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Abstract. The Joint Sparse Form is currently the standard represen-
tation system to perform multi-scalar multiplications of the form [n]P +
m[Q]. We introduce the concept of Joint Double-Base Chain, a general-
ization of the Double-Base Number System to represent simultaneously
n and m. This concept is relevant because of the high redundancy of
Double-Base systems, which ensures that we can find a chain of reason-
able length that uses exactly the same terms to compute both n and m.
Furthermore, we discuss an algorithm to produce such a Joint Double-
Base Chain. Because of its simplicity, this algorithm is straightforward
to implement, efficient, and also quite easy to analyze. Namely, in our
main result we show that the average number of terms in the expansion
is less than 0.3945 log2 n. With respect to the Joint Sparse Form, this
induces a reduction by more than 20% of the number of additions. As
a consequence, the total number of multiplications required for a scalar
multiplications is minimal for our method, across all the methods using
two precomputations, P +Q and P −Q. This is the case even with co-
ordinate systems offering very cheap doublings, in contrast with recent
results on scalar multiplications. Several variants are discussed, including
methods using more precomputed points and a generalization relevant
for Koblitz curves. Our second contribution is a new way to evaluate φ,
the dual endomorphism of the Frobenius. Namely, we propose formulae
to compute ±φ(P ) with at most 2 multiplications and 2 squarings in
F2d . This represents a speed-up of about 50% with respect to the fastest
techniques known. This has very concrete consequences on scalar and
multi-scalar multiplications on Koblitz curves.

Keywords. Elliptic curve cryptography, scalar multiplication, Double-
Base Number System, Koblitz curves.



1 Introduction

1.1 Elliptic Curve Cryptography

An elliptic curve defined over a field K can be seen as the set of points with
coordinates in K lying on a cubic with coefficients in K. Additionally, the
curve must be smooth, and if this is realized, the set of points lying on the
curve can be endowed with an abelian group structure. This remarkable
property, known for many centuries, has been exploited about twenty years
ago to implement fundamental public-key cryptographic primitives [18,
17]. We refer to [23] for a thorough, yet accessible, presentation of elliptic
curves and to [2, 16, 6, 7] for a discussion focused on cryptographic ap-
plications. In this context, two classes of elliptic curves are particularly
relevant:

• curves defined over a large prime field Fp represented by a Weierstraß
equation

y2 = x3 + a4x+ a6, a4, a6 ∈ Fp such that 4a34 + 27a26 6= 0

or an Edwards form [5]

x2 + y2 = 1 + dx2y2, d ∈ Fp \ {0, 1}.

• Koblitz curves defined over F2

y2 + xy = x3 + a2x
2 + 1, a2 ∈ {0, 1}

where points belong to some extension of finite degree F2d .

The core operation in many elliptic curve cryptographic protocols is a
scalar multiplication, which consists in computing the [n]P , given a point
P on the curve and some integer n. The standard method to perform a
scalar multiplication is the double-and-add, which needs ℓ doublings and
on average ℓ

2 additions for integers of length ℓ.

1.2 Double-Base Number System

The Double-Base Number System (DBNS) was initially introduced by
Dimitrov and Cooklev [10] and later used in the context of elliptic curve
cryptography [11]. With this system, an integer n is represented as

n =
ℓ

∑

i=1

ci2
ai3bi , with ci ∈ {−1, 1}.
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To find an expansion representing n, we can use a greedy-type algorithm
whose principle is to find at each step the best approximation of a certain
integer (n initially) in terms of a {2, 3}-integer, i.e. an integer of the form
2a3b. Then compute the difference and reapply the process.

Example 1. Applying this approach for n = 542788, we find that

542788 = 2837 − 2337 + 2433 − 2.32 − 2.

In [13], Dimitrov et al. show that for any integer n, this greedy approach
returns a DBNS expansion of n having at most O

( logn
log logn

)

terms. However,
in general this system is not well suited for scalar multiplications. Indeed, if
it is impossible to order the terms in the expansion such that their powers
of 2 and 3 are simultaneously decreasing, as it is the case in Example 1,
it seems impossible to obtain [n]P without using too many doublings or
triplings and without extra temporary variables.

This observation leads to the concept of Double-Base Chain (DBC), in-
troduced in [11], where we explicitly look for expansions such that aℓ >
aℓ−1 > · · · > a1 and bℓ > bℓ−1 > · · · > b1. This guarantees that exactly
aℓ doublings and bℓ triplings are needed to compute [n]P . Note that it is
easy to modify the greedy algorithm to return a DBC. Also, a tree-based
algorithm has been recently developed with the same purpose [14].

Example 2. A modified version of the greedy algorithm returns the fol-
lowing DBC

542788 = 21433 + 21233 − 21032 − 210 + 26 + 22.

A DBC expansion is always longer than a DBNS one, but computing
a scalar multiplication with it is now straightforward. The most natural
method is probably to proceed from right-to-left. With this approach, each
term 2ai3bi is computed individually and all the terms are added together.
This can be implemented using two variables.

The left-to-right method, which can be seen as a Horner-like scheme, needs
only one variable. Simply initialize it with [2aℓ−aℓ−13bℓ−bℓ−1 ]P , then add
cℓ−1P and multiply the result by [2aℓ−1−aℓ−23bℓ−1−bℓ−2 ]. Repeating this
eventually gives [n]P , as illustrated with the chain of Example 2

[542788]P = [22]
(

[24]
(

[24]
(

[32]
(

[223]([22]P + P )− P
)

− P
)

+ P
)

+ P
)

.
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1.3 Multi-Scalar Multiplication

A signature verification mainly requires a double-scalar multiplication of
the form [n]P +[m]Q. Obviously, [n]P , [m]Q can be computed separately
and added together at the cost of 2ℓ doublings and ℓ additions, on average,
assuming that n and m are both of length ℓ. More interestingly, [n]P +
[m]Q can also be obtained as the result of a combined operation called a
multi-scalar multiplication. So called Shamir’s trick, in fact a special case
of an idea of Straus [22], allows to minimize the number of doublings and
additions by jointly representing

(

n
m

)

in binary. Scanning the bits from
left to right, we perform a doubling at each step, followed by an addition
of P , Q or P +Q if the current bits of n and m are respectively

(1
0

)

,
(0
1

)

,

or
(1
1

)

. If P +Q is precomputed, we see that [n]P +[m]Q can be obtained

with ℓ doublings and 3ℓ
4 additions, on average.

It is possible to do better, as shown by Solinas [21], using the redundancy
and flexibility of signed-binary expansions. Indeed, the Joint Sparse Form
(JSF) is a representation of the form

(

n

m

)

=

(

nℓ−1 . . . n0

mℓ−1 . . . m0

)

JSF

such that the digits ni,mi fulfill certain conditions. Given two integers n
and m, there is an efficient algorithm computing the JSF of n and m and
if max(n,m) is of length ℓ, then the number of terms is at most ℓ+1 and
the number of nonzero columns is ℓ

2 on average. Also, the JSF is proven
to be optimal, that is for any given pair (n,m), the JSF has the smallest
density among all joint signed-binary representations of n and m.

Example 3. The joint sparse form of n = 542788 and m = 462444 is
equal to

(

n

m

)

=

(

1001̄0001001̄01001̄01̄00
10000100100001000100

)

JSF

where 1̄ stands for −1. The computation of [n]P + [m]Q requires 9 addi-
tions and 20 doublings, given that P +Q and P −Q are precomputed and
stored.
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2 Joint Double-Base Number System

In the present article, we introduce the Joint Double-Base Number System
(JDBNS) that allows to represent two integers n and m as

(

n

m

)

=

ℓ
∑

i=1

(

ci
di

)

2ai3bi

with ci, di ∈ {−1, 0, 1}.
To compare with other representation systems, we define the density of
a JDBNS expansion as the number of terms in the expansion divided by
the binary length of max(n,m).

Example 4. We have

(

542788

462444

)

=

(

1

1

)

21135 +

(

1

1̄

)

2934 +

(

1

1

)

2634 +

(

1̄

1

)

2434

−

(

1

1

)

35 +

(

1

1

)

223 +

(

1̄

1

)

22 −

(

1

1

)

.

This expansion has only 8 terms for a density equal to 0.4. However, we see
that it belongs to this class of expansions that cannot be used directly with
a Horner-like scheme, just like in the one-dimension case, cf. Section 1.2.
As a consequence, we need more than 11 doublings and 5 triplings to com-
pute the corresponding multi-scalar multiplication without storing any in-
termediate computation.

That is why we also introduce the concept of Joint Double-Base Chain
(JDBC) where the sequences of exponents satisfy aℓ > aℓ−1 > · · · > a1
and bℓ > bℓ−1 > · · · > b1. With this additional constraint, the computa-
tion of [n]P + [m]Q can be done very efficiently provided that the points
P +Q and P −Q are precomputed.

Example 5. A JDBC for n and m is as follows

(

542788

462444

)

=

(

1

1

)

21433 +

(

1

0

)

21233 +

(

1̄

1

)

2933 +

(

1

1

)

2932 +

(

1̄

1

)

2732

+

(

0

1

)

2632 +

(

1

1̄

)

2432 +

(

1

1

)

243 +

(

0

1

)

223 +

(

1

0

)

22.

This expansion has 2 more terms than the JDBNS expansion of Example 4,
but setting T1 = P + Q and T2 = P − Q, it is now trivial to compute
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[n]P + [m]Q as

[22]([3]([22]([3]([22]([2]([22]([3]([23]([22]T1+P )−T2)+T1)−T2)+Q)+T2)+T1)+Q)+P)

using exactly 14 doublings and 3 triplings. Note that the right-to-left method
that works for a single scalar multiplication, cf. Section 1.2, cannot be
adapted in this context. Indeed, we see that [22]P is of no use to get the
next term in the chain, namely [223]Q. As a consequence, we need 4 dou-
blings and a tripling to obtain [22]P + [223]Q.

Again, the greedy algorithm can be modified to return a JDBC, however,
the resulting algorithm suffers from a certain lack of efficiency and is
difficult to analyze. The method we discuss next is efficient, in the sense
that it produces quickly very short chains, and simple enough to allow a
detailed complexity analysis.

3 Joint Binary-Ternary Algorithm and Generalizations

In [8], Ciet et al. propose a binary/ternary method to perform a scalar
multiplication by means of doublings, triplings, and additions. Let vp(x)
denote the p-adic valuation of x, then the principle of this method is as
follows. Starting from some integer n and a point P , divide n by 2v2(n)

and perform v2(n) doublings, then divide the result by 3v3(n) and perform
v3(n) triplings. At this point, we have some integer x that is coprime to 6.
This implies that x mod 6 is equal to 1 or 5. Setting x = x−1 or x = x+1
allows to repeat the process at the cost of a subtraction or an addition.
We propose to generalize this method in order to compute a JDBC. First,
let us introduce some notation. For two integers x and y, we denote
min

(

vp(x), vp(y)
)

by vp(x, y). It gives the largest power of p that divides
x and y simultaneously.

Definition 6. We denote by C the set of all the pairs of positive integers
(x, y) such that v2(x, y) = v3(x, y) = 0.

Also, for nonzero x and y, we introduce the function gain(x, y), which
computes the largest factor 2v2(x−c,y−d)3v3(x−c,y−d) for c, d ∈ {−1, 0, 1}.
Note that we set gain(1, 1) = 0.

Example 7. The function gain applied to (52, 45) returns 22, correspond-
ing to c = 0 and d = 1. Indeed, it is easy to check that out of all the 9
possibilities, (52, 44) can be divided by the biggest term of the form 2α3β,
that is 22.
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Note that this function gain can be implemented very efficiently by looking
at the remainders of x and y modulo 6.

3.1 Algorithm

The principle of the algorithm is straightforward. Take two positive inte-
gers n and m. Divide by 2v2(n,m)3v3(n,m) in order to obtain (x, y) ∈ C. The
idea is then to call the function gain(x, y) and clear the common powers
of 2 and 3 in x− c, y − d, where c and d are the coefficients maximizing
this factor. (In case several pairs of coefficients achieve the same gain, any
pair can be chosen.) The result is therefore a new pair in C so that we can
iterate the process, namely compute the corresponding gain, divide by the
common factor, and so on. Since x and y remain positive and decrease at
each step, we will have at some point x 6 1 and y 6 1, which causes the
algorithm to terminate.

Algorithm 1. Joint Binary-Ternary representation

Input: Two integers n and m such that n > 1 or m > 1.

Output: A joint DB-Chain computing n and m simultaneously.

1. i← 1 [current index]

2. a1 ← v2(n,m) and b1 ← v3(n,m) [common powers of 2 and 3]

3. x← n/(2a13b1 ) and y ← m/(2a13b1) [(x, y) ∈ C]

4. while x > 1 or y > 1 do

5. g ← gain(x, y)

6. ci ← c and di ← d [coefficients for that gain]

7. i← i+ 1

8. x← (x− ci)/g and y ← (y − di)/g [(x, y) ∈ C]

9. ai ← ai + v2(g) and bi ← bi + v3(g)

10. ci ← x and di ← y [ci, di ∈ {0, 1}]

11. return

((

ci
di

)

2ai3bi
)

JDBC

Example 8. Algorithm 1 with input n = 542788 and m = 462444 gives
the following intermediate values, displayed just before Line 7 executes
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i g x y ci di ai bi

1 22 135697 115611 1 1̄ 2 0

2 2131 33924 28903 0 1 4 0

3 31 5654 4817 1̄ 1̄ 5 1

4 31 1885 1606 1 1 5 2

5 22 628 535 0 1̄ 5 3

6 31 157 134 1 1̄ 7 3

7 22 52 45 0 1 7 4

8 2231 13 11 1 1̄ 9 4

9 — 1 1 1 1 11 5

We deduce that
(

542788

462444

)

=

(

1

1

)

21135 +

(

1

1̄

)

2934 +

(

0

1

)

2734 +

(

1

1̄

)

2733 +

(

0

1̄

)

2533

+

(

1

1

)

2532 −

(

1

1

)

253 +

(

0

1

)

24 +

(

1

1̄

)

22.

Since doublings and triplings have different costs in different coordinate
systems, it would be desirable to have some control of the largest powers
of 2 and 3 in the expansion, which is not the case with Algorithm 1. To
have more control on these values, we can modify the function gain. For
instance, instead of returning the largest factor of the form 2α3β, we can
implement the function gain to return the factor having the largest power
of 2 or 3.

3.2 Complexity Analysis

In the following, given integers n and m of a certain size, we compute
the average density of a JDBC obtained with Algorithm 1, as well as the
average values of the maximal powers of 2 and 3 in the joint expansion.
This will in turn provide the average number of additions, doublings and
triplings that are necessary to compute [n]P + [m]Q.
Let us start with the density of an expansion, which depends directly on
the average number of bits cleared at each step of Algorithm 1. Given a
pair (x, y) ∈ C and fixed values α and β, we determine the probability
pα,β that gain(x, y) = 2α3β by enumerating the number of pairs having
the desired gain in a certain square S and dividing by the total number
of pairs in C ∩ S.
Let Sγ,δ denote the set [1, 2γ3δ]2. The total number of pairs we investigate
is given by the following Lemma.
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Lemma 1. Given two integers γ and δ, the cardinality of C ∩ Sγ,δ, is
equal to 22γ+132δ−1.

The proof is straightforward and is left to the reader. Next, let us choose
γ, δ to actually compute pα,β. At first glance, it seems that the square
Sα+1,β+1 is a good candidate for that. In fact, we can use it provided that
when we consider a larger square, say Sα+κ+1,β+η+1, the number of pairs
having a gain equal to 2α3β and the total number of pairs in C are both
scaled by the same factor: 22κ32η. Indeed, we expect that if (x, y) has a gain
equal to 2α3β , then all the pairs of the form (x+i2α+13β+1, y+j2α+13β+1)
with (i, j) ∈ [0, 2κ3η − 1]2 will have the same gain. However, this is not
the case. For instance, gain(26, 35) = 32 whereas gain(26+2×33, 35+5×
2× 33) = 24. These interferences are inevitable, but intuitively, they will
become less and less frequent and will eventually disappear if we scan a set
large enough. The following result makes this observation more precise.

Lemma 2. Let α and β be two nonnegative integers. Take γ such that
2γ > 2α3β and δ such that 3δ > 2α3β. Then, for any (x, y) ∈ C whose
gain is equal to 2α3β, we have

gain(x+ i2γ3δ, y + j2γ3δ) = gain(x, y)

for all (i, j) ∈ Z
2.

Proof. Clearly, we have gain(x, y) 6 gain(x + i2γ3δ , y + j2γ3δ). To show
the converse inequality, assume that there are i and j such that gain(x+
i2γ3δ , y + j2γ3δ) = 2α13β1 > gain(x, y). If the coefficients corresponding
to this gain are c and d, we see that

v2(x− c+ i2γ3δ) > α1 and v2(y − d+ j2γ3δ) > α1,

v3(x− c+ i2γ3δ) > β1 and v3(y − d+ j2γ3δ) > β1.

Then using that vp(r+ s) = min
(

vp(r), vp(s)
)

whenever vp(r) 6= vp(s), we
deduce that v2(x − c) > α1, when v2(x − c) 6= v2(i2

γ3δ). If v2(x − c) =
v2(i2

γ3δ), then we see that v2(x− c) > γ. The same is true for v2(y − d)
and we obtain that v2(x− c) and v2(y− d) are larger than min(α1, γ). In
the same way, we can show that v3(x − c) and v3(y − d) are larger than
min(β1, δ). Because γ and β have been chosen such that 2γ and 3δ are
strictly bigger than 2α3β and since also 2α13β1 > 2α3β , this proves that
in any case gain(x, y) > 2α3β , which is contrary to the hypothesis. ⊓⊔
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Lemma 2 gives a lower bound for pα,β. Indeed, let us consider a larger set
Sγ+κ,δ+η. Then to any pair (x, y) ∈ C ∩ Sγ,δ whose gain is 2α3β , we can
associate the elements (x + i2γ3δ , y + j2γ3δ) with (i, j) ∈ [0, 2κ3η − 1]2

that are in C ∩ Sγ+κ,δ+η and that have the same gain as (x, y).
Conversely, if (x1, y1) ∈ C ∩ Sγ+κ,δ+η and gain(x1, y1) = 2α3β, then
(x1, y1) can be written (x + i2γ3δ , y + j2γ3δ) with (x, y) ∈ Sγ,δ and
gain(x, y) = gain(x1, y1).
Overall, this ensures that scanning Sγ,δ gives the exact probability for a
pair to have a gain equal to 2α3β and allows to compute the first few
probabilities.
The following lemma will help us dealing with the remaining cases.

Lemma 3. The probability pα,β is bounded above by 1
22α+132β−3 for any

nonnegative α, β.

Proof. There are 6 integers in the interval [1, 2α+13β+1] that are divisible
by 2α3β . In total, we have 18 elements x0 such that x0−1, x0, or x0+1 is
divisible by 2α3β. In the square Sγ,δ, the pairs having a gain equal to 2α3β

must be of the form (x0+ i2α+13β+1, y0+ j2α+13β+1) where x0 and y0 are
one of the 18 elements above and with (i, j) ∈ [0, 2γ−α−13δ−β−1 − 1]2. So,
there are at most 22(γ−α)32(δ+1−β) pairs with a gain equal to 2α3β. We
conclude by dividing by the number of elements in C ∩ Sγ,δ. ⊓⊔

We can now prove our main result.

Theorem 1. Let n > m be two integers such that gcd(n,m) is coprime
with 6. The average density of the JDBC computing

(

n
m

)

and returned by
Algorithm 1 belongs to the interval [0.3942, 0.3945]. The average values of
the biggest powers of 2 and 3 in the corresponding chain are approximately
equal to 0.55 log2 n and 0.28 log2 n.

Proof. We determine the first probabilities pα,β using Lemmas 1 and 2.
Namely, we enumerate pairs having a gain equal to 2α3β in the square Sγ,δ,
with γ and δ as in Lemma 2. With an appropriate implementation, we need
to investigate only 22(γ−α)32(δ+1−β) pairs and a quick computation gives
pα,β. We have performed the computations for 0 6 α 6 8 and 0 6 β 6 5,
and results show that these parameters cover more than 99.99% of the
cases. We found that the probability pi,j is equal to 2−2i+33−2j for i > 2
and j > 1. For i 6 1 or j = 0, the probabilities do not seem to follow any
pattern:

p0,0 = 0 p0,1 = 2
32

p0,2 = 41
2334

p0,3 = 169
2536

p0,4 = 2729
2938

p0,5 = 10921
211310
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p1,0 = 0 p1,1 = 5
33

p1,2 = 95
2435

p1,3 = 383
2637

p1,4 = 6143
21039

p1,5 = 24575
212311

p2,0 = 5
2.32

p3,0 = 7
2332

p4,0 = 17
2334

p5,0 = 635
2736

p6,0 = 637
2936

p7,0 = 2869
21038

p8,0 = 51665
213310

·

Now, if the gain of (x, y) is equal to 2α3β in Line 5 of Algorithm 1,
then the sizes of x and y both decrease by (α + β log2 3) bits in Line 8.
Therefore, if K denotes the average number of bits eliminated at each
step of Algorithm 1, we have

K =
∞
∑

α=0

∞
∑

β=0

pα,β(α+ β log2 3).

Thus

K >

8
∑

α=0

5
∑

β=0

pα,β(α+ β log2 3)

and thanks to the values above, we obtain K > 2.53519. Using Lemma 3,
we bound the remaining terms in the double sum by

∞
∑

α=0

∞
∑

β=0

α+ β log2 3

22α+132β−3
−

8
∑

α=0

5
∑

β=0

α+ β log2 3

22α+132β−3
=

2921

3981312
+

7741 log2 3

31850496

= 0.001118 . . . ,

showing that K 6 2.53632. The density being the inverse of K, we deduce
the bounds of the theorem.
Similarly, we deduce that on average we divide by 2α3β at each step for
some α ∈ [1.40735, 1.40810] and β ∈ [0.71158, 0.71183]. Also, the average
of the largest power of 2 (respectively 3) in an expansion is equal to
α (respectively β) multiplied by the average length of the expansion. We
deduce the approximations claimed in the theorem from the computations
above. ⊓⊔

Since the JSF has a joint density of 1
2
, we see that a JDBC returned

by Algorithm 1 has on average 21% less terms than a JSF expansion,
whereas both representation systems require exactly 2 precomputations.
See Table 2 to appreciate the overall impact of the Joint Binary-Ternary
algorithm on multi-scalar multiplications.

3.3 Variants of the Joint Binary-Ternary Method

One simple generalization is to allow nontrivial coefficients in the expan-
sion. This corresponds to use more precomputed points when computing
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a multi-scalar multiplication. For instance, if we allow the coefficients in
the expansion to be 0,±1,±5, then 10 points must be stored to com-
pute [n]P + [m]Q efficiently. Namely, P +Q, P −Q, [5]P , [5]Q, [5]P +Q,
[5]P−Q, P+[5]Q, P−[5]Q, [5]P+[5]Q, and [5]P−[5]Q. The only difference
with Algorithm 1 lies in the function gain(x, y), which now computes the
largest factor 2v2(x−c,y−d)3v3(x−c,y−d) for c, d ∈ {−5,−1, 0, 1, 5}. Clearly,
the average number of bits that is gained at each step is larger than in
Algorithm 1, and indeed, following the ideas behind Theorem 1, it is pos-
sible to show that the average density of an expansion returned by this
variant is approximately equal to 0.3120. Note that this approach gives
shorter multi-chains on average than the hybrid method explained in [1]
that uses 14 precomputations for a density of 0.3209. If we want to add a
new value, e.g. 7, to the set of coefficients, we have to use 22 precomputed
points, which does not seem realistic. Note that if the computations are
performed on a device with limited memory, storing 10 points is already
too much. A possibility is to precompute only P + Q, P − Q, [5]P , and
[5]Q and use only coefficients of the form

(1
0

)

,
(0
1

)

,
(1
1

)

,
(1
1̄

)

,
(5
0

)

,
(0
5

)

and
their opposite in the JDBC. In this scenario, adding a new coefficient has
a moderate impact on the total number of precomputations. Again, the
only difference lies in the function gain. It is easy to perform an analysis
of this method following the steps that lead to Theorem 1. This is left to
the interested reader.

Another variant, we call the Tree-Based Joint Binary-Ternary method, is
a generalization of the tree-based approach to compute single DB-Chains
described in [14]. Namely, instead of selecting the coefficients c, d that give
the maximal gain in order to derive the next pair of integers, the idea is
to build a tree containing nodes (x, y) corresponding to all the possible
choices of coefficients. The rationale behind this strategy is that taking a
maximal gain at each step is not necessarily the best choice overall. Giving
a certain flexibility can allow to find shorter expansions. The downside
is that the number of nodes grows exponentially so that the algorithm
becomes quickly out of control. A practical way to deal with this issue is
to trim the tree at each step, by keeping only a fixed number B of nodes,
for instance the B smallest ones (e.g. with respect to the Euclidean norm).
Tests show that the value B does not have to be very large in order to
introduce a significant gain. In practice, we use B = 4, which achieves a
good balance between the computation time and the quality of the chain
obtained.
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Algorithm 2. Tree-Based Joint Binary-Ternary method

Input: Two integers n and m such that n > 1 or m > 1 and a bound B.

Output: A tree containing a joint DB-chain computing n and m.

1. Initialize a tree T with root node (n,m)

2. if v2(n,m) > 0 or v3(n,m) > 0 then

3. g ← 2v2(n,m)3v3(n,m)

4. Insert the child
(

n
g
,m
g

)

under the node (n,m)

5. repeat

6. for each leaf node L = (x, y) in T do [insert 8 children]

7. for each pair (c, d) ∈ {−1, 0, 1}2 \ {(0, 0)} do

8. gc,d ← 2v2(x−c,y−d)3v3(x−c,y−d)

9. Lc,d ←
(

x−c
gc,d

, y−d

gc,d

)

and insert Lc,d under L

10. Discard any redundant leaf node

11. Discard all but the B smallest leaf nodes

12. until a leaf node is equal to (1, 1)

13. return T

Remarks 9.

(i) The choice B = 1 corresponds to the Joint Binary-Ternary method.
It is clear that on average, the larger B is, the shorter will be the ex-
pansion. However, a precise complexity analysis of Algorithm 2 seems
rather difficult.

(ii) To find an actual JDBC computing n and m, go through the interme-
diate nodes of any branch having a leaf node equal to (1, 1).

(iii) To select the nodes that we keep in Line 11, we use a weight function
that is in our case simply the size of the gain, of the form 2α3β. To
have more control on the largest powers of 2 and 3 in the expansion,
we can use another weight function, e.g. depending on α or β.

(iv) It is straightforward to mix the tree-based approach with the use of
nontrivial coefficients. Simply, modify Line 7 to handle different sets
of coefficients.

Example 10. To compute [542788]P + [462444]Q, the JSF needs 9 ad-
ditions and 20 doublings, whereas the joint Binary-Ternary method only
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requires 8 additions, 11 doublings, and 5 triplings, cf. Examples 1 and 8.
Applying Algorithm 2 with B = 4, we find that

(

542788

462444

)

=

(

1

1

)

21135 +

(

1

1̄

)

2934 +

(

1

1

)

2634 +

(

1̄

1

)

2434

−

(

1

1

)

2333 +

(

1̄

0

)

2232 +

(

1

1̄

)

223 +

(

1

0

)

22.

This last expansion still requires 11 doublings and 5 triplings but only 7
additions.
Adding ±5 to the set of coefficients allows the tree-based approach to find
the even shorter expansion
(

542788

462444

)

=

(

1

0

)

2736 +

(

5

5

)

2736 −

(

5

1

)

2733 +

(

1

5̄

)

263 +

(

0

5

)

26 +

(

1

5̄

)

22.

We have run some experiments to compare these methods in different
situations. The outcome of these tests is gathered in Table 2.

3.4 Experiments

We have run some tests to compare the different methods discussed so
far for different sizes ranging from 192 to 512 bits. More precisely, we
have investigated the Joint Sparse Form (JSF), the Joint Binary-Ternary
(JBT), and its Tree-Based variant with parameter B adjusted to 4 (Tree-
JBT). All these methods require only 2 precomputations. Also, for the
same set of integers, we have looked at methods relying on more precom-
puted values. The variant of the Tree-Based explained above that needs
only 5P and 5Q on top of P +Q and P −Q is denoted Tree-JBT5. In this
spirit Tree-JBT7 needs also 7P and 7Q, whereas Tree-JBT52 needs all the
possible combinations, such as [5]P + [5]Q, that is 10 precomputations in
total.
Table 1 displays the different parameters for each method, in particular
the length of the expansion, corresponding to the number of additions and
the number of doublings and triplings. The values obtained are inline with
those announced in Theorem 1. The notation #P stands for the number
of precomputed points required by each method.
To demonstrate the validity of our approach, we have chosen to com-
pare the scalar multiplication methods within the coordinate systems with
the fastest doublings available, namely inverted Edwards coordinates [15].
With this choice a doubling can be obtained with 3M+4S, a mixed addi-
tion with 8M+ S, and a tripling with 9M+ 4S, where M and S represent
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Size 192 bits 256 bits 320 bits 384 bits 448 bits 512 bits

Method #P ℓ aℓ bℓ ℓ aℓ bℓ ℓ aℓ bℓ ℓ aℓ bℓ ℓ aℓ bℓℓ aℓ bℓ

JSF 2 96 192 0 128 256 0 160 320 0 190 384 0 224 448 0 256 512 0

JBT 2 77 104 55 102 138 74 128 174 92 153 208 110 179 241 130 204 279 146

Tree-JBT 2 72 107 53 96 141 72 119 178 89 143 214 107 167 248 126 190 281 145

Tree-JBT5 4 64 105 54 85 141 71 106 176 90 126 211 108 147 246 126 169 281 145

Tree-JBT7 6 60 102 55 80 137 74 99 171 93 119 204 112 139 238 131 158 273 150

Tree-JBT
52

10 54 105 54 72 140 72 89 176 90 107 210 109 125 245 127 142 283 144

Hybrid 14 61 83 69 82 110 92 102 138 115 123 165 138 143 193 161 164 220 184

Table 1. Parameters of JDBC obtained by various methods

respectively a multiplication and a squaring in Fp. To ease the compar-
isons, we make the usual assumption that 1S ≈ 0.8M.

Table 2 gives the overall number of multiplications needed for a scalar
multiplication with a particular method, using inverted Edwards coordi-
nates. These tests show that the Joint Binary-Ternary, introduced in this
article, is faster than the Joint Sparse Form. The Tree-Based variant is
even faster, but the time necessary to derive the expansion is considerably
higher than the simple Joint Binary-Ternary. Beyond the speed-up, that
is close to 5%, it is interesting to notice that even with very cheap dou-
blings, Double-Base like methods are faster. Regarding methods requiring
more precomputed values, it is to be noted that all the variants introduced
in this paper use significantly less precomputed points than the Hybrid
method [1]. They are all faster than the hybrid method when counting
the cost of precomputations, as shown in Table 2, and also even one can
check that this is the case without counting those costs.

Size 192 bits 256 bits 320 bits 384 bits 448 bits 512 bits

Method #P NM NM NM NM NM NM

JSF 2 2044 2722 3401 4062 4758 5436

JBT 2 2004 2668 3331 3995 4664 5322

Tree-JBT 2 1953 2602 3248 3896 4545 5197

Tree-JBT5 4 1920 2543 3168 3792 4414 5042

Tree-JBT7 6 1907 2521 3137 3753 4365 4980

Tree-JBT
52

10 1890 2485 3079 3677 4270 4862

Hybrid 14 2047 2679 3311 3943 4575 5207

Table 2. Complexity of various scalar multiplication methods for different sizes
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To conclude, note that JDBC expansions are relevant for scalar multipli-
cations as well. Namely, if we want to compute [n]P , one possibility is
to split n as n0 + 2A3Bn1, where A and B are fixed constants chosen so
that n0 and n1 have approximately the same size and also to adjust the
number of doublings and triplings. Then run Algorithm 1 or 2 to find a
chain computing n0 and n1 simultaneously.

4 Koblitz curves

The results above can be applied to compute a scalar multiplication on
any elliptic curve. However, in practice, these techniques concern mainly
curves defined over a prime field of large characteristic.
For Koblitz curves,

Ea2 : y2 + xy = x3 + a2x
2 + 1, a2 ∈ {0, 1}

there exists a nontrivial endomorphism, the Frobenius denoted by φ and
defined by φ(x, y) = (x2, y2). Let µ = (−1)1−a2 , then it is well-known
that the Frobenius satisfies φ2 − µφ + [2] = [0]. So, in some sense, the
complex number τ such that τ2 − µτ + 2 = 0 represents φ. If an integer
n is equal to some polynomial in τ , then the endomorphism [n] will be
equal to the same polynomial in φ. The elements of the ring Z[τ ], called
Kleinian integers [12], thus play a key role in scalar multiplications on
Koblitz curves.

4.1 Representation of Kleinian Integers

It is easy to show that Z[τ ] is an Euclidean ring and thus any element
η ∈ Z[τ ] has a τ -adic representation of the form

η =
ℓ−1
∑

i=0

ciτ
i, with ci ∈ {0, 1}.

There are also signed-digit representations and among them, the τ -NAF
has a distinguished status, achieving an optimal density of 1

3 · Its gen-
eralization, the τ -NAFw, has an average density of 1

w+1 for 2w−2 − 1
precomputed points.
In [4, 3, 12], the concept of Double-Base is extended to Kleinian integers.
In particular, for a given η ∈ Z[τ ], there is an efficient algorithm described
in [3] that returns a τ -DBNS expansion of the form

η =
ℓ

∑

i=1

±τaizbi ,
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where z = 3 or τ̄ .

This method produces in general an expansion whose terms cannot be
ordered such that aℓ > aℓ−1 > · · · > a1 and bℓ > bℓ−1 > · · · > b1.

Unlike what we have seen in Section 1.2, such an expansion can still be
used to compute a scalar multiplication in certain situations. The price to
pay is to incorporate conversion routines between polynomial and normal
bases [20] to compute repeated applications of the Frobenius for free. This
approach is described in [19].

Since implementing these conversion techniques can be challenging, espe-
cially on devices with limited capabilities, we will not follow this path and
introduce instead the concept of τ -DB-Chains (τ -DBC) where, as in the
integer case, we ask that aℓ > aℓ−1 > · · · > a1 and bℓ > bℓ−1 > · · · > b1
in the expansion above.

The algorithm described in [3] could be adapted to return a τ -DBC, how-
ever the implementation would certainly be tricky and the analysis quite
involved. Instead, we can generalize the greedy algorithm or the binary-
ternary method to produce such a chain.

4.2 Scalar Multiplication

The τ -adic representation of η implies that

[η]P =
ℓ−1
∑

i=0

ciφ
i(P ).

Now, if we work in the extension F2d , and if η ∈ Z is of size 2d, the length
ℓ of the τ -adic expansion of η is twice as long as what we expect, that is
2d instead of d. That is why in practice, we first compute δ = ηmod τd−1

τ−1 ·
Under appropriate conditions, we have [δ]P = [η]P with δ of length half
then length of η. From now on, we assume that this reduction has been
done and that the length of η is approximately d.

Computing [η]P with a Frobenius-and-add approach involves d
2 additions

on average and d Frobenius that need 2d squarings. With the τ -NAFw,
we need 2w−2 − 1 + d

w+1 additions, the same amount of Frobenius, and

some memory to store 2w−2 − 1 precomputed points. The complexity of
the τ -DBNS is well understood, however as mentioned earlier, it requires
change of basis techniques that are not available in our scenario.

The complexity of the τ -DBC is much more difficult to analyze. Only some
experiments give an indication of its performance, and tests show that the
τ -DBC cannot compete, for instance with the τ -NAF. The problem comes
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from the cost of the second endomorphism that is too expensive to balance
the saving induced on the number of additions. To make use of the τ -DBC,
it is crucial to reduce this cost. There is little hope to reduce significantly
the cost of a tripling, that is why we focus our efforts on φ.

Obviously, we can implement φ(P ) = µP − φ(P ) with a subtraction and,
in López–Dahab coordinates, this corresponds to the cost of a mixed ad-
dition, i.e. 8M + 5S, where M and S are respectively the cost of a mul-
tiplication and a squaring in F2d . But it is possible to do better. Indeed,
we can replace φ by the halving map using the equation φφ(P ) = [2]P .
A halving works on the point P = (x1, y1) represented as (x1, λ1) with
λ1 = x1 + y1/x1. It involves solving a quadratic equation, computing a
square root and a trace, and performing at least one multiplication [2]. It
is thus difficult to accurately analyze the cost of a halving, but half the
cost of a mixed López–Dahab addition, that is 4M + 4S, is a reasonable
estimate. This is still too expensive to justify the use of the τ -DBC to
compute a scalar multiplication. We show next how to compute ±φ(P ) in
a much more efficient way.

4.3 Fast Evaluation of φ

In this part, we show how to compute ±φ(P ) in López–Dahab coordinates
with 2M + S when a2 = 1 and 2M + 2S when a2 = 0.

Lemma 4. Let P1 = (X1 : Y1 : Z1) be a point in López–Dahab coordinates
on the curve Ea2 and let P2 = φ(P1). Then the López–Dahab coordinates
of P2, namely (X2 : Y2 : Z2) satisfy

X2 = (X1 + Z1)
2

Z2 = X1Z1

Y2 =
(

Y1 + (1− a2)X2

)(

Y1 + a2X2 + Z2

)

+ (1− a2)Z
2
2 .

The coordinates of the negative of P2 are equal to (X2 : Y ′

2 : Z2) with
Y ′

2 =
(

Y1 + a2X2

)(

Y1 + (1− a2)X2 + Z2

)

+ (1− a2)Z
2
2 .

Proof. The negative of P2 = (X2 : Y2 : Z2) in López–Dahab coordinates
is (X2 : Y2 + X2Z2 : Z2). So, the formulae for P2 and −P2 given above
are equivalent. Now let us show that P2 = φ(P1) = P1 − φ(P1) when
a2 = 1. First, assume that P1 = ±φ(P1). In this case, we must have
x21 = x1. If x1 = 0 then P1 = (0, 1) is a point of 2-torsion. This implies
that φ(P1) − P1 = P∞. The formulae above show that (X2 : Y2 : Z2) =
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(1 : 0 : 0) that is also P∞. If x1 = 1, then we must have y21+y1 = 1, which
is not compatible with the hypothesis P1 = ±φ(P1).
Now, if P1 6= ±φ(P1), set x1 = X1/Z1 and y1 = Y1/Z

2
1 . The affine coordi-

nates (x2, y2) of P1 − φ(P1) are given by

x2 = λ2 + λ+ x1 + x21 + 1,
y2 = λ(x1 + x2) + x2 + y1,

where λ =
y1 + x21 + y21

x1 + x21
. We deduce that

x2 =
y41 + x1y

2
1 + x21y

2
1 + y21 + x21y1 + x1y1 + x61 + x51 + x21

x41 + x21
·

Let T = y21+x1y1+x31+x21+1. Since P1 is on E1, we have T = 0 and it is
easy to check that the numerator of x2 is equal to x51+x1+T 2+T (x1+1)
so that

x2 =
x51 + x1
x41 + x21

=
x51 + x31
x41 + x21

+
x31 + x1
x41 + x21

= x1 +
1

x1
·

Also, using this identity and adding T to the numerator, we see that

y2 =
(x21 + 1)(y1 + 1)

x21
+ x1.

Substituting x1 by X1/Z1 and y1 by Y1/Z
2
1 in these formulas, we deduce

that

X2 = (X1 + Z1)
2

Z2 = X1Z1

Y2 = Y1(Y1 +X2 + Z2).

Only the last equation is not totally obvious. The initial expression of Y2

is X2
1Y1 +X2

1Z
2
1 + Z4

1 + Y1Z
2
1 +X1Z

3
1 . It is easy to check that it can be

factorized into Y1(Y1 + X2
1 + Z2

1 + X1Z1) when we add Y 2
1 + X1Y1Z1 +

X3
1Z1 +X2

1Z
2
1 + Z4

1 = 0 to it. This gives the result when a2 = 1.

The proof is similar when a2 = 0. ⊓⊔

Note that this new way to compute φ is also beneficial to the τ -DBNS,
especially regarding the algorithm described in [3]. A direct application of
the formulae above induces a speed-up on the overall scalar multiplication
ranging from 15% to 20%.

19



4.4 Multi-Scalar Multiplication Algorithms

To perform [η]P+[κ]Q at once, there is also a notion of τ -adic Joint Sparse
Form, τ -JSF [9]. The τ -JSF and the JSF have very similar definitions, they
have the same average joint density, that is 1

2
, however the optimality of

the JSF does not carry over to the τ -JSF. Namely, for certain pairs in
Z[τ ], the joint density of the τ -JSF expansion is not minimal across all
the signed τ -adic expansions computing this pair.
Now, let us explain how we can produce joint τ -DBNS expansions and
more importantly joint τ -DBC.
The generalization of the greedy-type method is straightforward. At each
step, find the closest approximation of (η, κ) of the form (cτατβ, dτατβ)
with c, d ∈ {−1, 0, 1} with respect to the distance d

(

(η, κ), (η′, κ′)
)

=
√

N(η − η′)2 +N(κ− κ′)2, where N(.) is the norm in Z[τ ]. Then subtract
the closest approximation and repeat the process until we reach (0, 0). To
find a joint τ -DBC, do the same except that this search must be done
under constraint, just like in the integer case.
Another possibility is to adapt the method developed in Section 3. We
call this approach the Joint-ττ method. The framework is exactly the
same, the only difference lies in the function gain. This time gain(η, κ)
computes a suitable common factor τατβ of the elements (η − c, κ − d)
for c, d ∈ {−1, 0, 1}. We are not interested in the factor having the largest
norm, instead we prefer to control the largest power of τ , as this has a
crucial impact on the overall complexity. This can be done quite easily by
adjusting certain parameters. For each choice of the function gain, there is
a corresponding algorithm, that we believe could be analyzed quite easily,
following the integer case. However, it is still not totally clear what is
the optimal choice for the gain at the moment, and so we defer such an
analysis. Instead, we have run some experiments, detailed next.

5 Experiments

We have run some tests to compare the τ -JSF with the Joint-ττ for pop-
ular sizes used with Koblitz curves, ranging from 163 to 571 bits. Table 3
displays the different parameters for each method, in particular the length
of the expansion, the values aℓ and bℓ corresponding respectively to the
number of additions, the number of applications of φ and of φ, as well as
the total number of multiplications NM in F2d needed to perform a multi-
scalar multiplication for the corresponding size. Note that both methods
require only 2 precomputations and the figures include those costs. Also
to ease comparisons we have made the usual assumption that 1S ≈ 0.1M.
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Results show that our approach introduces improvements regarding scalar
multiplications of 8 to 9% in total over the τ -JSF.

163 bits 233 bits 283 bits 347 bits 4409 bits 571 bits

Method ℓ aℓ bℓ ℓ aℓ bℓ ℓ aℓ bℓ ℓ aℓ bℓ ℓ aℓ bℓℓ aℓ bℓ

τ-JSF 82 163 0 117 233 0 142 283 0 174 347 0 205 409 0 286 571 0

NM 738 1050 1272 1558 1834 2555

Joint-ττ 65 116 44 92 167 62 112 204 76 137 251 93 161 295 110 224 412 155

NM 671 955 1154 1410 1665 2318

Table 3. Comparison between the τ -JSF and the Joint-ττ
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