
Dynamic Threshold Cryptosystem without
Group Manager

Andreas Noack and Stefan Spitz

Horst Görtz Institut für IT-Sicherheit
Ruhr-Universität Bochum

Abstract. In dynamic networks with flexible memberships, group sig-
natures and distributed signatures are an important problem. Dynamic
threshold cryptosystems are best suited to realize distributed signatures
in dynamic (e.g. meshed) networks. Without a group manager or a
trusted third party even more flexible scenarios can be realized.
Gennaro et al. [6] showed, it is possible to dynamically increase the size
of the signer group, without altering the public key. We extend this idea
by removing members from the group, also without changing the public
key. This is an important feature for dynamic groups, since it is very
common, e.g. in meshed networks that members leave a group.
Gennaro et al. used RSA and bi-variate polynomials for their scheme. In
contrast, we developed a DL-based scheme that uses ideas from the field
of proactive secret sharing (PSS). One advantage of our scheme is the
possibility to use elliptic curve cryptography and thereby decrease the
communication and computation complexity through a smaller security
parameter.
Our proposal is an efficient threshold cryptosystem that is able to adapt
the group size in both directions. Since it is not possible to realize a non-
interactive scheme with the ability to remove members (while the public
key stays unchanged), we realized an interactive scheme whose commu-
nication efficency is highly optimized to compete with non-interactive
schemes. Our contribution also includes a security proof for our thresh-
old scheme.

Keywords: Public-key cryptosystem, threshold cryptosystem, dynamic adding,
dynamic removing, dynamic membership, secret sharing, proactive.

1 Introduction

Anonymous and autonomous group oriented cryptosystems have several basic
requirements such as the anonymity of group members to outsiders and no need
for a trusted third party. Additionally it is required to need at least a distinct
number of cooperating group members to accomplish group operations, in which
the secret key of the group is involved.

Furthermore, to call the system autonomous, it is mandatory to be able to
add and remove members without a trusted third party. A subset of the group



decides on adding new or removing current members, whereby the public and
secret key of the group remains untouched, even when the group size changes.

Applications for those cryptosystems are firstly dynamic networks like mobile
ad-hoc networks or mesh networks, in which mobile nodes constantly leave and
join. Threshold signatures, threshold decryption and secure routing are examples
for the crypotgraphic usage.

Second, it can be used in applications distributed among a network, for ex-
ample distributed intrusion detection systems (IDS). In distributed IDS, many
network sensors communicate jointly with an automatic or manual warning sys-
tem. Scenarios without a trusted third party become more and more important,
since the network complexity inreases due to new types of networks (i.e. ad-hoc,
mesh networks) and a centralized TTP would introduce a single point of failure.
We considered threshold and identity based cryptography to find an appropriate
solution for these scenarios.

1.1 Related Work

In 1984, Shamir [14] proposed the concept of id-based cryptography. In this con-
cept, a user is identified by a publicly known parameter such as an e-mail address,
IP address or name. This identifier can be used in conjunction with the public
key of the group to encrypt data destined to or verify signatures originating from
this user. A trusted third party who generates secret keys that correspond to
the public key of the group and the ID of the user, is necessary. While Shamir
provided the id-based digital signature scheme, Boneh and Franklin [2] as well
as Cocks [3] independently introduced a scheme for id-based encryption in 2001
which are based on Weil pairings respectively the problem of quadratic residues.

The adding of members in id-based schemes is done by generating a secret key
(Trusted Third Party) that fits to the public key of the group and the identifier
of the new member. Removing a member can either be done by using certificate
revocation lists or by assigning a period of validity to the distributed identifier
as suggested by [2].

In 2003 Libert and Quisquater [10] introduced a threshold cryptosystem
based on pairings with the ability to efficiently revocate users within the group.
To accomplish this task they used the idea of a so-called semi-trusted mediator
(mostly a synonym for TTP) proposed by Boneh, Ding, Tsudik and Wong [1]
in 2001. The private keys are shared between the TTP and each group member.
When a member wants to perform a decryption or signing operation, a message-
specific token needs to be received from the mediator. Revocating a member is
quite simple: The mediator does not issue these tokens to removed members any
longer.

An alternative to id-based cryptography is the idea of using threshold schemes.
In 1979, Shamir [13] presented the idea of ”How to Share a Secret”. In his
scheme, the secret is divided and distributed among several entities. This secret
can be reconstructed when some of the entities work together. Desmedt and
Frankel [5] used this idea to design a threshold cryptosystem based on ElGamal
in 1989. During 1991, Pedersen [11] presented another threshold scheme based

2



on Shamir’s idea and the ElGamal cryptosystem. In this scheme, the distributed
key generation needs no group manager or trusted third party. Each member of
the group has an equal part in generating the groups public and secret key. An
additional property of this scheme is the verifiability of all member shares (VSS
- Verifiable Secret Sharing). The group’s size was still fixed to the preassigned
parameters, hence no possibility for adding and removing members was imple-
mented. In 2005 Saxena, Tsudik and Yi [12] presented a scheme with the option
of dynamically adding members to the group. Their scheme uses bi-variate poly-
nomials, which allowed them to design a non-interactive threshold scheme. The
key establishment can be performed by a set of founding members using the
method of joint secret sharing [7] while adding members is possible through a
subset of already established members of the group. However, the removing of
group members is still not possible in their designed system.

Another approach on threshold schemes is based on RSA. In 1991 Desmedt
and Frankel [4] initiated the study of using RSA for threshold schemes presenting
a non-robust and non-interactive threshold scheme. Similar to the ElGamal-
based scheme of [5], adding or removing a member is not possible in their scheme
due to the fixed parameter choices. Gennaro et al. [8] introduced some ideas to
provide robustness to RSA threshold schemes in 1996, with Shoup [15] presenting
a robust RSA threshold signature scheme in 1999. Recently, during 2008 Gennaro
et al. [6] developed a dynamic RSA threshold scheme. They utilize bi-variate
polynoms for adding new members while being dependent on a trusted third
party in the initial key distributing phase. In addition to the dynamic member
adding, their scheme provides robustness and is non-interactive.

In 1995, Herzberg et al. [9] developed a method to increase the security
of a (k, n) threshold scheme by decreasing the time window during which an
adversary must compromise ≥ k+ 1 shares of the secret. In this proactive secret
sharing scheme (PSS) the shares of all members are periodically renewed so that
information gained in one time period is useless after the share renewal. Their
scheme is based on a constant number of members with no option to add or
remove.

1.2 Our Contribution

The threshold scheme [10] uses id-based cryptography and provides the possibil-
ity to add and remove members dynamically, while being dependent on a TTP.
Scheme [12] is based on ElGamal and allows the adding of members without the
help of a TTP. In the RSA-based scheme [6], the adding of members requires
a TTP without providing an option of removing members. Table 1 shows the
comparison of these schemes (and their predecessors) with our scheme.

To the best of our knowledge, there is currently no threshold cryptosystem
(neither id-based, ElGamal-based nor RSA-based) which allows the removing
of members without the use of a TTP. Certificate revocation lists (i.e., for id-
based schemes) could be used to replace a TTP, but this possibilty will not
be considered due to the unbounded size of those lists and their impact to the
anonymity property.

3



Table 1. Comparison of referenced schemes

Scheme Establish Group Add Member Remove Member
Desmedt, Frankel [4] (RSA) ◦ − −

Gennaro et al. [6] (RSA) ◦ • −
Boneh, Franklin [2] (ID) ◦ ◦ (◦)

Libert, Quisquater [10] (ID) ◦ ◦ ◦
Pedersen [11] (ElG.) • − −

Saxena et al. [12] (ElG.) • • −
This Scheme (ElG.) • • •

ELG = ElGamal-based, RSA = RSA-based, ID = id-based
• without TTP, ◦ with TTP, (◦) with CRL/Timestamp, − not possible

Our contribution is an ElGamal-based anonymous and autonomous threshold
scheme. It is based on techniques derived from the share renewal method in
PSS, which we adapted to realize a method for dynamic adding and removing
members without a TTP, while the public key remains unchanged. Predefining
a maximum number of group members is no longer necessary either.
The removing feature for groups without a trusted third party is very important,
when applying those schemes in today’s dynamic decentralized networks. Due to
the nature of these networks, it is common that members leave the group, e.g.
caused by a topology change (mesh-network) or a connection loss. Schemes that
do not support removing of members from the group are hence not suitable for
dynamic networks.

Moreover, it is possible to use ECC instead of ElGamal for our scheme.
This will most likely reduce the communication and computation complexity in
comparison to RSA-based schemes because of the smaller security parameter
(160 bit vs. 1024 bit).

2 Threshold Scheme without Group Manager

We have searched for a group oriented cryptosystem that has the following prop-
erties: it is autonomous, anonymous and provides security against inside and
outside adversaries.

ID-based systems do not accomplish the autonomous and anonymous prop-
erty. A group manager is necessary in the known schemes based on pairings and
no anonymity is present due to the fact that each party has an own public key.
Group signature schemes need a group manager for the possibility to identify
signers (signer ambiguous) and for adding or removing members. We came to the
conclusion to deploy threshold schemes, since a group manager is not mandatory
here and anonymity can be provided as well. Additionally there is a threshold
for the minimal number of cooperating parties, who can recover the secret key,
which can be valuable for practical demands. A (k, n)-threshold scheme has n
members from which at least k + 1 members are necessary to recover the group
secret. This scheme is extended to a public key cryptosystem with a shared secret
key SK and a single public key PK.

4



There are two possibilities to generate the public and secret key pair and
distribute SK: Either using a TTP or a distributed key generation. In the first
case, the TTP generates the (PK,SK) pair, splitting the secret key into n shares
and distributes them securely to each member. This procedure represents the
idea of Shamir’s secret sharing [13]. Our introduced scheme uses the second
possibility where all members cooperate in the key generation.

2.1 Distributed Key Generation

In this section we show how a group U = {P1, . . . , Pn} can cooperate to establish
a public key PK = (p, q, g, A) and corresponding secret key SK = (a0), such
that at least k + 1 members are needed to utilize SK. The distributed key
generation is divided into two operations, the key generation and distribution.
Prior to key generation, all members Pi need to agree on the public parameters
p, q, g such that:

p, q ∈ PP : p = 2q + 1
g ∈ ZZ∗p : ord(g) = q

After agreeing on the public parameters and the desired threshold value k, each
member Pi of group U generates a key pair for the El-Gamal encryption scheme
as follows:

ui,0 ∈R ZZ∗q
Ai := gui,0 mod p (1)

with Ai being a part of the public key parameter A. The value ui,0 is called
member secret of Pi. It represents a part of the group’s secret key a0 and is
distributed among all members of U . This is done by creating a k-resilient (k, n)
secret sharing scheme with the idea of Shamir[13].

{s1, . . . , sk} ∈R ZZ∗q
fi(x) = skx

k + sk−1x
k−1 + · · ·+ s1x+ ui,0 mod q

ui,j := fi(j), ∀j : Pj ∈ U
Send

〈
Ai, ui,j

〉
to Pj (confidentially),∀Pj ∈ U (2)

Each member Pi chooses a random polynomial of deg(fi) = k and computes
n member shares ui,j = fi(j) of its own secret polynomial. Then the member
shares, as well as the values Ai, are sent confidentially to each Pj . After the
distribution each member computes its so-called secret share and public key
parameter A.

A =
n∏
i=1

Ai mod p

ai =
n∑
j=1

uj,i ≡
n∑
j=1

fj(i) mod q (3)

5



Each Pi is now in possession of PK = (p, q, g, A) and a secret share ai of
SK = (a0). The secret share ai is the function evaluation of f(x) =

∑n
j=1 fj(x)

mod p at position i (homomorphism property).

2.2 Adding Members

The adding of a specific user Pn+1 to a pre-established group U with n members
is explained in detail within this section. The following conditions must hold
when a user is added to the group

– The public key PK = (p, q, g, A) and the secret key SK = (a0) remain
unchanged.

– The secret share an+1 and polynomial fn+1 is only known to Pn+1.
– The new an+1 of Pn+1 is a valid and fully functional secret share of the

group U .

Both, adding and removing a member is based on the share renewal technique
used in PSS. PSS updates already distributed shares of all n members to provide
proactive security. This update is done in three simple steps with the details given
in [9]: First, each Pi picks a new random polynom f ′i with f ′i(0) = 0. Then, Pi
sends ui,j = f ′i(j) to Pj , ∀i, j. In the final step, each Pi computes his updated
share ai,new = ai,old +

∑
j uj,i, ∀j, i.

We adapted this technique to implement an efficient adding and removing
of members. While adding, k + 1 members split off a part of their secret and
share this part with the new user. Removing a member is done by computing
and redistributing the member’s secret to some remaining members, as shown
in 2.3.

The adding of a user is done in three phases. Phase 1 covers necessary pre-
computations of group Uh. In phase 2 the new user Pn+1 computes his secret
share an+1 and member secret un+1,0. Then, member shares un+1,i for each Pi in
U are generated by Pn+1. After the distribution of these shares, the remaining
group members insert the shares from Pn+1 into their local databases during
phase 3. The details of each phase are described below.

Phase 1a - Secret Sharing: During phase 1a, k + 1 members of U form a
so called helper group Uh. These members cooperate in the generation of a new
member secret un+1,0 for Pn+1. For this, all Pi ∈ Uh cede a part of their member
secret ui,0 and submit it secretly to Pn+1. A new polynomial is generated and the
differences between the values generated from the new and the old polynomial
are also distributed secretly. The details of this process executed by all Pi ∈ Uh

6



are shown below:

sharei ∈R ZZ∗q
ui,0 = ui,0 − sharei
st ∈R ZZ∗q , ∀t = {1, . . . , k}
f ′i(x) := skx

k + sk−1x
k−1 + · · ·+ s1x+ ui,0 mod q

δi[j] := f ′i(j)− fi(j) mod q, ∀j : Pj ∈ U
fi(x) = f ′i(x) (4)

Each member Pi ∈ Uh is now in possession of a new fi(x) and a new member
secret ui,0. All Pi then send (confidentially)

〈
sharei, δi, ui,n+1

〉
to Pn+1.

Phase 1b - Share Computation: In this phase, the member shares ui,n+1

(∀i ∈ U) for the new member Pn+1 are computed. During the distributed key
generation all n members were needed to compute their member shares, but with
the help of the Lagrangian interpolation only k + 1 members need to cooperate
to generate these n shares. The Lagrangian interpolation is defined as:

L(α, β)
def
=

∏
γ∈U,γ 6=β

α− γ
β − γ

The communication progress is similar to a chain reaction. Without loss of gen-
erality, we start with member P1, incrementing step-wise until Pk+1 is reached.
The necessary k + 1 members are allowed to be in Uh. Phase 1a and phase 1b
can be run simultaneous, since the operations do not depend on each other. P1

computes:

r ∈R ZZ∗q
ωj := uj,1 ∗ L(n+ 1, j) + r mod q, ∀j : Pj ∈ U \ Uh
Ω = {ω1|ω2| . . . |ωj} (5)

The array Ω contains a subset of all computed member shares of Pi, ∀i ∈ U \Uh
for user Pn+1 which is sent (confidentially) to the next member within the chain.
It is necessary that the second user in the chain is a member of the group Uh, so
that P2 is not able to recover the used r. In addition, r is sent (confidentially)
to Pn+1.

Now, members Pi, ∀i ∈ {2, . . . , k + 1} proceed with:

ωj = ωj + (uj,i ∗ L(n+ 1, j)) mod q, ∀j : Pj ∈ U \ Uh
Send Ω to Pi+1 (confidentially) (6)

The last member Pk+1 sends Ω confidentially to Pn+1.

Phase 2 - Reconstructing Shares: At the start of phase 2 the (yet to be
added) new user Pn+1 receives the messages from phase 1a and phase 1b, hence

7



〈
sharei, δi, ui,n+1

〉
, ∀i ∈ Uh and

〈
Ω
〉
.

When Pn+1 has received all h+ 1 messages, the following is done:

ui,n+1 = ωi − r, ∀i : Pi ∈ U \ Uh
un+1,0 =

∑
i:Pi∈Uh

sharei mod q

st ∈R ZZ∗q , ∀t = {1, . . . , k}
fn+1(x) := skx

k + sk−1x
k−1 + · · ·+ s1x+ un+1,0 mod q

an+1 :=
∑

i:Pi∈U∪Pn+1

ui,n+1 mod q

∆ = {δ1|δ2| . . . |δi}, ∀i : Pi ∈ Uh
Λ = {un+1,1|un+1,2| . . . |un+1,n},with fn+1(i) = un+1,i (7)

Then Pn+1 sends
〈
∆ , Λ

〉
via broadcast (confidentially).

Phase 3 - Final Computation: During phase 3 each member Pi receives the
broadcast from Pn+1 and computes:

uj,i = uj,i + δj [i] mod q, ∀j : Pj ∈ Uh
un+1,i = Λ[i]

ai =
n+1∑
j=1

uj,i mod q (8)

All members now possess the member share of Pn+1 and the updated member
shares from the members of Uh. Then, they compute their new secret share ai
adding the user Pn+1 to the group.

2.3 Removing Members

Removing a member Pr is executed in three steps. First, the member secret ur,0
is recovered using the Lagrangian interpolation by at least k+ 1 members. This
secret is then shared between some members. From there on, the removing of
a member is similar to the adding, with the details of each of the three phases
shown below.

Phase 1 - Secret Recovery/Share Computation: The user Pr shall be re-
moved from the group U . For this, k+1 members need to agree on the removing,
forming the group Uk+1, with one of the members designated as Pz. Each of the
members Pi, ∀i ∈ {1, . . . , k + 1} (w.l.o.g.) computes:

ωi := L(0, i) ∗ ur,i mod q (9)

With this, it is possible to reconstruct the secret of Pr by computing ur,0 =∑k+1
i ωi later on. A helper group U ′h with at least 2 members is formed. It is

8



mandatory, that member Pz is in U ′h. Ideally, the remaining h− 1 members are
from Uk+1 as well, which will reduce the number of communications necessary
for this phase. Now, h− 1 users Pi from U ′h will do the following operations and
then send the results to the remaining user Pz of this group:

sharei ∈R Z∗p
ui,0 = ui,0 + sharei mod q

st ∈R ZZ∗q , ∀t = {1, . . . , k}
f ′i(x) := skx

k + sk−1x
k−1 + · · ·+ s1x+ ui,0 mod q

δi(x) := f ′i(x)− fi(x) mod q

fi(x) = f ′i(x) (10)

In comparison with the corresponding adding phase 1a, the computations differ
in the computation of the differences (δi), because δi is now a polynomial. There-
fore the data volume is much lower during removing phase, since the polynomial
has only k+1 values (coefficents). The difference values during the adding phase
consist of n values. Now,

〈
ωj , sharei, δi

〉
, ∀j ∈ {1, . . . , k+ 1} and ∀i ∈ U ′h is sent

(confidentially) to Pz.

Phase 2 - Difference Transfer: During phase 2 all necessary computations
for the removing of member Pr are executed. First, member Pz reconstructs the
member secret of Pr by computing

ur,0 =
k+1∑
i=1

ωi mod q (11)

Without loss of generality: i = 1, . . . , k+ 1. Then, Pz computes δz similar to the
other users of the helper group U ′h.

sharez = ur,0 −
h∑
i=1

sharei mod q

uz,0 = uz,0 + sharez mod q

st ∈R ZZ∗q , ∀t = {1, . . . , k}
f ′z(x) := skx

k + sk−1x
k−1 + · · ·+ s1x+ uz,0 mod q

δz(x) := f ′z(x)− fz(x) mod q

fz(x) = f ′z(x)
∆ = {δ1(x)|δ2(x)| . . . |δi(x)}, ∀i : Pi ∈ U ′h (12)

At the end of this phase, Pz broadcasts
〈
∆
〉

to all members of U .

Phase 3: Each member Pi receives the broadcasts and computes:

uj,i = uj,i + δj(i) mod q, ∀j : Pj ∈ U ′h
ai =

∑
j:Pj∈U\Pr

uj,i mod q (13)

9



Similar to the adding, each member (except Pr) is now in possession of h + 1
new member shares and the updated secret shares of the polynomial

f(x) =
∑

i:Pi∈U\Pr

fi(x) mod p

The secret share ar is no longer valid, hence Pr is not any longer able to coop-
erate with members Pi ∈ U to reconstruct the secret a0 using the Lagrangian
interpolation. Finally each Pi deletes Pr’s entry ur,i from its local database re-
moving the last trace of the membership.

3 Security Proof

3.1 Distributed Key Generation

Our scheme is based on Shamir’s Secret Sharing Scheme. Hence, we start with
a security proof of this scheme to lay the ground for our improvements.

Each party Pi generates such a scheme with a random polynomial fi(x) and
distributes shares ui,j = fi(j), ∀j ∈ U confidentially to all other parties. With
the homomorphism property, the polynomial f(x) =

∑n
j=1 fj(x) mod q has the

shares ai =
∑n
j=1 uj,i ≡

∑n
j=1 fj(i) mod q.

Each user Pi knows the own share ai, but has no knowledge of f(x). If
Shamir’s Secret Sharing Scheme is secure and all shares are sent confidentially,
our scheme is secure against adversaries that own up to k shares.

Security Proof for Shamir’s Secret Sharing Scheme: The scheme is se-
cure, when it is not possible to recover the polynomial f(x) (or at least the last
coefficent from f(x), the secret group key a0) with less than k + 1 shares ai
(i > 0). The degree of f(x) is k. We will show, that an attacker owning k shares
< i, ai > (i > 0) is not successful in recovering the secret a0.

Theorem: For k + 1 shares < i, ai > (i > 0) with pairwise different i, there
is exactly one polynomial f(x) of degree ≤ k with f(i) = ai, ∀i ∈ {1, . . . , k + 1}
(w.l.o.g).

Proof : A proof by contradiction states that there are two different polynomi-
als g(x) and h(x) with deg(g) ≤ k and deg(h) ≤ k, that can be created with k+1
shares < i, ai > (i > 0). The difference polynomial ∆(x) = g(x) − h(x) must
therefore have at least k + 1 zero points. ∆(i) = 0, ∀i ∈ {1, . . . , k + 1} (w.l.o.g).
Hence ∆(x) has a degree of maximal k, since g(x) and h(x) are of degree ≤ k,
∆(x) can have a maximum of k zero points. Because ∆(x) has at least k + 1
zero points (but may have k zero points, degree ≤ k), ∆(x) must be the null
polynomial. That means, that g(x) = h(x).

An attacker who owns only k shares < i, ai > from f(x) can interpolate a
polynomial p(x) with a maximum degree of k − 1 (Lagrangian interpolation).

10



This polynom has the following property:

f(i) = p(i), ∀i ∈ {1, . . . , k + 1} (w.l.o.g)

But additionally it must hold with a probability of Pr ≈ 1− 1
2l , that:

f(i) 6= p(i), ∀i /∈ {1, . . . , k + 1} (w.l.o.g)

This is because f(x) 6= p(x), which follows from the fact that f(x) has degree
k and p(x) can have a maximal degree of k − 1. If the coefficients from f(x)
over ZZ∗p (p ∈ PP ) are uniformly distributed, the probability for f(i) = p(i),
i /∈ {1, . . . , k+1} is equal to the probability that a distinct value v with f(i) = v
is hit. The probability is Pr[f(i) = v, ∀i ∈ ZZ∗p] ≈ 1

2l .
Shamir’s Secret Sharing Scheme is secure against attackers that know only

k shares, since f(x) cannot be recovered with less than k + 1 shares. Thus our
distributed key generation scheme is also secure against attackers, knowing only
k shares, because it is not possible to recover f(x) with less than k + 1 shares
ai =

∑n
j=1 uj,i, when all shares were transmitted confidentially.

3.2 Adding Members

Phase 1a - Secret Sharing: With the knowledge of (h−1 = k) sharei values,
an adversary gains no advantage, because the adversary can not recover ui,0, nor
the resulting un+1,0 =

∑
sharei mod q. In the case of the new ui,0 values, the

former state is unknown (only the difference sharei is known) and in the case of
un+1,0 one fully random value sharei is missing.

The differences δi give no knowledge about the former state of the secret
shares ui,j to which they will be applied. Hence they may be even transmitted
in plaintext, although this is not done here (explanation in security issues).

Phase 1b - Share Computation: The first user adds a random value r to the
secret products uj,1 ∗ L(n + 1, j). A subsequent user (w.l.o.g.) P2 is prevented
from recovering the uj,1 values due to the addition of the random value r, which
is transmitted confidentially to Pn+1. When P2 knows any of the uj,1 values,
she can recover the value r and with r all other uj,1 values. Since the ωj are
created ∀j ∈ U \ Uh and user P2 is member of Uh (by definition), she does not
get knowledge of any value from uj,1 (j ∈ U \ Uh).

Additionally to this method, the messages are transmitted confidentially
(unicast encryption) to prevent a former user to eavesdrop the changes of the
following user and hereby recovering her secrets.

Phase 2 - Reconstructing Shares: To proof the security of the remaining
scheme, it is necessary to show that Pn+1 can not gain any other information
from ωi − r than ui,n+1. ωi is a sum of k + 1 products of a secret (uj,i) and
a known value L(n + 1, j). It is not possible to disassemble this sum into the
seperate addends, since all possibilities have the same probability. The secret
values un+1,i will be sent encrypted to each user Pi, so it is clear that no one,
who is not allowed to, gets the knowledge of these values.

11



Phase 3 - Final Computation: If some of these values are faked or compro-
mised, the scheme will not work. In this case, all changes since the last working
state (probably since the last member adding) can be undone.

3.3 Removing Members

The proof for the security of the removing is quite similar to the adding of
members. Equal techniques are applied, so that we will only give proofs, where
differences between both schemes exist.

Phase 1 - Secret Recovery/Share Computation: k + 1 members work
together to recover the secret ur,0 of user Pr, who should be removed from the
group. This is done by computing ωi := L(0, i) ∗ ur,i mod q, which can be sent
in cleartext, since there is no need to keep the shares ur,∗ of user Pr secret.

Furthermore it is possible to send difference polynomials δi(x) instead of the
difference values for each user in U . Each user can recover ur,0, but this will not
impact the scheme negatively, hence there is no need so save the privacy of ur,0
(or fr(x)).

Phase 2 - Difference Transfer: There may be the need to keep Pz away
from altering the δi(x) in such a way, that the sum stays equal but the individual
values differ. In Section Appendix B, there is a propsal for an option to make
changes of these values evident.

4 Conclusion

This is the first time, a threshold cryptosystem with the ability to remove mem-
bers without changing the public key is proposed. Furthermore, our scheme does
not depend on a trusted third party, neither for the group establishment nor the
adding or removing of members.

For adding and removing members, we extended the ideas from Herzberg et
al. [9] that were used to refresh member shares. Our cryptographic contribution
is an threshold cryptosystem that exceeds trivial extensions (for adding and
removing members) of Herzberg’s scheme in efficency aspects.

Due to its dynamic, our scheme can be deployed in emerging technologies
such as mesh or ad-hoc networks, where members join and leave frequently.
Without a TTP, our scheme fits to all kinds of decentralized networks where the
location is not fixed to a specific area.

In addition to a security proof of our scheme, we made a proposal for using the
scheme for encryption and shared decryption in dynamic groups (Appendix A).
Besides that, the common application of our scheme will clearly be the threshold
signature (based on DL - in contrast to [6]).

When using a threshold signature with our scheme, the security property
non-repudiation is provided for the group. All group members have the same
functionality and equal knowledge, so that there is in fact no distinguished

12



member. No single entity (e.g. TTP) has knowledge of the groups secret key.
The group cannot deny that at least k+1 members worked together to compute
the signature. Therefore an outside entity can be sure that a valid signature has
been created by the group.

For our scheme, an ECC security parameter can be used, since there are no
known attacks on Shamir’s Secret Sharing Scheme that would lead to higher
security parameters.

The reduction of the complexity of dynamic threshold schemes and providing
an efficient non-iteractive DL-based threshold signature scheme optimized for our
scheme is an open challenge.

13



References

1. Dan Boneh, Xuhua Ding, Gene Tsudik, and Chi Ming Wong. A method for fast
revocation of public key certificates and security capabilities. In SSYM’01: Pro-
ceedings of the 10th conference on USENIX Security Symposium, pages 22–22,
Berkeley, CA, USA, 2001. USENIX Association.

2. Dan Boneh and Matt Franklin. Identity-based encryption from the Weil pairing.
Lecture Notes in Computer Science, 2139:213–??, 2001.

3. Clifford Cocks. An identity based encryption scheme based on quadratic residues.
In Proceedings of the 8th IMA International Conference on Cryptography and Cod-
ing, pages 360–363, London, UK, 2001. Springer-Verlag.

4. Yvo Desmedt and Yair Frankel. Shared generation of authenticators and signatures
(extended abstract). In CRYPTO ’91: Proceedings of the 11th Annual International
Cryptology Conference on Advances in Cryptology, pages 457–469, London, UK,
1992. Springer-Verlag.

5. Yvo G. Desmedt and Yair Frankel. Threshold cryptosystems. In CRYPTO ’89:
Proceedings on Advances in cryptology, pages 307–315, New York, NY, USA, 1989.
Springer-Verlag New York, Inc.

6. Rosario Gennaro, Shai Halevi, Hugo Krawczyk, and Tal Rabin. Threshold rsa for
dynamic and ad-hoc groups. Cryptology ePrint Archive, Report 2008/045, 2008.
http://eprint.iacr.org/.

7. Rosario Gennaro, Stanis law Jarecki, Hugo Krawczyk, and Tal Rabin. Secure dis-
tributed key generation for discrete-log based cryptosystems. Lecture Notes in
Computer Science, 1592:295+, 1999.

8. Rosario Gennaro, Tal Rabin, Stanislav Jarecki, and Hugo Krawczyk. Robust and
efficient sharing of RSA functions. Journal of Cryptology: the Journal of the In-
ternational Association for Cryptologic Research, 13(2):273–300, 2000.

9. Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive
secret sharing or: How to cope with perpetual leakage. Lecture Notes in Computer
Science, 963:339–352, 1995.

10. Benôıt Libert and Jean-Jacques Quisquater. Efficient revocation and threshold
pairing based cryptosystems. In PODC ’03: Proceedings of the twenty-second an-
nual symposium on Principles of distributed computing, pages 163–171, New York,
NY, USA, 2003. ACM.

11. Torben P. Pedersen. A threshold cryptosystem without a trusted party (extended
abstract). In EUROCRYPT, pages 522–526, 1991.

12. Nitesh Saxena, Gene Tsudik, and Jeong Hyun Yi. Efficient node admission for
short-lived mobile ad hoc networks. In ICNP ’05: Proceedings of the 13TH IEEE
International Conference on Network Protocols, pages 269–278, Washington, DC,
USA, 2005. IEEE Computer Society.

13. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
14. Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings

of CRYPTO 84 on Advances in cryptology, pages 47–53, New York, NY, USA,
1985. Springer-Verlag New York, Inc.

15. Victor Shoup. Practical threshold signatures. Lecture Notes in Computer Science,
1807:207–??, 2000.

14



Appendix A: Encryption and Shared Decryption

Encryption: A user outside the group knows the public key (p, g, A) of the
group U .

choose a plaintext: m
b ∈R {2, . . . , p− 2}
B := gb mod p

ciphertext: c := m ∗Ab mod p

The user sends the ciphertext < c,B > to the group U .

Decryption - Phase 1: We assume that Pi begins the decryption of < c,B >.
Since k + 1 users are needed, to decrypt the ciphertext, Pi asks for the help of
k chosen users Pj with i 6= j.
To prevent an impersonation attack, Pi has to proof that she knows ai, her
secret part of the group key. This can be accomplished by a Zero-Knowledge
Proof (p′ ∈ PP with p′ > p, < g′ >= ZZ∗p′):

t ∈R ZZ∗p′

T := g′t mod p′

S := t−Hash(Ai, g′, p′, T,< c,B >,Uhelp) ai mod p′ − 1

Pi sends (< T, S >,< c,B >,Uhelp) to all users Pj , she wants to be helped from.
The subgroup of users in U that decrypt cooperatively is called Uhelp, whereby
Uhelp also includes Pi.

Decryption - Phase 2: All users Pj in Uhelp verify the ZK-Proof from Pi by
checking:

T
?= gSA

Hash(Ai,g
′,p′,T,<c,B>,Uhelp)

i mod p′

Then each user Pj in Uhelp computes the partial decryption and encrypts it with
the personal key Ai of Pi:

mj := BL(0,j)aj mod p

r ∈R ZZ∗p′

Rj := g′r mod p′

dj := Arimj mod p′

where L(0, j) is the Lagrangian interpolation with:

L(α, β)
def
=

∏
γ∈Uhelp,γ 6=β(α− γ)∏
γ∈Uhelp,γ 6=β(β − γ)

mod q

All users in Uhelp send their encrypted shares < dj , Rj > to Pi.

15



Decryption - Phase 3: Pi decrypts all shares < dj , Rj > with:

mj = Rp
′−1−ai

j dj mod p′

and then computes the plaintext m from < c,B > with:

m = c ∗ 1∏
∀j∈Uhelp

mj
mod p

It is important to note, that |Uhelp| is k + 1.

Appendix B: Security Issues

Distributed Key Generation: During the distribution of the (Ai, ui,j) an
attacker could collect all messages easily reconstructing the group secret with
the help of the lagrangian interpolation or even modify the values to his liking.
To prevent this, each message from Pi to Pj is secured in the following way:〈

Noncei, Ai, encpkj

(
ui,j |H(Ai, ui,j , Noncei)

)〉
using the public key of Pj . With this, replay attacks are prevented as well.
Additionally, the member pair of (Pi, Pj) now possess a means to communicate
confidentially, using ui,j for the encryption. In the rare ( 1

2q ) case of ui,j = 0, the
value of 1 is used as key.

Adding Members: During the adding of members, the values of ωi and δi need
to be sent confidential as well. Otherwise an attacker could impersonate the user
Pn+1. To prevent this kind of attack, in phase 1a the members of Uh compute
δi[j] in the following way:

δi[j] := f ′i(j)− fi(j) ∗ uj,i mod q

Likewise, during phase 1b the ωi are computed with:

ωj := (uj,1 ∗ L(n+ 1, j) + r) ∗ uj,i mod q

Now, during phase 2 the newly added member Pn+1 sends his shares of un+1,i to
all members of U . In this case, an attacker could modify these values, preventing
a correct adding of the new member. Therefore, these values are secured in the
following manner:

Λ = {un+1,1 ∗ u1,n+1|un+1,2 ∗ u2,n+1| . . . |un+1,n ∗ un,n+1}

16



Removing Members: During the removing the computed δi(x) need to be
authentic to prevent adversaries to alter the coefficents in such a way that the
whole system does not detect the changes while applying the normal decryption
or signing operations. Changes in the polynomial become evident when another
user leaves or joins the group (if a user with a changed polynomial belongs to
Uh).

To prevent this, a signature is applied to the difference polynomial δi(x):

k ∈R ZZ∗q
r = gk mod p

s =
[
H(δi(x))− air

]
k−1 mod q

σ =< r, s >

Whereby H() is a cryptographic hash function, which is publicly known. σ can
be verified by (El Gamal Signature):

gH(δi(x)) ?= Ari r
s mod p

Additional notes: Naturally, the values that were encrypted using ui,j by the
sender, are decrypted with the value of (ui,j)−1 mod q by the recipient.

17


