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Abstract

A constant-round interactive argument is introduced to show exis-

tence of a Hamiltonian cycle in a directed graph. Graph is represented

with a characteristic polynomial, top coefficient of a verification polyno-

mial is tested to fit the cycle, soundness follows from Schwartz-Zippel

lemma.

1 Introduction

A protocol to show existence of a Hamiltonian cycle in a graph was intro-

duced by Blum [Blu86, CF01]. Protocol uses binary challenges, and need

to be repeated to achieve soundness. Protocols with ’large’ challenges

achieve low soundness error without repeating; example is Schnorr pro-

tocol with challenges chosen from a finite field.

We explore options resulting from algebraic structure of responses of

a variant of Schnorr protocol. A protocol for Hamiltonian cycle is given in

this report. Protocol is an argument on assumption of hardness of discrete

logarithm problem. Protocol has a simulator algorithm, and is honest

verifier perfect zero knowledge.

2 Preliminaries

Definition 1 (Graph characteristic polynomial). Let Γ be a labelled di-

rected graph defined with a set of edges E(Γ) and a set of vertices V(Γ).

Non-zero labels wv ∈ Fq, v ∈ V(Γ) and flags ue ∈ {0, 1}, e ∈ E(Γ) are

assigned to nodes and vertices. Consider a mapping to a ring of polyno-

mials over finite field:

Γ → f (x, y; Γ) = ∏
~eHT∈E(Γ)

(1 + xwH + ywT) (1)

We say f (x, y; Γ) is a graph characteristic polynomial.
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This definition appeared with a protocol for graph isomorphism. A

similar characteristic polynomial was introduced with a protocol for vertex

colorability. A related definition of set characteristic function appeared

with set reconciliation [MTZ01].

Definition 2. Hamiltonian cycle is an alternating sequence v0, e1, v2, e2 . . . vp

of vertices and edges of a graph Γ, |V(Γ)| = p such that all edges are dif-

ferent, vp = v1, and vi 6= vj for all other pairs (i, j). We denote set of

edges that form the cycle with H(Γ).

Lemma 1 (Schwartz-Zippel [Sch80], a case of a univariate polynomial).

Probability to choose a root of a nonzero polynomial f (z) of degree

at most d by sampling z at random from a domain of cardinality D
is at most d

D .

3 Protocol

Consider a graph with a prime number of vertices: |V(Γ)| = p. Let Fq

be a field with a prime number of elements such that p|q − 1. It follows

a cyclic subgroup of order p exists in a multiplicative group of residue

classes Z∗
q . Let ap = 1 (mod q), a 6= 1.

To recognise a cycle, we assign labels to vertices such that wj = aj,

j = 0 . . . p, with index j incrementing along the sequence. We also assign

flags to edges such that ue = 1 for e ∈ H(Γ), and ue = 0 for all other

edges that are not part of the cycle.

Consider a polynomial fw(x, y, z) ∈ Fq[X, Y, Z] for some {αv}, αv ∈ Fq, v ∈ V(Γ):

fw(x, y, z) = ∏
~eHT∈E(Γ)

(z + (x(zwH + αH) + y(zwT + αT)))

Top coefficient of fw(x, y, z) is graph characteristic polynomial:

fw(x, y, z) =
n

∑
k=0

fk(x, y)zk, n = |E(Γ)|, fn(x, y) = f (x, y; Γ)

Consider another polynomial fu(x, y, z) ∈ Fq[X, Y, Z] for some βe ∈ Fq,

fu(x, y, z) = ∏
~eHT∈E(Γ)

(z + (zue + βe)(xwH + ywT))

Top coefficient of fu(x, y, z) is characteristic polynomial of the cycle in the

graph:

fu(x, y, z) =
n

∑
i=0

fi(x, y)zi, fn(x, y) = f (x, y; H(Γ))
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Let {Θv}, {Φe} be responses of Okamoto protocol [Oka92] for commit-

ments to labels and flags:

Θv = swv + αv

Φe = tue + βe

Consider a verification polynomial:

F(x, y, s, t) = ∏
~eHT∈E(Γ)

(ts + Φe(xΘH + yΘT)) (2)

Anyone can produce an estimate of F(x, y, s, t) using Verifier’ challenges

and Prover’ responses. Verifier tests that top coefficient of F(x, y, s, t) is

Ca(x, y) =
p−1

∏
j=0

(1 + xaj + yaj+1) (3)

Common input is graph Γ, group G, and group members g, h. Auxiliary

input of Prover is a sequence of graph vertices that is a cycle. Protocol is

shown of Figure 1.

Lemma 2 (Recognising Hamiltonicity). A Hamiltonian cycle exists in

a graph Γ, |V(Γ)| = p for some prime p, p|q − 1 if, and only if labels

wv, v ∈ Γ can be assigned with {aj} for some a ∈ Z∗
q , ap = 1, a 6= 1

such that

∃(Γ′ ⊂ Γ) : f (x, y; Γ′) ≡
p−1

∏
j=0

(1 + xaj + yaj+1) (4)

Proof. It is clear that labels wv = aj can be assigned to vertices along

the sequence indexed with j for any given a such that characteristic poly-

nomial of the cycle will be of the form (4), in case a cycle exists. We show

that any subgraph with characteristic polynomial (4) is a Hamiltonian cy-

cle.

We observe that characteristic polynomial is a product of p linear poly-

nomials that are relatively prime to one another. It follows there are ex-

actly p edges in such a graph, such that each edge connects a vertex la-

belled with aj and a vertex labelled with ap+1. It follows that vertices and

edges form a sequence.

We also observe there are exactly p different values of the form aj,

j = 0 . . . p − 1, such that the sequence never crosses itself.

From ap = a0 it follows that the last vertex in the sequence is the same

as the first one, such that sequence is a cycle.

It is clear honest Verifier always accepts for an honest Prover such

that completeness holds for the protocol shown on Figure 1.
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Lemma 3 (Soundness). Probability for an honest Verifier to accept

for any Prover and any graph Γ without Hamiltonian cycle running

protocol shown on Figure 1 is at most
4|E(Γ)|+2|V(Γ)|

q over random

choices of Verifier.

Proof. We show that Prover responses are estimates of polynomials that

are linear in challenge, flags used are chosen from {0, 1} with probability

at least 1 − 2
q , and that fa(x, y) 6≡ 0 for

fa(x, y) = Ca(x, y) − f (x, y; Γ′)

with probability at most
2n+2p

q .

Consider a Prover capable of producing responses Θ′, Ω′ to a chal-

lenge s such that

gΘ′
hΩ′

W−s = R, Θ′ 6= Θ, Ω′ 6= Ω

for

Θ = sw + α, Ω = sr + γ

W = gwhr, R = gαhγ

and for some w, r, α, γ ∈ Fq. It follows such a Prover is also capable of

taking a logarithm using his responses as follows:

logh(g) = −
Ω′ − Ω

Θ′ − Θ

We consider it infeasible for a polynomial Prover to produce valid re-

sponses Θ, Ω other than estimates of polynomials that are linear both in

challenge of Verifier and in value committed.

Consider a Prover capable of producing responses Φ, ∆ to a challenge

t such that

g−Φ(Φ−t)h−∆NtE = 1

for

Φ = tu + β

∆ = tδ + π

N = gτhχ, E = gρhλ

for some u 6∈ {0, 1} and for some δ, β, π, τ, ρ, χ, λ ∈ Fq. It follows

ft(z) 6≡ 0 for any β, τ, ρ:

ft(z) = −(zu + β)(z(u − 1) + β) + τz + ρ
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From Schwartz-Zippel lemma it follows there is at most 2
q probability to

choose a root of ft(z) at random: ft(t) = 0. It also follows that such

a Prover is capable of taking a logarithm in case ft(t) 6= 0 using his

responses as follows:

logh(g) =
∆ − χt − λ

ft(t)

We consider it infeasible for a polynomial Prover to produce valid re-

sponses Φ, ∆ such that ft(t) 6= 0. It follows there is at most 2
q proba-

bility for an honest Verifier to accept at (14) for any Prover and for any flag

u 6∈ {0, 1} over random choices of challenge t.
Consider a Prover capable of producing responses {Φe}, {Θv}, Ψ to

challenges xc, yc, s, t such that

g−Fh−Ψ

(

n−1

∏
k=0

(Mk)
sk

)tn
n−1

∏
i=0

(Di)
ti

= 1

for

F = ∏
~eHT∈E(Γ)

(ts + Φe(xcΘH + ycΘT))− tnsn
p−1

∏
j=0

(1 + xcaj + ycaj+1)

Φe = tue + βe

Θv = swv + αv

and for some Ψ. From Lemma 2 it follows fa(x, y) 6≡ 0 for any sub-

graph of Γ. From Schwartz-Zippel lemma it follows there is at most
2p
q

probability to choose a root of fa(x, y) at random: fa(xc, yc) = 0. In case

fa(xc, yc) 6= 0 it follows fs(z) 6≡ 0 for any {sk}:

fs(z) = fa(xc, yc)sn +
n−1

∑
k=0

skmk

From Schwartz-Zippel lemma it follows there is at most n
q probability to

choose a root of fs(z) at random: fs(s) = 0. In case fs(s) 6= 0 it follows

fst(z) 6≡ 0 for any {di}:

fst(z) = fs(s)zn +
n−1

∑
i=0

zidi

From Schwartz-Zippel lemma it follows there is at most n
q probability to

choose a root of fst(z) at random: fst(t) = 0. It follows that such a Prover
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is capable of taking a logarithm in case fst(t) 6= 0 using his responses as

follows:

logh(g) = ( fst(t))−1(Ψ − tn
n−1

∑
k=0

skηk −
n−1

∑
i=0

tiµi)

We consider it infeasible for a polynomial Prover to produce valid re-

sponses {Φe}, {Θv}, Ψ such that fst(t) 6= 0. It follows there is at most
2n+2p

q probability for an honest Verifier to accept at (15) for any Prover and

for any graph without Hamiltonian cycle over random choices of chal-

lenges xc, yc, s, t.
We consider a Prover passing verification equations such that ft(t) = 0

for any edge due to unlucky choice of challenge t, or fst(t) = 0 (due to

choice of challenges xc, yc, s, t) to win the game. This probability esti-

mate is sufficient for our purposes; a better estimate may be developed by

considering options and strategies available to Prover.

We conclude there is at most
2p
q probability for such a Verifier to accept

while choosing (xc, yc), n
q while choosing s, and 2

q n + n
q while choosing

t, unless Prover is capable of taking logarithms in the group used. This

probability is exponentially small in group order bitsize.

Lemma 4 (Of knowledge). Protocol shown on Figure 1 has an extrac-

tor algorithm, and is of knowledge.

Extractor is based on rewinding procedure: make Prover respond to

two different challenges without choosing another set of initial random

coins. All labels and flags are produced with an algorithm developed for

Schnorr protocol [Sch89].

Lemma 5 (Zero knowledge). Protocol shown on Figure 1 has a simu-

lator algorithm, and is honest verifier zero knowledge.

Simulator algorithm is shown on Figure 2. Probability distribution for

group elements {Rv}, {Qe}, {Ee}, D0 is flat due to {Ωv}, {∆e}, {Λe}, Ψ

chosen independently with flat distribution.

4 Discussion

Algebraic properties of responses were shown to be useful for construct-

ing protocols with low soundness error. Protocol introduced can be ex-

tended to exact travelling salesman problem [Luc94, Luc95].
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1. Prover chooses {rv}, {δe}, {αv}, {βe}, {γv}, {πe}, produces and sends

{Wv}, {Ue}, {Rv}, {Qe}:

Wv = gwv hrv Ue = gue hδe Rv = gαv hγv Qe = gβe hπe (5)

2. Verifier chooses and sends (xc, yc)

3. Prover chooses {ηk}, produces {mk} {Mk}, sends {Mk}:

∏
~eHT∈E(Γ)

(z + xc(zwH + αH) + yc(zwT + αT)) =
n

∑
k=0

zkmk Mk = gmk hηk

(6)

4. Verifier chooses and sends s

5. Prover chooses {µi}, {χe}, {λe}, produces {Θv}, {Ωv}, {di}, {Di},

{τe}, {ρe}, {Ne}, {Ee}, sends {Θv}, {Ωv}, {Di}, {Ne}, {Ee}:

Θv = swv + αv Ωv = srv + γv (7)

∏
~eHT∈E(Γ)

(zs + (zue + βe)(xcΘH + ycΘT)) =
n

∑
i=0

zidi Di = gdi hµi

(8)

(zue + βe)(z(ue − 1) + βe) = τez + ρe Ne = gτe hχe Ee = gρe hλe

(9)

6. Verifier chooses and sends t

7. Prover produces and sends {Φe}, {∆e}, {Λe}, Ψ:

Φe = tue + βe ∆e = tδe + πe (10)

Λe = tχe + λe Ψ = tn
n−1

∑
k=0

ηksk +
n−1

∑
i=0

µit
i (11)

8. Verifier produces

F = ∏
~eHT∈E(Γ)

(ts + Φe(xcΘH + ycΘT)) − tnsn
p−1

∏
j=0

(1 + xcaj + ycaj+1)

(12)

Verifier accepts if

gΘv hΩvW−s
v = Rv gΦe h∆eU−t

e = Qe (13)

g−Φe(Φe−t)h−Λe Nt
e Ee = 1 (14)

g−Fh−Ψ

(

n−1

∏
k=0

(Mk)
sk

)tn
n−1

∏
i=0

(Di)
ti

= 1 (15)

Figure 1: An argument for Hamiltonicity



1. Verifier chooses at random from Fq

{Θv}, {Ωv}, {Φe}, {∆e}, {Λe}, Ψ

2. Verifier chooses random group elements

{Wv}, {Ue}, {Ne}, {Mk}k=0...n, {Di}i=1...n

3. Verifier produces

Rv = gΘv hΩvW−s
v Qe = gΦe h∆eU−t

e (16)

Ee = gΦe(Φe−t)hΛe N−t
e (17)

D0 = gFhΨ

(

n−1

∏
k=0

(Mk)
sk

)−tn
n−1

∏
i=1

(Di)
−ti

(18)

Figure 2: Simulator for argument for Hamiltonicity
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