
Chosen Ciphertext Security with Optimal Ciphertext Overhead

Masayuki Abe1, Eike Kiltz2 and Tatsuaki Okamoto1

1 NTT Information Sharing Platform Laboratories, NTT Corporation, Japan
2 CWI Amsterdam, The Netherlands

Abstract. Every public-key encryption scheme has to incorporate a certain amount of randomness
into its ciphertexts to provide semantic security against chosen ciphertext attacks (IND-CCA). The dif-
ference between the length of a ciphertext and the embedded message is called the ciphertext overhead.
While a generic brute-force adversary running in 2t steps gives a theoretical lower bound of t bits on the
ciphertext overhead for IND-CPA security, the best known IND-CCA secure schemes demand roughly
2t bits even in the random oracle model. Is the t-bit gap essential for achieving IND-CCA security?
We close the gap by proposing an IND-CCA secure scheme whose ciphertext overhead matches the
generic lower bound up to a small constant. Our scheme uses a variation of a four-round Feistel net-
work in the random oracle model and hence belongs to the family of OAEP-based schemes. Maybe of
independent interest is a new efficient method to encrypt long messages exceeding the length of the
permutation while retaining the minimal overhead.

1 Introduction

1.1 Background

Motivation. Ever since Goldwasser and Micali introduced the concept of “probabilistic encryp-
tion” [15] it is well understood that every public-key encryption scheme has to incorporate a certain
amount of randomness into their ciphertexts in order to achieve semantic security. Thus a cipher-
text c must be longer than the embedded message m and the difference `oh := |c|− |m| is called the
ciphertext overhead. In order to achieve stronger security properties, the ciphertext overhead tends
to be even larger due to the use of extended randomness or extra integrity checking mechanisms. In
this paper we are asking for the minimal possible ciphertext overhead to protect against adaptive
chosen ciphertext attacks (IND-CCA security).

A Generic Lower Bound. A ciphertext overhead of `oh bits means that at most `oh bits of ran-
domness can be incorporated into a ciphertext. A brute-force adversary in the IND-CPA experiment
can exhaustively search for the randomness used for the challenge ciphertext. After encrypting one
of the challenge messages up to 2t times, it has an advantage of Ω(2t/2`oh). Requiring the advantage
to be smaller than 2−ε (and ignoring small additive constants), it must hold that

`oh ≥ t + ε .

Accordingly, t + ε bits are a lower bound on the ciphertext overhead with respect to adversaries
running in 2t steps and having a success probability of at most 2−ε, by counting encryption as one
step. (We refer to Section 2 for a more formal treatment.) We say that the ciphertext overhead is
optimal if it matches the lower bound up to a (small) constant term, i.e., if `oh ≤ t+ε+O(1). Since
every IND-CPA adversary is also an IND-CCA adversary, the above lower bound also applies to
IND-CCA secure schemes.

For a number of schemes the ciphertext overhead primarily depends on the size of the underly-
ing number-theoretic primitive, which often suffers from more sophisticated attacks. For example,

Scheme Ciphertext Assumption #Feistel
Overhead on TDP rounds

OAEP [3, 14] `oh ≤ 3t + 2ε SPD-OW 2
OAEP+ [24] `oh ≤ 3t + 2ε OW 2
PSS-E [9] `oh ≤ 2t + 2ε SPD-OW 2
PSP2 S-Pad [13] `oh ≤ 2t + 2ε OW 4
OAEP-3R [22] `oh ≤ 2t + ε OW 3
OAEP-4X (ours) `oh = t + ε OW 4

Table 1. Upper bounds on the ciphertext overhead (up to small additive constants) in OAEP variants for (2ε, 2−t)-
adversaries. The lower bound is `oh ≥ t + ε. OW: one-wayness. SPD-OW: set partial domain one-wayness.

ciphertexts of ElGamal-type schemes contain at least one group element of overhead which must
be longer than 2t+ε bits due to the generic square-root bounds on the discrete-logarithm problem.
Hence, the ciphertext overhead of such schemes can never match the generic lower bound.

Upper Bounds from Existing Schemes. Among the cryptosystems based on trapdoor per-
mutations, there are ones whose ciphertext overhead is essentially independent of the size of the
underlying permutation. We focus on such schemes for the rest of the paper. An example with
optimal ciphertext overhead is the basic version of OAEP [3], which omits the zero padding and
therefore only offers IND-CPA security. Considering IND-CCA security, however, OAEP loses its
optimal ciphertext overhead as exemplified in Section 2.2. On the other hand, concrete security
proofs for existing schemes provide upper bounds on the ciphertext overhead with which the de-
sired level of security is attained. Table 1 summarizes the ciphertext overhead of existing schemes.
Its content is discussed in the rest of this section.

IND-CCA Security via Validity Checking. As in OAEP, a common approach [24, 18, 20, 9,
19, 13] to achieve IND-CCA security is to attach a deterministic validity string (such as zero-padding
or a hash of the message, etc) to the message (or the ciphertext) so that decryption can verify and
reject almost all invalid ciphertexts. The ciphertext overhead is thus determined by the size of the
randomness and the validity string. OAEP and the schemes in [24, 18] require randomness of 2t+ε
bits plus a validity string of t+ ε bits. (See Section 2.2 for details on how to compute these values.)
Their ciphertext overhead is thus `oh = 3t + 2ε. The schemes in [9, 13] have a better security
reduction and achieve `oh = 2t + 2ε, which seems the best one can expect as long as encryption
incorporates a validity string into the ciphertexts.

Validity-free Encryption. A considerable step towards minimizing the ciphertext overhead was
the validity-free approach introduced by Phan and Pointcheval [21, 22]. In their scheme (called 3-
round OAEP) decryption never rejects but returns a randomly looking message if a given ciphertext
was not properly created with the encryption algorithm. Since no validity string is needed, the
ciphertext overhead only depends on the randomness. As we shall discuss later, their security
reduction however forces the ciphertext overhead to be `oh = kr = 2t+ε bits because of a “quadratic
term” qhqd/2kr that appears in the success probability of their reduction. A more recent scheme
in [12] suffers from the same problem. In summary, these schemes successfully eliminate the validity
string but instead demand an extended randomness to prove IND-CCA security.

Encrypting long messages. The problem of getting optimal overhead becomes even more dif-
ficult when considering longer messages. Notice that all above schemes limit the messages to the
size of the permutation minus the overhead. To encrypt long inputs, [3, 16] suggest to stretch the
width of the Feistel network to cover the entire message and apply the permutation only to a part

of the output. But no general and formal treatment has been given to this methodology and it is
unclear if and how it affects the ciphertext overhead. Furthermore, for schemes that use several
Feistel rounds, this approach is expensive in computation as every internal hash function has to
deal with a long input or output. A number of methods for constructing hybrid encryption are
available (e.g., [11, 7, 8, 1, 5]), but they all increase the ciphertext overhead mainly because a
one-time session-key is being encrypted.

1.2 Our Contribution

Our main contribution is an IND-CCA-secure public-key encryption scheme with optimal ciphertext
overhead based on arbitrary family of trapdoor one-way permutation in the random oracle model.
We follow the validity-free approach of 3-round OAEP [21] but instead use a 4-round Feistel network.
(See Figure 1 in Section 4 for a diagram.) We stress that the essential difference is not the increased
number of rounds; it is rather the way we bind the message to the randomness in the first round of
the Feistel network while most of OAEP variants separately input the message and the randomness.
(See Section 1.3 for more intuition.)

Our contribution is mostly theoretical; Our scheme demonstrates that lower and upper bounds
on the ciphertext overhead with respect to IND-CCA security can match up to a small additive
constant in the random oracle model. The design approach that binds the message to the random-
ness and the security proof may be of technical interest, too. In practice, when implemented with
an 1024-bit RSA permutation (80-bit security), our scheme encrypts 943-bit and longer messages
while it is 863 bits for a known best scheme, which is at most 9% increase of the message space.
Though such a t-bit saving may have limited practical impact in general, the scheme could find
applications with edgy requirements in bandwidth.

We also introduce a novel method to securely combine simple passively secure symmetric en-
cryption with the Feistel network to encrypt long messages while retaining the optimal ciphertext
overhead. While the construction is interesting in that it suggests a new variant of a KEM that
allows partial message recovery, it is interesting also in a theoretical sense as it illustrates the dif-
ference in the properties of the round functions in a 4-round Feistel network as it will be discussed
later.

1.3 Technical Overview

Achieving Optimal Overhead. We explain the technical details in 3-round OAEP that seem
to make it difficult to prove an optimal ciphertext overhead. The extended randomness of size kr ≥
2t+ε stems from a quadratic term qh qd/2kr in the success probability of the security reduction. Since
an adversary running in time 2t can make at most qh ≤ 2t hash oracle queries and qd ≤ 2t decryption
queries, we must assume that qh qd ≈ (2t)2. Requiring qh qd/2kr ≤ 2−ε results in kr ≥ 2t + ε.

Where does this quadratic loss in the reduction actually come from? In the security proof, every
time the simulated decryption oracle receives a ciphertext that was not legitimately generated by
asking the random oracles, it returns a random plaintext. Later, it patches the hash table for the
simulated randomness so that the hash output looks consistent. The patching fails if the randomness
has already been asked to the random oracle. This happens with probability at most qh/2kr since
there are at most qh hash queries. Throughout the attack, there are at most qd decryption queries
and hence the error probability of the patching is bounded by qh qd/2kr .

Our main technical contribution is to provide a security analysis for our scheme where only
linear terms of the form qh/2kr or qd/2kr appear. We overcome the problem observed in 3-round
OAEP by feeding the randomness together with a part of the input message (say m1) into the
hash function, i.e., by computing H1(r ‖m1). This link between the randomness and the message
allows the reduction to partition hash queries by m1 and therefore reducing the error probability
in patching the hash table to qh,m1/2kr , where qh,m1 is the number of hash queries with respect
to m1. By summing up the probabilities for all m1 returned from the decryption oracle, the error
probability is bounded by

∑
m1

qh,m1/2kr ≤ qh/2kr . The quadratic term is thus eliminated. (See the
analysis of Case 1 in Section 5.2 for more details.) The fourth round of the Feistel network is then
needed to cover m1. (See Section 4.3 for more detailed arguments about the number of rounds.)

Encrypting Long Messages. In order to encrypt long messages exceeding the size of the per-
mutation (while retaining the optimal overhead), we incorporate the idea of the Tag-KEM/DEM
framework [1] that allows to use a simple passively secure length-preserving symmetric cipher. The
exceeding part of the message is encrypted with the symmetric cipher whose key is derived from
the randomness used in the asymmetric part of encryption. The symmetric part is then tied to the
asymmetric part of the ciphertext by feeding it back into one of the hash function used in the Feistel
network. Conceptually, our approach is similar to Tag-KEMs with partial ciphertext recovery [5]
but in our case the message can be directly recovered. Namely, the main part of our construction
can be used as a Tag-KEM with partial message recovery. (We do not pursue this line in this paper
due to the space limitation.)

A concrete technical difficulty is how and where to include the feedback from the symmetric
part. Including it in the F-function (random oracle) in every round of the 4-round Feistel network
should work but may be redundant. Is it then secure if the feedback is given only to one of the
F-functions? Which one? [23] showed that the inner two rounds have different properties than the
outer two ones. Does that also apply to our case? Our result shows that it is sufficient to give the
feedback to one of the inner two hash functions. We remark that when including the feedback only
in the outer hash functions then either our security proof does no longer hold or there is a concrete
attack. We refer to Section 4.3 for further details.

1.4 Related Work

In Other Models. [21] constructed a simple scheme with optimal ciphertext overhead in the
ideal full-domain permutation model. Looking at the construction and the security proof, however,
one can see that the model is very strong and has little difference from idealizing the encryption
function itself. Recently it is shown that ideal full-domain permutation can be constructed using
random oracles [10] but the reduction is very costly and a tight reduction needed to retain the
optimal overhead is highly unlikely. Note that [21] could only present a non-optimal scheme in the
random oracle model, which shows the difficulty of achieving the optimality.

In the standard model, the IND-CCA secure schemes in [6, 17] have the shortest known cipher-
text overhead consisting of two group elements which require an overhead of `oh ≥ 4t + 2ε bits. It
remains as a very interesting open question whether or not the optimality can be achieved without
random oracles.

For Short Messages. Schemes based on general one-way permutations can never offer the op-
timal overhead for messages shorter than the size of the permutation. For the state of art in this
issue, we refer to [2] which presents a scheme that offers non-optimal but `oh ≥ 2t + ε that is

currently the shortest overhead for messages of arbitrary (small) length. It is left as another open
problem to construct a scheme with optimal overhead for arbitrary message size.

2 Lower Bound of Ciphertext Overhead

2.1 Formal Argument

Let PKE = (G, E ,D) be a public-key encryption scheme. Public-key pk is associated with the
message space M and the randomness space R used for encryption. For (pk , sk) ← G(1k), let
C(M) for M ∈ M denote the set of ciphertexts that recover message M . To obtain a simple form
of the lower bound, we restrict ourselves to PKE whose ciphertext overhead is independent of the
public-key, message, and the randomness. Namely we assume that

`k
oh = |Epk (M ; r)| − |M | (1)

is a fixed positive constant for any pk ∈ G(1k), M ∈ M and r ∈ R. We define such `k
oh as the

ciphertext overhead with respect to k.
Let A be an adversary attacking the semantic security of PKE. We characterize the adversary

by parameters t and ε in such a way that A runs in step 2t and breaks the semantic security of PKE
with advantage at most 2ε. To study the relation between the adversary’s ability and the ciphertext
overhead, we treat t, ε independently from k and represent the bounds of the ciphertext overhead
as a function `k

oh(t, ε). In the following argument, we count every encryption as one step. Later, we
will discuss about this abstruction in more detail.

Now consider the following generic attack launched by A.
1. Given pk generated by (pk , sk) ← G(1k), pick arbitrary M0 and M1 of the same length from
M. Send (M0,M1) to the challenger and receive c∗ = Epk (Mb) where b ← {0, 1}.

2. Repeat the following up to 2t times.

– r ←R, c = Epk (M0; r).
– If c = c∗, output b̃ = 0 and stop.

3. Output b̃ = 1.
For a string c, let p(c) denote the probability that c = Epk (M0; r) happens for uniformly chosen

r. Similarly, let p′(pk) denote the probability that pk is selected by G(1k). The advantage of the
adversary A with respect to pk is

AdvA,pk = 2 · |Pr[b̃ = b]− 1
2
|

= |Pr[b̃ = 0 | b = 0]− Pr[b̃ = 0 | b = 1]|
= Pr[b̃ = 0 | b = 0]− 0

=
∑

c∈C(M0)

p(c) Pr[b̃ = 0 | c∗ = c]

=
∑

c∈C(M0)

p(c)(1− (1− p(c))2
t
). (2)

Let η be the min-entropy with respect to the ciphertexts in C(M0) in bits. Since p(c) ≥ 1
2η for any

c ∈ C(M0),

AdvA,pk ≥
∑

c∈C(M0)

p(c)(1− (1− 1
2η

)2
t
)

≥ 1− (1− 1
2η

)2
t

≥ 2t

2η
− 2t − 1

22η
. (3)

Since η ≤ `k
oh, we have

AdvA(k) =
∑

pk∈G(k)

p′(pk) ·AdvA,pk

≥
∑

pk∈G(k)

p′(pk) ·
(

2t

2η
− 2t − 1

22η

)

≥
∑

pk∈G(k)

p′(pk) ·
(

2t

2`k
oh

− 2t − 1

22`k
oh

)

≥ 2t

2`k
oh

− 2t − 1

22`k
oh

≥ 1
2
· 2t

2`k
oh

. (4)

Since we require AdvA(k) ≤ 2−ε, it holds that

2−ε ≥ 1
2
· 2t

2`k
oh

(5)

for t, ε ≥ 1. Thus we have the lower bound:

`k
oh(t, ε) ≥ t + ε− 1 . (6)

The constant −1 is actually close to zero for reasonably large t and ε. If c ← Epk (M ; r) is bijective
with respect to c and r, the adversary can search r one by one without duplication and the advantage
for this case is AdvA,pk = 2t

2η , which results in `k
oh(t, ε) ≥ t + ε.

The above argument counts encryption as one step. We use the same abstraction in our frame-
work in more general form. That is, we count a fundamental cryptographic operation such as hash-
ing, group operation, or encryption and decryption we are focusing on as one step of computation
for the adversary. Hence 2t is understood as the number of times that the adversary can perform
the cryptographic operation in question. Precise assessment is always possible by incorporating
scaling factors that represent exact number of steps decided by the target computation model for
the cryptographic operations in question. The scaling factors may depend on k. It is important to
note that, in this framework, we only consider the meaningful cases where all the scaling factors
are independent from t and considerably small for the sake of efficiency of the encryption scheme.
We thus wrap these constant factors as

`k
oh(t, ε) ≥ t + ε + O(1)

in our arguments. This abstraction of computation provides the same ground in arguing the opti-
mality of the overhead, and the resulting simple form of the lower bound is useful in showing the
relation between the power of the adversary and the ciphertext overhead. If needed, one can always
do more detailed assessment taking precise scaling factors into account.

2.2 Example : Ciphertext Overhead of OAEP

OAEP includes randomness of size kr and zero-padding of size kv. These parameters define the
ciphertext overhead as `oh = kr + kv. Together with the size of permutation n, they are provided
as a security parameter k = (n, kr, kv). According to [14, Th. 1], the advantage of an adversary A
making up to q decryption and hash queries is upper bounded by

Advcca
A (k) ≤ εspd(n) +

c q2

2kr
+

c′q
2kv

, (7)

where εspd(n) is the probability of breaking set partial one-way property of the underlying permu-
tation of size n, and c, c′ ≥ 1 are two small constants.

Consider an (2t, 2−ε) adversary that can make at most q ≤ 2t oracle queries. Since parameter n
can be chosen essentially independently from kr and kv, we can safely consider εspd(n) small enough.
Assuming εspd(n) ≤ c′′ 2−ε with a constant 0 < c′′ ≤ 1

2 for concreteness, each of the remaining two
terms in (7) must be smaller than 2−ε − εspd(n) ≥ (1− c′′) 2−ε. Namely,

c 22t

2kr
≤ (1− c′′) 2−ε and

c′2t

2kv
≤ (1− c′′) 2−ε (8)

must hold. Accordingly, in order to attain the desired security, it is sufficient to choose

kr = 2t + ε and kv = t + ε (9)

plus small positive constants. As a result, the ciphertext overhead of OAEP is upper bounded by

kr + kv = 3t + 2ε + O(1). (10)

Regarding the basic version of OAEP whose security is lowered to CPA by omitting zero-
paddings, the ciphertext overhead kr = t + ε + O(1) is obtained in the same way based on its
concrete security analysis shown as Th.13 of [4].

3 Definitions

3.1 Public Key Encryption

We follow the standard definition of chosen ciphertext security in the random oracle model. Let
PKE = (G, E ,D) be a public-key encryption scheme where G, E ,D are a key generation algorithm, an
encryption algorithm, and a decryption algorithm, respectively. Let H denote the random oracle(s).
Let A be an oracle machine that plays the following game.

1. (pk , sk) ← G(1k)
2. (M0,M1, ρ) ← ADsk ,H

3. b ← {0, 1}, c∗ ← Epk (Mb)
4. b̃ ← ADsk ,H(ρ, c∗)

Here, k is a security parameter and ρ is an internal state of A. Messages M0 and M1 must be in the
same size and c∗ must not be asked to Dsk in the final step. Let Advcca

A,PKE(k) denote the advantage
function of A defined by Advcca

A,PKE(k) = 2 · |Pr[b̂ = b]− 1/2|. The probability is taken over all coin
flips during the game including the selection of H. We say that PKE is CCA-secure if there exists
a negligible function ε in k such that Advcca

A,PKE(k) ≤ ε holds for all A running in polynomial-time
in k.

3.2 Symmetric-key Encryption

Let SEke = (E, D) be a symmetric-key encryption scheme where E is an encryption algorithm and D
is a decryption algorithm and its key-space is {0, 1}ke . Let C be a machine that plays the following
game.

1. w ← {0, 1}ke

2. (M0,M1, ρ) ← C(1ke)
3. b ← {0, 1}, c∗ = Ew(Mb)
4. b̃ ← C(ρ, c∗)

Here, ρ is an internal state of C. Messages M0 and M1 must be in the same size. Let Advind-pa
C,SE (ke)

denote the advantage of C defined by Advind-pa
C,SE (ke) = 2 · |Pr[b̃ = b] − 1/2|. We say that SE is

passively secure if there exists a negligible function ε in ke such that Advind-pa
C,SE (ke) ≤ ε holds for

all C running in polynomial-time in ke.
For our construction, we require SEke to be length-preserving where the length of a message

and its ciphertext are the same. A simple one-time pad, whose key is generated through a pseudo-
random number generator in practice, fulfills this requirement.

3.3 Trapdoor One-Way Permutations

Let Pn be a family of trapdoor permutations over {0, 1}n. By (f, f−1) ← Pn, we mean that a
permutation f and its inverse function f−1 over {0, 1}n are efficiently and uniformly chosen. Both
f and f−1 must be efficiently computable. The inverse function f−1 is called a trapdoor.

Let B be a machine that plays the following game.

1. (f, f−1) ← Pn, X ← {0, 1}n, Y = f(X).
2. X̃ ← B(f, Y)

By Advowp
B,P (n), we denote the probability of X̃ = X, which is taken over all the coin flips

during the game. We say that Pn is one-way if there exists a negligible function ε in n such that
Advowp

B,P (n) ≤ ε holds for any adversary running in time τ .

4 Proposed Scheme

Our scheme requires symmetric-key encryption schemes and trapdoor permutation families as build-
ing blocks. The symmetric encryption schemes must be length-preserving and passively secure
(indistinguishable against passive attacks), and the trapdoor permutation family must be one-way.

4.1 Description

We assume that a trapdoor one-way permutation family Pn and a length-preserving symmetric-
key encryption scheme SEke = (E,D) are available, for n, ke ∈ N. Let kr ∈ N be a parameter that
represents the size of randomness used for encryption. (These parameters are treated independently
so that their individual impact to the ciphertext overhead can be explicitly stated. It is possible to
treat them as functions of a single security parameter as usual.)

The proposed scheme PKE = (G, E ,D) is as follows. See Figure 1 for graphical presentation.
Also see Section 4.3 for a discussion about variants.

Key Generation G: Given a security parameter k = (n, ke, kr) for n ≥ 6kr, set parameters km1

and km2 so that
km1 ≥ 2kr, km2 ≥ 3kr, n = kr + km1 + km2 (11)

are fulfilled. Then select (f, f−1) ← Pn and hash functions G and Hi for i = 1, 2, 3, 4 such that

G : {0, 1}kr+km1 → {0, 1}ke , H1 : {0, 1}kr+km1 → {0, 1}km2 , H2 : {0, 1}km2 → {0, 1}kr+km1 ,
H3 : {0, 1}∗ → {0, 1}km2 , H4 : {0, 1}km2 → {0, 1}kr+km1 .

The private-key is f−1. The public-key includes f , SEke , and the hash functions with associated
parameters.

Encryption E: Given a plaintext m ∈ {0, 1}∗, first chop it into three blocks, m1, m2, and me such
that

m = m1 ‖m2 ‖me ∈ {0, 1}km1 × {0, 1}km2 × {0, 1}∗.
Then choose random r ← {0, 1}kr and compute

z = r ‖m1, w = G(z), c = Ew(me), h1 = H1(z), v = h1 ⊕m2, h2 = H2(v),
d = h2 ⊕ z, h3 = H3(d ‖ c), s = h3 ⊕ v, h4 = H4(s), t = h4 ⊕ d,

and u = f(t ‖ s). The ciphertext is (u, c) ∈ {0, 1}n × {0, 1}∗.

Decryption D: Given a ciphertext (u, c) ∈ {0, 1}n×{0, 1}ke , compute y = f−1(u) and parse y as
y = t ‖ s ∈ {0, 1}kr+km1 × {0, 1}km2 . Then compute the following values:

h4 = H4(s), d = h4 ⊕ t, h3 = H3(d ‖ c), v = h3 ⊕ s, h2 = H2(v),
z = h2 ⊕ d, h1 = H1(z), m2 = h1 ⊕ v, w = G(z), me = Dw(c),

and parse z = r ‖m1 ∈ {0, 1}kr × {0, 1}km1 . The output is m1 ‖m2 ‖me.

4.2 Security and Optimality

Theorem 1 (Chosen Ciphertext Security). Suppose A is an adversary that runs in time τ
with at most qh hash queries and qd decryption queries. Then there exist an adversaries B that runs
in time at most τ + O(q2

h) and an adversary C that runs in time at most τ + O(1) with

Advcca
A (k) ≤ Advind-pa

C,SE (ke) + 2Advowp
B,P (n) + O(

qh + qd

2kr
) .

µ´
¶³

w
G E-

µ´
¶³

v

H1
- h

µ´
¶³
H2

¾h

µ´
¶³
H3

- hd

µ´
¶³
H4

¾h

z

r ‖m1 m2 me

t s c

?

Fig. 1. The diagram of (a part of) encryption. Input message is m = m1 ‖m2 ‖me ∈ {0, 1}km1 ×
{0, 1}km2 × {0, 1}∗ and the randomness is r ∈ {0, 1}kr . The actual ciphertext is (u, c) where u =
f(t ‖ s).

The theorem is proven in Section 5.1. Note that the number of hash queries includes the ones made
through decryption queries. In an asymptotic sense, Theorem 1 states that the above scheme is
semantically secure against adaptive chosen message attacks in the random oracle model if P is
one-way and SE is passively secure.

As it is the case for most OAEP variants, our security reduction includes a quadratic factor
q2
h in the running time of the adversary against the one-way permutation. It results in demanding

larger n which increases the minimal length of the message the scheme can encrypt attaining the
optimal overhead. The approach from [18, 13] helps achieving a linear running time if desired.

Theorem 2 (Optimality in Ciphertext Overhead). If Advind-pa
C,SE (ke)+2Advowp

B,P (n) ≤ 2−(ε+1)

holds for all adversaries C and B running in time 2t, then kr = `oh = t + ε + 4 is sufficient for
messages of size equal or larger than n− kr bits.

A simple proof is shown in Section 5.3. Note that parameters ke and n are independent of the
overhead and can be set arbitrary to fulfill the condition.

4.3 A Note on Variants

Why not 3 rounds? Consider the 3-round version of our scheme obtained by removing H4

and simply letting t = d. We show that the 3-round version is not simulatable, at least with the
technique that constructs a plaintext extractor from the queries to the random oracles.

Since the following argument holds regardless of the presence of the extended part c, let us
ignore it. Observe that, if both h2 = H2(v) and h3 = H3(d) are asked, one can compute t = d,
s = h3⊕ v, u = f(t ‖ s). Thus we can simulate the decryption oracle for query u only by looking at
these hash queries. On the other hand, if one of these hash queries are not asked, the decryption
oracle has to return random m1 ‖m2.

Suppose that the adversary creates two ciphertexts, u and u′ as follows. Randomly choose t, s, t′

and compute s′ = H3(t)⊕ s⊕H3(t′), u = f(t ‖ s), u′ = f(t′ ‖ s′). Clearly, they yield the same v as
v = H3(t)⊕s = H3(t′)⊕s′. Apparently, the relation between u and u′ cannot be detected since H2(v)
is not asked. Hence the decryption oracle returns random m1 ‖m2 and m1

′ ‖m2
′ to the decryption

queries for u and u′, respectively. Now, the adversary asks H2(v) and obtains h2. For consistency, it
must hold that h2 = (r ‖m1)⊕ t = (r′ ‖m1

′)⊕ t′. However, since m1 and m1
′ are randomly chosen

before the simulator sees t and t′, such a relation is fulfilled only with negligible probability. The
adversary can notice the inconsistency by checking the relation. Thus the simulation fails.

This shows the difficulty of 3-round design but does not show the impossibility. It is an inter-
esting open problem to show whether it is indeed impossible or not.

Including c into a hash other than H3. We here discusses some variants obtained by including
c into a hash function rather than H3. In summary, H1 and H4 are not the right place to input c.

Variant 1: H2(v ‖ c). The proof of Theorem 1 shows that this variant is also secure.

Variant 2: H1(z ‖ c). This is clearly a wrong choice since (u∗, c∗) and (u∗, c) yields the same m1.

Variant 3: H4(s ‖ c). For this case, we can show that a (powerful) adversary can distinguish the
simulation from the reality. The underlying idea is that, given a challenge ciphertext (u∗, c∗), the
adversary builds a ciphertext (u, c) that yields the same plaintext without asking to H3. Suppose
that the adversary finds (t∗, s∗). It obtains h∗4 = H4(s∗ ‖ c∗) and d∗ = h∗4 ⊕ t∗. It then selects
arbitrary c and ask h4 = H4(s∗ ‖ c). Note that c must be different from c∗. It further computes
t = d∗ ⊕ h4 and u = f(t ‖ s∗). Observe that (u, c) recovers d∗ and v∗ since d = t ⊕ H4(s∗ ‖ c) =
d∗ ⊕ h4 ⊕H4(s∗ ‖ c) = d∗ ⊕ h4 ⊕ h4 = d∗ and v = s∗ ⊕H3(d) = s∗ ⊕H3(d∗) = v∗. Therefore, the
selected challenge message is returned if (u, c) is asked to the real decryption oracle. However, since
H3(d∗) has only been defined implicitly and never directly asked by the adversary, the simulated
decryption oracle cannot detect such a case and returns a random message which is noticed by the
adversary. Note that this attack is prevented by giving the feedback (also) to H3 since c must be
different from c∗ to have (u, c) different from (u∗, c∗).

5 Proofs

5.1 Proof of Theorem 1

We follow the game based proof method [11] starting from the original CCA game as defined in
Section 3.1. In the following, let Xi denote the event that A outputs b̃ = b in Game i.

Game 0. Let A be an adversary in the original CCA game. By definition, we have

Pr[X0] =
1
2
·Advcca

A (k) +
1
2
. (12)

Game 1. Modify the challenge oracle so that it returns random u∗ that is independent from the
challenge messages as follows.

Challenge Oracle (M0, M1).
C.1 Choose u∗ ← {0, 1}n.
C.2 Choose b ← {0, 1} and split Mb into m1

∗, m2
∗ and me

∗, accordingly. Then choose w∗ ← {0, 1}ke

and compute c∗ = Ew∗(me
∗).

C.3 Return (u∗, c∗).

Observe that, for every h∗4 ∈ {0, 1}kr+km1 and h∗3 ∈ {0, 1}km2 , there exist h∗2 and h∗1 that make
(m1

∗,m2
∗, t∗, s∗, h∗3, h

∗
4) consistent for some r∗, i.e., h∗2 = d∗ ⊕ (r∗ ‖m1

∗) and h∗1 = v∗ ⊕m2
∗ hold

for d∗ = h∗4 ⊕ t∗ and v∗ = s∗ ⊕ h∗3. In Game 0, however, H2(v∗) and H1(r∗ ‖m1
∗) will be defined

with random fresh values and it is unlikely that the consistent value h∗2 and h∗1 are assigned to their
output. The same is true for w∗ and G(r∗ ‖m1

∗). Accordingly, the view of the adversary in Game 0
and Game 1 is the same unless v∗ is asked to H2 or z∗(= r∗ ‖m1

∗) is asked to H1 or G.
Let AskH∗2 denote the event that v∗ (defined for some fixed t∗, s∗, h∗3, h∗4) is asked to H2. Let

AskH−2 (and AskH+
2) denote the special case of event AskH∗2 such that v∗ is asked to H2 before (and

after, resp.) d∗ ‖ c∗ is asked to H3. Define AskH∗1, AskH−1 , AskH+
1 , AskG∗, AskG−, and AskG+ in the

same manner with respect to event that z∗ is asked to H1 and G. Finally, define AskH∗3, AskH−3 ,
and AskH+

3 accordingly with respect to event that d∗ ‖ c∗ is asked to H3 before or after s∗ is asked
to H4. From the above observation, we have

|Pr[X0]− Pr[X1]| ≤ Pr[AskG∗ ∨ AskH∗1 ∨ AskH∗2] . (13)

Observe that the “−” events can only happen coincidentally due to the randomness of the hash
outputs. Also observe that the “+” events happen, by definition, only if the previous event happens.
Thus we obtain

Pr[AskG∗ ∨ AskH∗1 ∨ AskH∗2] ≤ Pr[AskG− ∨ AskH−1 ∨ AskH−2] + Pr[AskG+ ∨ AskH+
1 ∨ AskH+

2]
≤ Pr[AskG− ∨ AskH−1 ∨ AskH−2] + Pr[AskH∗3]

≤ qg

2kr
+

qh1

2kr
+

qh2

2km2
+

qh3

2kr+km1
+ Pr[AskH+

3] . (14)

It is straightforward to see that distinguishing b breaks the passive security of the symmetric
encryption since only the symmetric part is related to b in Game 1. We thus have:

Pr[X1] ≤ 1
2

+
1
2
·Advind-pa

C,SE (ke) , (15)

for some suitable adversary C that has about the same running time as A.
From (12), (13), (14), and (15), we obtain

Advcca
A (k) ≤ Advind-pa

C,SE (ke) + 2
(

qg + qh1

2kr
+

qh2

2km2
+

qh3

2kr+km1
+ Pr[AskH+

3]
)

. (16)

It remains to estimate Pr[AskH+
3] which will be related to the advantage of breaking the one-way

property of f . We initiate a new series of sub-games starting from Game 1, whose goal is a game
where a reduction from causing AskH+

3 to breaking one-way property of f is trivial.
In the following games, each random oracle is simulated with an independent list. Let LX denote

the list for hash oracle X, which is initially empty. By b ← X(a) we mean that a is asked to oracle
X and b is returned as output. When X is first asked on fresh input a, output b is uniformly
selected and (a, b) is stored to LX . If a has been asked before, corresponding b is read from LX and
returned. By (a, [b]) ∈ LX , we mean that table LX includes an entry (α, β) where α = a. It also
means that, if such an entry exists, β is referred as b. List LX is consistent for oracle X if every
input a is unique in LX .

Game 1.0 This game is the same as Game 1. By F1.0, we denote the event that AskH+
3 has hap-

pened, i.e., (recalling the above definition), F1.0 = “d∗ ‖ c∗ is asked to H3 after s∗ is asked to H4”.
Since this is just a change of notation, we have

Pr[AskH+
3] = Pr[F1.0] (17)

By F1.i for i = 1, ..., we denote the same event in the following sub-games Game 1.i.

Game 1.1 The game is modified so that it immediately stops at the moment AskH+
3 happens. To

capture event AskH+
3 , hash oracle H3 is modified so that it checks whether the query d ‖ c equals

the value d∗ ‖ c∗ by searching LH4 for corresponding s∗.

Hash Oracle H3(d ‖ c).
A.1 If (d ‖ c, [h3]) ∈ LH3, return h3.
A.2 Choose h3 ← {0, 1}km2 and add (d ‖ c, h3) to LH3.
A.3 Repeat the following for every entry (h4, s) in LH4.

(a) Compute t = d⊕ h4, u = f(t ‖ s).
(b) If u = u∗, abort the game. (event: F1.1).

A.4 Return h3.

Since this modification does not change the view of the adversary unless AskH+
3 happens, we have

Pr[F1.0] = Pr[F1.1] . (18)

Game 1.2 Modify the decryption oracle so that it returns a random message when a decryption
query is made on a ciphertext whose associated d ‖ c was not yet asked to H3. (If d ‖ c was already
asked, it decrypts normally as in the last game, i. e., follow the Feistel network in the reverse order
by using the corresponding h4 and h3.) It further records the returned random messages into a list,
say Lwatch, and assign consistent hash values when they are asked later. We also modify H3 oracle
to avoid inconsistency. Details are as follows. Let Lwatch be initially empty.

Decryption Oracle D(u, c).
D.1 Compute t ‖ s = f−1(u).
D.2 h4 ← H4(s).
D.3 Let d = t⊕ h4. If (d ‖ c, [h3]) 6∈ LH3, go to the next step. Otherwise, return m1 ‖m2 ‖me computed

normally by using t, s, d, and h3.
D.4 Return m1 ‖m2 ‖me computed as follows.

(a) Select m1, m2, and w uniformly and compute me = Dw(c).
(b) Add (u, c, w, m1, m2) to Lwatch.

Hash Oracle H3(d ‖ c).
A.1 If (d ‖ c, [h3]) ∈ LH3, return h3.
A.2 Choose h3 ← {0, 1}km2 and put (d ‖ c, h3) to LH3.
A.3 Repeat the following for every entry (h4, s) in LH4.

(a) Compute t = d⊕ h4, u = f(t ‖ s), v = h3 ⊕ s.
(b) If u = u∗, abort the game. (event: F1.2).
(c) If (u, c, [w], [m1], [m2]) ∈ Lwatch, do as follows.

– Select r ← {0, 1}kr and compute z = r ‖m1, h2 = d⊕ z, h1 = m2 ⊕ v.
– Add (z, w), (z, h1), and (v, h2) to LG, LH1, and LH2, respectively.
– Remove entry (u, c, w, m1, m2) from Lwatch.

A.4 Return h3.

The only difference to the last game is the way that the decryption queries are handled on a
ciphertext (u, c) whose associated value d ‖ c was not queried to H3. However, the view of the
adversary does not change unless it queries H3 on d ‖ c. In that case Step A.3c of the above
implementation of H3 will find an entry of the form (u, c, [w], [m1], [m2]) in Lwatch and can determine
h3 to make the (already fixed) output of the decryption query consistent. Let HashErrA denote the

event that the hash assignments in Step A.3c yield any inconsistent hash table. Unless HashErrA
happens, the distribution of the adversary’s view is unchanged. Thus we have

|Pr[F1.1]− Pr[F1.2]| ≤ Pr[HashErrA]. (19)

The following is our main technical lemma. Its proof will be given in Section 5.2.

Lemma 3.

Pr[HashErrA] ≤ q2
d

2km1
+

qh1 + qg

2kr
+

qh2 qd

2km2
. (20)

Game 1.3 Modify the decryption oracle so that it also returns a random message when a decryption
query is made on a ciphertext whose associated s was not yet asked to H4.

Decryption Oracle D(u, c).
D.1 Compute t ‖ s = f−1(u).
D.2 If (s, [h4]) ∈ LH4 and (d ‖ c, [h3]) ∈ LH3 for d = t⊕h4, then return m1 ‖m2 ‖me computed normally

by using t, s, d, and h3.
D.3 Otherwise, return m1 ‖m2 ‖me computed as follows.

(a) Select m1, m2, and w uniformly and compute me = Dw(c).
(b) Add (u, c, w, m1, m2) to Lwatch.

Observe that, in the previous game, a decryption query (u, c) with a fresh h4 causes a normal
decryption process if d ‖ c is already in LH3. In the current game, however, such a query is answered
with a random message. Unless such a query is made, nothing is changed. Since h4 has been assigned
randomly, d = t⊕h4 distributes uniformly over {0, 1}kr+km1 and therefore the event that d ‖ c ∈ LH3

happens only by chance. Thus we have

|Pr[F1.2]− Pr[F1.3]| ≤ qd qh3

2kr+km1
. (21)

Note that after this modification, the regular decryption procedure is invoked only when both
h4 = H4(s) and h3 = H3(d ‖ c) have been asked before the corresponding decryption query is made.

Game 1.4 Modify the decryption oracle so that it does not compute t ‖ s = f−1(u) anymore.
Instead, it uses a lookup table, say LX , to obtain t and s. The table is maintained by oracles H3

and H4 so that it contains the t, s values of all possible decryption queries whose H3 and H4 queries
are already made. Details as follows.

This modification is just conceptual and does not change the adversary’s view. Hence we have

Pr[F1.3] = Pr[F1.4]. (22)

Decryption Oracle D(u, c).
D.1 If (u, c, [t], [s]) ∈ LX , then continue the normal decryption procedure by using t and s and return the

obtained message.
D.2 Otherwise, return random m1 ‖m2 ‖me computed as follows.

(a) Select m1, m2, and w uniformly and compute me = Dw(c).
(b) Add (u, c, w, m1, m2) to Lwatch and return m1 ‖m2 ‖me.

Hash Oracle H3(d ‖ c).
A.1 If (d ‖ c, [h3]) ∈ LH3, return h3.
A.2 Choose h3 ← {0, 1}km2 and put (d ‖ c, h3) to LH3.
A.3 Repeat the following for every entry (h4, s) in LH4.

(a) Compute t = d⊕ h4, u = f(t ‖ s), v = h3 ⊕ s.
(b) If u = u∗, abort the game with status 1 (event: F1.4).
(c) If (u, c, [w], [m1], [m2]) ∈ Lwatch, do as follows

– Select r ← {0, 1}kr and compute z = r ‖m1, h2 = d⊕ z, h1 = m2 ⊕ v.
– Add (z, w), (z, h1), and (v, h2) to LG, LH1, and LH2, respectively.
– Remove entry (u, c, w, m1, m2) from Lwatch.

(d) Put (u, c, t, s) to LX .
A.4 Return h3.

Hash Oracle H4(s).
B.1 If (s, [h4]) ∈ LH4, return h4.
B.2 Choose h4 ← {0, 1}kr+km1 and put (s, h4) to LH4.
B.3 Repeat the following for every entry ([d], [c], [h3]) in LH3.

(a) Let t = d⊕ h4, v = s⊕ h3, and u = f(t ‖ s).
(b) Put (u, c, t, s) to LX .

B.4 Return h4.

Now observe that Game 1.4 does not use f−1 at all. It does not use any ∗-marked internal values
either. The challenge u∗ is a random element in {0, 1}n, and s∗ and t∗ with f(s∗ ‖ t∗) = u∗ become
available exactly when event F1.4 happens. It is thus straightforward to show that the adversary
that causes event F1.4 with some probability can be used to compute f−1 with the same probability.
We thus have

Pr[F1.4] ≤ Advowp
B,f (k) , (23)

for a suitable adversary B whose running time is bounded by the running time of A plus O(q2
h).

To complete the proof we collect the probabilities relating the different games. From (18), (20),
(21), (22) and (23), we have

Pr[AskH+
3] ≤ q2

d

2km1
+

qh1 + qg

2kr
+

qh2 qd

2km2
+

qd qh3

2kr+km1
+ Advowp

B,P (n). (24)

From (16) and (24),

Advcca
A (k) ≤ Advind-pa

C,SE (ke) + 2 ·Advowp
B,P (n) +

4(qh1 + qg)
2kr

+
2q2

d

2km1
+

2qh2(qd + 1)
2km2

+
2qh3(qd + 1)

2kr+km1
.

Finally, using km1 ≥ 2kr, km2 ≥ 3kr and setting qh = qh1 + qh2 + qh3 + qh4 + qg, this simplifies to

Advcca
A (k) ≤ Advind-pa

C,SE (ke) + 2 ·Advowp
B,P (n) +

4qh

2kr
+

2q2
d

22kr
+

2qh(qd + 1)
23kr

≤ Advind-pa
C,SE (ke) + 2 ·Advowp

B,P (n) + O(
qh + qd

2kr
) (25)

as claimed.

5.2 Proof of Lemma 3

First note that the assignments to H1, H2, and G take place at most qd times. We evaluate the
probability of the failure in the assignments throughout the game.

Case 1: Assignment of h1 = H1(z) fails (event: FailH1). We first note a simple way to bound
FailH1. Recall that z = r ‖m1. Since r is chosen randomly, it appears among the qh1 queries to H1

with probability qh1

2kr
. Since there are at most qd assignments, the probability of FailH1 is at most

qd qh1

2kr
. This loose bound, however, would result in setting kr ≥ 2k, which is not optimal.

Our idea to obtain a tighter bound is to analyze the probability of a conflict on r ‖m1 for each
m1 separately. To this end we first classify all H1 queries into classes indexed by some m1. For
every string str in {0, 1}km1 , let Qstr denote the number of H1 queries of the form r ‖ str for some
string r ∈ {0, 1}kr . Note that

∑
str∈{0,1}km1

Qstr ≤ qh1 . Since r is uniformly chosen in Step A.3c, the
probability that a string r ‖ str for a fixed str has been queried is at most Qstr/2kr . Let MColl denote
the event that the same m1 is selected twice (or more) in Step D.4 (during the whole execution of
the experiment). Since m1 is uniformly and independently chosen in every execution of Step A.3c,
we have

Pr[MColl] ≤ q2
d

2km1
. (26)

Assume that MColl does not happen and therefore each m1 selected in Step D.4 is unique. Then,
by the union bound, the total probability of the failure throughout the game is

Pr[FailH1 | ¬MColl] ≤
∑

str∈{0,1}km1

Qstr

2kr
≤ qh1

2kr
. (27)

Case 2: Assignment of w = G(r ‖m1) fails (event: FailG). By the same argument as above,
conditioned on ¬MColl, the total probability of failure during the simulation is

Pr[FailG | ¬MColl] ≤ qg

2kr
. (28)

Case 3: Assignment of h2 = H2(v) fails (event: FailH2). Observe that for every two distinct
queries (u, c) and (u′, c′) in Lwatch appearing in Step A.3c, it must be the case that c = c′ and s 6= s′

to fulfill (u, c) 6= (u′, c′). Accordingly, we have v = s ⊕ h3 6= s′ ⊕ h3 = v′. Thus, all v appearing
within a single execution of Step A.3c are distinct.1 2

Consider one execution of the H3 oracle on some fixed input d ‖ c ∈ LH3 at Step A.2, i. e., at
the point where value h3 is chosen randomly. Let SH2 denote the set of all values v stored in LH2

at that moment. Let Sv(d ‖ c) denote the set of all v used to compute h1 in Step A.3c. Let Ss(d ‖ c)
be the set of all values s from Step A.3a used to compute v ∈ Sv(d ‖ c) in Step A.3c. (Note that
Ss(d ‖ c) may be a proper subset of the set of all s appearing in LH4.) Now event FailH2 occurs if
and only if there exists s ∈ Ss(d ‖ c) and v ∈ SH2 such that v = s⊕ h3.

Since h3 is chosen uniformly in Step A.2, all elements in Ss(d ‖ c) and SH2 are independent of
h3. We can therefore analyze the probability that event FailH2 happens solely based on the uniform
1 This is where we use the structure that c is given to H3. If c is given only to H4, for instance, we could no longer

conclude v 6= v′.
2 The same argument is possible for a variant such that c is given to H2 instead, i.e., H2(v ‖ c). In that case, we argue

that v = v′ happens only if u = u′. Then c 6= c′ must hold and the inputs to H2 are different, i.e., v ‖ c 6= v′ ‖ c′.

choice of h3 ∈ {0, 1}km2 . For a single execution of Step A.3c, the error probability is thus upper
bound by |SH2 | · |Ss(d ‖ c)|/2km2 . By summing up |Ss(d ‖ c)| for every query d ‖ c appearing during
the game, we have ∑

d ‖ c∈LH3

|Ss(d ‖ c)| ≤ |Lwatch| ≤ qd (29)

since Step A.3c is done at most once for every (u, c) in Lwatch. Also observe that |SH2 | ≤ qh2 holds
for every execution of Step A.3c. Therefore, throughout the game, we have

Pr[FailH2] ≤
∑

d ‖ c∈LH3

|SH2 | · |Ss(d ‖ c)|
2km2

≤ |SH2 |
2km2

·
∑

d ‖ c∈LH3

|Ss(d ‖ c)| ≤ qh2 qd

2km2
. (30)

Combining (26), (27), (28) and (30), we can upper bound Pr[HashErrA] as

Pr[HashErrA] ≤ Pr[FailH1 ∨ FailG ∨ FailH2]
≤ Pr[MColl] + Pr[FailH1 ∨ FailG | ¬MColl] + Pr[FailH2]
≤ Pr[MColl] + Pr[FailH1 | ¬MColl] + Pr[FailG | ¬MColl] + Pr[FailH2]

≤ q2
d

2km1
+

qh1 + qg

2kr
+

qh2 qd

2km2
. (31)

This concludes the proof of Lemma 3.

5.3 Proof of Theorem 2

First note that kr is the only parameter that controls the ciphertext overhead in our scheme, i.e.,
`oh = kr, for all messages of size equal or larger than n−kr bits. (For shorter messages the ciphertext
overhead is no longer optimal.)

Fix ε and t. We compute a bound on kr such that Advcca
A (k) ≤ 1/2ε for adversaries A running

time in 2t. Using the explicit bound (25) from the proof of Theorem 1, it is sufficient to set kr so
that

Advcca
A (k) ≤ Advind-pa

C,SE (ke) + 2 ·Advowp
B,P (n) +

4qh

2kr
+

2q2
d

22kr
+

2qh(qd + 1)
23kr

=
1
2ε

is fulfilled. By assuming that ke and n are set to satisfy

Advind-pa
C,SE (ke) + 2 ·Advowp

B,P (n) ≤ 1/2ε+1,

it is sufficient to choose kr such that

4qh

2kr
+

2q2
d

22kr
+

2qh(qd + 1)
23kr

≤ 1
2ε+1

. (32)

To achieve semantic security, qh/2kr ≤ 1 and qd/2kr ≤ 1 must hold. Since 2t upper bounds the
running time, qh ≤ 2t and qd ≤ 2t must hold, too. By using these bounds, the left side of (32)
simplifies to

1
2kr

(4qh + 2qd + qh + 1) ≤ 8 · 2t

2kr
.

Thus we have
8 · 2t

2kr
≤ 1

2ε+1
,

which results in
t + ε + 4 ≤ kr.

Accordingly, `oh = kr = t + ε + 4 is sufficient and it matches the lower bound up to the constant
term as stated in the theorem.

6 Conclusion and Open Problems

We present a variant of OAEP that attains the optimal overhead in the random oracle model and
thereby proved that the lower bound of the ciphertext overhead is tight even with respect to CCA
security.

Open problems:

– Does the same bound hold without random oracles? Among some CCA-secure schemes without
random oracles, the schemes [6, 17] have the shortest known overhead consisting of two group
elements which require an overhead of `oh ≥ 4t + 2ε.

– Construct a scheme that encrypts very short messages with optimal overhead. Schemes based
on general one-way permutations can never offer the optimal overhead for short messages. For
the state of art in this issue, we refer to [2] whose scheme offers `oh ≥ 2t + ε for messages of
arbitrary (small) length.

– Show 4-round is necessary (or not) in our construction. See Section 4.3 for discussion.

References

[1] M. Abe, R. Gennaro, and K. Kurosawa. Tag-KEM/DEM: A new framework for hybrid encryption. Journal of
Cryptology, 21(1):97–130, 2008.

[2] M. Abe, T. Okamoto, and E. Kiltz. Compact cca-secure encryption for arbitrary messages. Unpublished
Manuscript. Available from the authors., 2007.

[3] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In A. D. Santis, editor, Advances in Cryptology
— EUROCRYPT ’94, volume 950 of Lecture Notes in Computer Science, pages 92–111. Springer-Verlag, 1995.

[4] M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple encryption. In Advances
in Cryptology — Eurocrypt ’06, volume 4004 of Lecture Notes in Computer Science, pages 409–426. Springer-
Verlag, 2006. Full version available from IACR ePrint Archive 2004/331.

[5] B. Bjørstad, A. Dent, and N. Smart. Efficient KEMs with partial message recovery. In Cryptography and Coding
2007, volume 4887 of Lecture Notes in Computer Science, pages 233–256. Springer-Verlag, 2007.

[6] X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from identity-based techniques. In ACM
Conference on Computer and Communications Security, pages 320–329. ACM, 2005. Also available at IACR
e-print 2005/288.

[7] J. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, and C. Tymen. GEM: A generic chosen-ciphertext
secure encryption method. In CT-RSA 2001, volume 2271 of Lecture Notes in Computer Science, pages 263–276.
Springer-Verlag, 2002.

[8] J. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval, and C. Tymen. Optimal chosen-ciphertext secure
encryption of arbitrary-length messages. In PKC 2002, volume 2274 of Lecture Notes in Computer Science,
pages 17–33. Springer-Verlag, 2002.

[9] J. S. Coron, M. Joye, D. Naccache, and P. Paillier. Universal padding schemes for RSA. In M. Yung, editor,
Advances in Cryptology — CRYPTO ’02, volume 2422 of Lecture Notes in Computer Science, pages 226–241.
Springer-Verlag, 2002.

[10] J. S. Coron, J. Patarin, and Y. Seurin. The random oracle model and the ideal cipher model are equivalent.
In Advances in Cryptology — CRYPTO ’08, volume 5157 of Lecture Notes in Computer Science, pages 1–20.
Springer-Verlag, 2008.

[11] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive
chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.

[12] Y. Cui, K. Kobara, and H. Imai. A generic conversion with optimal redundancy. In A. Menezes, editor, Topics in
Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages 104–117. Springer-Verlag,
2005.

[13] Y. Dodis, M. Freedman, S. Jarecki, and S. Walfish. Versatile padding schemes for joint signature and encryption.
In ACM CCS’04. ACM, 2004.

[14] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA assumption. In
J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 260–274. Springer-Verlag, 2001.

[15] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28:270–299,
1984.

[16] J. Jonsson. An OAEP variant with a tight security proof. IACR e-print Archive 2002/034, 2002.
[17] E. Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and T. Rabin, editors, Theory

of Cryptography Conference – TCC’06, volume 3876 of Lecture Notes in Computer Science, pages 581–600.
Springer-Verlag, 2006.

[18] K. Kobara and H. Imai. OAEP++: A very simple way to apply OAEP to deterministic OW-CPA primitives.
Technical Report 2002/130, IACR ePrint archive, 2002.

[19] Y. Komano and K. Ohta. Efficient universal padding schemes for multiplicative trapdoor one-way permutation.
In Advances in Cryptology — CRYPTO ’03, volume 2729 of Lecture Notes in Computer Science, pages 366–382.
Springer-Verlag, 2003. Full version available from IACR ePrint Archive 2004/002.

[20] T. Okamoto and D. Pointcheval. REACT: Rapid enhanced-security asymmetric cryptosystem transform. In
CT-RSA ’2001, Lecture Notes in Computer Science. Springer-Verlag, 2001.

[21] D. H. Phan and D. Pointcheval. Chosen-ciphertext security without redundancy. In Advances in Cryptology —
Asiacrypt ’03, volume 2894 of Lecture Notes in Computer Science, pages 1–18. Springer-Verlag, 2003.

[22] D. H. Phan and D. Pointcheval. OAEP 3-round: A generic and secure asymmetric encryption padding. In P. J.
Lee, editor, Advances in Cryptology — Asiacrypt ’04, volume 3329 of Lecture Notes in Computer Science, pages
63–78. Springer-Verlag, 2004.

[23] Z. Ramzan and L. Reyzin. On the round security of symmetric-key cryptographic primitives. In M. Bellare,
editor, Advances in Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages
376–393. Springer-Verlag, 2000.

[24] V. Shoup. OAEP reconsidered. In Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 239–259. Springer-Verlag, 2001.

