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Abstract. This paper describes a new approach to creation of fast encryption 

methods with symmetric (shared) key. The result solution is intermediate one between 
block and stream ciphers. The main advantages of both types of ciphers are realized, 
while most of disadvantages are eliminated. The new approach combines encryption 
with built-in calculation of the hash for the data integrity, pseudo-random generator, 
and option for dual shared keys. These properties are pivotal for secure applications. 
These new methods may be designed for different size of shared secret key. Both 
software and hardware implementations of the new methods are fast and simple and 
may be used in various security applications. Presented cryptanalysis proves basic 
features and gives an option to design actual provable security methods. 
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1 Introduction 
 

Security applications use different ciphers to solve a variety of 
security problems. However, faster and more secure methods of shared 
key encryption combined with authentication for use in cheap and simple 
client devices are still needed.  

Most known methods of shared key encryption may be classified as 
either block or stream ciphers [1, 2]. Block ciphers are mostly considered 
to be more secure and are used in network IPSec and other applications. 
Block ciphers are based on dozens of shift and exclusive-OR (XOR) 
conversions of 64-256 bit data units and their parameters are defined by 
the shared secret. Stream ciphers are generally faster and cheaper to 
implement. They mostly use XOR operations of the input data with the 
pseudo-random sequence. The latter must be unique and be generated for 
each encrypted packet of data. Pseudo-random generators of both the 
sender and receiver are synchronized by the shared key and an 
initialization vector. The latter is mostly located and sent as a clear text in 
each packet of data after encryption.  

Security in networking defines the message authentication code 
(MAC) calculated for the encrypted payload (cipher text) and optionally 
for an additional header of the packet. MAC is calculated in a separate 
way. There is an important challenge [2, 7] in usage of encryption as a 
basic part of the MAC calculations. This may be done by dependency of 
the cipher state and the input data [7]. 

The main goal of this work is to combine generic features of block 
and stream ciphers. The next issue is a strengthening encryption by 
involving more elements of security protocols in the encryption 
primitives. The basic targets are chaining and initialization vectors.  

This work describes a new approach and new methods along with 
their cryptanalysis. It is organized as follows. Section 2 describes the 
basic encryption block and its properties. Sections 3-6 define and analyse 
the simplest and enhanced schemes of encryption. Rest sections elaborate 
and summarise the features of designed encryption methods. 
 
2 Two-input basic encryption block with chaining  
 

All the data is represented as sequence of data units of n bit. The 
value n is defined as a parameter of the encryption method. Input data for 
the encryption is usually called plain text [1] and is represented as data 
units p[i]  where 0≤ i≤ Np-1, and Np defines the length of the plain text. 
Random initialization vector (IV) r[i]  of Nv data units is to be prepended 
as securely invisible by encrypting prior to the plain text. The input data 
d[i]  for the further encryption process is defined by  
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d[i] = r[i],   0 ≤ i < Nv  
d[i] = p[i - N v],   Nv ≤ i < Np + Nv 

 
(2.1) 

Suggested encryption methods are defined as a stream-like 
sequential processing of input data units d[i]  by a state machine 
(combinational function with a memory). This stateful object creates 
chaining and randomness of the result codes (ciphertext). Combinatorial 
conversion is to be implemented in a fast look-up table (LUT). Memory 
consumption for the LUT decreases by means of decomposition of the 
LUT into several sequentially connected basic encryption blocks. Each of 
them is a two-input LUT function L  with input data d[i]  and chaining 
ch[i] , and an output encrypted result code c[i]  with the n bit width of each 
data unit:  

c[i] = L(ch[i], d[i])  (2.2) 
The content of the LUT is defined by the shared secret code. The full 
two-input LUT is of u2 entries, where  

u = 2n (2.3) 
 

 
Figure 1 shows the basic LUT-encryption block and the content of the 
look-up table. The LUT may be represented as u partial look-up tables 
with u entries per value of chaining ch[i] . Each partial LUT may be 
calculated by the initialization procedure of permutations of values 
[0,…,u - 1]. The pseudo-random values for permutations are to be 
defined by the shared key. The length of pseudo-random sequence for 
LUT generation is 22n.  

Decryption at the level of a single basic encryption block is 
fulfilled in a similar way by using the decryption look-up table (dLUT). 
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Figure 1. Dual entry LUT-encryption block with chaining 
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The basic decryption block uses similar logic with ch[i] , c[i]  as inputs and 
d[i]  as the output. The dLUT is calculated straightforward from the 
encryption LUT.  

Actually, each couple (ch[i], d[i])  matches the unique code c[i] , 
while each couple (ch[i], c[i])  matches the value d[i]  in the same way. 
This is a basic requirement for the valid decryption. Multiple couples 
(ch[i], d[i])  with the same d[i]  may match the same code c[i] . 

Main properties of the basic encryption block are elaborated by 
combinatorial analysis of the LUT. 

 
Theorem 2.1. There is (u!)u different available combinations for 

the encryption look-up table. 
Proof. The unique decryption is available if and only if all the 

values of c in the partial LUTs are different. Therefore, any permutation 
of all the u values of data unit, i.e. [0,…,2n - 1], is a valid set for c in a 
partial LUT. The number of possible permutations is (u!). Then, there are 
u partial LUT, all independent one of another. Any valid values of sets of 
the partial LUTs are admissible. Hence, the number of possible sets for 
the whole LUT of u partial LUTs is (u!)u, which completes the proof. 

 
Besides that, the LUT may be represented as a square matrix with 

entries c were rows and columns are values of d and ch. There is a special 
case of restricted subset with matrixes that have each of the values c only 
once in any row and in any column. This is the well known case of Latin 
Squares for the LUT that may be useful in specific applications.  

The basic encryption block is an element of the methods described 
below rather than a stand alone encryption primitive. Its strength against 
brute force attacks is estimated as the number of possible encryptions, i.e. 
valid LUTs, assigned in Theorem 2.1.  

The size n of the data unit characterizes the strength of encryption 
against brute forth attacks. On the other hand, it defines the size of LUT 
that should be available for in the memory. Some trade-off should be 
done here to get a brute force attack practically impossible and keep a 
price of solution in available range. For the data units between 4 and 10 
bit the size of the LUT is between 128B and 1.5MB, while the number of 
combinations for the brute force attack is incredibly huge, between 2708 
and 28,979,454, to match needs of different applications.  
 
3 Deep chaining and scheme of encryption methods 
 
 Basic encryption block is a core element for decomposition of the 
combinatorial function of the encryption state machine. Several basic 
encryption blocks are connected in the encryption scheme. A simplest 
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scheme that provides invisible chaining ch and the IV may be represented 
by the following equations: 

ch[i] = L(ch[i - 1], d[i]) 
c[i] = L(ch[i - 3], ch[i])  

 
(3.1) 

The fixed values derived from the shared key are used for the 
chaining with negative indices of the first input data units.  

 

 
 
Figure 2 shows the scheme by (3.1). This scheme uses two 

sequentially connected basic encryption blocks and represents a state 
machine with 3 memory data units for 3 chaining values. Decryption is 
done in the reverse way by the similar scheme using the decryption LUT 
(dLUT). 

 
 

4 Security of sequentially connected encryption blocks  
 
The goal of attack against suggested methods is a disclosure of the 

secret LUT by analysis of encrypted codes for a known encryption 
scheme. Randomness of the init vector as a first encrypted data yields the 
randomness of the encryption state machine, and then the result encrypted 
codes. Regarding the (2.1), any plain texts are encrypted into different 
codes. Variation of the random invisible IV generated within encryption 
tool cause changes in the state of the encryption state machine. 
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Figure 2. Encryption with two basic elements per data unit 

Fixed first chaining 

LUT  

LUT  

LUT  

ch[i-4] 

LUT  

d[i-2]  
c[i-2] 

LUT  

c[i-1] 

ch[i-3] 

ch[i-2] 

ch[i-1] 

ch[i]  

ch[i-3] 

ch[i-4] 

ch[i-5] 



 Michael Lifliand Page 6 28/04/2008 

Considering the size of IV, the latter changes make impossible to 
distinguish further changes defined by chosen plain text used for attack. 
This approach makes impossible to apply the linear, differential, and 
boomerang attacks [6] against the suggested methods.  

Potential weakness of the simple scheme (3.1) may be found in 
encryption of the long sequential data. Relatively small memory of 3 data 
units of this state machine may cause repeated sequences in the output 
encryption codes. Further schemes with a bigger internal state withstand 
this weakness. Usage of the method for a fixed maximum size of 
encrypted sequence is a reasonable restriction as well.  

Cryptanalysis of the scheme (3.1) is important for estimation of 
parameters of the LUT, IV. Attacks against suggested methods should use 
a known and chosen plain text and specific features of the encryption 
scheme. In general, sequential processing defines two basic types of 
attacks: at the beginning and at the middle of the encrypted sequences. 

 
 

4.1 Attack at the beginning of the encrypted sequence  
 
Attack at the beginning of the encrypted sequence uses a fact that 

the chaining for the first encryption blocks is constant over the multiple 
encrypted sequences. Analysis of probability of a successful attack will 
estimate the encryption parameters particularly the needed size of IV. 
 
Lemma 4.1. If one entry of the basic encryption block, for example d,  is 
known, the second one, lets say ch,  is invisible and P(ch) stands for the 
probability of guess of the value ch, then the random hit of the third entry 
c and the line of the LUT may be estimated as an independent probability  

P(c) = P(ch) · 2-n (4.1) 
Proof. The LUT is created by pseudo-random permutations and all the 
values are expected with the same probability. Then the probability of the 
random hit of an output value c of n bit is 2-n. The probability of the hit of 
two independent events is the product of their probabilities, and (4.1) 
follows.  

It is worth emphasizing that for the certain value d[i] , all the 2n  
values c[i]  have equal probability 2-n if and only if for the Latin Square 
LUTs. Other LUTs cause repeatability of some values. However, the 
probability of the random guessing of c[i]  for any distribution is 2-n. 
 
Theorem 4.2. If the scheme (3.1) has an init vector as a random value of 
Nv data units then the maximum probability of the guess the chaining 
values and first lines of the LUT in attack at the beginning of encrypted 
sequence, is for the first data unit of the plain text p[0] and it equals 



 Michael Lifliand Page 7 28/04/2008 

P1 = 2-n(2Nv+4) (4.2) 
Proof. Known information is the plain text p and the encrypted codes c. 
The IV and the fixed initial values of chaining are invisible. Therefore, 
any way of attack may use only relation between known d[i]  and c[i]  for 
some i ≥ Nv. Concerning to lemma 4.1 the probability of the hit of any 
internal chaining in the scheme (3.1) is a product of the probabilities of 
the previous chaining. So, the probability of successful hit is bigger for 
smaller i. Therefore, the maximum probability may be achieved for the 
first data unit of the plain text p[0] or d[i]  for i = Nv. The probability of 
the guess of each independent unknown chaining and the IV is 2-n. Then 
the probability of discovering the first lines of the LUT by guessing all 
the previous values of chaining and the IV is a product of probabilities for 
all the following elements, and (4.2) follows: 

P1 = 2-n(Nv+1) * 2-3n * 2-nNv (4.3) 
 
Theorem (4.2) estimates the probability of successful guess in a 

single test of encrypted method. The way of distinguishing the correct 
invisible internal values from any other on-going random is an unknown 
hypothetic means. Disregarding the latter existence and probability the 
minimum number of tests may be estimated using (4.2) as following. 

The random IV causes the independence of different tests. 
Therefore, if P1 stays for probability of the hit of supposed values in a 
single test, then probability PT of the hit even once in T tests equals  

PT = 1 – (1 – P1)
T 

The number of needed tests T for desired probability PT of the hit is 
T = log(1 - PT) / log(1 - P1) (4.4) 

Table 1 shows the number of combinations (tests) that should be 
checked in order to succeed an attack with probability 0.1 and 0.9 and for 
using a hypothetic detecting facility of the certain values within the state 
machine (the real implementation should make this option impossible 
even with significant probability!). Estimation below refers to different 
sizes of data unit. 

Table 1. Estimation of hypothetic attack at the beginning of 
encrypted sequence with IV of 8 byte 

Number of combinations to analyze for attack  
with probability of success  

n, 
bit 

Size of LUT  
(encryption 

and 
decryption) probability 0.1 probability 0.9 

4 256 B 2140 2145 
6 8 KB 2148 2153 
8 128 KB 2156 2161 
10 2 MB 2164 2169 
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Thus, the scheme (3.1) with all the intermediate chaining values invisible 
and random init vector causes huge number of combinations for attack at 
the beginning of encrypted sequence and makes this attack fruitless.  
 
 
4.2 Attack at the middle of the encrypted sequence  

 
Analysis of encrypted known and chosen plain text from any 

middle point is a more efficient attack. Multiple fragments of the same 
sequence may be used rather than a single fragment at the beginning.  

As it is defined by the scheme (3.1) for each data unit the only 
previous values are ch[i-1] and ch[i-3]. There are only 22n combinations 
for the intermediate chaining values for any data unit. The goal of 
attacker is to guess the ch[i] , ch[i-3], and certain lines of the LUT, and, 
therefore, compromise this encryption. Concerning the lemma (4.1) the 
probability of such a hit is  

P1 = 2-3n (4.5) 
This hit may define the first two lines of the LUT. 

Though, the simple guess of internal chaining in the middle is not 
viable because all internal values are not visible. There is no way to 
consider some suspected values of chaining match to a single visible pair 
(d[i], c[i]) . The estimation (4.5) defines a probability that certain invisible 
values will be in a single test for any pair of an input and output (d, c).  

The only way for success of such attack may be a collection of 
multiple fragments with certain pairs (d, c) from encrypted data with 
chosen plaintext. Further analysis of duplication cases in some neighbour 
data units by hypothetical method (if any may be designed) may make 
assumptions about intermediate chaining values and LUT.  

For any middle fragment of f data units the probability of the hit of 
intermediate chaining values may be estimated regarding the lemma (4.1) 
and the scheme (3.1): 

Pf = 2-n(3+2(f-1)) ,   0<f<4, 
Pf = 2-n(f+4) ,   f>3 

(4.6) 

Attack is more efficient for f>3 while all the intermediate chaining values 
are in the set of the hit values. On the other hand bigger values of f define 
lower probability of the hit. Let’s estimate condition and success 
probability of attack for fragments of f=4 pairs (d, c).  

From the (4.6) a single test for a fragment of f=4 pairs (d, c) 
contains supposed values of internal chaining values with probability 

Pf = 2-8n  (4.7) 
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The pseudo-random nature of encryption causes occasional result of 
encrypted codes and desired set of pairs (d, c) for the fragment may be 
received with probability Pout   

Pout = 2-fn  (4.8) 
These events are independent and the probability Ph of the hit for a single 
test case is a product of probabilities: 

Ph =  Pf * Pout  (4.9) 
For f=4 the it equals to 

Ph = 2-12n  (4.10) 
Thus, the number of the needed fragments for the hit with a desired 
probability for a hypothetic analysis may be estimated by (4.4). This 
estimation defines a minimal condition for attack at the middle with a 
chosen plain text. For example, the worst case is an illegal access to the 
encryption tool with a possibility to encrypt desired packets. Then use 
repeated fragment of 4 chosen data units. At than time it needed more 
than 244 fragments in order to get desired set even once with a probability 
of 0.1. Such amount of encrypted data is about a lifetime of the device or 
any long-time shared secret. Besides that this estimation is done for a 
hypothetical attack. Any real method of analysis should significantly 
increase the number of needed tests.  

The estimations above and possibilities of repeated values of 
encrypted data show that this scheme theoretically may be vulnerable and 
its strengthening is a challenge for the further development. This scheme 
may be regarded as an intermediate research method or a solution for 
certain specific application of encryption, for example, for multimedia 
random unpredictable data with limited size of the encrypted data.  
 
 
5 Internal memory and built-in pseudo-random generator   
 

Addition of internal memory increases the number of states of the 
encryption state machine. This is the major solution for the higher 
security and prevention of cycles in the long encrypted sequences. 
Additional internal memory is updated with processed data. So, it creates 
a built-in pseudo-random generator [1]. Figure 3 shows three versions of 
enhanced schemes with additional external memory. 
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The enhanced scheme on the Figure 3c may be defined by the 

following equations:  
ch[i] = L(m[j], d[i]) ;  
c[i] = L(ch[i-1], ch[i]) ;   
m[j] = L(ch[i-3[, c[i]) ;  
j = (j + 1) mod M;  

 
 

(5.1) 

- i defines the index of the input data element; 
- j  defines the index of the data unit m[j]  of the internal memory; 
- M  defines the number of data units in the internal memory. 

Initial value of internal memory may be a part of the generating sequence 
for calculated LUT. Another option is to use it as a second shared secret 
key for encryption. This gives a new option for dual secret cipher. 

Described above methods of encryption use sequentially connected 
LUTs. The strength of the whole encryption depends on the number of 
possible values in these LUTs. Usage of several different LUT initialized 
by different pseudo-random sequences increases the number of possible 
combinations for all types of attacks in power of the number of LUTs. 
The amount of needed memory increases linearly only in k times. Several 
sets of internal memory may be used in the same way.  

In generic case there is k LUTs and q memory sets (sequences). 
Each time certain elements are chosen by indexes, for example, defined 
by certain bits of on-going data unit of the memory sequences m[j] .  

Figure 3. Three examples of encryptions with internal memory 
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6 Analysis of enhanced schemes of encryption  
 
 The methods of analysis of possible attacks against enhanced 
schemes are similar to described above. The most important is the 
strength against attack at the middle of encrypted sequence. 

The probability of the hit of the certain internal state (m[j] , ch[i-1], 
ch[i] , ch[i-3], and the new value m[j]  for the analysed pair (d[i] , c[i] ) is  
2-5n. For the generic case of k LUTs the hit of the correct set of the three 
randomly defined LUTs for (5.1) is estimated by probability k-3. Result 
probability of the hit of the full internal state for the certain known pair 
(d, c) is  

P1 = (k-3) * (2-5n)  (6.1) 
 Probability of the hit for the fragment of f data units may be 
estimated similar to the (4.6) concerning to additional invisible values of 
a previous and a new memory states: 

Pf = (k-3) * 2-n(5+4(f-1)) ,   0<f<4, 
Pf = (k-3) * 2-n(3f+4) ,   f>3 

(6.2) 

For the similar fragment of f=4 data units  
Pf = (k-3) * 2-16n  (6.3) 

Following to (4.9) and estimations for the fragment f=4 and k=4 LUTs, 
the value of probability of the hit in a single test may be calculated as  

Ph = 2-(20n+6)  (6.4) 
Then, the number of the needed fragments for the hit with a desired 
probability for a hypothetic analysis may be estimated by (4.4).  

Table 2 shows the comparison of estimations for the basic scheme 
by (3.1) with the enhanced one by (5.1). The number of combinations T 
is defined for probabilities of success of attack for different sizes of data 
unit n. These numbers refer to the hypothetic ideal method to distinguish 
the certain line of the LUT.  
 
Table 2. Estimation of hypothetic attack at the middle of encrypted 
sequence: basic scheme (3.1) / enhanced scheme (5.1). 

 
Number of combinations to analyze for attack  

with probability of success:  
n, 
bit 

Size of LUT  
(encryption 

and 
decryption) probability 0.1 probability 0.9 

4 256 B / 1 KB 244 / 270  249 / 275 
6 8 / 32 KB 268 / 2110 273 / 2115 
8 128 / 512 KB 292 / 2150 297 / 2155 
10 2 / 8 MB 2116 / 2190 2121 / 2195 
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7 Provable statement of security for the LUT encryption 
 
 The main problem of most encryption methods is the threat to 
discover a method of attack that compromises the shared keys and causes 
the loss of security in a certain application. Heuristic complex algorithms 
of encryption cause difficulties to prove that the method is reliable and 
there are no flaws in the logic. 

Analysis of generic types of attack as described above evaluates 
parameters for encryption with a desired level of security. So, the LUT 
encryption brings the option of provable state for security applications. 
 
8 Features of the LUT encryption and modes of operation 
 
 Described methods may be efficiently used without padding as it is 
done in block ciphers. The last part of the plaintext that is less than the 
data unit may be XOR-ed with encrypted fixed code that is a part of the 
shared secret. The result bits are secure at the same level as encryption of 
the known plain text. 

Described methods implement calculating of the hash values for 
check data integrity by recurring encryption of the data with continuous 
chaining values. Additional header may be authenticated with minimum 
additional operations.  

Continuous encryption generates pseudo-random values that may 
be used for the init vectors and various elements of security protocols.  

Suggested approach may be used to create a classic stream cipher 
based of the XOR between the plaintext and the result of a cyclical 
encryption of the shared secure sequence. The IV is encrypted prior to the 
secure sequence and the result is sent to the receiver. The latter provides 
synchronization between sender and receiver and prevents all types of 
known plain text attack. 

Special mode of operation may be used for implementation length-
preserving encryption when the length of the encrypted codes is the same 
as an input plain text without any addition of the initialization vector. 
Equal plain texts are encrypted into the same ciphertext. This mode may 
be implemented by two sequential encryptions with different shared 
secret values of the chaining, while the second encryption does 
processing in reverse direction (from the end to the beginning). Each of 
the data unit of result ciphertext depends on the whole plain text. 

Described methods use minimum simplest operations. Processing 
of each data unit is as simple as 2-3 accesses to look-up tables and save 
intermediate chaining in temporary memory. It may be efficiently 
implemented in hardware and software for any processor. 
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9 Conclusions  
 

Described approach defines a new option for shared key 
encryption. Suggested methods are intermediate between block and 
stream ciphers and use conversion of input data by a state machine. Main 
elements are as simple as two-entry look-up tables sequentially connected 
by the certain scheme of encryption. The result features are speed of a 
stream cipher and direct mixing of bits of several data units like a block 
cipher. Built-in chaining with on-going pseudo-random generator 
calculates the hash for the message authentication during encryption. 

Suggested algorithms may be implemented as in software as in 
hardware for different data unit sizes of 4-10 bits that provides different 
levels of security and memory consumptions.  

The work describes new methods of cryptanalysis and their 
application to the encryption methods. Suggested analysis estimates the 
probability of success for a worst case of hypothetic attack against 
encryption methods. All together these results bring an opportunity of 
design actual provable security methods. 
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