by ��k. We shall write
F� j���t� for the set of pre-images under F j of the ending points ��t .

Lemma 10 For each 0 � k � t, the expected size of the pre-image set F�k���t� is
approximately m�1� k�.

Proof Proposition 4 states m�1� k�
�
1� mk

4N

�
as the expected pre-image size. Since

our assumptions of c� � 1 and 1� t imply 0� mk
4N � c�

4t
k
t �

c�
4t � 1, the conclusion

follows.
Lemma 6, combined with our discussion on ending point distinctness, stated be-

low (5), also leads to the same conclusion. ��

It is now possible to compute the extra work incurred by false alarms.

Theorem 1 During the full online processing of a single Hellman table, the online
chain creation requires about t applications of F. The false alarms are expected to
cause approximately c�

6 t extra applications of F.

Proof The complete online chain creation requires t� 1 invocations of F . Thus the
first claim is evident.

Let y � F�x� be given as the target image point. For each 0 � k � t, the k-th
iteration of the online phase, i.e., the search of Fk�1�y� among the ending points,
causes an alarm if and only if x� F�k���t�. The alarm is a false one, if x �� ��t�k. By
Lemma 10 and the assumption on ending point distinctness, the probability of such
an incident happening is m�1�k�

N � m
N .

Each alarm causes �t� k�1� iterations of F to be executed before it can be dis-
missed as being false. Thus, the expected number of F iterations spent on false alarm
treatment throughout the full processing of a single Hellman table can be calculated
as

∑
0�k�t

�t� k�1�
mk
N

�
t�t�1��t�2�

6
�
m
N
�

It now suffices to bring out the highest term in t from this equation and apply the
condition mt2 � c�N. ��

Under the matrix stopping rule mt2 � N, approximately 1
6 t iterations of F are

spent on resolving false alarms per Hellman table. In comparison, the full online chain
generation requires approximately t iterations. So if the multiple Hellman tables are
processed sequentially, false alarms will cause 1

6 � 16�7% increase in online time. In
other words, 1

7 � 14�3% of the total online time is related to false alarms. In general,
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Table 1 Expected iteration counts per table (unit: t) and relative cost of false alarms for Hellman tradeoffs
(OC=online chain, FA=false alarm, itr=iterations)

c� 1/4 1/3 1/2 1 2 3 4

OC itr 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FA itr 0.042 0.056 0.083 0.167 0.333 0.500 0.667

total itr 1.042 1.056 1.083 1.167 1.333 1.500 1.667
FA/total 4.0% 5.3% 7.7% 14.3% 25.0% 33.3% 40.0%

c�
6�c�

of the online time is spent on resolving false alarms. As can be seen through
Table 1, the relative cost of false alarms is sensitive to c�.

Notice that �t � k� 1�mk
N , the term being summed in the proof of Theorem 1,

viewed as a function of k, attains its maximum value near k � t
2 . So, the unwanted

effect of false alarms is at its greatest when the online chain has reached half of its
full length. Assuming that the correct answer is found after going through half of the
pre-computed data, this implies that we get the same c�

6 factor increase in online time
due to false alarms, even when all the Hellman tables are processed in parallel.

4.2 Perfect rainbow tradeoff

We shall concentrate on analyzing the cost of processing a single perfect rainbow
table. At the end of this subsection, we briefly explain how to work with multiple ta-
bles. In our discussion, the perfect rainbow table is not assumed to (but may) contain
the maximal number of possible rows. While maximal perfect tables are easier to an-
alyze, building them are very costly and are seldom used. In practice, a near-maximal
table, or a non-perfect table, considered in the next subsection, are used.

Recall the notation (2). We shall write F� when referring to multiple Fj without
explicitly specifying their, possibly different, indices. To deal with rainbow tradeoffs,
we redefine Fk � F��k�1 Æ � � � ÆF��1 ÆF� to be any k iterations of consecutive F�. As
long as each Fj is a random function, all the proofs of Section 3 remain valid for this
new Fk and, in particular, Proposition 4 is true for the new Fk.

Disregarding the effects of false alarms, the rainbow tradeoff requires approxi-
mately 1

2 t2 applications of F� in fully processing a single table. But unlike the Hell-
man tradeoff, the complete table is not likely to be fully processed. Because a rainbow
table is huge, early exit from the online phase algorithm, which occurs when the cor-
rect answer to the inversion problem is found, is quite likely. So we need a measure of
the online chain creation cost that reflects the realistic use of rainbow tradeoffs. This
is presented in the following theorem, where the cost of false alarms is also given.

We shall write F� j���t� for the set of pre-images under F j of the ending points.

Theorem 2 The online processing of a single perfect rainbow table is expected to
require approximately �

1�
1� c�

ec�

�� t
c�

�2

applications of F�, in creating the online chain. Approximately
�

2�c��1��
2� c2

�

ec�

�� t
2c�

�2
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Table 2 Expected iteration counts (unit: t2) and relative cost of false alarms for perfect rainbow tradeoffs
(OC=online chain, FA=false alarm, itr=iterations)

c� 0.25 0.5 1 1.5 1.8 1.9 1.95 2

OC itr 0.4240 0.3608 0.2642 0.1965 0.1658 0.1569 0.1526 0.1485
FA itr 0.0357 0.0614 0.0920 0.1049 0.1076 0.1080 0.1081 0.1081

total itr 0.4597 0.4222 0.3562 0.3014 0.2734 0.2648 0.2607 0.2566
FA/total 7.77% 14.55% 25.82% 34.80% 39.37% 40.77% 41.45% 42.12%

additional invocations of F� are expected to be needed, in dealing with false alarms.

Proof Let us say y� F�x� is given as the inversion target. Since we are dealing with
a perfect table, x is in the rainbow matrix column ��t�1 with probability m

N . Checking
for this is done by searching for y in ��t , which requires no F� computation. This first
iteration fails to return the answer x with probability 1� m

N . In the second iteration, a
single application of Ft is required. At the third iteration, which will be reached with
probability �1� m

N �
2, application of Ft�1 ÆFt , or two applications of F�, is required.

Thus, the expected number of F� iterations can be written as

∑
0�k�t

�k�1�
�

1�
m
N

�k�1
� (19)

Simplification of this, using the approximation �1� m
N �

t � exp��mt
N � � e�c� , results

in
��

1�
c�
t

�
�
�
1�

c�
t
� c�

� 1
ec�

�� t
c�

�2
�

Collection of the highest terms in t from this equation is the claimed F invocation
count for online chain creation.

Let us now look into the second claim. As was already argued, the k-th (0 � k� t�
iteration of the online phase is executed with probability �1� m

N �
k�1. The k-th itera-

tion sounds a false alarm if and only if x � F�k���t� ���t�k. Proposition 4 implies
that this event happens with probability m

N �1� k��1� mk
4N ��

m
N . Each verification of

whether we are dealing with a false alarm requires �t� k�1� iterations of F�.
The expected number of extra F� iterations required to deal with false alarms is

thus

∑
0�k�t

�t� k�1� �
m
N

�
k�

mk
4N

�
mk2

4N

�
�
�

1�
m
N

�k�1
� (20)

This simplifies to

�
2�c��1��

2� c2
�

ec�

� t2

4c2
�

�
�

2�
c2
�
� c��2

ec�

� t
4c�

�
� c�

ec�

�1
4
�

when the approximation �1� m
N �

t � e�c� is used. The highest terms in t from this
equation is what our claim states as the cost of false alarms. ��
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When c� � 1, which is typical for perfect rainbow tradeoffs, the number of F
invocations spent on the online chain creation is �1� 2

e �t
2 and 1

4e t2 additional invo-
cations due to false alarms are expected. This translates to 34.8% extra F� iterations
due to false alarms. In other words, 25.8% of the online time is spent in resolving
false alarms. More such information for specific c� can be found in Table 2. Values
for c� of only up to 2 are listed, because it can be argued from (4) that, for any choice
of parameters, we always have c� � 2.

We advise caution in interpreting data from Table 2. The iteration counts are given
in multiples of t2, so that, for example, the total iteration 0�3562t2 for c� � 1 being
greater than 0�2566t2 for c�� 2 does not imply that the c�� 1 parameter takes longer.
To the contrary, for the same m, the t for c� � 2 is twice as large as the t for c� � 1,
and the net result is that c� � 2 takes much longer. That said, this alone does not
automatically imply superiority of the parameter c� � 1 over c� � 2, since the two
brings about different (easily computable) success probabilities.

It is easy to translate results of this section to the case when � tables are pro-
cessed in parallel. To obtain the expected F� iteration counts per table, it suffices to
replace the �1� m

N �
k�1 factors appearing in (19) and (20) with �1� m

N �
��k�1�. Re-

sulting formulas are no longer simple, but computable. If multiple tables are pro-
cessed sequentially, counts for the �-th table may be obtained by multiplying the fac-
tor �1� m

N �
t���1� � exp

�
� c���� 1�

�
to the corresponding values given for a single

table.

4.3 Non-perfect rainbow tradeoff

Let us now consider non-perfect rainbow tradeoffs, i.e, the case where none of the
colliding pre-computed chains are removed. Partial results for this case, obtained in a
manner different from the current work, appears in [14]. The case where one removes
only some of the colliding chains is also conceivable, but such a case does not appear
in the literature and will not be dealt with here.

When a non-perfect rainbow table is in use, the expected number of F� iterations
for online chain creation can be written as

∑
0�k�t

�k�1�
k�1

∏
j�1

�
1�

mt� j

N

�
�

where each mj is given by (3) with m0 � m. When the approximation (4) is applied
to this, we see cancelations within the product term and the above simplifies into

∑
0�k�t

�k�1� �
2N�m�t� k�
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Table 3 Expected iteration counts (unit: t2) and relative cost of false alarms for non-perfect rainbow
tradeoffs (OC=online chain, FA=false alarm, itr=iterations)

c� 0.25 0.5 1 2 5 10 100

OC itr 0.4290 0.3767 0.3056 0.2292 0.1514 0.1181 0.0867
FA itr 0.0372 0.0677 0.1167 0.1917 0.3656 0.6250 5.1326

total itr 0.4662 0.4443 0.4222 0.4208 0.5170 0.7431 5.2193
FA/total 7.98% 15.23% 27.63% 45.54% 70.72% 84.11% 98.34%

To deal with the cost of false alarms, note that if the current end of the online chain
matches a common ending point of two pre-computed chains, both of them will have
to be regenerated for false alarm verification. Instead of doubling the work factor for
this case, we can simply let the probability of false alarms be added twice, once for
each of the colliding chain. Thus, for the purpose of analyzing false alarm costs, we
can simply ignore collisions and treat colliding pre-computed chains as independent
chains.

Using Lemma 6, the expected number of extra F� iterations required to deal with
false alarms can be written as

∑
0�k�t

�t�k�1� �
�m

N

�
1� k

�
�

m
N

�
�

k�1

∏
j�1

�
1�

mt� j

N

�

�

c��t �1�

�
�40�20c��3c2

�
�t3� �160�80c��13c2

�
�t2

�6c��20�3c��t�8c2
�

�

60��2� c��2t2 �3c��2� c��t �2c2
�
�

�
c�
60

� �40�20c��3c2
�
� �
� t

2� c�

�2
�

where mj are to be defined as before. The first approximation is, once again, based
on (4). We gather what we have discussed so far in the next theorem.

Theorem 3 The online processing of a single non-perfect rainbow table is expected
to require approximately

1
12

� �24�8c�� c2
�
� �
� t

2� c�

�2

applications of F�, in creating the online chain, and

c�
60

� �40�20c��3c2
�
� �
� t

2� c�

�2
�

additional invocations of F�, in resolving false alarms.

Some example values for expected online time complexities are given in Table 3.
Note that the cost of false alarms quickly dominates the main online chain creation
cost as c� is increased.
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Remark 2 The arguments of this subsection used ∏k�1
j�1�1�

mt� j
N � as the probability

for the k-th online iteration to happen. We already saw through Remark 1 that this is
not strictly correct. Unlike the perfect rainbow case, there is an added complication
to be mentioned here. The number of distinct points �� j will be highly correlated to
that of �� j�1, so that such events are far from being independent. Thus the product
expression stands on shaky grounds. Still, we know that this will be roughly correct
for large m, and our proof should reflect the true picture, as the test results of Section 6
agree with the theory.

5 Checkpoints

An analysis of the online time complexities for the Hellman and rainbow tradeoffs
was provided in the previous section. But since there is a technique called check-
points, that can be applied to tradeoff algorithms to reduce the cost of false alarms,
our online time complexity analysis would not be complete without measuring their
effects.

5.1 Hellman tradeoff

Let us first deal with the Hellman tradeoff case. While we can give analysis for any
number of checkpoints, the results do not simplify into one uniform formula, and the
content of this section is best explained with examples. Furthermore, our analysis
shows that using a large number of checkpoints is uncalled-for in most situations.

Let us say that y� F�x� is given as the target image point. We assume that a 1-bit
checkpoint has been placed at the �t�c�-th column, i.e., c iterations from the ending
point. We shall write F� j���k� for the set of pre-images under F j of the k-th column
��k of the Hellman matrix.

It is clear that, for k � c, false alarms at the k-th iteration of the online phase
cannot be filtered out with the checkpoint. Since the online chain available to the
tradeoff operator starts from y�F�x�, rather than from x, the checkpoint information
becomes useful starting from the �c�1�-th iteration.

Suppose that we observed an alarm in the k-th iteration, with k � c. This implies
x � F�k���t�. Notice that

��t�k � F��k�c����t�c� � F�k���t��

If x � ��t�k, the correct answer has been found. If x � F��k�c����t�c� ���t�k, we
have a false alarm, but the online chain starting from x will merge with the pre-
computed Hellman chain before passing over the checkpoint and the checkpoint
information is useless in resolving false alarms. Finally, for the remaining case of
x � F�k���t��F��k�c����t�c�, the 1-bit checkpoint information will resolve a false
alarm with probability 1�2. Thus, for k � c, false alarms which are unresolved by the
checkpoint occurs at the k-th iteration with probability

1
N

��
�F��k�c����t�c��� ���t�k�

�
�

1
2

�
�F�k���t��� �F��k�c����t�c��

��
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It remains to fill in the various set sizes. We know �F�k���t�� � m�1� k� from
Lemma 10. To deal with �F��k�c����t�c��, we give a version of Proposition 5 spe-
cialized for Hellman tables.

Lemma 11 For each 0� u� t�c, the expected size of the pre-image set F�u���t�c�
is approximately m�1�u�.

Proof By Proposition 5, the pre-image size is expected to be

m�u�1��
u�u�2�

c2

�
mc�2N ln

�
1�

mc
2N

��
�

Under normal parameters for Hellman tradeoffs, we have mc � N, so that we may
approximate ln�1� mc

2N � simply by �mc
2N . The second term disappears and the result

follows.
It is also possible to obtain the same result from Lemma 10 or Lemma 6 and

our assumption, stated below (5), that no chains were removed in creating a Hellman
table. ��

Using the set size expectations that are now available, the probability of false
alarm at the k-th iteration can be written as

ProbFA�k� �

�
mk
N for 1� k � c,
mk
N � mc

2N for c � k � t�

Finally, we can state that

∑
0�k�t

�t� k�1�
mk
N
� ∑

c�k�t

�t� k�1�
mc
2N

is the expected number of F iterations caused by false alarms. Below, we summarize
what has so far been discussed and add a few more simple computational conse-
quences.

Example 1 By placing a single 1-bit checkpoint at the �t�c�-th column of a Hellman
matrix, one can expect to remove

∑
c�k�t

�t� k�1�
mc
2N

�
m
N

�c�t� c��t� c�1�
4

�

of the F applications caused by false alarms, per table. For large t, the maximum
effect is obtained with c � t

3 . Of the c�
6 t extra function iterations caused by false

alarms, per table, c�
27 t iterations can be removed through a single 1-bit checkpoint at

the optimal position c � t
3 .
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Table 4 Optimal 1-bit checkpoint positions for Hellman tradeoffs (distance from ending point in units
of t)

# of CP 1-st CP 2-nd CP 3-rd CP 4-th CP

1 CP 0.33333
2 CP 0.25760 0.41920
3 CP 0.21166 0.33617 0.48067
4 CP 0.18029 0.28273 0.39601 0.52748

One can easily extend the above results to more than one checkpoint. For ex-
ample, when 1-bit checkpoints are placed at the �t� c2�-th and �t� c1�-th columns
(c2 � c1), the work induced by false alarms can be written as follows.

∑
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�t� k�1�
�
k
�m

N

� ∑
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2
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N

� ∑
c2�k�t

�t� k�1�
�
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c2� c1

2
�

c1

4

�m
N
�

Notice that alarms related to columns situated to the left of both checkpoints are
filtered twice. We summarize this in a simplified form below.

Example 2 By placing 1-bit checkpoints at the �t � c2�-th and �t � c1�-th columns
(c2 � c1) of a Hellman matrix, one can expect to remove

1
8

m
N

�
�2c3

1� c1c2
2�2c3

2�� �2c2
1� c1c2�2c2

2��2t�1���c1�2c2��t
2� t�

�

of the F iterations caused by false alarms, per table. Assuming c1 and c2 to be O�t�,
this is approximately

1
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m
N
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�2c3

1� c1c2
2�2c3

2�� �2c2
1� c1c2�2c2

2�2t��c1�2c2�t
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We can compute that the maximum effect is obtained when using

c1 �
34�3

�
46

53
t � 0�2576 t and c2 �

29�
�

46
53

t � 0�4192 t�

Using these parameters, one can remove about 181�23
�

46
5618 c�t � 0�05998c�t of the

c�
6 t � 0�1667c�t function iterations related to false alarms.

It is now clear how to approach any number of checkpoints. The computation will
be more complicated, but clearly feasible for anyone that needs the information. We
have done the explicit computations and some optimal checkpoint positions are given
in Table 4, where the values indicate distance from the ending points in units of t. The
optimal positions are independent of c� � mt2�N, assuming t to be large.

Table 5 lists the reduction in total F iterations that are expected when checkpoints
are placed at the optimal positions. For example, the value 2�03% in the c� � 1 table
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Table 5 Online cost reduction for Hellman tradeoffs through checkpoint usage

c� � 1�2 1 CP 2 CP 3 CP 4 CP

0 CP 1.71% 2.77% 3.50% 4.03%
1 CP 1.08% 1.82% 2.36%
2 CP 0.75% 1.30%
3 CP 0.55%

c� � 1 1 CP 2 CP 3 CP 4 CP

0 CP 3.17% 5.14% 6.49% 7.49%
1 CP 2.03% 3.43% 4.45%
2 CP 1.43% 2.47%
3 CP 1.06%

c� � 2 1 CP 2 CP 3 CP 4 CP

0 CP 5.56% 9.00% 11.37% 13.10%
1 CP 3.64% 6.15% 8.00%
2 CP 2.60% 4.51%
3 CP 1.96%

Table 6 Time reduction equivalent to increase in storage by single bit per entry

b� b�1 25� 26 30� 31 35� 36 40� 41 45� 46 50� 51 55� 56

1� � b
b�1 �

2 7.54% 6.35% 5.48% 4.82% 4.30% 3.88% 3.54%

b� b�1 60� 61 65� 66 70� 71 75� 76 80� 81 85� 86 90� 91

1� � b
b�1 �

2 3.25% 3.01% 2.80% 2.61% 2.45% 2.31% 2.19%

b� b�1 95� 96 100�101 105�106 110�111 115�116 120�121 125�126

1� � b
b�1 �

2 2.07% 1.97% 1.88% 1.79% 1.72% 1.65% 1.58%

b� b�1 130�131 135�136 140�141 145�146 150�151 155�156 160�161

1� � b
b�1 �

2 1.52% 1.47% 1.41% 1.37% 1.32% 1.28% 1.24%

indicates that, compared to using a single checkpoint, using two checkpoints will
result in 2.03% decrease in total online time.

Adding more checkpoints will require more storage space and may make the
reduction in online time meaningless in view of the time memory tradeoff TM2 ∝ N2.
Table 6 translates storage disadvantage of a single bit per table entry increase into
equivalent reduction in online time. Let us explain this with an example. We shall
consider the “95� 96 : 2�07%” entry. This meas that, if each �sp�ep� entry of the
current tradeoff table consumes 95 bits, the storage disadvantage of adding one more
checkpoint is justifiable only if you expect more that 2�07% decrease in online time.
Thus, restricting our discussion to the c� � 1 case, use of a single 1-bit checkpoint,
which is expected to bring 3�17% time reduction, is justifiable. But, if the 95 bits
already contained a single checkpoint information, as adding one more checkpoint
will reduce time only by 2�03%, doing so is not advisable. This example shows that,
with Hellman tables at c� � 1, only a small number of checkpoints will be practical.

There are issues concerning storage that forces us to use Table 6 only as rough
guidelines. We have already seen that, due to effects of false alarms, TM2 ∝ N2 is only
true when the parameters t and m are restricted to those that give constant c� � mt2

N
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(Hellman) or c� � mt
N (rainbow) values. Furthermore, even if TM2 ∝ N2 were strictly

true, the M in this equation refers to the number of table entries, and not the real-
world storage size. When M is increased, the number of bits that need to be allocated
to each entry also increases, so the real-world storage size needed is not linear in
M. In other words, an increase in storage, for example, by a factor of γ , does not
translate exactly to disadvantage in time by a factor of γ2. So these numbers should
only be taken as a rough guideline. Of course, in practice, storage for checkpoints
could come essentially for free, due to properties concerning natural word size of the
implementation platform.

5.2 Perfect rainbow tradeoff

The general line of argument for analyzing the effects of checkpoints on perfect rain-
bow tradeoffs are exactly the same with the Hellman tradeoff case. We shall deal
only with a single 1-bit checkpoint on a single perfect rainbow table. Extensions to
multiple checkpoints and multi-bit checkpoints are straightforward.

If a single checkpoint is placed at the �t �c�-th column, for each k � c, the prob-
ability of meeting a false alarm on the k-th iteration is

1
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�
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The second term within the braces,

1
2N

�
�F�k���t��� �F��k�c����t�c��

�
� (21)

corresponds to the false alarms that are filtered out through the single checkpoint.
According to Proposition 4, we have

�F�k���t��� m�1� k�
�
1�

mk
4N

�
(22)

and Proposition 5 gives
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� m�k� c�1��
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When (22) and (23) are substituted into (21), it becomes

cm
2N

�
� cm

2N
� ln

�
1�

cm
2N

�� 1
c2 �k� c��k� c�2��

m2

8N2 k�k�1� (24)

After multiplying the work factor and the probability to reach the k-th iteration,
we can state

∑
c�k�t

�t � k�1�
�

1�
m
N

�k�1
�
�
Equation (24)

�
� (25)



27

Table 7 Expected iteration counts (unit: t2) and effects of a single 1-bit checkpoint on perfect rainbow
tradeoffs (FA=false alarm, itr=iterations)

c� 0.25 0.5 1 1.5 1.8 1.9 1.95 2

optimal c�t 0.3192 0.3048 0.2757 0.2472 0.2311 0.2259 0.2234 0.2209
filtered FA itr 0.0077 0.0128 0.0182 0.0197 0.0197 0.0197 0.0196 0.0195

FA itr 0.0357 0.0614 0.0920 0.1049 0.1076 0.1080 0.1081 0.1081
total itr 0.4597 0.4222 0.3562 0.3014 0.2734 0.2648 0.2607 0.2566

filtered/FA 21.5% 20.9% 19.8% 18.8% 18.3% 18.2% 18.1% 18.1%
filtered/total 1.67% 3.04% 5.10% 6.55% 7.22% 7.42% 7.52% 7.62%

as the number of F iterations that can be removed through a single 1-bit checkpoint
at the �t� c�-th column.

Unlike the Hellman tradeoff case, (25) does not simplify into a nice formula.
Noting that c�O�t�, let us write c� c�t. When this is used on (25), together with the
condition mt � c�N and the approximation �1� c�

t �
t
� e�c� , it becomes a polynomial

in t of degree two, with functions of c� and c� as coefficients. By concentrating on the
coefficient of the most dominant t2 term, we can find the optimal checkpoint position
for each fixed c�. More information on this process is given in Appendix D.

The optimal �t � c�-th column to place a single 1-bit checkpoint is given in the
first row of Table 7, for some values of c�, spread over its range of interest. The table
also shows the reduction in online F invocations a checkpoint brings, when they are
placed at the optimal position. Values such as iterations reduced through checkpoints,
iterations due to false alarms, and expected numbers of total F iterations, per table,
are listed. The count values have been approximated to multiples of t2, but are quite
accurate for large t.

Since the relative cost of false alarms is high on rainbow tradeoffs, the effects of
a single checkpoint are better here, compared to the Hellman tradeoffs. As before,
storage disadvantage of checkpoint addition, translated through Table 6, should be
compared with time advantage. Because rainbow tables contain more entries than the
naturally corresponding Hellman table, the bits per entry count will usually be larger
with rainbow tables. Hence, use of multiple checkpoints will be easier to justify with
rainbow tables.

5.3 Non-perfect rainbow tradeoff

Let us consider the non-perfect rainbow tradeoff. Recalling the arguments of Sec-
tion 4.3, we must treat any colliding chains as totally independent.

The expected number of F iterations reduced through a single checkpoint at the
�t� c�-th column can be computed as

∑
c�k�t

�t� k�1� �
m
N
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N
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Table 8 Expected iteration counts (unit: t2) and effects of a single 1-bit checkpoint at the optimal position
for non-perfect rainbow tradeoffs (FA=false alarm, itr=iterations)

c� 0.25 0.5 1 2 5 10 100

optimal c�t 0.3218 0.3117 0.2952 0.2724 0.2410 0.2234 0.2026
filtered FA itr 0.0082 0.0147 0.0250 0.0403 0.0755 0.1283 1.0512

FA itr 0.0372 0.0677 0.1167 0.1917 0.3656 0.6250 5.1326
total itr 0.4662 0.4443 0.4222 0.4208 0.5170 0.7431 5.2193

filtered/FA 21.9% 21.7% 21.4% 21.0% 20.7% 20.5% 20.5%
filtered/total 1.75% 3.31% 5.91% 9.57% 14.61% 17.27% 20.14%

Use of approximation (4) brings about cancelations within the last product term and
the above becomes
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One now has all the tools necessary to compute the optimal position to place a
single 1-bit checkpoint. Table 8 lists the optimal �t � c�-th checkpoint column and
various iteration counts for a non-perfect rainbow tradeoff. Note that, as c� is in-
creased, the cost of false alarms quickly dominates the main online chain creation
cost and checkpoints become correspondingly effective.

6 Simulation Results

We tested the theory presented in this paper with experiments using small parameters.
In all cases, the experiment data matched our theory very well.

The key to ciphertext mapping of the blockcipher AES-128 under a fixed random
plaintext was used as the one-way function. We chose to fix the search space size to
a manageable N � 220. This was done by zero-padding the 20-bit input to a 128-bit
key and truncating the 128-bit ciphertext to 20 bits.

In each of the tests described below, multiple tables were used and multiple in-
version targets were tried per table. The one-way function was changed every time a
new table was generated, by choosing another random plaintext.

Our theory on the probability of false alarms at each iteration and also that on
probability of false alarm removal by checkpoints were tested. Each randomly gener-
ated tradeoff table was made to contain the information of a single 1-bit checkpoint.
With the table ready, a random input x was generated and the online chain starting
from the inversion target y � F�x� was created.

A set of t-many counters were prepared. For every false alarm observed during the
online chain creation, the current online chain length was observed and the counter
corresponding to the length was incremented. Dividing each counter content by the
total number of tests that were run gives the probability of false alarm occurring at
each iteration separately.
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Fig. 1 Probability of false alarms at each column for Hellman tradeoffs

In addition to the usual counter incrementing, those false alarms that were re-
solved through the checkpoint information were made to increment a separate set of
t-many counters. This allowed us to later present both the false alarm probability and
the unresolved false alarm probability, both separately for each iteration.

In all the graphs below, the slightly irregular dots represent experiment data, av-
eraged over multiple tables and inversion targets, and the lines, barely visible under
the dots, represent our theory. Column number t� k corresponds to false alarm prob-
ability at the k-th iteration. In each diagram, the upper graph, with theory given by
a thin solid line, represents the total false alarm probability at each column. The
lower graph, in a dashed line, corresponds to false alarms that remained unresolved
even after checkpoint information was utilized. These two coincide to the right of the
checkpoint.

6.1 Hellman

Refer to Figure 1. Each graph represents data averaged over 500 Hellman tables and
1000 random inversion targets per table. Even though infrequent, ending point colli-
sions did occur during table generation. These were not removed and when an online
chain matched the end of a pair of colliding chains, only one of them was regenerated
to check for false alarm and the counter was incremented just once.

6.2 Perfect rainbow

Refer to Figure 2. Rather than fixing the table size m, or, equivalently, the number
of collision free ending points, we chose to fix initial input m0. The left hand side
graph used m0 � 21020 and the average of mt observed over 30 tables was m �
10471, which translates to c� � 1�0. The right hand side graph used m0 � 502418.
The average of mt over 30 tables was m� 19902 and we have c� � 1�9. Each of the
tradeoff tables were subject to 5000 random inversion targets.
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Fig. 2 Probability of false alarms at each column for perfect rainbow tradeoffs

Α�1.00�N�220, m�10486, t�100, c�30�

total FA
�

unresolved FA�

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

column number

fa
ls

e
al

ar
m

pr
ob

ab
ili

ty

Α�5.00

�N�220, m�52429, t�100, c�24�

total FA
�

unresolved FA�

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

column number

fa
ls

e
al

ar
m

pr
ob

ab
ili

ty

Fig. 3 Probability of false alarms at each column for non-perfect rainbow tradeoffs

6.3 Non-perfect rainbow

Refer to Figure 3. Both graphs represent data averaged over 30 tables with 5000 ran-
dom inversion targets per table. Readers may notice that the right hand side graph
shows false alarm probability slightly greater than 1 at the center columns and con-
sider this to be strange. This is due to colliding ending points. Some false alarms will
cause more than one pre-computation chain to be regenerated and the counters were
incremented correspondingly many times.

7 Conclusion

Previous analyses of the online time complexities for cryptanalytic time memory
tradeoff algorithms were usually based on the worst case operation of just the on-
line chain creation process and the added cost of dealing with false alarms was either
neglected or roughly argued as being relatively small.

In this work, we presented accurate measures of the expected online time com-
plexities, for the Hellman and rainbow tradeoffs. By studying the size of pre-image
sets under an iteration of random functions, the cost induced by false alarms were an-
alyzed and taken into account. An analysis of the workings of the checkpoint method,
a technique for reducing the effects of false alarms, was also provided. We have com-
puted their optimal positions and quantified the resulting reduction in false alarm
costs.
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For those familiar with the distinguished point method, we remark that more work
needs to be done in order to give an analysis similar to the current work. There are
many complications arising from the existence of distinguished points within the pre-
image tree. This is one direction the current work may be extended to.

In the introduction, we briefly mentioned the issue of finding the optimal stor-
age technique for each tradeoff algorithm. Unlike the time complexity analysis given
in this paper, which was largely independent of storage issues, storage reduction
techniques affect both storage and time complexities in a way that is not accessi-
ble through the tradeoff curves. The less understood technique of storage reduction
through aggressive ending point truncation brings about extra work in a probabilis-
tic manner, just as with false alarms. Analysis of its effects and its optimal usage
will only be possible in conjunction with time complexity arguments provided in this
work. Note that the tradeoff curves available today present a relation between the on-
line chain iteration count and the table entry count. Further research in this direction
will lead to the more useful tradeoff curve connecting the total online iteration count
and the real-world storage size.
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10. J. Dj. Golić, Cryptanalysis of alleged A5 stream cipher. Eurocrypt 1997, LNCS 1233, pp.239–255,
Springer-Verlag, 1997.

11. M. E. Hellman, A cryptanalytic time-memory trade-off. IEEE Trans. on Infor. Theory, 26 (1980),
pp.401–406.

12. J. Hong, K. C. Jeong, E. Y. Kwon, I.-S. Lee, and D. Ma, Variants of the distinguished point method
for cryptanalytic time memory trade-offs. ISPEC 2008, LNCS 4991, Springer-Verlag, pp.131–145,
2008.

13. I.-J. Kim and T. Matsumoto, Achieving higher success probability in time-memory trade-off crypt-
analysis without increasing memory size. IEICE Trans. Fundamentals, E82-A, pp.123–129, 1999.

14. D. Ma, Studies on the cryptanalytic time memory trade-offs. Ph.D. Thesis, Seoul National University,
Aug., 2008.

15. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography. CRC
Press, 1997.

16. P. Oechslin, Making a faster cryptanalytic time-memory trade-off. Crypto 2003, LNCS 2729, pp.617–
630, 2003.



32

A Another approach to�u�x� as a function

In this section, we give another interpretation for some of the contents that start out Section 3.2.
For the random function F on� , its u-times iterated composition Fu is a function with the property

that the number of its i-nodes is N pu�i. Let D be a random set of m0 elements and consider the image set
Fu�D�. Given any specific i-node, it does not belong to Fu�D� if and only if none of its i-many pre-images
belong to the input set. Thus the probability of an i-node not being in Fu�D� is �1� m0

N �i. The number of

i-nodes that are non-images may thus be written as �N pu�i� �
�
1� m0

N

�i.
Equating two ways to express the number of non-images under Fu, we obtain

N�mu �∑
i
�N pu�i� �

�
1�

m0

N

�i
�

where mu is the expected size of Fu�D�. This equation is equivalent to the k � 0 case of Lemma 2. The
positive k case of Lemma 2 also follows by simply taking the above D to be of size mk.

So far we have shown
1�

mu

N
��u

�
1�

m0

N

�

to be true, when m0
N is non-negative and reasonably small. If we can agree that enlarging the input set to

Fu will always result in strictly larger output set, at least on the expectation level, we may conclude that
the function�u�x� is injective in some small range 1� ε � x� 1. Thus a suitable inverse function can be
defined and we can state the negative k case of Lemma 2.

With Lemma 2 in our hands, we have a strong connection between function�u and image sizes under
function iterations. This allows us to use (3) to states that, as a function,�1�x� is identical to exp�1�x� in
the range discussed above. Furthermore (3) also shows that�u is the u-times iterated composition of�1.
We have thus reobtained Lemma 1 and Proposition 2.

Now, combining (10), which is true by definition, with Proposition 2, we can state

pu�v�i � ∑
j

pv� j � p
� u
��

v
��i

�� � v
�� j�

�

� ∑
j

pv� j ∑
i1�����i j�i

pu�i1 pu�i2 �
� � � pu�i j �

This equation is a strong indication that Proposition 1 and Proposition 3 are true, but does not directly
imply them in the logical sense. This seems to be as far as we can go, starting with the approach of this
section.

B More on node size correlation

We state two conditional probabilities that resemble Proposition 1, in the sense that the random choice
concerns the image point, rather than the input. Both statements are consequences of the observation (10).
We ask readers to compare these with probabilities given by Proposition 3.

Proposition 6 Some conditional probabilities concerning node structures are as follows, where the sum-
mation indices are to be taken from non-negative integers.

1. Fix i � 0 and let a random �Fu�v� i�-node be given. If one of its i-many pre-images under Fv is chosen
at random, the probability for this to be an �Fu�k�-node is

p
� u
��k� �

�� u
��

v
��i�

�
�

1
pu�v�i

∞

∑
j�1

�
∑

k�i2�����i j�i

pu�k pu�i2 � � � pu�i j

�
� pv� j �

When k � i, the second summation is empty for j � 1. Likewise, when k � i, the second summation is
empty for each j. These empty sums are interpreted to be zero. When k � i, the second summation is
degenerate for j � 1 and is interpreted to be one.



33

2. The probability for a random �Fu�v� i�-node to be an �Fv� j�-node is

p
�
�

v
�� j

�
� u
��

v
��i�

�
�

pv� j

pu�v�i
� ∑
i1�����i j�i

pu�i1 pu�i2 � � � pu�i j �

When i � j � 0, the degenerate sum is interpreted to be one. When i � 0 with j � 0, the empty sum is
interpreted to be zero.

The following proposition is only provided for completeness. This should be easy to prove when the
proof of Proposition 3 is understood.

Proposition 7 Let x be a random point from � . Set y � Fu�x� and z � Fv�y�. In the statements below,
the summation indices are to be taken from the non-negative integers.

1. Assuming y to be an �Fu�k�-node, the probability for z to be an �Fu�v� i�-node is

p
� u
��

v
��i

�
�� u
��k �

�
�

∞

∑
j�1

j pv� j ∑
k�i2�����i j�i

pu�i2 � � � pu�i j �

2. Assuming z to be an �Fv� j�-node, the probability for z to be an �Fu�v� i�-node is

p
� u
��

v
��i

�
�� v

�� j
�
�

∞

∑
k�1

k pu�k ∑
k�i2�����i j�i

pu�i2 � � � pu�i j �

Note that j �� 0.

Any sum with an empty index set is interpreted to be zero and any sum with a degenerate index description
is interpreted to be one.

C Alternative derivation for the equivalence set size

In this section, we present another proof for Proposition 4, giving the expected size of an Fk-equivalence
set. The line of argument follows that of [1], where the special case of maximal perfect rainbow tradeoff
was considered.2

Let �� be a tradeoff matrix of size m� �t � 1�. It may be either Hellman or rainbow. In the rainbow
case, it may be either perfect, non-perfect, or anywhere in between. That is, we assume �� was created
with random inputs and if any of the chains were removed, at least one chain with the same ending point
remains in the matrix. The k-th column of �� is denoted by ��k.

Let y �� be random and consider the online chain

y � xt�k
F
�� xt�k�1

F
�� �� �

F
�� xt

of length k. We assume that the right end of this chain is aligned to the ending points of ��, in the sense
that, for rainbow tables, the colors of the iterating functions are in match with the right end of the rainbow
matrix. Let us say that this online chain merges with one of the chains from ��, if x j � �� j for some j.

Proposition 8 The probability of online chain merging with one of the chains from �� is given by

1�
k

∏
j�0

�
1�

mt� j

N

�
�

where mt is the number of distinct elements of ��t and other mi are defined recursively by following
through (3) in the reverse direction.

2 That the argument of [1] should be valid under more general circumstances was brought to the author’s
attention through an early version of [14].
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We can argue with Lemma 2 and (18) that this proposition is equivalent to Proposition 4. Proof of the
current version, to be given below, is a tricky exercise on what a random function is. We mention that
issues discussed in Remark 1 and Remark 2 also apply to the current proof.

Note that m0 is the number of random inputs, that would have naturally produced the mt distinct
ending points under the random function, and the intermediate mi give the intermediate image sizes.

Suppose we are in the process of constructing a random function F . We start with D0, a set of m0
random starting points. The function value on each point of D0 is defined to be a randomly chosen element
of � . The image set D1 will contain m1 distinct elements. We then define the value of F on each point
of D1 and so on. When t and the size of Di are assumed to be small enough, previous definitions will not
interfere with later definitions of the random function F . We stop after t steps, ending with mt distinct
ending points Dt .

After the random function F has been constructed this far, we continue defining F further with another
random chain. Probability for the randomly chosen starting point y � xt�k to be not in Dt�k is 1� mt�k

N .
The probability of the randomly chosen image F�xt�k� :� xt�k�1 to be not in Dt�k�1 is 1� mt�k�1

N . Since
each iterative definition of F during the creation of the online chain consists of choosing a random point
from� , the iterations are independent of each other. Thus, the probability of the online chain not meeting
with the pre-constructed chains, all the way to the end, is as claimed and the proof is complete.

One should not confuse Dt� j with the pre-image F� j�Dt�, which would be much larger. In fact,
during the process of constructing the random function, the pre-image is not fully defined. Also note that
once the online chain ends without merging with �� chains, completing the construction of F by defining
its value on all yet undefined inputs will have no effect on the non-merging state.

Even though the proof given here requires less machinery than the proof in the main body of this
paper, the longer proof is more constructive in that it deals with the true pre-image sizes. In addition, a
parallel proof for Proposition 5 does not seem to be in reach. For the perfect rainbow tradeoff, an input
set that naturally produces the intermediate column ��k is hard to devise without considering probabilities
related to colliding chain removals.

D Optimal checkpoint position for the perfect rainbow tradeoff

In this section, we show how to obtain the optimal position for a single 1-bit checkpoint in the perfect
rainbow tradeoff case.

Recall that (25) gives the number of online iterations that can be removed through a single 1-bit
checkpoint at the �t� c�-th column. Under the conditions mt � c�N, c � c�t, and the approximation �1�
c�
t �

t
� e�c� , the sum (25) becomes the following polynomial in t of degree two.
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For each fixed t and c� , we want to find the c� that maximizes the value of this polynomial.
Let us write this polynomial as

A�c��c��t
2 �B�c��c��t�C�c� �c���

Using any software for drawing graphs, one can quickly check that for parameters 0�01 � c� � 0�99 and
0�01 � c� � 2, we have

0 �
B�c��c��
A�c��c��

� 962 and �84�6 �
C�c��c��
A�c��c��

� 81�6�

In particular, this shows that, for t which is not too small, A�c��c��t2 will dominate B�c��c��t and C�c��c��
for typical c� and c� . Also, since checkpoints are useless at both c� � 0 and c� � 1, the polynomial maxi-
mum will not be obtained near the boundary points. Thus, for c� of interest and typical c� , the coefficients
of this polynomial are such that the polynomial may be approximated simply by taking just the dominating
highest term.

Finally, since for any fixed t, the single term approximation A�c��c��t2 attains its maximum when the
coefficient A�c��c�� is maximal, given any c� , it is now easy to numerically find c� that maximizes the
polynomial.


