
Zcipher Algorithm Specification
Ilya O. Levin, eli@literatecode.com

This note describes the Zcipher algorithm. It is a symmetric encryption/decryption cryptographic

algorithm, designed to be secure and high-performance with small memory footprint and simple

structure.

1. Algorithm Description

Zcipher is a 64-bit codebook, parameterized by a 128-bit cryptovariable. The codebook is a

Feistel network, where 64-bit input data splits in two 32-bit values and 128-bit cryptovariable

splits in four 32-bit values.

1.1 Encryption

Figure 1 demonstrates a single encryption round; {x, y} is an input data and vi=1,2,3,4 is a

cryptovariable, all arithmetic operations are mod 2
32

.

Figure 1: “A single round of encryption”

A full period single cycle linear congruential generator f(x) � 5
n
x + C is using as an invertible

mapping for both fixed and cryptovariable-dependent data substitution. Exponent n can be any

natural number. If n = 1 then the generator can be implemented with LEA instruction in just a

single CPU cycle on Intel Pentium and above. The recommended n for Zcipher is 13; it gives a

maximal 5
n
 value less than 2

32
.

Zcipher requires a minimum of 8 rounds. More rounds may be used, but notice that having

number of rounds as multiple 8 simplify decrypt preface on v4. After the last round the

transformed data combined with cryptovariable by XOR:

x � x ⊕ v3

y � y ⊕ v1

1.2 Decryption

The inverse operations must be applied in reverse order to decrypt the encrypted data.

1.3 Cryptovariable schedule

The schedule is a pseudo random generator with 128-bit output. The output is a cryptovariable.

The generator is a 128-bit state one without output filter; the state is an output.

The generator based on a function

 f(a, b, r, C) � (((a – b) + C)<<< 19 + b)<<< r

where C is an odd constant. Assuming vi=1,2,3,4 is a state, the schedule is 4 rounds of the following

transformation:

v1:= f (v2, v1, 11, C0)

v2:= f (v3, v2, 9, C1)

v3:= f (v4, v3, 7, C2)

v4:= f (v1, v4, 10, C3)

The constants Ci are

C0 = 9E3779B9hex

C1 = E2E4C7C5hex

C2 = 16C7D03Bhex

C3 = 3A11584Fhex

Constants C2 and C3 are primes; C0 is the golden ratio constant and C1 is an obvious reference to

the Sicilian defense.

Four rounds is a minimum that sufficient to generate an output able to pass statistical tests on

randomness. Either any 32-bit v or the whole 128-bit state taken as output successfully passes

various such tests.

2. Modes of Operation

Although operating modes defined in FIPS-81 [1] are employable, Zcipher primarily designed

for a stream mode, where cryptovariable scheduled before processing for each data block. That is

the encryption and decryption routines for data Mi and cryptovariable Vi are

procedure Zcipher_Encrypt(Mi, Vi) procedure Zcipher_Decrypt(Mi, Vi)

{ {

 Vi+1:= Schedule(Vi) Vi+1:= Schedule(Vi)

 Ci:= Encrypt(Mi, Vi+1) Ci:= Decrypt(Mi, Vi+1)

 return Ci return Ci

} }

To some extent, Zciper may be seen as a quadruple-word oriented stream cipher with a codebook

as an output filter function to scheduling PRNG.

Single cryptovariable stream can be shared between both encryption and decryption routines

during online sessions. Since cryptovariable is data-independent, it can be scheduled in parallel

and pre-computed few blocks ahead.

3. Security Considerations

The design of Zcipher is heavily affected by tradeoffs. It is aggressively simplified in favor of

small footprint, light structure and performance. Thus Zcipher might be close to a margin. Any

further simplification such as reduced rounds, removed final XOR, etc. will obviously break the

cipher.

Use invertible mapping with LCG instead of a traditional S-box transformation might be a weak

point.

Fixed rotation with addition mod 2
32

 might be a good point to try the mod n attack [2].

The codebook size might be considered too small for a generic block cipher by modern standards.

Summarizing all above, Zcipher is an experimental cipher for research purposes. It must be taken

with care and avoided in real life systems where security is critical.

4. References

1. FIPS PUB 81. DES MODES OF OPERATIONS

http://www.itl.nist.gov/fipspubs/fip81.htm

2. J. Kelsey, B. Schneier, and D. Wagner: Mod n Cryptanalysis, with Applications against

RC5P and M6. Fast Software Encryption, Sixth International Workshop Proceedings (March

1999), Springer-Verlag, 1999, pp. 139-155.

http://www.schneier.com/paper-mod3.html

APPENDIX A. Test Vectors

Cryptovariable Schedule

INITIAL VALUE: 11111111 22222222 33333333 44444444

SCHEDULED OUTPUT 1: 7a7db236 8d69797c ea87711e e183da90

SCHEDULED OUTPUT 2: bd03c8dc 98e5347f 8cfb9730 45dc0cc9

SCHEDULED OUTPUT 3: 96fbbf1d 2f7d4382 c3fabc58 42f34f4d

Codebook (8 rounds, n = 13)

PLAINTEXT: 12345678 9abcdef0

CIPHERTEXT: debad3c0 eebfe559

PLAINTEXT: 00000000 00000000

CIPHERTEXT: bea03c93 3d9ea4c2

PLAINTEXT: ffffffff ffffffff

CIPHERTEXT: 21c18851 c3f80dd5

APPENDIX B. Source Code in C

/*

* Zcipher. Reference implementation in C

* Written by Ilya O. Levin, http://www.literatecode.com

*/

#define uint32_t unsigned long

#define R(x,y) (((x)<<(y))|((x)>>(32-(y))))

#define C0 0x9e3779b9

#define C1 0xE2E4C7C5

#define C2 0x16C7D03B

#define C3 0x3A11584F

#define ROUNDS 8

#define SB5 0x48C27395

#define SB5inv 0xF6433FBD

#define F(a,b, c, x, C) (R(R((a - b) + C, x) + b, c))

void cvsched(uint32_t *v)

{

 register uint32_t i = ROUNDS / 2;

 while (i-->0)

 {

 v[2] = F(v[3], v[2], 11,19, C0);

 v[3] = F(v[4], v[3], 9, 19, C1);

 v[4] = F(v[5], v[4], 7, 19, C2);

 v[5] = F(v[2], v[5], 10,19, C3);

 }

} /* cvsched */

void encr(uint32_t *v)

{

 uint32_t t, x = v[0], y = v[1],

 a = v[2], b = v[3], c = v[4], d = v[5], i = ROUNDS;

 while (i-->0)

 {

 t = x * SB5;

 x = y + C1 + t;

 y = t;

 b += C0;

 d = R(d, 4);

 x = R(x + a, 23) + b;

 y = R(y - c, 11) + d;

 }

 v[0] = x ^ c; v[1] = y ^ a;

} /* encr */

void decr(uint32_t *v)

{

 uint32_t t, x = v[0], y = v[1],

 a = v[2], b = v[3], c = v[4], d = v[5], i = ROUNDS;

 x ^= c; y ^= a;

 b += ((ROUNDS * C0) & 0xFFFFFFFF);

 while (i-->0)

 {

 y = R(y - d, 21) + c;

 x = R(x - b, 9) - a;

 b -= C0;

 d = R(d, 28);

 x -= y;

 t = y * SB5inv;

 y = x - C1;

 x = t;

 }

 v[0] = x; v[1] = y;

} /* decr */

