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Abstract. This paper presents new speed records for AES software,
taking advantage of (1) architecture-dependent reduction of instructions
used to compute AES and (2) microarchitecture-dependent reduction
of cycles used for those instructions. A wide variety of common CPU
architectures—amd64, ppc32, sparcv9, and x86—are discussed in detail,
along with several specific microarchitectures.
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1 Introduction

This paper describes a new AES software implementation achieving extremely
high speeds on various common CPUs. For example, on an UltraSPARC III or
IV, this implementation’s main loop takes only 193 cycles/block. The small-
est cycle count previously claimed for AES software on any SPARC was 270
cycles/block by Helger Lipmaa’s proprietary software.

Almost all of the specific techniques we use are well known. The main novelty
in this paper lies in the analysis and combination of these techniques, producing
surprisingly high speeds for AES. We have published our software to ensure
verifiability of our results; we have, furthermore, placed the software into the
public domain to maximize reusability of our results.

Section 2 reviews the standard structure of “32-bit” AES software implemen-
tations. Section 3 surveys techniques for reducing the number of CPU instruc-

tions required to compute AES. Section 4 explains how we reduced the number
of CPU cycles required to compute AES on various platforms.

Thanks to Ruben Niederhagen and the anonymous reviewers for suggesting
many improvements in our explanations.

Which AES? This paper focuses on the most common AES key size, namely 16
bytes (128 bits). We plan to adapt our implementation later to support 32-byte
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(256-bit) keys. One might guess that AES is 40% slower with 32-byte keys, since
16-byte keys use 10 rounds while 32-byte keys use 14 rounds; actual costs are
not exactly linear in the number of rounds, but 40% is a reasonable estimate.

There are several modes of operation of AES: cipher-block chaining (CBC),
output feedback (OFB), counter mode (CTR), et al. There are also, in the litera-
ture, many different ways to benchmark AES software. This variability interferes
with comparisons. Often a faster AES performance report is from a slower AES
implementation measured with a less invasive benchmarking framework.

A big improvement in comparability has been achieved in the last few years by
eSTREAM, a multi-year ECRYPT project that has identified several promising
new stream ciphers. The eSTREAM benchmarking framework has been made
public, allowing anyone to verify performance data; includes long-message and
short-message benchmarks; and includes AES-CTR as a basis for comparison.
The original AES-CTR implementation in the benchmarking framework is a
reference implementation written by Brian Gladman; other authors have con-
tributed implementations optimized for several architectures.

This paper reports cycle counts directly from the eSTREAM benchmarking
framework, and uses exactly the same form of AES-CTR. Our software passes the
extensive AES-CTR tests included in the benchmarking framework. By similar
techniques we have also sped up Biryukov’s LEX stream cipher [6].

See [10] for much more information on the eSTREAM project; [9] for the
benchmarking framework; [4] for a more portable version of the benchmarking
framework (including our software as of version 20080905); and [12] for more
information about Gladman’s AES software.

Bitslicing. The recent papers [23], [17], and [19] have proposed bitsliced AES
implementations for various CPUs. The most impressive report, from Matsui
and Nakajima in [19], is 9.2 cycles/byte for bitsliced AES on a Core 2.

Unfortunately, this speed is achieved only for 2048-byte chunks that have
been “transposed” into bitsliced form. Transposition of ciphertext costs about 1
cycle/byte. More importantly, bitsliced encryption of a 576-byte Internet packet
costs as much as bitsliced encryption of a 2048-byte packet, multiplying the cycle
counts by approximately 3.5. Consequently this bitsliced implementation is not
competitive in speed with the implementation reported in this paper. The very
recent semi-bitsliced implementation in [14] uses much smaller chunks, only 64
bytes, but it is also non-competitive: it takes 19.81 cycles/byte on an Athlon 64.

Bitslicing remains of interest for several reasons: first, some applications en-
crypt long streams and do not mind padding to 2048-byte boundaries; second,
some applications will use bitslicing on both client and server and can thus elim-
inate the costs of transposition; third, bitsliced implementations are inherently
immune to the cache-timing attacks discussed in [3] and [21].

Other literature. Worley et al. in [26] report AES implementations for PA-
RISC and IA-64. Schneier and Whiting in [24] report AES implementations
for the Pentium, Pentium Pro, HP PA-8200, and IA-64. Weiss and Binkert in
[25] report AES implementations for the Alpha 21264. Aoki and Lipmaa in [1]
report AES implementations for the Pentium II. Most of these CPUs are now
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quite difficult to find, but these papers—particularly [1]—are well worth reading
for their discussions of AES optimizations.

More recent AES speed reports: Osvik in [20] covers Pentium III, Pentium 4,
and Athlon. Lipmaa in [16] and [15] covers many CPUs. Matsui and Fukuda in
[18] cover the Pentium III and Pentium 4. Matsui in [17] covers the Athlon 64.

[5], [2], and [8] report implementations for smaller CPUs using the ARM
architecture. [13] reports implementations for graphics processors (GPUs). There
is also an extensive literature on implementations of AES in hardware, in FPGAs,
and in hardware-software codesigns.

2 A short review of AES

AES expands its 16-byte key into 11 “round keys” r0, . . . , r10, each 16 bytes.
Each 16-byte block of plaintext is xor’ed with round key r0, transformed, xor’ed
with round key r1 (ending “round 1”), transformed, xor’ed with round key r2

(ending “round 2”), transformed, etc., and finally xor’ed with round key r10

(ending “round 10”) to produce a 16-byte block of ciphertext.
Appendix A is sample code in the C programming language for a typical

round of AES. The round reads a 16-byte state stored in four 4-byte variables
y0, y1, y2, y3; transforms the variables; xor’s a 16-byte round key stored in four
4-byte variables; and puts the result into z0, z1, z2, z3.

The main work in the transformation is 16 table lookups indexed by the 16
bytes of y0, y1, y2, y3; beware that the last round of AES is slightly different.
Each table lookup produces 4 bytes. In this sample code there are four tables
interleaved in memory, with the jth entry of table i at address table+4i+16j;
table + 4i is precomputed as a byte pointer tablei. For example,

p03 = (uint32) y0 << 4;

p03 &= 0xff0;

p03 = *(uint32 *) (table3 + p03);

in the sample code extracts the bottom byte of y0, multiplies it by 16, adds it
to the byte pointer table3, and reads the 4 bytes at that address.

One can eliminate the table interleaving, and store the jth entry of table i
at address table + 1024i + 4j; then the shift distances 20, 12, 4, 4 need to be
changed to 22, 14, 6, 2. An intermediate possibility is to interleave the first two
tables and interleave the second two tables, using shift distances 21, 13, 5, 3.

We do not describe the work required to invert this process, computing a
16-byte plaintext from a 16-byte ciphertext and a 16-byte key. In AES-CTR,
the “plaintext” is actually a 16-byte counter; the encrypted counter serves as
keystream that is xor’ed to the user’s actual plaintext, producing counter-mode
ciphertext. AES-CTR decryption is the same as AES-CTR encryption so it does
not require inverting AES.

Relationship to SubBytes etc. An AES round is often described differently, as
a series of four operations on 4×4 matrices: SubBytes, ShiftRows, MixColumns,
and AddRoundKey. The last round skips MixColumns.
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As part of the original AES proposal, Daemen and Rijmen described how
to merge SubBytes, ShiftRows, and MixColumns into 16 lookups from 4 tables
T0, T1, T2, T3, each containing 256 32-bit entries; AddRoundKey is nothing but
xor’ing the round key ri. See [7, Section 5.2]. As far as we know, the first imple-
mentation using this structure was written by Rijmen, Bosselaers, and Barreto.
This is the structure used in the sample code in Appendix A, and the starting
structure for the speedups described in the following sections.

3 Saving instructions for AES

This section surveys several methods to reduce the number of CPU integer in-
structions, load instructions, etc. used for AES. Many of these methods take
advantage of additional instructions and features provided by some CPUs.

Beware that not all of the methods can be combined. Furthermore, minimiz-
ing cycles is a much more subtle task than minimizing instructions. In Section 4
we discuss the cycle counts that we have achieved on various platforms, taking
account of limited register sets, instruction latencies, etc.

3.1 Baseline (720 instructions)

One round of AES can be decomposed into 16 shift instructions, 16 mask in-
structions, 16 load instructions for the table lookups, 4 load instructions for
the round keys, and 16 xor instructions. See Appendix A. Overall there are 68
instructions, specifically 20 loads and 48 integer instructions.

Subsequent code examples in this section express CPU instructions using
the qhasm language, http://cr.yp.to/qhasm.html. Each line that we display
represents one CPU instruction.

All of the target platforms have shift instructions, mask instructions, load
instructions, and xor instructions. Some platforms—for example, the x86 and
amd64—do not support three-operand shift instructions (i.e., shift instructions
where the output register is not the input register) but do have byte-extraction
instructions that are adequate to achieve the same instruction counts. In this
section we ignore register-allocation issues.

The 10-round main loop uses more than 680 instructions, for four reasons:

• Before the first round there are 4 extra round-key loads and 4 extra xors.
• The last round has 16 extra masks, one after each of the table lookups.
• For AES-CTR there are 4 loads of 4-byte plaintext words, 4 xors of keystream

with plaintext, and 4 stores of ciphertext words.
• There are 4 extra instructions for miscellaneous tasks such as incrementing

the AES-CTR input.

Overall there are 720 instructions, specifically 208 loads, 4 stores, and 508 integer
instructions. The 508 integer instructions consist of 160 shift instructions, 176
mask instructions, 168 xor instructions, and 4 extra instructions.
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In this count we ignore the costs of conditional branches; these costs are
easily reduced by unrolling. We also ignore extra instructions needed to handle,
e.g., big-endian loads on a little-endian architecture; almost all endianness issues
can be eliminated by appropriate swapping of the AES code and tables.

We also ignore the initial costs of computing the 176 bytes of round keys
from a 16-byte key. This computation involves hundreds of extra instructions—
certainly a noticeable cost—but the round keys can be reused for all the blocks
of a message. Round keys can also be reused for other messages if they are saved.

3.2 Table structure and index extraction

Combined shift-and-mask instructions (−160 instructions). Some archi-
tectures allow a shift instruction p02=y0>>4 and a mask instruction p02&=0xff0

to be combined into a single instruction p02=(y0>>4)&0xff0. Replacing 160
shifts and 160 masks by 160 shift-and-mask instructions saves 160 instructions.

On the ppc32 architecture, for example, the rlwinm instruction can do any
rotate-and-mask where the mask consists of consecutive bits.

Scaled-index loads (−80 instructions). On other architectures a shift in-
struction p03<<=4 and a load instruction p03=*(uint32*)(table3+p03) can be
combined into a single instruction. The instructions

p03 = (uint32) y0 << 4

p03 &= 0xff0

p03 = *(uint32 *) (table3 + p03)

for handling the bottom byte of y0 can then be replaced by

p03 = y0 & 0xff

p03 = *(uint32 *) (table3 + (p03 << 4))

Similarly, the instructions

p00 = (uint32) y0 >> 20

p00 &= 0xff0

p00 = *(uint32 *) (table0 + p00)

for handling the top byte of y0 can be replaced by

p00 = (uint32) y0 >> 24

p00 = *(uint32 *) (table0 + (p00 << 4))

In 10 rounds there are 40 top bytes and 40 bottom bytes.
The x86 architecture, for example, allows scaled indices in load instructions.

The x86 scaling allows only a 3-bit shift, not a 4-bit shift, but this is easily
accommodated by non-interleaved (or partially interleaved) tables.

Second-byte instructions (−40 instructions). All architectures support a
mask instruction p03=y0&0xff that extracts the bottom byte of y0.

Some architectures—for example, the x86—also support a single instruction
p02=(y0>>8)&0xff to extract the second byte of y0. In conjunction with scaled-
index loads this instruction allows
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p02 = (uint32) y0 >> 6

p02 &= 0x3fc

p02 = *(uint32 *) (table2 + p02)

to be replaced by

p02 = (y0 >> 8) & 0xff

p02 = *(uint32 *) (table2 + (p02 << 2))

saving another 40 instructions overall.

Padded registers (−80 instructions). Some architectures—e.g., sparcv9—
do not have any of the combined instructions described above, but do have
64-bit registers. On these architectures one can expand a 4-byte value such as
0xc66363a5 into an 8-byte value such as 0x0c60063006300a50 (or various other
possibilities such as 0x0000c60630630a50). If this expansion is applied consis-
tently in the registers, the lookup tables (before the last round), and the round
keys, then it does not cost any extra instructions.

The advantage of the padded 8-byte value 0x0c60063006300a50 is that a
single mask instruction produces the shifted bottom byte a50, and a single shift
instruction produces the shifted top byte c60. Consequently the original eight
shift-and-mask instructions, for extracting four shifted bytes from y0, can be
replaced by six instructions:

p00 = (uint64) y0 >> 48

p01 = (uint64) y0 >> 32

p02 = (uint64) y0 >> 16

p01 &= 0xff0

p02 &= 0xff0

p03 = y0 & 0xff0

Expanded lookup tables, like scaled-index loads, thus save 80 instructions overall.

32-bit shifts of padded registers (−40 instructions). Some architectures—
for example, sparcv9—have not only a 64-bit right-shift instruction but also
a 32-bit right-shift instruction that automatically masks its 64-bit input with
0xffffffff. This instruction, in conjunction with padded registers, allows

p02 = (uint64) y0 >> 16

p02 &= 0xff0

to be replaced by p02 = (uint32) y0 >> 16, saving 40 additional instructions.

3.3 Speedups for the last round

Byte loads (−4 instructions). As mentioned earlier, the last round of AES
has 16 extra masks for its 16 table lookups. Four of the masks are 0xff. All of
the target architectures allow these masks to be absorbed into single-byte load
instructions. For example,
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p00 = *(uint32 *) (table0 + p00)

p00 &= 0xff

can be replaced with p00 = *(uint8*) (table0 + p00) on little-endian CPUs
or p00 = *(uint8*) (table0 + p00 + 3) on big-endian CPUs.

Two-byte loads (−4 instructions). Four of the masks are 0xff00. These
masks can be absorbed into two-byte load instructions if the table structure has
00 next to the desired byte. Often this structure occurs naturally as part of other
table optimizations, and in any case it can be achieved by a separate table.

Masked tables (−8 instructions). The other eight masks are 0xff0000 and
0xff000000. These masked values cannot be produced by byte loads and two-
byte loads but can be produced by four-byte loads from separate tables whose
entries are already masked.

Separate masked tables are also the easiest way to handle the distinction
between padded 64-bit registers (see Section 3.2) and packed 32-bit AES output
words.

Combined mask and insert (−16 instructions). A 4-byte result of the last
round, such as z0, is produced by 4 xors with 4 masked table entries, where the
masks are 0xff, 0xff00, 0xff0000, 0xff000000.

Some architectures have an instruction that replaces specified bits of one
register with the corresponding bits of another register. For example, the ppc32
architecture has a rlwimi instruction that does this, optionally rotating the
second register. The instruction sequence

p00 &= 0xff000000

p11 &= 0xff0000

p22 &= 0xff00

p33 &= 0xff

z0 ^= p00

z0 ^= p11

z0 ^= p22

z0 ^= p33

can then be replaced by

p00 bits 0xff0000 = p11 <<< 0

p00 bits 0xff00 = p22 <<< 0

p00 bits 0xff = p33 <<< 0

z0 ^= p00

(Note for C programmers: in C notation, p00 bits 0xff0000 = p11 would be
p00 = (p00&0xff00ffff)|(p11&0xff0000).) This is another way—without us-
ing byte loads, and without constraining the table structure—to eliminate all the
extra masks.
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3.4 Further speedups

Combined load-xor (−168 instructions). Often the result of a load is used
solely for xor’ing into another register. Some architectures—for example, x86
and amd64—allow load and xor to be combined into a single instruction.

Byte extraction via loads (−160 . . . −320 integer instructions; +200
load/store instructions). Extracting four indices from y0 takes at most 8
integer instructions, and on some architectures as few as 4 integer instructions,
as discussed in Section 3.2.

A completely different way to extract four bytes from y0—and therefore to
extract indices, on architectures allowing scaled-index loads—is to store y0 and
then do four byte loads from the stored bytes of y0. This eliminates between 4 and
8 integer instructions—potentially helpful on CPUs where integer instructions
are the main bottleneck—at the expense of 5 load/store instructions.

One can apply this conversion to all 160 byte extractions. One can also apply
it to some of the byte extractions, changing the balance between load instructions
and integer instructions. The optimum combination is CPU-dependent.

Round-key recomputation (−30 load instructions; +30 integer in-
structions). In the opposite direction: Instead of loading 44 round-key words,
say words 0, 1, 2, . . . , 43, one can load 14 round-key words, specifically words
0, 1, 2, 3, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, and compute the other round-key words
by 30 xors, taking advantage of the AES round-key structure. This reduces the
number of load instructions—potentially helpful on CPUs where loads are the
main bottleneck—although it increases the number of integer instructions.

One can also use intermediate combinations, such as 22 loads and 22 xors.
As before, the optimum combination is CPU-dependent.

Round-key caching (≈ −44 instructions). Each 16-byte block of input
involves 44 round-key loads (or xors). The same round keys are used in the next
block. On an architecture with many registers, some or all of the round keys can
be kept in registers, moving these loads out of the main loop. The same type of
savings appears if several blocks are handled in parallel.

Counter-mode caching (≈ −100 instructions). Recall that our AES soft-
ware uses counter mode in exactly the form specified by eSTREAM. AES is
applied to a 16-byte counter that is increased by 1 for every block of input.

Observe that 15 bytes of the counter remain constant for 256 blocks; just one
byte of the counter changes for every block of input. All operations in the first
round not depending on this byte are shared between 256 blocks. The resulting
values y0, y1, y2 and y3 can be saved and reused in 256 consecutive blocks.

Similar observations hold for round 2: only one of the four 4-byte input words
of round 2 changes every block. All computations not depending on this word
can be saved and reused in 256 consecutive blocks.

This caching is perhaps the least well known of all AES software speedups.
We learned it from an eSTREAM AES implementation by Hongjun Wu; we have
not found it elsewhere in the literature.
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4 Saving cycles for AES

Minimizing instructions is not the same as minimizing cycles. A CPU that ad-
vertises “four instructions per cycle” actually performs at most four instructions
per cycle; software that does not take account of microarchitecture-specific bot-
tlenecks often runs much more slowly, sometimes below one instruction per cycle.

For example, a typical microarchitecture does not allow the results of an inte-
ger instruction to be used until the next cycle; multiple instructions in the same
cycle must therefore be independent parallel operations. The results of a load
instruction cannot be used until two or three cycles later, requiring even more in-
dependent instructions to be carried out in parallel. On “in-order” CPUs, parallel
instructions need to write to different output registers; instruction scheduling is
often heavily constrained by limits on the number of architectural registers. On
“out-of-order” CPUs, controlling the precise scheduling of instructions can be
extremely difficult.

This section reports the cycle counts that we have achieved on several specific
CPUs. For each CPU we describe the important bottlenecks and the measures
that we took to address those bottlenecks. We describe the CPUs in decreasing
order of our cycle counts.

We report the speeds of our implementation and previous AES implemen-
tations measured by the eSTREAM benchmarking framework. The framework
focuses on long-stream performance, but it also measures short-packet perfor-
mance for the fastest software; our tables include the results for 576-byte packets.

4.1 Motorola PowerPC G4 7410, ppc32 architecture

We measured our software on a computer named gggg in the Center for Re-
search and Instruction in Technologies for Electronic Security (RITES) at the
University of Illinois at Chicago. This computer has two 533MHz Motorola Pow-
erPC G4 7410 processors; measurements used one processor. Resulting speeds
for encrypting a long stream:

Software Measurement Cycles/byte

This paper eSTREAM 14.57 (or 15.34 for 576 bytes)

Wu eSTREAM 16.26

Bernstein eSTREAM 17.84

Gladman eSTREAM 26.74

OpenSSL 0.9.8c openssl speed aes 29

Unpublished code by Denis Ahrens is claimed in [16] to use 25.06 cycles/byte
on a PowerPC G4 7400, a very similar CPU to a PowerPC G4 7410, and 24.06
cycles/byte on a PowerPC G4 7457, a somewhat more powerful CPU.

Reducing instructions. For this CPU, our implementation uses 461 instruc-
tions in the main loop, specifically 180 load/store instructions, 279 integer in-
structions, and 2 branch instructions. We use the following techniques from Sec-
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tion 3: combined shift-and-mask instructions; combined mask-and-insert; and
counter-mode caching.

Reducing cycles. The PowerPC G4 7410 can dispatch at most 3 instructions
per cycle. At most 2 of the instructions can be load/store or integer instructions,
so our 459 non-branch instructions take at least 459/2 = 229.5 cycles, i.e., 14.34
cycles/byte. At most 1 of the instructions can be a load/store instruction, but
we have only 180 load/store instructions, so this is a less important bottleneck.

The G4 is, for most purposes, an in-order CPU, so load instructions have
to be interleaved with arithmetic instructions. Results of load instructions are
available after 3 cycles. Saving all possible callee-save registers makes 29 4-byte
integer registers available for AES encryption. Detailed analysis shows that these
are enough registers for almost perfect instruction scheduling, making the pro-
cessor execute 2 instructions almost every cycle in the AES main loop. Our 233
cycles/loop are very close to the 229.5 cycles/loop lower bound for 459 instruc-
tions. We do not mean to suggest that 29 registers are ample; further registers
would be useful for round-key caching.

4.2 Intel Pentium 4 f12, x86 architecture

Warning: There are considerable performance differences between, e.g., a Pen-
tium 4 f12, a Pentium 4 f29, a Pentium 4 f41, etc. “Pentium 4” is not an adequate
CPU specification for performance measurements.

We measured our AES software on a computer named fireball in the Center
for Research and Instruction in Technologies for Electronic Security (RITES) at
the University of Illinois at Chicago. This computer has a single-core 1900MHz
Intel Pentium 4 f12 processor. Resulting speeds for encrypting a long stream:

Software Measurement Cycles/byte

This paper eSTREAM 14.13 (or 14.54 for 576 bytes)

Bernstein eSTREAM 16.97

Wu eSTREAM 18.23

OpenSSL 0.9.8g openssl speed aes 21

Gladman eSTREAM 26.48

Unpublished code by Matsui and Fukuda is claimed in [18] to use 15.69
cycles/byte on a “Pentium 4 Northwood,” i.e., a Pentium 4 f2, and 17.75 cy-
cles/byte on a “Pentium 4 Prescott,” i.e., a Pentium 4 f3/f4. Unpublished code
by Osvik is claimed in [20] to use 16.25 cycles/byte on an unspecified type of Pen-
tium 4. Unpublished code by Lipmaa is claimed in [16] to use 15.88 cycles/byte
on an unspecified type of Pentium 4. We have seen several other reports of
Pentium 4 AES speeds above 20 cycles/byte.

Reducing instructions. For this CPU, our implementation uses 414 instruc-
tions in the main loop. We use the following techniques from Section 3: scaled-
index loads; second-byte instructions; byte loads; two-byte loads; masked ta-
bles; combined load-xor; and counter-mode caching. We use some extra stores
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and loads to handle the extremely limited number of general-purpose x86 inte-
ger registers. We compressed our total table size (including masked tables for
the last round) to 4096 bytes; this improvement does not affect the eSTREAM
benchmark results but reduces cache-miss costs in many applications.

Reducing cycles. There are several tricky performance bottlenecks on the Pen-
tium 4. We recommend the manuals by Agner Fog [11] for much more compre-
hensive discussions of several x86 (and amd64) microarchitectures.

The most obvious bottleneck is that the Pentium 4 can do only one load per
cycle. Our main loop has 177 loads, accounting for most—although certainly not
all—of the 226 cycles that we actually use.

4.3 Sun UltraSPARC III, sparcv9 architecture

We measured our AES software on a computer named icarus at the University
of Illinois at Chicago. This computer has eight 900MHz Sun UltraSPARC III
CPUs; measurements used one CPU. Resulting speeds:

Software Measurement Cycles/byte

This paper eSTREAM 12.06 (or 12.36 for 576 bytes)

Bernstein eSTREAM 20.75

Gladman eSTREAM 24.08

Wu eSTREAM 28.88

OpenSSL 0.9.7e openssl speed aes 35

We also measured our AES software on a computer named nmisolaris10 in
the NMI Build and Test Lab at the University of Wisconsin at Madison. This
computer has two 1200MHz Sun UltraSPARC III Cu processors; measurements
used one processor.

Software Measurement Cycles/byte

This paper eSTREAM 12.03 (or 12.33 for 576 bytes)

Wu eSTREAM 17.27

Bernstein eSTREAM 25.08

Gladman eSTREAM 25.08

Unpublished code by Lipmaa is claimed in [16] to use 16.875 cycles/byte on
a “480 MHz SPARC,” presumably an UltraSPARC II. Lipmaa discusses counter
mode in [15] but does not report any speedups for the SPARC in this mode.

Reducing instructions. For this CPU, our implementation uses 505 instruc-
tions in the main loop, specifically 178 load/store instructions, 325 integer in-
structions, and 2 branch instructions. We use the following techniques from Sec-
tion 3: padded registers; 32-bit shifts of padded registers; masked tables; and
counter-mode caching.

Reducing cycles. An UltraSPARC CPU dispatches at most four instructions
per cycle. Only one of these instructions can be a load/store instruction, so our
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178 load/store instructions use at least 178 cycles. Furthermore, only two of
these instructions can be integer instructions, so our 325 integer instructions use
at least 162.5 cycles.

The simplest way to mask a byte is with an arithmetic instruction: for exam-
ple, &0xff00. The SPARC architecture supports only 12-bit immediate masks,
so three of the masks have to be kept in registers.

The UltraSPARC is an in-order CPU, except for store instructions. Proper
instruction scheduling thus requires each load instruction to be grouped with two
integer instructions. Only 24 8-byte integer registers are available, posing some
challenges for instruction scheduling. We have built a simplified UltraSPARC
simulator that accounts for 186 cycles with our current instruction scheduling;
we are continuing to analyze the gaps between 178 cycles, 186 cycles, and the
193 cycles actually used by our main loop.

We have considered round-key recomputation (see Section 3) to trade some
loads for integer instructions, but this makes scheduling even more difficult. With
more registers we would expect to be able to reach approximately 170 cycles.

4.4 Intel Core 2 Quad Q6600 6fb, amd64 architecture

We measured our AES software on a computer named latour in the Coding
and Cryptography Computer Cluster (C4) at Technische Universiteit Eindhoven.
This computer has a 2400MHz Intel Core 2 CPU with four cores; measurements
used one core. Resulting speeds for encrypting a long stream:

Software Measurement Cycles/byte

This paper eSTREAM 10.57 (or 10.79 for 576 bytes)

Wu eSTREAM 12.27

Bernstein eSTREAM 13.75

Gladman eSTREAM 16.17

OpenSSL 0.9.8g openssl speed aes 18

Unpublished code by Matsui and Nakajima is claimed in [19, Table 6] to
use 14.5 cycles/byte (without bitslicing) on a Core 2. See also the discussion of
bitslicing in Section 1.

Reducing instructions. For this CPU, our implementation uses 434 instruc-
tions in the main loop. We use the following techniques from Section 3: scaled-
index loads; second-byte instructions; byte loads; two-byte loads; masked tables;
combined load-xor; round-key recomputation; round-key caching; and counter-
mode caching.

Reducing cycles. The Core 2 can dispatch three integer instructions per cycle
but, like the Pentium 4, can dispatch only one load per cycle. We have often
spent extra integer instructions to avoid loads and to improve the scheduling
of loads. For example, we have kept round-key words in “XMM” registers, even
though copying an XMM register to a normal integer register costs an extra
integer instruction. Our main loop currently has 143 loads, accounting for most
of our 169 cycles.
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4.5 AMD Athlon 64 X2 3800+ 15/75/2, amd64 architecture

We measured our AES software on a computer named mace in the Center for
Research and Instruction in Technologies for Electronic Security (RITES) at
the University of Illinois at Chicago. This computer has one 2000MHz AMD
Athlon 64 X2 3800+ 15/75/2 CPU with two cores; measurements used one core.
Resulting speeds for encrypting a long stream:

Software Measurement Cycles/byte

This paper eSTREAM 10.43 (or 10.71 for 576 bytes)

Wu eSTREAM 13.32

Bernstein eSTREAM 13.40

Gladman eSTREAM 18.06

OpenSSL 0.9.8g openssl speed aes 21

Unpublished code by Matsui is claimed in [17] to use 10.62 cycles/byte on
an Athlon 64. Unpublished code by Lipmaa is claimed in [16] to use 12.44 cy-
cles/byte on an Athlon 64.

Reducing instructions. For this CPU, our implementation uses 409 instruc-
tions in the main loop. We use the following techniques from Section 3: scaled-
index loads; second-byte instructions; byte loads; two-byte loads; masked tables;
combined load-xor; and counter-mode caching.

Reducing cycles. The Athlon 64 can dispatch three instructions per cycle,
including two load instructions. Loads and stores must be carried out in program
order, placing a high priority on careful instruction scheduling.

Our Athlon-64-tuned software runs at 11.54 cycles/byte on the Core 2, and
our Core-2-tuned software runs at 14.77 cycles/byte on the Athlon 64, illustrating
the importance of microarchitectural differences.
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A Review: one AES round, in C

z0 = roundkeys[i * 4 + 0];

z1 = roundkeys[i * 4 + 1];

z2 = roundkeys[i * 4 + 2];

z3 = roundkeys[i * 4 + 3];

p00 = (uint32) y0 >> 20;

p01 = (uint32) y0 >> 12;

p02 = (uint32) y0 >> 4;

p03 = (uint32) y0 << 4;

p00 &= 0xff0;

p01 &= 0xff0;

p02 &= 0xff0;

p03 &= 0xff0;

p00 = *(uint32 *) (table0 + p00);

p01 = *(uint32 *) (table1 + p01);

p02 = *(uint32 *) (table2 + p02);

p03 = *(uint32 *) (table3 + p03);

z0 ^= p00;

z3 ^= p01;

z2 ^= p02;

z1 ^= p03;

p10 = (uint32) y1 >> 20;

p11 = (uint32) y1 >> 12;

p12 = (uint32) y1 >> 4;

p13 = (uint32) y1 << 4;

p10 &= 0xff0;

p11 &= 0xff0;

p12 &= 0xff0;

p13 &= 0xff0;

p10 = *(uint32 *) (table0 + p10);

p11 = *(uint32 *) (table1 + p11);

p12 = *(uint32 *) (table2 + p12);

p13 = *(uint32 *) (table3 + p13);

z1 ^= p10;

z0 ^= p11;

z3 ^= p12;

z2 ^= p13;

p20 = (uint32) y2 >> 20;

p21 = (uint32) y2 >> 12;

p22 = (uint32) y2 >> 4;

p23 = (uint32) y2 << 4;

p20 &= 0xff0;

p21 &= 0xff0;

p22 &= 0xff0;

p23 &= 0xff0;

p20 = *(uint32 *) (table0 + p20);

p21 = *(uint32 *) (table1 + p21);

p22 = *(uint32 *) (table2 + p22);

p23 = *(uint32 *) (table3 + p23);

z2 ^= p20;

z1 ^= p21;

z0 ^= p22;

z3 ^= p23;

p30 = (uint32) y2 >> 20;

p31 = (uint32) y2 >> 12;

p32 = (uint32) y2 >> 4;

p33 = (uint32) y2 << 4;

p30 &= 0xff0;

p31 &= 0xff0;

p32 &= 0xff0;

p33 &= 0xff0;

p30 = *(uint32 *) (table0 + p30);

p31 = *(uint32 *) (table1 + p31);

p32 = *(uint32 *) (table2 + p32);

p33 = *(uint32 *) (table3 + p33);

z3 ^= p30;

z2 ^= p31;

z1 ^= p32;

z0 ^= p33;


