
Side Channel Attack Resistant Implementation of

Multi-Power RSA using Hensel Lifting

Varad Kirtane, C.Pandu Rangan∗

(varad.kirtane@gmail.com), (prangan55@gmail.com)

Abstract

Multi-Power RSA [1] is a fast variant of RSA [2] with a small de-
cryption time, making it attractive for implementation on lightweight
cryptographic devices such as smart cards. Hensel Lifting is a key com-
ponent in the implementation of fast Multi-Power RSA Decryption.
However, it is found that a näıve implementation of this algorithm is
vulnerable to a host of side channel attacks, some of them powerful
enough to entirely break the cryptosystem by providing a factorisation
of the public modulus N . We propose here a secure (under reasonable
assumptions) implementation of the Hensel Lifting algorithm. We then
use this algorithm to obtain a secure implementation of Multi-Power
RSA Decryption.

1 Introduction

The problem of Multi-Power RSA was posed in [1]. Multi-Power RSA is a
variant of standard RSA [2] with the public modulus N = pb−1q as opposed
to N = pq in standard RSA. Multi-Power RSA is deemed a fast variant of
RSA, as observed in [5], because it has lesser decryption time than standard
RSA. Boneh et al.[5] found that a straightforward implementation of Multi-
Power RSA Decryption could achieve a speedup by a factor of more than 2
over standard RSA. This algorithm is thus particularly suited for implemen-
tation in lightweight cryptographic devices such as smart cards where fast
algorithms that use relatively few resources are needed. As smart cards are
used for authentication, security of underlying algorithms is one of prime
concerns. We shall see here that a näıve implementation of Multi-Power
RSA is vulnerable to a host of side channel attacks. We shall also see that
a secure implementation of Hensel Lifting is essential for a secure imple-
mentation of Multi-Power RSA Decryption. We will then provide a secure
implementation of Hensel Lifting and use it to obtain a secure implementa-
tion of Multi-Power RSA Decryption. In the rest of the paper, we use the

∗Both authors from Department of Computer Science and Engineering, Indian Institute
of Technology Madras, Chennai -600037, India.

1



following abbreviations for various side channel attacks: SPA: Simple Power
Analysis, DPA: Differential Power Analysis, TA:Timing Attack, GA: Glitch
Attack and FA: Fault Attack.

2 Multi-Power RSA

We reproduce here the essential algorithms for Multi-Power RSA from [5],
with the standard terminology of p and q as the two primes, N as the public
modulus, e as the encryption exponent and d as the decryption exponent.

Key Generation: The key generation algorithm takes as input a se-
curity parameter n and an additional parameter b. It generates an RSA
public/private key pair as follows:

1. Generate two distinct bn/bc-bit primes, p and q, and compute N ←
pb−1.q.

2. Use the same public exponent e used in standard RSA public keys,
namely e = 65537. Compute d← e−1 mod (p− 1)(q − 1).

3. Compute r1 ← d mod (p− 1) and r2 ← d mod (q− 1). The public key
is < N, e >; the private key is < p, q, r1, r2 >.

Encryption: Same as in standard RSA.

Decryption: To decrypt a ciphertext C using the private key < p, q, r1, r2 >
one does:

1. Compute M1 ← Cr1 mod p and M2 ← Cr2 mod q. Thus M1
e =

C mod p and M2
e = C mod q.

2. Using Hensel lifting [12] construct an M1
′ such that (M1

′)e = C mod pb−1.
Hensel lifting is much faster than a full exponentiation modulo pb−1.

3. Using Chinese Remainder Theorem (CRT), compute an M ∈ ZN such
that M = M1

′ mod pb−1 and M = M2 mod q. Then M = Cd mod N
is a proper decryption of C.

Security in Theory: The security of Multi-Power RSA depends on
the difficulty of factoring N = pb−1q. Thus, one has to ensure that p as
well as q do not fall within the capabilities of general factoring methods
([10][11][7]) or special ones (e.g. Elliptic Curve Method has an improvement
for N = p2q, see [8] ). Usually, N = p2q with a 1024-bit N is used.

2



Security in Practice: Although we may ensure that the factors of
N do not fall within the capabilities of any state-of-the-art factoring algo-
rithm, a näıve implementation of Multi-Power RSA may be easily broken
through side channel attacks. We refer the reader to [3], which traces the
history of developement of a secure implementation of modular exponentia-
tion and CRT-RSA decryption. Giraud[3] also provides side channel attacks
for various implementations proposed in the literature and finally provides
implementations of modular exponentiation and CRT-RSA decryption that
are secure against Fault Attack (FA) and Simple Power Analysis (SPA).
Kim et al.[9] further improve upon this and provide an implementation of
CRT-RSA decryption secure against Glitch Attack (GA) as well.

3 First Version of Multi-Power RSA Decryption

From the theoretical discussion in the previous section, it is clear that a
complete implementation of Multi-Power RSA Decryption requires the im-
plementation of three separate but related algorithms, namely:

• Modular Exponentiation

• CRT-RSA Decryption.

• Hensel Lifting.

We now propose a version of Multi-Power RSA Decryption based on the
countermeasures provided by [3] and [9] for modular exponentiation and
CRT-RSA decryption. Only a straightforward implementation of Hensel
Lifting is available in the literature, and we shall use the implementation
provided by [6].

3.1 Hensel Lifting

We provide here a version of Hensel Lifting taken from [6], suitably modified
for compatibility with the other two algorithms. Note that in the algorithm
below, Cp = C mod p2, dp = d mod (p− 1) and einvp = e−1 mod p.

• Name: HenselLift

• Input: C, dp, p, x, einvp , e.

• Output: (S′
p2 , Sp2). // Note that (S′

p2 , Sp2) = (x ∗ Cd+1 mod p2, x ∗
Cd mod p2)

• Procedure:

1. p2 ← p ∗ p.

2. Sp2 ← C
dp−1
p mod p.

3



3. K0 ← Sp2 ∗ Cp mod p.

4. A← −Ke
0 mod p2.

5. A← A + C mod p2.

6. Sp2 ← Sp2 ∗A mod p2.

7. Sp2 ← Sp2 ∗ (einvp) mod p2.

8. Sp2 ← Sp2 + K0 mod p2.

9. Sp2 ← x ∗ Sp2mod p2.

10. S′
p2 ← Sp2 ∗ C mod p2.

11. return (S′
p2 , Sp2).

We refer the reader to [6] for a proof of correctness.

3.2 FA-SPA-GA resistant modular exponentiation

The following version of modular exponentiation is by [9] (a slight modifi-
cation of [3]).

• Name: FA-SPA-GA-Exp

• Input: C, d=(dn−1, . . . , d0) odd, N , x, k (32-bit random number).

• Output: (Cd+1 mod(k.N), Cd mod(k.N)).

• Procedure:

1. a0 ← C, a1 ← a0
2 mod(k.N)

2. for i from n− 2 to 1 do

– adi
← adi

.adi
mod(k.N)

– adi
← adi

2 mod(k.N)

3. a1 ← x.a1.a0 mod(k.N)

4. a0 ← a0
2 mod(k.N)

5. a0 ← a1.C mod(k.N).

6. if (i & d not disturbed) then return (a0, a1).
else return (“A fault attack has been detected.”)

Here x is a randomly chosen element of ZkN
∗. We note that the original

paper by [3], this factor was not multiplied. Its inclusion is suggested by [9],
to counter GAs on CRT-RSA algorithm, when this algorithm is used as a
subroutine in it. We refer the reader to [9] for an in-depth discussion of this
countermeasure. Also note that in the algorithm we will have to use k = 1
for compatibility with the Hensel Lifting algorithm.

4



3.3 FA-GA resistant CRT-RSA

This algorithm also comes from [9] (a slight modification of [3]). Again,
we impose the restriction that k be 1 for compatibility with Hensel Lifting
algorithm. Notice that this prevents us from blinding the modulus N . Also
note that we provide the algorithm for the case of N = p2q as opposed to
N = pq mentioned in [9]. In the algorithm below, dp = d mod p, dq =
d mod q.

• Name: FA-GA-CRT-RSA

• Input: C, p2, q, dp, dq, a, einvp , e

• Output: Cd mod N .

• Procedure:

1. Pick a 32-bit random number x.

2. y = x−1 mod N

3. (S′
p2 ,Sp2) ← HenselLift with C, dp, p, x, einvp , e as inputs.

4. (S′
q,Sq) ← FA-SPA-GA-Exp with C, dq, q, x, 1 as inputs.

5. S′ ← CRT (Sp2
′, Sq

′)

6. S ← CRT (Sp2 , Sq)

7. S′′ ← C.S mod(p2.q)

8. if (S′′ = S′) & (p2, q, a not modified) then return y.S.
else return (“A fault attack has been detected.”);

In the above algorithm,

CRT (Sp2 , Sq) = (((Sq − Sp2) mod q).a mod q).p2 + Sp2 mod(p2.q)

and a = p−2 mod q.

Note that this multiplication by y is to be used to counter GA. It is noted
in [9] that in the absence of this countermeasure, an adversary could attack
the algorithm with a FA combined with a GA. We refer the reader to [9] for
further discussion of this countermeasure.

3.4 Vulnerabilities

The first version of Multi-Power which we have proposed is not secure. First,
notice that for compatibility with Hensel Lifting we are unable to blind
the RSA decryption modulus N . This exposes it to SPA-type attacks as
described in [13]. Thus, blinding the RSA modulus is necessary and Hensel
Lifting must be modified to include blinding. It is, however, not sufficient
as the Hensel Lifting algorithm is still vulnerable to FA as described below.

5



Suppose we were to inject a fault during any of the steps prior to the
last three steps of the Hensel Lifting algorithm. We would then have Sp2 6≡
S mod p2. Notice that however, the coherency between Sp2 and S′

p2 will
still be maintained, because S′

p2 is calculated from Sp2 . Due to this, the
coherency check done in the last step of FA-GA-CRT-RSA would fail to
detect this problem and thus produce a faulty output SF . Also, notice that
Sq ≡ S mod q would still hold. Thus, the output SF of such an execution
would have the following property:

SF 6≡ S mod(p2) but SF ≡ S mod q.

Hence, SF−S would be a multiple of q but not of p. Therefore gcd(SF−S, N)
would reveal q and the cryptosystem would be totally broken in a mere two
executions, a correct one to obtain S and a faulty one to obtain SF . Note
that this attack is highly practical and easy, as we make no assumption
whatsoever about the nature or timing of the fault, except that it occurs in
the Hensel Lifting algorithm prior to the last three steps. Thus, the first
version of Multi-Power RSA Decryption is insecure.

4 Second Version of Multi-Power RSA Decryption

Having seen the attacks on the first version, we realise that it is mandatory
that the Hensel Lifting algorithm be modified to allow blinding as well as be
made secure against FA. We provide such a version of Hensel Lifting. We
also reproduce the CRT-RSA decryption algorithm from [9], this time with
the blinding of the RSA modulus.

4.1 FA-SPA-GA Resistant Hensel Lifting

This version of Hensel Lifting is secure against FA and SPA. The notation
used is similar to the näıve implementation of Hensel Lifting above. Addi-
tionally, note that x is a random 32-bit number and k is a random 32-bit
prime.

• Name: FA-SPA-GA-HenselLift

• Input: C, dp, p, k, x, e.

• Output: (S′
p2 , Sp2). // Note that (S′

p2 , Sp2) = (x ∗ Cd+1 mod p2, x ∗
Cd mod p2)

• Procedure:

1. p2 ← p ∗ p.

2. (k.p)2 ← k ∗ k ∗ p2

6



3. einv ← e−1 mod (k.p)

4. (K0, Sp2)← FA-SPA-GA-Exp with Cp, dp − 2, p, 1, k.

5. Sp2 = Sp2 ∗ Cp mod (k.p)

6. S′
p2 = K0 ∗ C mod (k.p)2

7. K0 = K0 ∗ Cp mod (k.p)

8. K−1
0 ← K−1

0 mod (k.p)2

9. (A1, A0)← FA-SPA-GA-Exp with K0, e, p2, 1, k.

10. A0 = −A0 + C mod (k.p)2

11. A1 = −A1 + K0 ∗ C mod (k.p)2

12. Sp2 = Sp2 ∗A0 ∗ einv mod (k.p)2

13. S′
p2 = S′

p2 ∗A1 ∗ einv mod (k.p)2

14. Sp2 = Sp2 + K0 mod (k.p)2

15. S′
p2 = S′

p2 ∗K−1
0 mod (k.p)2

16. S′
p2 = S′

p2 + K0 ∗ C mod (k.p)2

17. Sp2 = x ∗ Sp2 mod (k.p)2.

18. S′
p2 = x ∗ S′

p2 mod (k.p)2.

19. if (p & dp not modified) & (K0 ∗A0 = A1) then return (S′
p2 , Sp2).

else return (“A fault attack has been detected.”);

In order to see that this algorithm is indeed correct (in the absence of fault
injections), we prove the following lemma:

Lemma 1. For the same values of inputs, the values returned by FA-SPA-
GA-HenselLift (with k = 1) are the same as the values returned by HenselLift
(section 3).

Proof. Let the values returned by HenselLift be (E,F ) and those returned by
FA-SPA-GA-HenselLift be (G, H). We trace back the steps of the algorithms
to get the outputs in terms of inputs and internal variables. Note that all
values are in modulo p2. From HenselLift, we have:

(E,F ) = (x ∗ Sp2 , x ∗ Sp2 ∗ C) . . . (from steps 9 and 10)
= (x ∗ [Sp2 ∗ einvp +K0], x ∗ [Sp2 ∗ einvp +K0] ∗C) . . . (from steps 7 and 8)
= (x∗[[Sp2∗[A+C]]∗einvp+K0], x∗[[Sp2∗[A+C]]∗einvp+K0]∗C) . . . (from steps 5 and 6)

= (x ∗ [(Cdp−1
p mod p) ∗ [−(K0)e + C]] ∗ einvp + K0],

x ∗ [(Cdp−1
p mod p) ∗ [−(K0)e + C]] ∗ einvp + K0] ∗ C)

. . . (from steps 2, 3 and 4)

7



From FA-SPA-GA-HenselLift (with k = 1, thus the modulus here is also
p2), we have:

(G, H) = (x ∗ Sp2 , x ∗ [S′
p2 + K0 ∗ C]) . . . (from steps 16, 17 and 18)

= (x ∗ [Sp2 + K0], x ∗ [S′
p2 ∗K−1

0 + K0 ∗ C]) . . . (from steps 14 and 15)

= (x ∗ [Sp2 ∗ (−A0 + C) ∗ einv + K0],

x ∗ [S′
p2 ∗K−1

0 ∗ (−A1 + K0 ∗ C) ∗ einv + K0 ∗ C])

. . . (from steps 10, 11, 12 and 13)
= (x ∗ [Sp2 ∗ (−A0 + C) ∗ einv + K0],

x ∗ [S′
p2 ∗K−1

0 ∗ (−K0 ∗A0 + K0 ∗ C) ∗ einv + K0 ∗ C])

. . . (from step 9)
= (x ∗ [Sp2 ∗ (−(K0)e + C) ∗ einv + K0],

x ∗ [S′
p2 ∗ [−(K0)e + C] ∗ einv + K0 ∗ C])

. . . (from step 9 and K−1
0 ∗K0 = 1)

= (x ∗ [(Cdp−1
p mod p) ∗ [−([Cdp

p mod p])e + C] ∗ einv + [Cdp
p mod p]],

x ∗ [(Cdp−1
p mod p) ∗ C ∗ [−([Cdp

p mod p])e + C] ∗ einv + [Cdp
p mod p]] ∗ C)

. . . (from steps 4, 5, 6 and 7)

We notice that in HenselLift, K0 = C
dp
p mod p and that einvp = einv

when k = 1. We see that substituting K0 = C
dp
p mod p in the equation for

(E,F ), we get exactly identical terms for (E,F ) and (G, H). Hence, for the
same values of inputs, the values returned by FA-SPA-GA-HenselLift (with
k = 1) are the same as the values returned by HenselLift.

The above lemma shows the equivalence of the two algorithms for k = 1.
It also shows that the return values of FA-SPA-GA-HenselLift have exactly
the same form as HenselLift, except that calculations are done in modulo k.p
and modulo (k.p)2 instead of modulo p and modulo p2. Hence, for a k such
that gcd(e, k.p) = gcd(K0, k.p) = 1, the proof for a general k will be exactly
like in [6], with calculations done in modulo k.p and modulo (k.p)2 instead
of modulo p and modulo p2. Thus, FA-SPA-GA-HenselLift is correct.

For the algorithm to remain practically implementable, we have to show
that there is a very high probability that we can find a k that is relatively
prime to e as well as K0 in a few trials. We do this in the lemma below.

Lemma 2. If the number of distinct prime factors of K0 and e put together
is m, then the number of trials t required to reduce the probability of failure
to 2−c (where c is a constant) is given by t ≥ c

b−log2(m.b) where b is the
number of bits of the random prime to be generated.

8



Proof. We have that number of distinct prime factors m = 2log2(m). Suppose
we generate a b-bit prime number. Now, the approxiamte number of b-bit
primes is given by

2b

b
= 2b−log2(b) (due to the prime number theorem).

Therefore,

Prob(failure after 1 attempt) =
2log2(m)

2b−log2(b)
= 2log2(m.b)−b.

Hence, Prob(failure after t attempts) = 2t(log2(m.b)−b).

We want this quantity to be less than or equal to 2−c, giving:

c ≤ t.(log2(m.b)− b).

Hence, t ≥ c

b− log2(m.b)
.

If we take reasonable values for various factors involved, say c = 100, b =
32 and m = 128, we get t ≥ 5. Thus, after a mere 5 attempts we will be
able to generate a suitable k with a probability of 1− 2−100. It is also easy
to see that due the logarithmic dependence on m, the function grows slowly
if m << 2b , which is true in any practical application.

4.2 FA-SPA-GA resistant CRT-RSA

This algorithm is very similar to the CRT-RSA algorithm mentioned previ-
ously. The only change made to this algorithm is introduction of blinding.
The notation is the same as the previous version.

• Name: FA-SPA-GA-CRT-RSA

• Input: C, p, q, dp, dq, a, e.

• Output: Cd mod N .

• Procedure:

1. Pick a 32-bit random number x and 32-bit random prime k.

2. y = x−1 mod(k.N)

3. (S′
p2 ,Sp2) ← FA-SPA-GA-HenselLift with C, dp, p, k, x, e as

inputs.

4. (S′
q,Sq) ← FA-SPA-GA-Exp with C, dq, q, x, k as inputs.

9



5. S′ ← CRTblinded(Sp2
′, Sq

′)

6. S ← CRTblinded(Sp2 , Sq)

7. S′′ ← C.S mod(p2.q)

8. if (S′′ = S′) & (p, q, a not modified) then return y.S.
else return (“A fault attack has been detected.”);

In the above algorithm,

CRTblinded(Sp2 , Sq) = (((Sq − Sp2) mod(k.q)).a mod(k.q)).p2 + Sp2 mod(p2.q)

and a = p−2 mod q.

4.3 Security Argument

The FA-SPA-HenselLift algorithm we propose is secure against SPA as well
as FA. Security from SPA comes due to the fact that the modulus is blinded
by a random prime, preventing the attacks proposed by [13]. Note that
the blinding is still effective even when we insist that k be a 32-bit random
prime rather than a 32-bit random number, because there are abundant 32-
bit primes (about 227, by the prime number theorem). This still keeps the
number of possibilities sufficiently large.

To demonstrate security from FA, we recall that FA consists of introduc-
ing a fault in the internal variables of an algorithm. We will show that no
matter which variable is disturbed, the disturbance will be caught by a co-
herence test. Any fault induced in K0, A0 or A1 will cause the (K0∗A0 = A1)
test to fail. Any fault induced in S′

p2 or Sp2 will disturb the coherence be-
tween them and cause the (S′′ = S′) test in FA-SPA-GA-CRT-RSA to fail.
Notice that because S′

p2 and Sp2 are calculated independently after the expo-
nentiation stage, there is no probable way to disturb them and still maintain
coherence between them. FA against public parameters will not work either,
as the test which checks if they are modified will fail.

Security against GA comes due to multiplication by x (a random ele-
ment) at the end. The argument is the same as in [9]. The security of
FA-SPA-GA-exp and FA-SPA-GA-CRT-RSA itself comes from [3] and [9].
Regarding the security of the three algorithms when implemented together,
we see from the above argument that any attack (GA,SPA,FA) is resisted by
the algorithm itself or it causes the coherence test in FA-SPA-GA-CRT-RSA
algorithm to fail.

4.4 Vulnerabilities

Although the above proposed algorithms are secure against FA, SPA and
GA, they are not secure against DPA and TA. The attacker may run the
above algorithms many times with a variety of inputs and make power as
well as timing measurements. These measurements may help him learn

10



secret information. This is explained in more detail in the next version of
the Multi-Power RSA Decryption.

5 Final Version of Multi-Power RSA Decryption

Before discussing the final version, we make certain observations and com-
ments on side channel attacks in general. These motivate the countermea-
sure added in the final version.

Major side channel attacks may be classified based on the level of abstrac-
tion at which countermeasures have to be proposed in order to effectively
counter them. We consider two levels of abstraction, logic gate level and
algorithmic level. Some measures are implemented at algorithmic level (FA,
SPA, GA) whereas others require handling at both levels (TA, DPA). Note
that GA may be dealt with purely at the algorithmic level [9] or purely
at the logic gate level [4]. We mention that measures at the algorithmic
level may require architectural support for implementation of the necessary
algorithm(s).

Countering TA and DPA requires two-fold security. First, the control
flow in the algorithms should be independent of data i.e. the algorithms
should have only a single execution path. Second, the logic gates used
for hardware implementation should have data-independent characteristics
(leakage current, input-output delay, power consumption etc.). If the first
property is absent, then the time taken or power consumed by different
paths in the algorithm may be different. Thus, the attacker may execute the
algorithms with different sets of inputs and figure out with path is followed
for which data. Usually, the path taken depends on secret bits and thus
these bits may be revealed. If the second property is absent, different inputs
will have different power traces (or execution times). Again, the power
consumed or time taken depends on secret bits in many cases and hence
they may be compromised. We note that a large section of the literature on
side channel attacks deals with obtaining and analysing power traces and
times of execution.

We mention that the algorithms proposed in the second version have
the first property of control flow being data-independent, as none of them
have any branches during execution. Conditional statements appear only
before the final answer is output. Thus, for a version secure against all
major side channel attacks (FA, TA, SPA, DPA and GA) we only need logic
gates that satisfy the second property above (i.e. having data-independent
characteristics). Recently, a dynamic and differential logic style has been
proposed in [4], that has signal independent switching behaviour. In [4], the
authors show that during each clock cycle, power consumption and all circuit
characteristics, such as leakage current, instantaneous current and input-
output delay are identical and independent of the logic value and sequence

11



of input data. We state that the secure Hensel Lifting algorithm we propose
(as indeed any algorithm in this paper) must be implemented using the set
of logic gates built by [4] for resistance against TA and DPA. Thus, the final
version of Multi-Power RSA Decryption consists of algorithms specified in
the second version implemented with the logic gates built by [4].

6 Possible Attacks

As explained in the security argument above, the implementations we pro-
vide are secure against all major side channel attacks. However, there exists
an attack model in which our implementation is not secure, namely the ran-
dom transient fault attack model. This fault model assumes that fault can
occur at any point in the algorithm for a short time, and that the fault gets
corrected after this duration. We believe that this model is too strong for
an attacker to implement in practice. Also, the probability that this occurs
by itself in the underlying hardware in a manner that is exploitable is neg-
ligible. Further, it is unclear whether or not such an attack is possible on
the kind of logic gates proposed by [4]. In any case, there does not exist any
implementation of any algorithm that is secure in this model.

7 Conclusion and Future Work

We looked at various implementations of algorithms required for Multi-
power RSA Decryption available in the literature and found that they are
vulnerable to side channel attacks. We proposed a secure implementation
of Hensel Lifting and adapted the existing implementations of modular ex-
ponentiation and CRT-RSA decryption algorithms to make them secure
against major side channel attacks as well as compatible with each other.
The only attack model in which our implementation may be attacked is
the random transient fault attack model. We leave open the problem of
implementing Multi-Power RSA Decryption secure in this model.

References

[1] T. Takagi, Fast RSA-type Cryptosystem Modulo pkq, Proceedings
of Crypto 98 (ed. H. Krawczyk), vol. 1462 of LNCS, pp. 318-326.
Springer-Verlag, 1998.

[2] R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digi-
tal Signatures and Public Key Cryptosystems. Communications of the
ACM, 21(2):120-126. Feb. 1978.

12



[3] C. Giraud, An RSA Implementation Resistant to Fault Attacks and
to Simple Power Analysis, IEEE Transactions on Computers, vol.55,
no.9, pp.1116-1120, 2006.

[4] K. Tiri, M. Akmal, and I. Verbauwhede, A Dynamic and Differential
CMOS Logic with Signal Independent Power Consumption to With-
stand Differential Power Analysis on Smart Cards, 29 European Solid-
State Circuits Conference (ESSCIRC 2002), 2002.

[5] D. Boneh and H. Shacham, Fast Variants of RSA, RSA Laboratories
Cryptobytes, Volume 5 No. 1, pp. 1-8, Winter/Spring 2002.

[6] C. Vuillaume, Efficiency Comparison of Several RSA Variants,
url:citeseer.ist.psu.edu/591581.html, 2003.

[7] D. Boneh, G. Durfee and N. Howgrave-Graham, Factoring N = prq
for Large r, Proceedings of Crypto ’99, vol. 1666 of LNCS, pp. 326-337,
Springer-Verlag, 1999.

[8] E.Okamoto, R.Peralta, Faster Factoring of Integers of a Special Form,
IEICE Transactions on Fundamentals of Electronics, Communica-
tions, and Computer Sciences, E79-A, n.4 (1996).

[9] C.H. Kim and J.J. Quisquater, Fault Attacks for CRT Based RSA:
New Attacks, New Results and New Countermeasures, Information
Security Theory and Practices. Smart Cards, Mobile and Ubiquitous
Computing Systems, Proceedings of First IFIP TC6 / WG 8.8 / WG
11.2 International Workshop, WISTP 2007, vol.4462 of LNCS, pp.
215-228, Springer-Verlag, 2007.

[10] H.W.Lenstra, Factoring integers with Elliptic curves, Annals of math-
ematics 126, pp. 649-673, 1987.

[11] C.Pomerance, The quadratic sieve factoring algorithm, Advances in
Cryptology - Proceedings of EUROCRYPT ’84 vol.209 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 169-182, 1985.

[12] H.Cohen, A Course in Computational Algebraic Number Theory, vol.
138 of Graduate texts in Mathematics, Springer-Verlag, 1996.

[13] R. Novak, SPA-Based Adaptive Chosen-Ciphertext Attack on RSA Im-
plementation, Proceeedings of Public Key Cryptography (PKC 2002),
eds. D. Naccache and P. Paillier, pp. 252-262, 2002.

[14] P.Kocher, Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS and Other Systems, Advances in Cryptology, Proceedings
of CRYPTO ’96, ed. Neal Koblitz, pp. 104-113, 1996.

13


