
A public key encryption scheme secure against key dependent

chosen plaintext and adaptive chosen ciphertext attacks

Jan Camenisch∗ Nishanth Chandran† Victor Shoup‡

January 16, 2009

Abstract

Recently, at Crypto 2008, Boneh, Halevi, Hamburg, and Ostrovsky (BHHO) solved the long-
standing open problem of “circular encryption,” by presenting a public key encryption scheme
and proving that it is semantically secure against key dependent chosen plaintext attack (KDM-
CPA security) under standard assumptions (and without resorting to random oracles). However,
they left as an open problem that of designing an encryption scheme that simultaneously provides
security against both key dependent chosen plaintext and adaptive chosen ciphertext attack
(KDM-CCA2 security). In this paper, we solve this problem. First, we show that by applying the
Naor-Yung “double encryption” paradigm, one can combine any KDM-CPA secure scheme with
any (ordinary) CCA2 secure scheme, along with an appropriate non-interactive zero-knowledge
proof, to obtain a KDM-CCA2 secure scheme. Second, we give a concrete instantiation that
makes use the above KDM-CPA secure scheme of BHHO, along with a generalization of the
Cramer-Shoup CCA2 secure encryption scheme, and recently developed pairing-based NIZK
proof systems. This instantiation increases the complexity of the BHHO scheme by just a small
constant factor.

1 Introduction

Encryption is the oldest cryptographic primitive; indeed, cryptography used to be synonymous with
encryption. Despite this, the right definition for the security of encryption schemes has still not
been settled! The first formal definition of security for public key encryption was that of semantic
security [GM82], which, loosely speaking, states that given an encryption of a message an adversary
cannot learn any information about the message itself. As it turned out, this notion of security does
not offer sufficient protection for most practical applications [Ble98], as it does not take into account
that an adversary could learn (partial information about) some plaintext when he has access to
a decryption oracle. The subsequent stronger notion of security against chosen ciphertext attacks
(CCA2 security [RS91]) takes this into consideration and gives an adversary access to a decryption
oracle that will decrypt any ciphertext except a particular “challenge ciphertext”. CCA2 security
was considered the final answer with regard to the security of public key encryption schemes.

However, none of the above notions of security allow an adversary to obtain encryptions of secret
keys or, more generally, functions of secret keys. Black, Rogaway, and Shrimpton formally defined
such a notion, calling it Key Dependent Message (KDM) security [BRS02]. A similar notion, called
∗IBM Research, work funded by the European Community’s Seventh Framework Programme (FP7/2007-2013)

under grant agreement no. 216483.
†UCLA, work done while visiting IBM Research.
‡NYU, work done while visiting IBM Research, supported by NSF award number CNS-0716690.

1

circular security, was earlier defined by Camenisch and Lysyanskaya [CL01] and used to prevent
sharing of credentials. Both papers provided constructions in the random oracle model.

Without resorting to the use of random oracles, constructing a public key encryption scheme
(practical or not) that is semantically secure against key dependent chosen plaintext attack (KDM-
CPA) was a long-standing open problem. It was only recently that Boneh et al. [BHHO08] gave a
construction of a KDM-CPA secure public key encryption scheme. They proved their scheme secure
under the Decisional Diffie-Hellman (DDH) assumption. We will refer to their scheme as the BHHO
scheme, which extends to obtain KDM-CPA security under the more general K-linear assumption
[Sha07, Kil07] (which includes the DDH assumption for K = 1 and the DLIN assumption [BBS04]
for K = 2). However, Boneh et al. left as an open problem the construction of an encryption
scheme that is simultaneously secure against key dependent chosen plaintext and chosen ciphertext
attack (KDM-CCA2).

Our Contribution. In this paper, we solve this problem by constructing the first KDM-CCA2
secure public key encryption scheme that can be proved secure under standard assumptions, and
without random oracles. In fact, we show that a variation of the Naor-Yung paradigm [NY90] allows
one to combine any KDM-CPA secure encryption scheme and any regular CCA2 secure encryption
scheme, together with a non-interactive zero knowledge (NIZK) proof [BFM88], to obtain a KDM-
CCA2 secure encryption scheme.

Moreover, we give a nearly practical instantiation of our general construction using the BBHO
KDM-CPA scheme, a K-linear version [CS02, Sha07, HK07b] of the Cramer-Shoup [CS98] CCA2
scheme, and recently developed pairing-based NIZK proof systems [GOS06, Gro06, GS08]. In the
BHHO scheme, a ciphertext is a couple of hundred group elements and our construction blows this
up only be a small constant factor (two or three, depending on the cryptographic assumption one
employs). For our construction, we need a pairing e : G × Γ → GT, and we prove security under
the K-linear assumption in G and the L-linear assumption in Γ, for appropriate constants K and
L (and we also need a collision-resistant hash function).

Motivational Example: Key-Wrap. The “key-wrap” problem motivates the need for KDM-
CCA2 secure encryption in practice. The key-wrap mechanism is found, for instance, in crypto-
graphic coprocessors such as IBM’s Common Cryptographic Architecture [IBM08] and RSA’s Pub-
lic Key Cryptographic Standards [RSA04]. Cryptographic coprocessors are tamper-proof hardware
tokens that process requests from applications to perform cryptographic tasks such as encryption,
signing and so on. One can view these tokens as trusted hardware that stores keys of all users in
the system. When an application (or user) wishes to perform a cryptographic task, it authenticates
itself to the token and the token processes the request. For the purpose of creating backup of data
or to transport keys from one token to another, it is often desired to encrypt keys (also known
as “key wrapping”). Naturally, when we encrypt private keys with other keys it might lead to a
circularity. In other words, an adversary might get to see an encryption of a secret key sk1 with
public key pk2 as well as an encryption of a secret key sk2 with public key pk1 (such circularity
can in general be more complicated). Although one can circumvent this problem by maintaining a
hierarchy of keys and/or by maintaining separate keys for the purpose of wrapping other keys, this
is not always convenient or possible. In addition, since the hardware token performs decryption,
an adversary may effectively have access to a decryption oracle.

Labeled Encryption. In many applications in which one uses a CCA2 secure encryption scheme,
the notion of a label is very useful. Very briefly, a label consists of public data which is non-malleably

2

attached to a ciphertext. In effect, it allows the encryptor to control the context in which a
ciphertext is decrypted. This notion has been around for a long time, under various names, e.g.,
“indicator”, “tag”, “header”, “associated data” [LL93, SG98, Sho01, CS03, MRY04, Kil06, RS06].
While one can always implement the label mechanism by appending the label to the plaintext, this
is often not the most practical way to achieve this.

Coming back to the key-wrap problem, a label may be used to describe the type of message
being encrypted: if it encrypts a key, who the key belongs to, etc. When the hardware token
decrypts a ciphertext labeled as a key, it can restrict the usage of the decrypted key; in particular,
the token can ensure that such a key is only used within the token in appropriate ways (e.g.,
decryption, further key-wrap). Even if a token restricts the usage in this way, an adversary may
attempt a chosen ciphertext attack by submitting an encryption of a key that actually belongs to
Alice, and make it look like it belongs to Bob; moreover, perhaps the adversary is authorized to
decrypt ciphertexts under Bob’s key, which in effect allows him to decrypt ciphertexts encrypted
under Alice’s key. However, if labels are used as described above, CCA2 security will prevent such
attacks from succeeding.

Because of their utility, we include labels in our definition of KDM-CCA2 security, and im-
plement them in our construction. Moreover, we exploit the label mechanism for plain CCA2
encryption in our general construction to bind together the two ciphertexts and NIZK proof of the
Naor-Yung paradigm. In particular, we shall see that the CCA2 encryption scheme we use directly
support labels in a way that interacts very nicely with pairing-based NIZK techniques, leading to
a conceptually simple and quite efficient concrete instantiation of our general construction.

Another use of labels is to enlarge the message space of a CCA2 encryption scheme: to encrypt
a sequence of messages as a package, one can generate a key pair for a strongly secure one-time
signature scheme, and then encrypt each message in the sequence using the verification key as a
label, and then signing the whole sequence of ciphertexts. This application is convenient for us,
because the BHHO scheme can only encrypt one bit of a secret key at a time.

Other related work. Backes, Pfitzmann and Scedrov [BPS07] and Backes, Dürmuth and Un-
ruh [BDU08] considered KDM-CCA2 security of symmetric and asymmetric encryption schemes,
respectively. They in fact define a notion of security stronger than we consider in our paper, by
allowing the adversary to obtain some of the secret keys. They showed that RSA-OAEP ([BR94])
is secure in this sense in the random oracle model.

Halevi and Krawczyk [HK07a] studied key-dependent message security (under the name key-
dependent input (KDI) security) with respect to primitives such as pseudo-random functions
(PRFs) and block ciphers. They showed that in the ideal-cipher model, KDI secure PRFs can
be built if one restricts the functions of the key to be independent of the ideal-cipher. Further,
they showed that this goal cannot be achieved in the standard model. On the positive side, they
show that if one allows the PRF construction to depend on a fixed public value, but does not allow
the function of the key to depend on this value, then KDI secure PRFs can be constructed in the
standard model. Hofheinz and Unruh [HU08], constructed a symmetric key encryption scheme
that achieves KDM-CPA security when an adversary can only make a bounded number of encryp-
tions. Haitner and Holenstein [HH08] proved negative results for KDM-CPA security of encryption
schemes when an adversary can query encryptions of specific functions of the secret key.

Outline of the paper. In §2, we give and discuss the definitions of KDM-CCA2, NIZK proofs,
and strong one-time signatures, i.e., the ingredients of our generic construction, which is presented
in §3.

3

In §4, we present concrete instantiations of our building blocks: We recall the BHHO KDM-
CPA encryption scheme, the K-linear version of the Cramer-Shoup CCA2 encryption scheme, and
Groth’s strongly secure one-time signature scheme. As a service to the reader, we give a self-
contained exposition of a simplified version of the NIZK proof system of Groth and Sahai [GS08] as
it applies to linear equations over a group. This allows us to completely describe the instantiation
of our construction and analyze its complexity.

In the Appendix, we discuss an alternative construction of KDM-CCA2 encryption that uses a
CPA secure encryption scheme instead of a CCA2 secure encryption scheme but requires an NIZK
proof system that provides (unbounded) simulation soundness [Sah99, SCO+01]. Finally, we show
how to make the general NIZK proofs of [GS08] (unbounded) simulation sound, given a CCA2
secure encryption scheme that supports ciphertexts with labels, which again illustrates the power
labels. This exposition borrows techniques from Groth [Gro06].

2 Preliminaries

2.1 Notation

When we say that an algorithm is efficient, we mean that the algorithm runs in probabilistic
polynomial time in the security parameter. All our algorithms and functions take as input an
implicit security parameter. When we say that a function is negligible, we mean that it is negligible
in the implicit security parameter. Let a‖b denote the concatenation of string a with string b.

2.2 Definition of KDM-CCA2 Security

Let E be a public key encryption system that supports ciphertexts with labels, which consists
of three (probabilistic) efficient algorithms EncKeyGen, E and D. EncKeyGen is a randomized
key generation algorithm, that outputs a public key/secret key pair (pk , sk). The algorithm E
takes as input a message m (from the message space M), a public key pk and a label `, and
outputs a ciphertext c := E(pk ,m, `). When we need to explicitly refer to the randomness in the
encryption, we shall refer to an encryption of a message m with randomness r by E(pk ,m, `; r).
The decryption algorithm D takes as input a secret key sk , a ciphertext c, and a label `, and either
outputs a message m or reject. The (perfect) correctness condition is that (with probability one)
D(sk ,E(pk ,m, `), `) = m for all messages m, labels ` and (pk , sk) pairs output by EncKeyGen.

When we use a public key encryption scheme E that does not support labels, we refer to the
encryption and decryption algorithms of such a scheme by E(pk,m) and D(sk, c), respectively.

We extend the definition of key dependent message security from Black et al. [BRS02] to the
notion of security against chosen ciphertext attack ([NY90, RS91, DDN91]). We will note that the
standard definitions of public key encryption security are specific instances of this definition.

Let S denote the space of secret keys output by EncKeyGen. As in [HK07a] and [BHHO08],
key-dependence is defined with respect to a fixed set of functions C. Let n > 0 be an integer and
let C be a finite set of functions C := {f : Sn → M}. KDM-security is defined with respect to C
through the following two experiments between a challenger and an adversary A. Let d ∈M be a
fixed (dummy) message in M. Experiment b (where b = 0, 1) is defined as follows:

1. Initialization phase: In both experiments the challenger runs EncKeyGen() n times and ob-
tains n key pairs (pk1, sk1), (pk2, sk2), · · · , (pkn, skn). It sends the vector (pk1, pk2, · · · , pkn)
to A.

4

2. Query phase: In both experiments, A may adaptively make the following two types of
queries to the challenger.

(a) Encryption queries: A can make a query of the form (i, f, `), where 1 ≤ i ≤ n, f ∈ C
and ` is a label. The challenger responds by setting m := f(sk1, sk2, · · · , skn) ∈M.
In Experiment b = 0, it sets c := E(pk i,m, `).
In Experiment b = 1, it sets c := E(pk i, d, `).
In both experiments, the challenger sends c to A.
When the adversary A submits (i, f, `) as an encryption query and the response of the
challenger is c, we call (i, c, `) a target tuple.

(b) Decryption queries: In both experiments, A can make a query of the form (i, c, `),
where 1 ≤ i ≤ n, c is a string to be decrypted using secret key sk i and ` is a label. The
only restriction is that (i, c, `) cannot be a (previous) target tuple. Note that c might
not necessarily be a valid ciphertext. That is, c might not be an output of E(pk j ,m, `)
for some 1 ≤ j ≤ n,m ∈M and `.
In both experiments, the challenger responds with D(sk i, c, `).

3. Final phase: Finally, the adversary outputs a bit b′ ∈ {0, 1}.

Definition 1 (KDM-CCA2) A public key encryption scheme E is KDM-CCA2 secure with re-
spect to C if

∣∣Pr
[
W0

]
− Pr

[
W1

]∣∣ is negligible for all efficient adversaries A, where Wb is the event
that A outputs b′ = 1 in Experiment b.

Note that the standard security definitions for public key encryption can be viewed as specific
instances of the above general definition.

KDM-CPA: By restricting A from making any decryption queries, we get the definition of key-
dependent message semantic security (KDM-CPA) as defined in [BHHO08].

CCA2: When we restrict the set of functions C from which A can draw f to the set of all constant
functions on Sn → M, we get the experiment for multiple message, multiple key CCA2
security, which is equivalent to the standard CCA2 security for a single message and single
key (see [BBM00]). If we further restrict A from making any decryption queries, we obtain
the standard definition for semantic security (also see [BBM00]).

Also note that, unlike regular CPA and CCA2 security, for both KDM-CPA and KDM-CCA2
security, one cannot reduce the attack game to a single encryption query and a single key pair.

We note that the definition of security by Backes et al. [BDU08] is somewhat stronger in that it
allows the adversary to obtain some secret keys. To benefit from this in practice, the users need to
carefully keep track of which keys were compromised, and which keys are related to each other via
key-wrap. In contrast, our definition pessimistically assumes that if one key is compromised then
all potentially related keys should be considered compromised as well—which is probably more
realistic.

2.3 Non-interactive zero-knowledge proofs

Let R be a binary relation that is efficiently computable. For pairs of the form (x,w) ∈ R, x is
referred to as the statement and w as the witness. Let L := {x : (x,w) ∈ R for some w}.

5

A non-interactive proof system for R consists of the following efficient algorithms: a common
reference string (CRS) generation algorithm CRSGen, a prover P, and a verifier V. The CRSGen
algorithm outputs the CRS denoted by C. P takes as input C, statement x, and witness w. It
produces a proof p if (x,w) ∈ R and outputs failure otherwise. V takes as input C, x, and p. V
outputs accept if it accepts the proof and reject otherwise.

Definition 2 (NIZK[BFM88, FLS90]) (CRSGen,P,V) is a non-interactive zero-knowledge
(NIZK) proof system for R if it has the following properties described below:

Perfect Completeness: For all C output by CRSGen(), for all (x,w) ∈ R, and for all
p := P(C, x, w), Pr[V(C, x, p) outputs reject] = 0.

Computational Soundness: Consider the following game:

1. CRSGen() is run to obtain C, which is given to the adversary A.

2. A responds with (x, p).

A wins the game if V(C, x, p) = accept and x /∈ L. Let W be the event that A wins the game.
Then, for all efficient adversaries A, we have Pr[W] is negligible.

Computational Zero-knowledge: Let S := (S1,S2) be a simulator running in polynomial
time. Consider the following two experiments:

Experiment 0: CRSGen() is run and the output C is given to A. A is then given oracle access to
P(C, ·, ·).

Experiment 1: S1() generates C and trapdoor t. A is given C, and is then given oracle access
to S′(C, t, ·, ·), where S′(C, t, x, w) is defined to be S2(C, t, x) if (x,w) ∈ R and failure if
(x,w) /∈ R.

Let Wi be the event that A outputs 1 in Experiment i, for i = 0 or 1. Then, for all efficient
adversaries A, we have

∣∣Pr[W0]− Pr[W1]
∣∣ is negligible.

Note that Blum et al. [BFM88] give a weaker, “one time” definition of computational zero-
knowledge, in which the adversary is allowed to see only one fake proof. However, because we
cannot reduce KDM-security to an attack game with a single encryption query, this is insufficient
for our purposes.

2.4 Strongly secure one-time signatures

Let M be the message space. A signature scheme is a triple of (probabilistic) efficient algorithms
(SignKeyGen, Sign,Verify) with the following properties:

SignKeyGen: outputs a signing key SK and a corresponding verification key VK .

Sign: takes as input a signing key SK and a message m and outputs a signature s := SignSK (m).

Verify: takes as input a verification key VK , a message m and a purported signature s. It outputs
either reject or accept. Denote the output as VerifyVK (m, s).

6

We require that for all (VK ,SK) output by SignKeyGen, for all m in the message space and for
all s output by SignSK (m), we have VerifyVK (m, s) = accept.

Definition 3 A signature scheme (SignKeyGen, Sign,Verify) is a strongly secure one-time signature
scheme if the success probability of any efficient adversary A in the following experiment with a
challenger is negligible:

1. The challenger runs SignKeyGen() to obtain (VK ,SK) and gives VK to A.

2. A may output a message m. In this case, the challenger responds with s := SignSK (m). The
adversary may choose not to run this step and in this case (m, s) is not defined.

3. Following this, A outputs (m∗, s∗).

We say that A succeeds in the above experiment if VerifyVK (m∗, s∗) = accept and additionally
(m∗, s∗) 6= (m, s) (in the case when (m, s) is defined).

3 Generic Construction of a KDM-CCA2 secure scheme

In this section, we give a generic construction of KDM-CCA2 secure public key encryption scheme
E with respect to a set of functions C. We require the following building blocks: a public key
encryption scheme Ekdm that is KDM-CPA secure with respect to the set of functions C; a regular
CCA2 secure public key encryption scheme Ecca that supports ciphertexts with labels; an NIZK
proof system P for the language Leq consisting of the set of all pairs of ciphertexts that encrypt
the same message using Ekdm and Ecca; and a strongly secure one-time signature scheme S, as in
Definition 3.

At a high level, E is similar to the construction of [NY90, DDN91]. To encrypt a message m,
we generate a key-pair for the scheme S, encrypt m using both Ekdm and Ecca, where the label for
Ecca will contain the verification key generated above (along with any input label). Using P, we
give a proof that both ciphertexts contain the same plaintext. We then sign the two ciphertexts as
well as the proof using S. The final ciphertext consists of the verification key, the two ciphertexts,
the proof, and the signature.

3.1 Construction

We now formally describe the scheme E := (EncKeyGen,E,D) in detail. Let
Ekdm := (EncKeyGenkdm,Ekdm,Dkdm) (with key pair (pkkdm, skkdm)) and let Ecca :=
(EncKeyGencca,Ecca,Dcca) (with key pair (pk cca, sk cca)). Let S := (SignKeyGen, Sign,Verify). Let

Leq := {(c1, c2, `) : ∃m, r1, r2 s.t. c1 = Ekdm(pkkdm,m; r1) and c2 = Ecca(pkcca,m, `; r2)}.

Let P := (CRSGen,P,V) be an NIZK proof system for Leq. Note that there maybe be common
system parameters that are used to define Ekdm,Ecca, and P, and these are input to all associated
algorithms.

The encryption scheme E comprises of the following three algorithms.

EncKeyGen():

1. Run EncKeyGenkdm() and EncKeyGencca() to obtain key pairs (pkkdm, skkdm) and
(pk cca, sk cca), respectively.

7

2. Run CRSGen() to generate the CRS C of the NIZK proof system P.

The public key is pk := (pkkdm, pk cca,C). The secret key is sk := skkdm.

E(pk ,m, `):

1. Let ckdm := Ekdm(pkkdm,m; rkdm).

2. Run SignKeyGen() to generate key pair (VK ots,SK ots).

3. Let ccca := Ecca(pk cca,m, `‖VK ots; rcca).

4. Let p be the NIZK proof (using P) for (ckdm, ccca, `‖VK ots) ∈ Leq.

5. Let c′ := ckdm‖ccca‖p and let s := SignSK ots
(c′).

Then E(pk ,m, `) := ckdm‖ccca‖p‖VK ots‖s.

D(sk , c, `):

1. Parse c as ckdm‖ccca‖p‖VK ots‖s. Output reject if the ciphertext is not of the right
format.

2. If VerifyVK ots
(ckdm‖ccca‖p, s) = reject or V(C, (ckdm, ccca, `‖VK ots), p) = reject, then

output reject. Otherwise, output Dkdm(sk , ckdm).

The (perfect) correctness of the public key encryption scheme E trivially follows from the
(perfect) correctness of the scheme Ekdm, (perfect) completeness of the proof system P, and the
(perfect) correctness of the signature scheme S.

3.2 Proof of security

Theorem 1 Let Ekdm be a KDM-CPA secure scheme with respect to the set of functions C. Let
Ecca be a CCA2 secure scheme, S a strong one-time signature scheme, and P an NIZK proof
system for Leq. Then E, as constructed above, is a KDM-CCA2 secure scheme with respect to C.

Proof. The proof is through a sequence of games. We first present a schematic description of
the sequence of games used to prove that E is KDM-CCA2 secure. The underlined parts indicate
what has changed in each game.

Game Process encryption query Process decryption query justification
0 encrypt (m,m); real p decrypt ckdm

1 encrypt (m,m); real p decrypt ccca soundness for P
2 encrypt (m,m); fake p decrypt ccca ZK for P
3 encrypt (m,m); fake p decrypt ccca; use special rejection strong one-time sig. S
4 encrypt (m, d); fake p decrypt ccca; use special rejection CCA2 for Ecca

5 encrypt (m, d); fake p decrypt ccca; stop special rejection strong one-time sig. S
6 encrypt (d, d); fake p decrypt ccca KDM-CPA for Ekdm

7 encrypt (d, d); real p decrypt ccca ZK for P
8 encrypt (d, d); real p decrypt ckdm soundness for P

The sequence of games involving the challenger Ch and adversary A are more formally described
below. Let Wi be the event that A outputs 1 in Game i.

8

Game 0: This game is the actual attack game, i.e., Experiment 0 in Definition 1.

When responding to an encryption query, Ch encrypts the actual message m using both
encryption schemes. The label for Ecca additionally contains VK ots which Ch picks using
SignKeyGen(). Ch gives a real proof p that both encryptions contain the same message. It
produces the signature s using SK ots.

More formally, Ch computes ckdm := Ekdm(pkkdm,m; rkdm), runs SignKeyGen() to gener-
ate key pair (VK ots,SK ots), computes ccca := Ecca(pk cca,m, `‖VK ots; rcca) and real proof p

that (ckdm, ccca, `‖VK ots) ∈ Leq using witness (m, rkdm, rcca). Ch then uses SK ots to sign
ckdm‖ccca‖p.

When responding to a decryption query, Ch checks the proof and signature, and decrypts
using secret key skkdm.

Game 1: This game is exactly like Game 0, except that when responding to a decryption query,
Ch decrypts using secret key sk cca instead of skkdm.

More formally, Ch checks the proof and signature but runs D(skcca, ccca, `‖VK ots) to decrypt
the message.

It follows from the soundness of the proof system P that A cannot distinguish Game 1 from Game
0 except with negligible probability. Hence

∣∣Pr[W1]− Pr[W0]
∣∣ is negligible.

Game 2: This game is exactly like Game 1, except that when responding to an encryption query,
Ch gives a simulated proof p (using the trapdoor of the proof system) instead of a real proof.

More formally, Ch computes ckdm := Ekdm(pkkdm,m; rkdm), runs SignKeyGen() to generate
key pair (VK ots,SK ots), computes ccca := Ecca(pk cca,m, `‖VK ots; rcca), but computes a sim-
ulated proof p that (ckdm, ccca, `‖VK ots) ∈ Leq. In particular, it does not use the witness
(m, rkdm, rcca) to generate p but instead uses the trapdoor (t) of the NIZK proof system. Ch
then uses SK ots to sign ckdm‖ccca‖p.

It follows from the zero-knowledge property of P that A cannot distinguish Game 2 from Game 1
except with negligible probability. Hence

∣∣Pr[W2]− Pr[W1]
∣∣ is negligible.

Game 3: This game is exactly like Game 2, except that when responding to a decryption query of
the form (i, c, `) from A such that c = ckdm‖ccca‖p‖VK ots‖s, Ch first checks if there exists a
target tuple of the form (i, c∗, `), with c∗ = c∗kdm‖ccca‖p∗‖VK ots‖s∗ for some c∗kdm, p

∗ and s∗.
If this is the case, then let c∗ be the first such response by Ch. Now if c∗ 6= c, then Ch rejects
the encryption query. We call this the special rejection rule.

It follows from the strong one-time security of the signature scheme S that Ch rejects via the
special rejection rule only with negligible probability and hence A cannot distinguish Game 3 from
Game 2 except with negligible probability. Hence

∣∣Pr[W3]− Pr[W2]
∣∣ is negligible.

Now, note that if (i, c, `), with c = ckdm‖ccca‖p‖VK ots‖s, does indeed match a target tuple
of the form (i, c∗, `), with c∗ = c∗kdm‖ccca‖p∗‖VK ots‖s∗, then either c∗ = c, in which case Ch does
not decrypt the query as it is a target tuple, or Ch rejects the encryption query by the special
rejection rule. Hence, either way Ch never decrypts a ciphertext (ccca) that was contained in
a target tuple using skcca. We can now make use of the CCA2 security of Ecca in the hybrid
argument as shown below.

9

Game 4: This game is exactly like Game 3, except that when responding to an encryption query,
Ch encrypts the dummy message d using Ecca but still encrypts the actual message m using
Ekdm.

More formally, Ch computes ckdm := Ekdm(pkkdm,m; rkdm), runs SignKeyGen() to generate key
pair (VK ots,SK ots), computes ccca := Ecca(pk cca, d, `‖VK ots; rcca), and computes a simulated
proof p that (ckdm, ccca, `‖VK ots) ∈ Leq using the trapdoor (t) of the NIZK proof system. Ch
then uses SK ots to sign ckdm‖ccca‖p.

It follows from the CCA2 security of Ecca that A cannot distinguish Game 4 from Game 3 except
with negligible probability. Hence

∣∣Pr[W4]− Pr[W3]
∣∣ is negligible.

Game 5: This game is exactly like Game 4, except that when responding to a decryption query,
Ch no longer follows the special rejection rule that was defined in Game 3.

It follows from the strong one-time security of the signature scheme S, that A cannot distinguish
Game 5 from Game 4 except with negligible probability. Hence

∣∣Pr[W5]− Pr[W4]
∣∣ is negligible.

Game 6: This game is exactly like Game 5, except that when responding to an encryption query,
Ch encrypts the dummy message d using both encryption schemes.

More formally, Ch computes ckdm := Ekdm(pkkdm, d; rkdm), runs SignKeyGen() to generate key
pair (VK ots,SK ots), computes ccca := Ecca(pk cca, d, `‖VK ots; rcca), and computes a simulated
proof p that (ckdm, ccca, `‖VK ots) ∈ Leq using the trapdoor (t) of the NIZK proof system. Ch
then uses SK ots to sign ckdm‖ccca‖p.

It follows from the KDM-CPA security of Ekdm that A cannot distinguish Game 6 from Game 5
except with negligible probability. Hence

∣∣Pr[W6]− Pr[W5]
∣∣ is negligible.

Game 7: This game is exactly like Game 6, except that when responding to an encryption query,
Ch gives a real proof p that both encryptions contain the same message.

More formally, Ch computes ckdm := Ekdm(pkkdm, d; rkdm), runs SignKeyGen() to gener-
ate key pair (VK ots,SK ots), computes ccca := Ecca(pk cca, d, `‖VK ots; rcca) and real proof p

that (ckdm, ccca, `‖VK ots) ∈ Leq using witness (d, rkdm, rcca). Ch then uses SK ots to sign
ckdm‖ccca‖p.

It follows from the zero-knowledge property of P that A cannot distinguish Game 7 from Game 6
except with negligible probability. Hence

∣∣Pr[W7]− Pr[W6]
∣∣ is negligible.

Game 8: This game is exactly like Game 7, except that when responding to a decryption query,
Ch decrypts using secret key skkdm instead of sk cca.

More formally, Ch checks the proof and signature and runs D(skkdm, ckdm) to decrypt the
message.

It follows from the soundness of the proof system P that A cannot distinguish Game 8 from Game
7 except with negligible probability. Hence

∣∣Pr[W8]−Pr[W7]
∣∣ is negligible. Game 8 is Experiment 1

in Definition 1.
Combining the different games, we get that

∣∣Pr[W8]− Pr[W0]
∣∣ is negligible, which proves The-

orem 1. �

10

Note that we used the computational soundness property of the proof system P only in Games
1 and 8 and in both these games, Ch only gave real proofs for true statements. Hence “plain”
soundness of P is sufficient and we do not require the proof system to be simulation sound ([Sah99]).
In the definition of KDM-CCA2 security, one cannot reduce the attack game to a single encryption
query and a single public key. Therefore, one-time zero-knowledge (see remark after Definition 2)
would not be sufficient for our proof (one-time zero-knowledge does not imply multi-proof zero-
knowledge). However, note that CCA2 security is sufficient, as the “single instance” definition
implies the “multi-instance” definition (see remark after Definition 1).

4 Specific number-theoretic instantiation of a KDM-CCA2 secure
scheme

In this section, we give specific efficient instantiations of the building blocks used to construct the
generic scheme presented in §3. We introduce notation and the number-theoretic assumptions in
§4.1. In §4.2, we describe the KDM-CPA scheme of Boneh et al. [BHHO08], while in §4.3, we
describe the K-linear version of the Cramer-Shoup CCA2 encryption scheme that we need. In
§4.4 and §4.5, we describe the NIZK proof system used to prove equality of plaintexts. We use
the efficient strongly one-time signature scheme of Groth [Gro06] (which we describe in §4.6), to
complete our instantiation of a KDM-CCA2 secure scheme. In §4.7, we discuss the size of the
public key, system parameters, and ciphertext of our encryption scheme.

4.1 General notation and Assumptions

Let G be a group of prime order q. We shall write G using multiplicative notation. One naturally
views G as a vector space over Zq, where for x ∈ Zq and g ∈ G, the “scalar product” of x and g is
really the power gx. Because of this, we shall often employ concepts and terminology from linear
algebra.

For vectors ~g := (g1, . . . ,gR) ∈ GR and ~x := (x1, . . . , xR) ∈ ZR
q , define

〈~g, ~x 〉 := gx1
1 . · · · . gxR

R ∈ G.

When we write
∏K

i=1 ~gi ∈ GR for vectors ~gi ∈ GR, we mean the component wise product of each
of the R terms.

Unless otherwise specified, there is no a priori relation between g, ~g,gi and ~gi.

Definition 4 (K-linear assumption [Sha07, Kil07]) Let G be a group of prime order q. For
a constant K ≥ 1, the K-linear assumption in G is defined through the following two experiments
(0 and 1) between a challenger and an adversary A that outputs 0 or 1.

Experiment 0: The challenger picks K + 1 random generators of G: g1,g2, . . . ,gK+1,
picks random x1, . . . , xK ∈ Zq and sets xK+1 =

∑K
i=1 xi. A is given

(g1,g2, . . . ,gK+1,g
x1
1 ,gx2

2 , . . . ,gxK+1

K+1) as input.

Experiment 1: The challenger picks K + 1 random generators of G: g1,g2, . . . ,gK+1 and picks
random x1, x2, . . . , xK+1 ∈ Zq. A is given (g1,g2, . . . ,gK+1,g

x1
1 ,gx2

2 , . . . ,gxK+1

K+1) as input.

The K-linear assumption holds in G if for all efficient adversaries A,
∣∣Pr
[
W0

]
−Pr

[
W1

]∣∣ is negli-
gible, where Wi is the event that A outputs 1 in Experiment i.

11

Another way to understand the K-linear assumption is as follows. Let us define group vectors
~g1, . . . , ~gK ∈ GK+1:

~g1 := (g1, 1, 1, . . . , 1,gK+1), ~g2 := (1,g2, 1, . . . , 1,gK+1), . . . , ~gK := (1, 1, . . . , 1,gK ,gK+1).

Let T denote the subspace of GK+1 generated by ~g1, . . . , ~gK . The K-linear assumption says that
it is hard to distinguish random elements of T from random elements of GK+1. Note that the
standard Decisional Diffie-Hellman (DDH) assumption is the 1-linear assumption and the linear
assumption (introduced in [BBS04]) is the 2-linear assumption.

Pairings. Let G,Γ and GT be groups of prime order q. We shall use Roman letters to denote
elements in G and Greek letters to denote elements in Γ. A pairing is a map e : G× Γ→ GT that
satisfies the following properties:

1. e is bilinear, which means that for all a ∈ G and α ∈ Γ, the maps e(a, ·) : Γ → GT and
e(·, α) : G→ GT are linear maps;

2. e is non-degenerate, which means that its image is not {1};

3. e is efficiently computable.

4.2 KDM-CPA secure scheme based on the K-linear assumption

In this section, we describe the public key encryption scheme of Boneh et al. [BHHO08] based on
the K-linear assumption. Let N := d(K + 2) log2 qe. Ekdm = (EncKeyGenkdm,Ekdm,Dkdm) is as
described below. The message space of this scheme is the group G.

EncKeyGenkdm:

1. Pick random ~g1, . . . , ~gK ∈ GN .

2. Pick random ~s ∈ {0, 1}N .

3. Define hi := 〈~gi, ~s 〉 ∈ G for i = 1, . . . ,K.

4. Output the secret key skkdm := ~s and the public key pkkdm := (~g1, . . . , ~gK ,h1, . . . ,hK).

Ekdm(pkkdm,m):

1. Pick random r1, . . . , rK ∈ Zq.

2. Output the ciphertext

(~g,h) :=
(K∏

i=1

~gri
i , m ·

K∏
i=1

hri
i

)
∈ GN ×G.

Dkdm(skkdm, (~g,h)): Output

m :=
h
〈~g, ~s 〉

.

Note that the ith bit si of the secret key ~s is encoded for the purpose of encryption as gsi for
some random (but fixed) g ∈ G.

The key space (of encoded secret keys) is GN . Define a function f~t,b : GnN → G for fixed
~t ∈ ZnN

q and b ∈ G to be the map f~t,b(~u) := 〈 ~u,~t 〉 · b. Let C be the set of all functions f~t,b for

12

all values of ~t ∈ ZnN
q and b ∈ G. Ekdm is KDM-CPA secure with respect to the set of functions

C [BHHO08].
Note that [BHHO08] explicitly describes the above scheme in the case K = 1, and only briefly

mentions its generalization to K > 1 (the explicit description of which has been obtained from the
authors of [BHHO08] via personal communication).

4.3 CCA2 secure scheme based on the K-linear assumption

In this section, we describe a generalized version of the Cramer-Shoup encryption scheme based
on the K-linear assumption. This generalization was described in [HK07b] and [Sha07]. However,
given the K-linear decision problem, this scheme is essentially already implicit in [CS02] (based on
Theorems 2 and 3, along with Example 1 in §7.4, of the full length version of that paper). This
scheme is CCA2 secure and supports ciphertexts with labels. Ecca = (EncKeyGencca,Ecca,Dcca) is
as described below. The message space of this scheme is the group G, and the label space is {0, 1}∗.

EncKeyGencca:

1. Pick random f1, . . . , fK+1 ∈ G.

2. Pick random ~x, ~y, ~z ∈ ZK+1
q .

3. Define group vectors ~f1, . . . ,~fK ∈ GK+1:

~f1 := (f1, 1, 1, . . . , 1, fK+1),~f2 := (1, f2, 1, . . . , 1, fK+1), . . . ,~fK := (1, 1, . . . , 1, fK , fK+1).

4. Define group elements c1, . . . , cK , d1, . . . ,dK , e1, . . . , eK ∈ G:

ci := 〈~fi, ~x 〉, di := 〈~fi, ~y 〉, ei := 〈~fi, ~z 〉 (i = 1, . . . ,K).

5. Output the secret key sk cca := (~x, ~y, ~z) and the public key pk cca :=
(
{fj}K+1

j=1 , {ci}Ki=1,
{di}Ki=1, {ei}Ki=1

)
.

Ecca(pk cca,m, `):

1. Pick random w1, . . . , wK ∈ Zq.

2. Output the ciphertext

(~f ,a,b) :=
(K∏

i=1

~f wi
i , m ·

K∏
i=1

cwi
i ,

K∏
i=1

(diet
i)

wi

)
∈ GK+1 ×G×G,

where
t := H(~f ,a, `) ∈ Zq

and H is a collision resistant hash function.

Dcca(sk cca, (~f ,a,b), `):

1. Verify that
b = 〈~f , ~y + t~z 〉.

13

2. Output

m :=
~a

〈~f , ~x 〉
.

Note that the schemes in [CS02, Sha07, HK07b] do not explicitly support labels; however, the
proof of security immediately generalizes to allow this, provided one assumes (as we do) that H is
collision resistant.

4.4 NIZK proofs for satisfiable systems of linear equations over groups

In this section, we describe the NIZK proofs for proving that a system of linear equations over a
group is satisfiable. These proofs are derived from Groth and Sahai [GS08]. The paper [GS08]
deals with much more general systems of equations; for many applications, such as ours, we only
need linear equations. For completeness, and concreteness, we describe how the methods of [GS08]
apply to this setting. Our exposition is self contained, but brief.

Let G be a group of prime order q. A linear equation over G is an equation of the form

g0 =
W∏

j=1

gXj

j ,

where g0,g1, . . . ,gW ∈ G are constants and X1, . . . , XW are variables. An assignment to the vari-
ables is a tuple (x1, . . . , xW) ∈ ZW

q , and such an assignment satisfies the equation if g0 =
∏W

j=1 gxj

j .
A set S of linear equations over G is called satisfiable if there exists an assignment to the variables
that simultaneously satisfies each equation in S.

Let Llsat be the language of all satisfiable sets of linear equations over G. A witness for mem-
bership in Llsat is a satisfying assignment. Our goal is to construct an efficient NIZK proof system
for Llsat.

Our proof system for Llsat requires a pairing e : G×Γ→ GT, where Γ and GT are also groups of
order q. In addition, we need to make the L-linear assumption in Γ, for some constant L (typically,
L is a small constant like 1 or 2, depending on the assumption we make).

• The CRS generator works as follows:

1. Pick random γ1, . . . , γL+1 ∈ Γ.

2. Define group vectors ~γ1, . . . , ~γL ∈ ΓL+1:

~γ1 := (γ1, 1, . . . , 1, γL+1), ~γ2 := (1, γ2, . . . , 1, γL+1), . . . , ~γL := (1, 1, . . . , γL, γL+1).

3. Choose ~γ ∈ ΓL+1 at random.

4. The common reference string is (γ1, . . . , γL+1, ~γ).

• Given a set S of equations, along with a satisfying assignment (x1, . . . , xW), the prover works
as follows:

1. Commit to x1, . . . , xW by setting

~δj := ~γ xj

L∏
k=1

~γ
rjk

k (j = 1, . . . ,W),

where the rjk’s are randomly chosen elements of Zq.

14

2. The proof consists of the commitments ~δ1, . . . , ~δW , and, in addition, for each equation
g0 =

∏W
j=1 gXj

j in S, the proof contains L corresponding “proof elements” p1, . . . ,pL ∈ G,
which are computed as:

pk :=
W∏

j=1

grjk

j (k = 1, . . . , L).

• To verify such a proof, the verifier takes the commitments ~δ1, . . . , ~δW , and, for each equation
g0 =

∏W
j=1 gXj

j in S, takes the corresponding proof elements p1, . . . ,pL, and checks that

W∏
j=1

E(gj , ~δj) = E(g0, ~γ)
L∏

k=1

E(pk, ~γk). (1)

Here, E : G × ΓL+1 → GL+1
T sends (g, (α1, . . . , αL+1)) to (e(g, α1), . . . , e(g, αL+1)), which is

also a bilinear map.

The CRS contains 2(L+ 1) elements of Γ, and a proof consists of W (L+ 1) elements of Γ (for
the commitments) and |S|L elements of G (for the proof elements).

We now show that the above proof system has perfect completeness, (statistical) soundness,
and computational zero-knowledge.

Perfect completeness

To argue perfect completeness, using bilinearity, one checks by a simple calculation that for any
satisfying assignment (x1, . . . , xW), and for any choice of the rjk’s, equation (1) will always be
satisfied.

Soundness

A simple fact that will be useful in proving both the soundness and zero-knowledge property is the
following, which the reader can easily verify using bilinearity:

Lemma 1 If ~β1, . . . , ~βR ∈ ΓL+1 are linearly independent, then the map

(h1, . . . ,hR) 7→ E(h1, ~β1) · · ·E(hR, ~βR)

is an injective linear map from GR into GL+1
T .

To prove soundness, note that with overwhelming probability, the vectors ~γ,~γ1, . . . , ~γL form a
basis for ΓL+1. Suppose a proof contains commitments ~δ1, . . . , ~δW ∈ ΓL+1. Regardless of how these
commitments were actually computed, each ~δj can be expressed uniquely as ~δj = ~γ xj

∏L
k=1 ~γ

rjk

k for
some xj , rj1, . . . , rjL ∈ Zq. Now consider any particular equation g∗0 =

∏W
j=1 gXj

j , and corresponding
proof elements p∗1, . . . ,p

∗
L. Define g0 :=

∏W
j=1 gxj

j and pk :=
∏W

j=1 grjk

j for k = 1, . . . , L, using the
xj ’s and rjk’s determined as above by the commitments. On the one hand, by perfect completeness,
we have

W∏
j=1

E(gj , ~δj) = E(g0, ~γ)
L∏

k=1

E(pk, ~γk).

15

On the other hand, if the verification equation (1) holds for the given equation and proof elements,
then we also must have

W∏
j=1

E(gj , ~δj) = E(g∗0, ~γ)
L∏

k=1

E(p∗k, ~γk).

Thus, we have

E(g0, ~γ)
L∏

k=1

E(pk, ~γk) = E(g∗0, ~γ)
L∏

k=1

E(p∗k, ~γk).

Applying Lemma 1 to the linearly independent vectors ~γ,~γ1, . . . , ~γL, we conclude that g0 = g∗0
(and in fact, pk = p∗k for k = 1, . . . , L). It follows that if the proof verifies, then the assignment
x1, . . . , xW determined by the commitments simultaneously satisfies all the given equations.

Zero Knowledge

The simulator generates a “fake CRS” as follows: it generates ~γ1, . . . , ~γL as usual, but it computes
~γ as

∏L
k=1 ~γ

sj

j for random s1, . . . , sL ∈ Zq. The trapdoor for the fake CRS is (s1, . . . , sL).
In a fake CRS, ~γ1, . . . , ~γL are linearly independent (with overwhelming probability), while ~γ is

a random element of the subspace V generated by ~γ1, . . . , ~γL.
To simulate a proof for a satisfiable set S of linear equations, the simulator starts by setting

~δj :=
L∏

k=1

~γ
rjk

k (j = 1, . . . ,W)

for random rjk ∈ Zq for j = 1, . . . ,W and k = 1, . . . , L. For each equation g0 =
∏W

j=1 gXj

j in S, the
simulator generates proof elements p1, . . . ,pL as follows:

pk := g−sk
0

W∏
j=1

grjk

j (k = 1, . . . , L).

The reader may easily verify, using the bilinearity property, that the verification equation (1) is
satisfied.

We now argue that fake proofs are computationally indistinguishable from real proofs. To
this end, let us introduce a hybrid prover, which works exactly like a real prover, except that it
uses a fake CRS. Such hybrid proofs are computationally indistinguishable from real proofs, under
the L-linear assumption for Γ. Moreover, hybrid proofs are statistically indistinguishable from fake
proofs. To see this, observe that with overwhelming probability, ~γ1, . . . , ~γL are linearly independent.
Assuming this is true, in both the hybrid and fake proofs, the distribution of the commitments are
the same (uniformly and independently distributed over the subspace V). Additionally, in both
types of proofs, the proof elements p1, . . . ,pL for a given equation are uniquely determined in the
same way by the equation, the commitments, and the CRS; indeed, both types of provers generate
proof elements that satisfy the verification equation (1); moreover, applying Lemma 1 to the vectors
~γ1, . . . , ~γL, we see that for a fixed equation, commitments, and CRS, there exist unique p1, . . . ,pL

that satisfy (1).

4.5 NIZK proof for proving equality of plaintext

Given a ciphertext of Ekdm (from §4.2)

(~g,h) ∈ GN ×G

16

and a ciphertext of Ecca (from §4.3)

(~f ,a,b) ∈ GK+1 ×G×G

with respect to a label ` ∈ {0, 1}∗, we want to prove that they are valid encryptions of the same
message. This is done by proving that there exist

r1, . . . , rK , w1, . . . , wK ∈ Zq

such that

~g =
K∏

i=1

~gri
i ,

~f =
K∏

i=1

~f wi
i , b =

K∏
i=1

(diet
i)

wi , h/a =
K∏

i=1

hri
i /

K∏
i=1

cwi
i ,

where
t := H(~f ,a, `).

This translates into N+(K+1)+1+1 = N+K+3 equations in 2K variables. Using the proof
system above, this means we need (2K)(L+ 1) elements of Γ for commitments, and (N +K + 3)L
elements of G for the proofs.

4.6 Strongly secure one-time signature scheme

We now describe the strongly secure one-time signature scheme S from Groth [Gro06]. It makes
use of a group G of prime order q with generator g, and a hash function H : {0, 1}∗ → Zq. The
scheme is secure assuming the hardness of computing discrete logs in G (which follows from the
K-linear assumption) and assuming H is collision resistant.

SignKeyGen:

1. Pick x, y ∈ Z∗q and set f = gx and h = gy.

2. Pick r, s ∈ Zq and set c = f rhs.

3. The verification key is VK = (f ,h, c) and the secret key SK = (VK , x, y, r, s).

SignSK (m): To sign a message m ∈ {0, 1}∗, pick t at random from Zq. The signature is s =
(t, (x(r − t) + ys−H(m))/y).

VerifyVK (m, s): To verify the signature s = (t, w), check that c = gH(m)f thw.

4.7 Size of public key, system parameters and ciphertext

Using the K-linear assumption for G and the L-linear assumption for Γ, the size of the public key,
system parameters and ciphertext are as follows, where N := d(K + 2) log2 qe.

The system parameters consists of the CRS which comprises 2(L + 1) elements of Γ, the de-
scriptions of G,Γ,GT, e and the collision resistant hash function H for Ecca and S.

The public key of E consists of (N + 1)K elements of G for the public key pkkdm and 4K + 1
elements of G for the public key pk cca, for a total of (N + 5)K + 1 elements of G.

The two ciphertexts (ckdm and ccca) require (N + 1) and (K + 3) elements of G, respectively,
giving a total of N +K + 4 elements of G. To prove equality of plaintexts, we require (2K)(L+ 1)
elements of Γ for commitments, and (N + K + 3)L elements of G for the proofs. Finally, to sign
the resulting ciphertexts and proofs using the one-time signature scheme S, we require 3 elements
of G for the verification key VK of S and 2 elements of Zq for the signature.

17

Note that we can make the public key shorter, by making pk cca as part of the system parameters;
indeed, since the secret key sk cca is not needed (other than in the proof of security), one can simply
generate all of the group elements appearing in pk cca at random (yielding a distribution that is
statistically close to the real distribution on public keys).

We emphasize that, typically, one would set K = 1, 2 and L = 1, 2, depending on the groups
G and Γ. For example, at one extreme, if G = Γ, then one could set K = L = 2; at the other
extreme, if G 6= Γ, and there is no (known) efficiently computable homomorphism from G to Γ or
vice versa, then one could set K = L = 1.

References

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-
user setting: Security proofs and improvements. In EUROCRYPT 2000, pages 259–274,
2000.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In CRYPTO
2004, pages 41–55, 2004.

[BDU08] Michael Backes, Markus Dürmuth, and Dominique Unruh. OAEP is secure under key-
dependent messages. In ASIACRYPT 2008, December 2008.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its
applications (extended abstract). In STOC 1988, pages 103–112, 1988.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure
encryption from Decision Diffie-Hellman. In CRYPTO 2008, pages 108–125, 2008.

[Ble98] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the rsa
encryption standard pkcs #1. In CRYPTO 1998, pages 1–12, 1998.

[BPS07] Michael Backes, Birgit Pfitzmann, and Andre Scedrov. Key-dependent message security
under active attacks - BRSIM/UC-soundness of symbolic encryption with key cycles.
In CSF, pages 112–124, 2007.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In EUROCRYPT
1994, pages 92–111, 1994.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security
in the presence of key-dependent messages. In Selected Areas in Cryptography, pages
62–75, 2002.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In EUROCRYPT 2001, pages
93–118, 2001.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO 1998, pages 13–25, 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for chosen
ciphertext secure public key encryption. In EUROCRYPT 2002, 2002. Full length
version at http://eprint.iacr.org/2001/085.

18

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In CRYPTO 2003, pages 126–144, 2003.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In STOC 1991, pages 542–552, 1991.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In FOCS 1990, pages
308–317, 1990.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In STOC 1982, pages 365–377, 1982.

[GOS06] Jens Groth, Rafail Ostrovksy, and Amit Sahai. Perfect non-interactive zero knowledge
for NP. In EUROCRYPT 2006, pages 339–358, 2006.

[Gro06] Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In ASIACRYPT 2006, pages 444–459, 2006.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In EUROCRYPT 2008, pages 415–432, 2008.

[HH08] Iftach Haitner and Thomas Holenstein. On the (im)possibility of key dependent encryp-
tion. Cryptology ePrint Archive, Report 2008/164, 2008. http://eprint.iacr.org/.

[HK07a] Shai Halevi and Hugo Krawczyk. Security under key-dependent inputs. In CCS ’07:
Proceedings of the 14th ACM conference on Computer and communications security,
pages 466–475, New York, NY, USA, 2007. ACM.

[HK07b] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encap-
sulation. In CRYPTO 2007, pages 553–571, 2007.

[HU08] Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security in
the standard model. In EUROCRYPT 2008, pages 108–126, 2008.

[IBM08] IBM. IBM CCA Basic Services Reference and Guide for the IBM 4758 PCI and IBM
4764 PCI-X Cryptographic Coprocessors: Releases 2.53, 2.54, 3.20, 3.23, 3.24, 3.25,
3.27, and 3.30, 2008.

[Kil06] Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC 2006, pages
581–600, 2006.

[Kil07] Eike Kiltz. Chosen-ciphertext secure key encapsulation based on hashed gap decisional
Diffie-Hellman. In PKC 2007, pages 282–297, 2007.

[LL93] Chae Hoon Lim and Pil Joong Lee. Another method for attaining security against
adaptively chosen ciphertext attacks. In CRYPTO 1993, pages 420–434, 1993.

[MRY04] Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability:
Definitions, constructions, and applications (extended abstract). In TCC 2004, pages
171–190, 2004.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC 1990, pages 427–437, 1990.

19

[RS91] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In CRYPTO 1991, pages 433–444, 1991.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap
problem. In EUROCRYPT 2006, pages 373–390, 2006.

[RSA04] RSA Laboratories. PKCS #11 v2.20: Cryptographic Token Interface Standard, 2004.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In FOCS 1999, pages 543–553, 1999.

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO 2001, pages 566–598,
2001.

[SG98] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. In EUROCRYPT 1998, pages 1–16, 1998.

[Sha07] Hovav Shacham. A Cramer-Shoup encryption scheme from the linear assumption and
from progressively weaker linear variants. Cryptology ePrint Archive, Report 2007/074,
2007. http://eprint.iacr.org/.

[Sho01] Victor Shoup. A proposal for an ISO standard for public key encryption (version 2.1).
Available on http://shoup.net/papers/, 2001.

A Appendix: Simulation Soundness

In our generic construction of a KDM-CCA2 encryption scheme, we combined a KDM-CPA secure
encryption scheme with a CCA2 secure encryption scheme, along with an NIZK proof of equality
of plaintexts.

In this section, we first briefly observe that instead of using a CCA2 secure encryption scheme,
one could instead use just a semantically secure encryption scheme, provided the NIZK proof system
is simulation sound. Informally, simulation soundness means that an adversary cannot generate a
proof of a false statement, even after seeing several simulated proofs of false statements. Formally,
the definition is as follows.

Definition 5 (Simulation Soundness [SCO+01]) An NIZK proof provides simulation sound-
ness if an adversary cannot prove a false statement even after seeing simulated proofs for arbitrary
statements.

Let S := (S1, S2) be a simulator running in polynomial time. Consider the following game:

1. S1() is run to generate CRS C and trapdoor t.

2. A is given C as well as oracle access to S2(C, t, ·).

3. A outputs (x, p).

Let Q be the set of all simulation query and response pairs (xi, pi) made by A to S2(C, t, ·). We
say that A wins the game if (x, p) /∈ Q and x /∈ L and V(C, x, p) = 1. Let W be the event that A
wins the game. Then for all efficient adversaries A, we have Pr[W] is negligible.

20

A weaker notion of simulation soundness, called one-time simulation soundness [Sah99], allows
only a single query to the oracle S2(C, t, ·). However, for our application to KDM-CCA2 secure
encryption, this weaker notion of one-time simulation soundness is not sufficient, since in the
definition of KDM-CCA2 security, one cannot reduce the attack game to a single encryption query
and a single public key.

Designing efficient simulation sound NIZK proof systems is more challenging than designing
ordinary NIZK proof systems, and given the state of the art in designing CCA2 secure encryption
schemes, the construction we presented using NIZK with CCA2 secure encryption seems preferable
from a practical point of view. Moreover, we would like to stress the importance of the role that
the label played in making the construction quite straightforward.

The second goal of this section is to briefly sketch how CCA2 secure encryption can be used to
easily construct efficient simulation sound NIZK proof systems for the language Llsat of satisfiable
systems of linear equations over a group (see §4.4). In fact, since it is no more difficult (either con-
ceptually or practically), we construct a proof system for systems of equations that allow nonlinear
as well as linear relations. The construction can also be applied to even more general systems of
equations, using the techniques of Groth and Sahai [GS08].

Of course, (one-time) simulation sound NIZK proof systems were initially introduced to con-
struct CCA2 secure encryption schemes from general assumptions (see [Sah99]). However, if we
use an appropriate CCA2 secure scheme that supports labels, such as the one discussed in §4.3, we
get a particularly simple and efficient simulation sound NIZK proof system for Llsat.

Finally, we apply the ideas used in the design of the above simulation sound NIZK proof system
to obtain a simple and efficient signature based on the K-linear assumption.

A.1 Using simulation sound NIZK to obtain KDM-CCA2

We require the following building blocks. Let Ekdm be a public key encryption scheme that is
KDM-CPA secure with respect to the set of functions C. Let Ecpa be a regular CPA secure (i.e.,
semantically secure) encryption scheme. Let Leq be the language consisting of the set of all pairs of
ciphertexts that encrypt the same message using Ekdm and Ecpa. Let P be an NIZK proof system
with simulation soundness for Leq.

The public key for the KDM-CCA2 scheme E consists of a public key for Ekdm, a public key for
Ecpa, and a CRS for P. The encryption algorithm for E works as follows: a message m is encrypted
twice, once using Ekdm and once using Ecpa; let ckdm and ccpa be the resulting ciphertexts; then the
encryption algorithm outputs (ckdm, ccpa, p), where p is a proof that ckdm and ccpa encrypt the same
plaintext. The decryption algorithm for E decrypts a ciphertext (ckdm, ccpa, p) as follows: it first
verifies the proof p; if this fails, the decryption algorithm outputs reject; otherwise, it decrypts
ckdm and outputs the resulting message.

Here is a schematic description of the sequence of games used to prove that E is KDM-CCA2
secure:

Game Process encryption query Process decryption query justification
0 encrypt (m,m); real p decrypt ckdm

1 encrypt (m,m); fake p decrypt ckdm ZK for P
2 encrypt (m, d); fake p decrypt ckdm CPA for Ecpa

3 encrypt (m, d); fake p decrypt ccpa sim. sound. for P
4 encrypt (d, d); fake p decrypt ccpa KDM-CPA for Ekdm

5 encrypt (d, d); real p decrypt ccpa ZK for P
6 encrypt (d, d); real p decrypt ckdm soundness for P

21

The scheme E does not support labels. To achieve this, one would need to use an extended
notion of simulation sound NIZKs that also support labels.

A.2 Simulation sound NIZKs for satisfiable systems of polynomial equations
over a group

In §4.4, we discussed a simple and efficient NIZK proof system for the language Llsat of satisfiable
systems of linear equations over a group G of prime order q. Using this proof system as a “black
box,” we show how to build a simulation sound NIZK for proving the satisfiability of systems of
linear equations over a group. Since it is no more difficult, in addition to linear equations, we also
allow nonlinear equations. Our system makes use of the CCA2 secure encryption scheme (with
labels) discussed in §4.3, which requires the K-linear assumption for G, along with a collision-
resistant hash function (into Zq). We will also need a strongly secure one-time signature scheme,
which can also be realized under the same assumptions (see §4.6 — in fact, we need just weaker DL
assumption for G). In addition, we will explicitly make use of the CDH assumption for G, which
is also implied by the K-linear assumption for G.

Before presenting our main construction below, in §A.2.3, we begin with some preliminary
constructions, in §A.2.1 and §A.2.2.

A.2.1 Non-linear equations

Let Lpsat be the language consisting of all satisfiable sets of equations in variables X1, . . . , XW (taking
values in Zq), where each equation is either a linear equation over G, which is of the form

g0 =
W∏

j=1

gXj

j ,

where the gj ’s are constants belonging to the group G, or a nonlinear equation of the form

XiXj = Xk.

Of course, using such nonlinear equations, one can, in effect, build up arbitrary polynomial equa-
tions in the variables.

We want to be build an NIZK proof system for Lpsat. This is easily done as follows, using an
NIZK proof system Plsat for Llsat as a “black box.” In addition to the CRS used by Plsat, we need
an instance of the K-linear decision problem. This consists of random f1, . . . , fK+1 ∈ G, along with
random ~f ∈ GK+1.

Define group vectors ~f1, . . . ,~fK ∈ GK+1:

~f1 := (f1, 1, 1, . . . , 1, fK+1),~f2 := (1, f2, 1, . . . , 1, fK+1), . . . ,~fK := (1, 1, . . . , 1, fK , fK+1).

Our prover works as follows. For each nonlinear equation of the form XY = Z, we do the
following. Suppose that the given satisfying assignment assigns (x, y, z) to (X, Y, Z). The proof
includes a “commitment” to x:

~c := ~f x
K∏

i=1

~f x′i
i ∈ GK+1,

where x′1, . . . , x
′
K are random elements of Zq. Setting z′i := x′iy for i = 1, . . . ,K, the prover also

needs to include a proof that

~cy = ~f z
K∏

i=1

~f z′i
i . (2)

22

Thus, for each such equation, the prover essentially needs to introduce K + 1 new constants
in G (for ~c), 2K new variables (representing the values x′1, . . . , x

′
K and z′1, . . . , z

′
K) and K + 1 new

linear equations over G (for proving (2)); it then invoke the prover for Plsat on the new system of
linear equations, using the given assignments to the original variables, and the new assignments to
the new variables.

Completeness of the scheme is clear.
Soundness of the scheme follows easily from the fact that ~f ,~f1, . . . ,~fK are linearly independent

(with overwhelming probability), and the soundness of Plsat.
The ZK simulator for the scheme simply replaces each commitment c above by a random

element of GK+1, and then runs the ZK simulator for Plsat. The ZK property follows easily from
the K-linear assumption for G and the ZK property for Plsat.

A.2.2 OR proofs

Suppose we have a proof system as above for Ppsat for the language Lpsat of satisfiable systems of
linear and nonlinear equations over G, as discussed in §A.2.1.

Define Lorsat to be the language consisting of pairs (S0, S1), where either S0 ∈ Lpsat or S1 ∈
Lpsat. A witness for (S0, S1) is an assignment to the variables that either satisfies S0 or satisfies S1.

There is a trivial reduction from Lorsat to Lpsat. Namely, given a pair (S0, S1) of equations
involving variables X1, . . . , XW , we introduce 2W + 1 new variables X0 and Xbj for b = 0, 1 and
j = 1, . . . ,W , and generate a set S of equations in these new variables, as follows:

• S includes the nonlinear equation X2
0 = X0 (which forces X0 to be either 0 or 1);

• for each linear equation g0 =
∏W

j=1 gXj

j in S0, we add the linear equation g1−X0
0 =

∏W
j=1 gX0j

j

to S;

• for each nonlinear equation XiXj = Xk in S0, we add the nonlinear equation X0iX0j = X0k to S;

• for each linear equation g0 =
∏W

j=1 gXj

j in S1, we add the linear equation gX0
0 =

∏W
j=1 gX1j

j to
S;

• for each nonlinear equation XiXj = Xk in S1, we add the nonlinear equation X1iX1j = X1k to S.

The reader may verify that (S0, S1) ∈ Lorsat iff S ∈ Lpsat. Moreover, the reduction is “witness
preserving,” in the sense that a witness for an element (S0, S1) of Lorsat is easily transformed into
a witness for the corresponding element S of Lpsat. Indeed, for b = 0, 1, given an assignment
(x1, . . . , xW) to the variables X1, . . . , XW that satisfies Sb, we assign the value b to X0, for j =
1, . . . ,W , we assign xj to Xbj and 0 to X(1−b)j , to obtain a satisfying assignment for S.

The proof system for Lorsat simply transforms (S0, S1) ∈ Lorsat to S ∈ Lpsat, as above, and then
proves that S ∈ Lpsat.

The reductions in this section and §A.2.1 are very much like similar observations made by Groth
[Gro06]. Moreover, if we trace through the reductions in this section and §A.2.1, we see that if
a given instance (S0, S1) of Lorsat involves W variables, Ql linear equations, and Qnl nonlinear
equations, the proof system for Llsat has to deal with a system of equations involving 2W + 1 +
2K(Qnl + 1) variables and Ql + (K + 1)(Qnl + 1) linear equations. The new CRS requires just
2K + 2 elements of G, in addition to the CRS for the proof system for Llsat.

23

A.2.3 Simulation sound NIZK for Lpsat

Our goal is to construct an NIZK proof system P for Lpsat that is simulation sound.
Let Porsat be a proof system for the language Lorsat, as discussed in §A.2.2.
We make use of the encryption scheme Ecca described in §4.3. This scheme is CCA2 secure

under the K-linear assumption for G (and a collision resistance assumption for a hash function).
In addition, the scheme has a very simple algebraic structure which we can use to our advantage.

Let S a strong one-time signature scheme, which can be efficiently realized under the same
assumptions as in the previous paragraph.

The CRS for P consists of the CRS for Porsat, together with a public key for Ecca, along with
three group elements g,h,u ∈ G. The CRS generator chooses g and u at random, and computes
h by choosing x ∈ Zq at random and setting h := gx.

At a high level, the proof system works as follows.
Given S ∈ Llsat, together with a satisfying assignment for S, the prover for P does the following:

1. generates a signing key SK and corresponding verification key VK for S;

2. encrypts 1 with label VK , using the public key for Ecca in the CRS, yielding a ciphertext c;

3. generates a proof p that either

(a) for some x ∈ Zq, h = gx and c is an encryption of ux with label VK ; or,

(b) S is satisfiable;

4. computes a signature s under SK of (S, p);

5. outputs the proof (c,VK , p, s).

Note that using the particular scheme Ecca, the condition specified in Step 3(a) is equivalent to
the condition that there exist x,w1, . . . , wK ∈ Zq such that

h = gx, ~f =
K∏

i=1

~f wi
i , b =

K∏
i=1

(diet
i)

wi , a = ux
K∏

i=1

cwi
i ,

where the notation for the public key and ciphertext are as in §4.3, and t := H(~f ,a,VK). This is
an equivalent statement about the satisfiability of K + 4 equations in K + 1 variables.

Note that to bind a label to a proof, the prover could sign the label, along with S and p.
To verify such a proof, the prover verifies the proof p and signature s.
The ZK simulator works as follows. The fake CRS for P is generated in exactly the same way

as the real CRS, but the exponent x ∈ Zq is the trapdoor. To generate a fake proof, the fake prover
for P works like the real prover for P, except that in Step 2, it encrypts ux, and in Step 3, it
generates a proof using the witness for the condition in Step 3(a), rather than Step 3(b).

We now argue briefly that this is a simulation sound NIZK proof system for Lpsat.
Completeness. This is clear.
Soundness. This follows from the soundness of Porsat and the CDH assumption in G: if an

adversary could prove a false statement, then he must be able to encrypt a solution ux to the
instance (g,h,u) of the CDH problem. Therefore, by setting up a CRS with known decryption
key, we can use this adversary to solve the CDH problem.

Zero Knowledge. Consider a hybrid prover that works like the real prover, but encrypts
ux instead of 1. By the semantic security of the encryption scheme, the two are computation-
ally indistinguishable. The only difference between the hybrid and fake provers is the choice of

24

witness used to prove the statement in Step 3; as a general rule, zero knowledge implies witness
indistinguishability, and so these two provers are also computationally indistinguishable.

Simulation soundness. The attack game here works as follows. The adversary A obtains
fake proofs for statements of his choosing. Let Q denote the set of all tuples (S, c,VK , p, s), where
S was a statement submitted, and (c,VK , p, s) was the corresponding fake proof. To win the game,
A must come up with S∗ /∈ Lpsat, together with a valid proof (c∗,VK ∗, p∗, s∗), such that the tuple
(S∗, c∗,VK ∗, p∗, s∗) does not belong to Q. Let W be the event that A wins.

We want to show Pr[W] is negligible. To this end, let W0 be the event that A wins by producing
a tuple of the form (S∗, c∗,VK ∗, p∗, s∗), where (c∗,VK ∗) = (c,VK) for some (S, c,VK , p, s) ∈ Q,
and let W1 be the event that he wins with a tuple that is not of this form. Clearly, Pr[W] =
Pr[W0] + Pr[W1], and the assumption that S is a strongly secure one-time signature scheme implies
that Pr[W0] is negligible.

To show that Pr[W1] is negligible, we define a sequence of games.

Game 1: The challenger generates the CRS as usual, but retains the decryption key for Ecca,
in addition to the usual trapdoor x. The challenger generates fake proofs as requested by
the adversary, using the value x to encrypt ux. This process defines the set Q as above.
Finally, when the adversary outputs a tuple (S∗, c∗,VK ∗, p∗, s∗), the challenger checks if
(c∗,VK ∗) = (c,VK) for some (S, c,VK , p, s) ∈ Q; if so, the challenger outputs bad; otherwise,
using the decryption key, the challenger decrypts c∗ with label VK ∗, and, using the value
x, checks whether the resulting plaintext is equal to ux; if so, the challenger outputs good,
and otherwise outputs bad. Let W ′1 be the event that the challenger outputs good. By the
soundness property of Porsat, we have Pr[W1] is at most Pr[W ′1] plus a negligible amount.

Game 2: This is the same as Game 1, except that now the challenger uses the ZK simulator for
Porsat to generate fake proofs p. Let W ′2 be the event that the challenger outputs good in this
game. By the ZK property for Porsat, |Pr[W ′1]− Pr[W ′2]| is negligible.

Game 3: This is the same as Game 2, except that now the challenger encrypts 1 instead of ux.
By the CCA2-security of Ecca, |Pr[W ′2] − Pr[W ′3]| is negligible. Moreover, under the CDH
assumption, Pr[W ′3] is also negligible.

The above argument shows that Pr[W1], and hence Pr[W], is negligible, which proves simulation
soundness.

A.3 A signature scheme based on the K-linear assumption

The simulation sound NIZK proof system described in §A.2.3 suggests a simple signature scheme
based on the K-linear assumption.

Let Plsat be a proof system for the language Llsat, as discussed in §4.4. Let Ecca be the CCA2
encryptions scheme described in §4.3.

The key generation algorithm for the signature scheme runs as follows. We generate a CRS C

for Plsat, a public key pk for Ecca. We also choose g,u ∈ G and x ∈ Zq at random, and compute
h := gx. The public key is (C, pk ,g,h,u), and the secret key consists of x (along with the public
key).

To sign a message m ∈ {0, 1}∗, the signing algorithm encrypts ux with label m, yielding a
ciphertext c, and generates an NIZK proof p that c was correctly computed. The signature consists
of (c, p), and is verified by simply verifying the proof.

Security follows by an argument similar to that in proving the simulation soundness of the proof
system in §A.2.3. The reduction to the K-linear assumption is very tight. This scheme is closely

25

related to a signature scheme by Groth [Gro06]; however, by embedding the message to be signed
into a label, and using the encryption scheme Ecca, which directly supports labels in a particularly
efficient manner, we get a simpler and somewhat more efficient signature scheme. In addition, the
message space for Groth’s signature scheme is the group G (or tuples of group elements), which
may not always be convenient (in particular, designing hash functions that map arbitrary messages
into G may not always be convenient).

26

