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Abstract

Broadcast encryption (BE) deals with secure transmission of a message
to a group of receivers such that only an authorized subset of receivers
can decrypt the message. The transmission cost of a BE system can be
reduced considerably if a limited number of free riders can be tolerated
in the system. In this paper, we study the problem of how to optimally
place a given number of free riders in a subset difference (SD) based BE
system, which is currently the most efficient BE scheme in use and has
also been incorporated in standards, and we propose a polynomial-time
optimal placement algorithm and three more efficient heuristics for this
problem. Simulation experiments show that SD-based BE schemes can
benefit significantly from the proposed algorithms.
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1 Introduction

Today’s secure multimedia applications such as pay-TV, content protection, se-
cure audio streaming and Internet multicasting usually require a broadcast en-
cryption (BE) scheme which enables transmitting data to a large set of receivers
such that only an authorized subset can decrypt it. This is typically achieved
by pre-establishing a set of long-term keys at each receiver device, which is later
used to support or revoke selected sets. The particular design of a BE system
varies according to the system characteristics, such as size of the user domain,
required security level, available bandwidth, and hardware capabilities. In the
traditional setting, the amount of long-term storage is very limited as it has to
be tamper resistant, the communication channel is one way, and the devices are
stateless in the sense that no additional long-term storage is possible.
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Although recent advances in the technology such as availability of two-way
communication channels have reduced the pay-per-view TV systems’ reliance on
BE schemes, new application areas emerged that benefit from BE greatly such
as content protection [9, 12], multicasting promotional material and low cost
pay-per-view events [2], multi-certificate revocation/validation [3] and dynamic
group key management [13, 14].

Two important performance parameters in evaluating a BE system is the
key storage and transmission overheads incurred. Some of the most efficient BE
schemes today are the subset difference (SD) scheme of Naor et al. [10] and its
variants [6, 7]. The SD scheme has become popular in applications recently and
is already implemented in the next-generation DVD standard [1].

In the traditional BE model, it is assumed that all unauthorized receivers
must be excluded in a broadcast. Abdalla et al. [2] observed that this model is
unnecessarily strict for most practical applications and the cost of a BE system
can be reduced significantly when some free riders can be tolerated.

1.1 Related Work

After Berkovits [4] introduced the idea of BE in 1991, Fiat and Naor [5] pre-
sented their model which is the first formal work in the area. They introduced
the resiliency concept, and defined k-resilience to mean being resilient against
a coalition of up to k revoked users. Their best scheme required every receiver
to store O(k log k log n) keys and the center to broadcast O(k2 log2 k log n) mes-
sages where n is the total number of users.

Wallner et al. [13] and Wong et al. [14] independently proposed the logical
key hierarchy (LKH) for secure Internet multicast. LKH was not a broadcast
encryption scheme, but its key distribution idea was very useful for broadcast
encryption. The idea was to relate the receivers with the leaves of a tree,
associate a unique key with each node of the tree and give each receiver the keys
of the nodes on the path from the corresponding leaf to the root. With this
approach, key storage complexity became logarithmic in terms of the number
of receivers, O(log n).

In [10], which is another milestone of broadcast encryption research, Naor,
Naor and Lotspiech proposed two schemes, the complete subtree (CS) and subset
difference (SD). The CS scheme was mainly an adaptation of the LKH ideas to
BE and has a transmission cost of O(r log (n/r)), r denoting the number of
revoked users. The SD scheme decreased the transmission overhead to O(r) at
the expense of increasing the key storage to O(log2 n). The SD scheme was the
most efficient scheme at the time of its proposal, and most of the recent schemes
proposed since then are still based on the SD scheme.

The first significant variant of SD was the layered subset difference (LSD)
scheme which was proposed by Halevy and Shamir [7]. Optimized LSD has
a transmission overhead of O(log n log log n) and key storage of O(r log log n).
Goodrich, Sun and Tamassia [6] introduced the stratified subset difference (SSD)
scheme, which has O(r log n/ log log n) transmission overhead and
O(log n) key storage complexity. An analysis of [5, 7, 10] can be found in [8].

2



The idea of allowing some free riders to get better performance was intro-
duced by Abdalla, Shavitt and Wool [2]. This work was also the first to adapt
the key distribution idea of LKH scheme to broadcast encryption. They inves-
tigated efficient usage of free riders in depth and developed the basic intuitions
about effective assignment of free riders. Ramzan and Woodruff [11] recently
proposed an algorithm to optimally choose the set of free riders to be allowed
in the CS scheme to minimize the transmission overhead. Their algorithm was
based on a dynamic programming approach which decides the free rider assign-
ment in a tree recursively in a bottom-up fashion.

1.2 Contributions

In this paper, we study how the transmission cost of an SD scheme can be
minimized by an effective placement of a limited number of free riders. The
contribution is twofold: First, we give a polynomial-time algorithm which com-
putes the optimal placement for a given number of free riders in an SD scheme.
We then propose three heuristic methods which work in a greedy fashion. Ex-
perimental results show that significant cost reductions are possible in the SD
scheme by these algorithms. They also show that the heuristic methods yield
nearly optimal solutions most of the time with a running time dramatically
better than that of the optimal algorithm.

1.3 Organization

After describing the SD scheme in Section 2, we formalize the problem in Section
3. Section 4 gives the optimal algorithm and Section 5 describes the proposed
heuristics for the problem. After presenting the experimental results in Section
6, we conclude the paper in Section 7.

2 Subset Difference Scheme

The SD scheme [10], like many other BE schemes, organizes the set of users in
the system as leaves of a binary tree. The basic notations regarding this tree
are summarized in Table 1. The nodes in the tree are organized into subsets,
and an encryption key is assigned to each subset. A user is given the keys of
the subsets which he is a member of. The SD scheme is distinguished by the
way it defines these subsets: For every non-leaf node x, and every descendant y
of x, a subset is defined as

Sx,y = {v | v ∈ T (x) and v /∈ T (y)}.

The collection of the Sx,y subsets is denoted by S. An example subset difference
and an example cover are illustrated in Figure 1.

In the broadcast phase of the scheme, to send an encrypted message to a set
of privileged users P , the center finds a collection C ⊆ S that covers P ,

P =
⋃

Sx,y∈C Sx,y
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(a) An SD subset Sx,y (b) Cover C = {Sx1,y1
, Sx2,y2

, Sx3,y3
}

Figure 1: Example subset difference and cover.

Table 1: Notations regarding the SD tree.

L(x) : immediate left child of x
R(x) : immediate right child of x
d(x) : depth of x; the distance between x and the root
T (x) : subtree rooted at node x
r(x) : number of revoked users in T (x)
p(x) : number of privileged users in T (x)

and encrypts a copy of the message encryption key with the key of each subset in
C. The encrypted keys are broadcast along with the message. The transmission
cost of the broadcast is defined as the number of these encryptions, i.e., the
cardinality of the cover |C|.

3 Problem Statement

As observed by Abdalla et al. [2], in many cases it may be preferable to allow a
limited number of free riders in a BE system in order to reduce the transmission
cost. Given the number of free riders that can be tolerated, the question becomes
how to utilize this quota most efficiently.

In our treatment, U denotes the set of all receivers, and P and R = U − P
denote the set of privileged and revoked receivers respectively, where n = |U |,
p = |P |, r = |R|. We denote the tree of all users in the system by T . The free
rider quota allowed is denoted by f , and cf denotes the free rider ratio f/p. The

problem is to find a cover C ⊆ S, P ⊆
⋃

Sx,y∈C Sx,y with
∣

∣

∣

⋃

Sx,y∈C Sx,y − P
∣

∣

∣
≤ f ,

such that |C| is minimum.

Definition 1 (i-point, e-point) We call a node x an inclusion point (i-point)
and y an exclusion point (e-point) in an SD configuration where Sx,y is in the
cover C.
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Definition 2 (meeting point) A node x is called a meeting point if both
T (L(x)) and T (R(x)) contain revoked leaves, or if x itself is a revoked leaf.

A “meeting point” is a point where a branch occurs in the Steiner tree
induced by the revoked users in T (i.e., the minimum subtree in T that covers
all revoked leaves). As in other works [10, 7, 11], this Steiner tree is of particular
interest for the optimization algorithms we will discuss. We will denote the
highest meeting points in the left and right subtrees of a node x in this tree,
i.e., the “meeting-point children” of x, by Lmp(x) and Rmp(x) respectively.

4 Optimal Algorithm

In this section, we describe a dynamic programming solution for the SD op-
timization problem with free riders. The approach is based on the dynamic
programming approach of Ramzan and Woodruff [11] for the CS scheme. How-
ever, a completely different formulation is needed here due to the complicated
relationship between the recursive subproblems in the SD scheme. For the same
reason, the approximation algorithm of [11] is also not applicable.

Let (x; fx) denote the problem instance where exactly fx free riders are to
be placed in T (x). Let Cost(x, fx) denote the cost of the optimal solution to
this problem. Let the left and right meeting-point children of x be y = Lmp(x)
and z = Rmp(x). Consider the case where fy of the free riders are to be assigned
under y and fz = fx − fy of them are to be assigned under z. Then, as proven
in Section 4.1, the optimal cost for this partition can be expressed in terms of
the optimal solutions of (y; fy) and (z; fz) as

Cost(y, fy) + Cost(z, fz) + Cl + Cr , (1)

where Cl denotes the additional cost of covering the path between x and y (by
addition of either Sx,y or SL(x),y, as we explain in detail below) and Cr denotes
its counterpart between x and z. Accordingly, the cost of the optimal solution
to the problem (x; fx) can be expressed as

Cost(x, fx) = min
fy,fz≥0

fy+fz=fx

{Cost(y, fy) + Cost(z, fz) + Cl + Cr}. (2)

Now consider Cl, the cost of the subset that will be added between x and
y. First of all, if fy = r(y), the subtree T (y) and consequently the whole left
subtree of x will be privileged, and no subsets will be needed on the left side of
x.

Given that T (y) is not fully privileged, Sx,y will be added to the cover iff
fz = r(z); i.e., iff the right subtree of x is fully privileged.

Given that T (z) is not fully privileged either (i.e., fz < r(z)), the only
possible addition on the left side of x is SL(x),y, which will take place iff L(x) 6= y
(i.e., y is not the immediate left child of x).
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Addition of Sx,y or SL(x),y to the cover may or may not bring an additional
cost. If y is an i-point in the optimal solution to (y; fy), the new set will be
merged with the existing set under y, and again we will have Cl = 0.

Hence the value of Cl is determined as

Cl =

{

1, if fy < r(y) and (fz = r(z) or d(y)− d(x) ≥ 2) and y is not an i-point
0, otherwise

The value of Cr is determined similarly.
If there is more than one solution that give the minimum cost at (2), the

one that makes x an i-point is selected for the possibility of a later merger.

4.1 Optimal Substructure Property

Theorem 3 below states the optimal substructure property of the SD optimiza-
tion with free riders problem.

Theorem 3 Let x be a meeting point in an SD tree T , and y = Lmp(x) and
z = Rmp(x). Consider the problem of placing fx free riders under x optimally
where fy of them are to be placed under y. An optimal solution to this problem
exists which is based on the optimal solutions of (y; fy) and (z; fz), where fz =
fx − fy.

Proof Assume to the contrary that the optimal solution to the problem at x
gives a suboptimal configuration at either y or z (w.l.o.g., assume it is subop-
timal at y); and assume no equivalent solution exists that is based on some
optimal solutions at y and z. Let cost′y denote the cost of the suboptimal con-
figuration at T (y) induced by the optimal solution at x. Similarly, let cost′z,
C′

l , and C′
r denote the costs it induces at subtree T (z), and on the paths x-y

and x-z respectively. Let costy and costz be the cost of the optimal solutions of
(y; fy) and (z; fz), and Cl and Cr denote the associated costs on the paths x-y
and x-z in the solution to (x; fx) based on these optimal solutions at y and z.
Hence, we have

cost′y + cost′z + C′
l + C′

r < costy + costz + Cl + Cr (3)

cost′y > costy (4)

cost′z ≥ costz. (5)

Given that Cl and Cr are either 0 or 1, the situation above is possible only with
Cl = Cr = 1 and C′

l = C′
r = 0. The case Cl = Cr = 1 is possible only when (i)

T (y) and T (z) are not fully privileged; (ii) y and z are not an immediate child
of x; and (iii) y and z are not i-points in the optimal solutions of (y; fy) and
(z; fz). Under conditions (i) and (ii), the assumption that C′

r = 0 is possible
only when z is an i-point in the corresponding solution in T (z). Given that z
was not an i-point in the optimal solution of (z; fz), this implies cost′z > costz.
Therefore,

cost′y + cost′z + C′
l + C′

r ≥ costy + costz + Cl + Cr.
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4.2 Algorithm OptimalAssign

Algorithm 1 OptimalAssign (T , P, f)

1: MP ← FindMeetingPoints(R)
2: for i = 1 to r do
3: x←MP [i]
4: Cx[0], Cx[1], Ix[0], Ix[1]← 0
5: for i = r + 1 to 2r − 1 do
6: x←MP [i]; y ← Lmp(x); z ← Rmp(x)
7: for fx = 0 to min(r(x), f) do
8: Cx[fx]←∞
9: for fy = max(fx − r(z), 0) to min(r(y), fx) do

10: fz ← fx − fy

11: tcost← Cy[fy] + Cz[fz] + Cl + Cr

12: if tcost < Cx[fx] or (tcost = Cx[fx] and (r(y) = fy or r(z) = fz))
then

13: Cx[fx]← tcost
14: Lx[fx]← fy

15: Ix[fx]← 0
16: if fy = r(y) or fz = r(z) then
17: Ix[fx]← 1
18: root←MP [2r − 1]
19: (result, fact)← FindCost(root)
20: F ← MarkFreeRiders(root, fact)
21: SDExactAssign(T , P ∪ F )

Algorithm 1 shows the optimal algorithm based on the dynamic program-
ming formulation given in (2). The MP array, which is initialized on line 1,
contains a list of the meeting points in T . This array is generated by the Find-
MeetingPoints procedure such that a meeting point is always listed before
its parent. Hence as the array is processed in order, the program proceeds from
the leaves towards the root. In the course of the algorithm, a two dimensional
cost array Cx[fx] is filled in a bottom-up fashion where a cell [x, fx] stores the
cost of the optimal solution for the subtree of x when fx free riders are used.

In addition to the cost array, the arrays Ix and Lx are used to maintain the
critical information regarding the optimal solution obtained for each problem
instance (x; fx). In the algorithm, Ix[fx] holds whether x is an i-point in that
optimal solution and Lx[fx] holds how many of the fx free riders in that optimal
solution are assigned to the left subtree of x.

The main body of the algorithm OptimalAssign consists of the three nested
loops between lines 5–17. The first for loop on line 5 iterates r − 1 times; the
second loop on line 7 iterates min(r(x), f) times; and the last one on line 9
iterates O(min(r(y), f)) times. Hence, a straightforward analysis gives the time
complexity of the algorithm as O(rf2). However, as the following theorem
proves, a tighter bound can be found as O(rf + r log log n). The proof is along
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Algorithm 2 FindCost (root)

1: result←∞;
2: for froot ← 0 to f do
3: rcost← Croot[froot]
4: if d(root) 6= 0 then
5: if Iroot[froot] 6= 1 then
6: rcost← rcost + 1
7: if result < rcost then
8: result← rcost
9: fact ← froot

10: return (result, fact)

Algorithm 3 MarkFreeRiders (x, fx)

1: F ← ∅
2: if x is not a leaf then
3: fy = Lx[fx]; fz = fx − fy

4: MarkFreeRiders(L(x), fy)
5: MarkFreeRiders(R(x), fz)
6: else
7: if fx = 1 then
8: F ← F ∪ {x}
9: return F

the same lines as that of the dynamic programming algorithm given for the CS
scheme in [11].

Theorem 4 The time complexity of the algorithm OptimalAssign is O(rf +
r log log n).

Proof Let iMP denote the set of internal meeting points in T . For a meeting
point x ∈ iMP , we will use y and z to denote Lmp(x) and Rmp(x) such that
r(y) ≤ r(z). Then, the total complexity of the three nested loops on lines 5–17
is bounded by

t =
∑

x∈iMP

min(r(x), f) ·min(r(y), f). (6)

The terms that contribute to this summation will be analyzed in three classes:

1. x ∈ iMP such that r(y), r(z) < f .

2. x ∈ iMP such that r(y) ≤ f < r(z).

3. x ∈ iMP such that f ≤ r(y), r(z).

We will denote these classes by MP1, MP2, MP3, and their contributions to
summation (6) by t1, t2, t3, respectively.
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First consider MP1 and t1:

t1 =
∑

x∈MP1

r(x)r(y)

=
∑

x∈MP1

r(y)r(y) +
∑

x∈MP1

r(z)r(y) (7)

Let t′1 and t′′1 denote the first and the second halves of summation (7). Since,
by definition, r(y) ≤ r(z), we have t′1 ≤ t′′1 , and therefore, t1 ≤ 2t′′1 .

To compute a bound on t′′1 , we will define a formal variable Xu for each
revoked user u and set all of these formal variables to 1. By using these variables,
we can write r(y) =

∑

u∈R∩T (y) Xu and r(z) =
∑

u∈R∩T (z) Xu; hence,

r(z)r(y) =
∑

u∈R∩T (y)
v∈R∩T (z)

XuXv,

where every Xi equals 1.
Now consider the question that how many monomials XuXv a particular

revoked user u contributes to the summation t′′. Let T ′ denote the Steiner tree
consisting of the meeting points in T , where a meeting point x and its meeting-
point children Lmp(x) and Rmp(x) are linked directly. Let x be the highest
ancestor of u in T ′ that is in MP1. Consider the path u = u0, u1, . . . , uk = x in
T ′. Let vi be the sibling of ui for 0 ≤ i < k. Since T (vi) and T (vj) are disjoint

for all i 6= j there are
∑k−1

i=0 |r(vi)| monomials containing Xu and each of them
has coefficient 1. So the number of monomials containing Xu can be no more
that 2f since x ∈ MP1 and T (x) contains at most 2f revoked users. Given
that there are r revoked users in total, we have t′′1 = O(rf), and consequently,
t1 = O(rf).

Second, consider MP2 and t2:

t2 =
∑

x∈MP2

min(r(x), f) ·min(r(y), f)

=
∑

x∈MP2

fr(y)

Note that any x ∈ MP2 cannot be a descendant of any other x′ ∈ MP2; hence
the T (y), T (y′) subtrees are disjoint for any distinct x, x′ ∈ MP2. Therefore,
we have

t2 = f
∑

x∈MP2

r(y) ≤ rf.

Third and the last, consider MP3 and t3. Consider the subtree T ′′ ⊂ T ′

consisting only of the meeting points in MP3 and their left and right children.
Since there are r revoked users in total, there can be at most r/f leaves in T ′′.
So, the number of the meeting points in MP3 is no more than r/f−1. Note that
the contribution of a meeting point in MP3 to t3 is f2; hence t3 = f2O(r/f) =
O(rf).
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Since each of t1, t2, and t3 are O(rf), we have t = O(rf). Besides, finding the
meeting points at the beginning of the algorithm takes O(r log log n) time [11].
Hence, the overall time complexity of the algorithm OptimalAssign is O(rf +
r log log n).

5 Greedy Heuristics

When a faster solution is needed, a heuristic algorithm which gives nearly opti-
mal solutions in a shorter time can be preferred. In this section we describe three
heuristic methods for this purpose, two greedy algorithms and a third combined
method, which return near-optimal results with a running time significantly
faster than that of the optimal algorithm.

5.1 Top-Down Heuristic

The first heuristic searches the user tree in a top-down fashion to identify the
Sx,y subsets to cover a given receiver set P , such that each subset taken satisfies
in itself the free rider ratio cf = f/p.

Note that an SD tree cannot be searched greedily by just looking at single
nodes since the Sx,y subsets are defined by two nodes having a descendant-
ascendant relationship. We define an exclusion point e(x) for every node x
to be the descendant of x with the largest subtree under it that is completely
revoked. The TopDownAssign heuristic first calls the FindEPoints proce-
dure, which identifies e(x) for every x recursively beginning from the root. Then
TopDownCover is called, which searches the tree top to bottom for subsets
that satisfy the free rider ratio cf .

TopDownCover(x) takes Sx,e(x) into the cover if it satisfies the free rider
ratio. Else, if x is a meeting point, the procedure is called recursively on L(x)
and R(x). If x is not a meeting point, then a subset that covers all privileged
descendants of x until the first meeting point is added to the cover, and the
procedure is repeated beginning from that meeting point.

Algorithm 4 TopDownAssign(T , P, f)

1: FindEPoints(root)
2: cf ← f/p
3: C ← ∅
4: TopDownCover(root)

The TopDownAssign heuristic has two main subroutines; FindEPoints
and TopDownCover. Both subroutines are recursive methods called once for
each meeting point, and do a constant amount of work at each call, hence have
a complexity of O(r). The complexity of the algorithm also includes the cost of
finding meeting points which is O(r log n). Hence, the overall time complexity
of TopDownAssign is O(r log n).
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Algorithm 5 FindEPoints(x)

1: if r(x) > 0 then
2: if p(x) = 0 then
3: e(x)← x
4: else
5: y ← FindEPoints(L(x))
6: z ← FindEPoints(R(x))
7: if r(y) > r(z) then
8: e(x)← y
9: else

10: e(x)← z
11: return e(x)
12: else
13: return null

Algorithm 6 TopDownCover(x)

1: if
(

r(x) − r(e(x))
)

/
(

p(x)− p(e(x))
)

≤ cf then
2: C ← C ∪ {Sx,e(x)}
3: else
4: if r(L(x)) > 0 and r(R(x)) > 0 then
5: TopDownCover(L(x))
6: TopDownCover(R(x))
7: else
8: if r(R(x)) = 0 then
9: C ← C ∪ {Sx,Lmp(x)}

10: TopDownCover(Lmp(x))
11: if r(L(x)) = 0 then
12: C ← C ∪ {Sx,Rmp(x)}
13: TopDownCover(Rmp(x))
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5.2 Bottom-Up Heuristic

The free rider quota can be utilized more efficiently by a targeted free rider
placement heuristic that places the free riders on an existing solution to merge
the subsets in the cover C. One can remove an existing Sx,y subset from C by
saturating T (y) with free riders. Then T (x) will become fully privileged and
has to be covered. Accordingly, the subset Sparent(x),sibling(x) is temporarily
added to the cover, and it is determined whether it can be merged with any
other subsets or not. There are three possibilities regarding the reduction in
the cover size |C|:

• 0: There will be no reduction if the subset Sparent(x),sibling(x) cannot be
merged with any other subset. This happens when neither parent(x) is
the e-point nor sibling(x) is the i-point of any other subset in C.

• 1: A reduction of 1 will be obtained when the subset Sparent(x),sibling(x)

can only be merged with either Sx′,parent(x) or Ssibling(x),y′ for some x′ or
y′.

• 2: As the best case, a reduction of 2 will be obtained when Sparent(x),sibling(x)

can be merged with both Sx′,parent(x) and Ssibling(x),y′ , for some x′, y′.

To decide which subset to remove next, the BottomUpAssign heuristic
uses the rate of return, defined as the reduction in the cover size divided by the
number of free riders needed. The heuristic dynamically maintains a priority
queue SL of subsets in the current cover ordered according to their rate of return.
Whenever a subset is to be removed, the first one in the queue is selected.

Algorithm 7 BottomUpAssign(T , P, f)

1: C ← SDExactAssign(T , P )
2: SL← GetPQ(C, f)
3: while SL 6= ∅ do
4: repeat
5: (x, y)←ExtractFirst(SL)
6: until r(y) ≤ f
7: C ← C − {Sx,y}
8: Saturate(y)
9: (xnew , ynew)← Merge(C, SL, x)

10: C ← C ∪ {Sxnew,ynew
}

11: Insert(SL, Sxnew,ynew
)

12: f ← f − r(y)

The GetPQ procedure produces the priority queue SL of Sx,y subsets with
r(y) ≤ f , ordered according to their rate of return. The ExtractFirst proce-
dure extracts the first subset Sx,y in SL and returns the corresponding indices.
The Saturate procedure updates the r and rate of return values of all ascen-
dants of y, rearranging SL accordingly.
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Algorithm 8 Merge(C, SL, x)

1: if Sx′,parent(x) ∈ C for some x′ then
2: xnew ← x′

3: C ← C − {Sx′,parent(x)}
4: Remove(SL, Sx′,parent(x))
5: else
6: xnew ← parent(x)
7: if Ssibling(x),y′ ∈ C for some y′ then
8: ynew ← y′

9: C ← C − {Ssibling(x),y′}
10: Remove(SL, Ssibling(x),y′ )
11: else
12: ynew ← sibling(x)
13: return (xnew , ynew)

Regarding the time complexity of the BottomUpAssign heuristic, finding
the initial exact SD assignment takes O(r log n) time. Then creation of the
priority queue SL takes O(r log r) time. In the while loop, the ExtractFirst
routine is called O(r) times in total, among which at most f lead to a set
merger. Those that don’t lead to a merger will be completed in O(r log r) time
in total. For those that do, a run of Insert, Remove, and Saturate may
be needed per merger. Insert and Remove take O(log r) time. Saturate in-
cludes O(log n) decrease key operations, each of which may take O(log r) or O(1)
time depending on whether a binary or Fibonacci heap is used for implement-
ing SL, making the total cost of the set merger operations O(f log n log r) or
O(f log n) accordingly. Therefore, the overall complexity of BottomUpAssign
is O(r log n + f log n log r) with a binary heap implementation and O(r log n)
with a Fibonacci heap implementation of the priority queue SL.

5.3 Hybrid Heuristic

The running time of the BottomUpAssign heuristic increases significantly
when the amount of the free rider quota to be placed is high. This problem
can be solved by using the TopDownAssign procedure to obtain an initial
configuration and running BottomUpAssign on top of it, instead of start-
ing BottomUpAssign with an exact SD cover and placing all free riders one
by one. This combined method, which we call HybridAssign, returns near-
optimal solutions significantly faster than the original BottomUpAssign.

6 Experimental Results

We tested the practical performance of the algorithms in a series of simulation
experiments, conducted with the parameters n = 1024, 1 ≤ p ≤ 1024, and
0 ≤ cf ≤ 2. We summarize the results in this section. Each data point in the
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plots is averaged over 50000 runs where the revoked users are randomly selected
among the user set.

Figures 2 and 3 compare the transmission costs obtained by the proposed
algorithms against that of the basic SD scheme. Figure 2 presents the results
according to the privileged set size p for a set of selected cf values. Figure 3
presents the results according to the free rider ratio cf .
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Figure 2: Transmission costs of the algorithms with respect to p.

The results show that significant gains are possible by the proposed algo-
rithms. With a limited free rider ratio such as 0.1, 20% or more reduction can
be obtained; and when larger values of cf are tolerable, a reduction of 80% or
more is possible. The experiments also show that the results returned by the
HybridAssign heuristic are usually very close to the results obtained by the
optimal algorithm.

Figure 4 compares the running time of our algorithms. The results show
that HybridAssign turns out to have the best cost-benefit performance among
the heuristic methods. Its running time is only slightly more than that of
TopDownAssign while its performance matches that of BottomUpAssign
and sometimes approaches to that of the optimal algorithm.
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Figure 3: Transmission costs of the algorithms with respect to cf .
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Figure 4: Execution time of the algorithms in seconds. The figures are the total
time of the 50000 runs taken for each data point.

6.1 Comparison with the CS Scheme

An optimal free rider assignment algorithm for the CS scheme was given by
Ramzan and Woodruff [11]. We also implemented this algorithm and compared
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it to our optimal algorithm for the SD scheme. Figure 5 compares the perfor-
mance of the two optimal algorithms in terms of the transmission cost. The
results show that, with the same number of free riders allowed, the SD scheme
can give a transmission cost 20% less than that of the CS scheme.
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Figure 5: Transmission costs obtained by the optimal algorithms for the CS and
the SD schemes.

7 Conclusion

The SD scheme is one of the most efficient BE schemes today. In this pa-
per, we studied the problem of improving the performance of an SD scheme
by allowing a limited number of free riders in the system. We first proposed
an optimal algorithm based on a dynamic programming approach which finds
the best free rider placement that leads to the minimum transmission over-
head. Subsequently, we proposed three heuristics for the same problem that
return near-optimal solutions with a faster running time. The TopDownAs-
sign heuristic works extremely fast, but it may not utilize all the available free
rider quota, or it may spend a large amount of it fast and carelessly, possibly
missing configurations that are more efficient. These drawbacks were solved in
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the BottomUpAssign heuristic, which uses a targeted placement approach,
placing the free riders slowly and carefully, and using all the available quota.
However, this procedure gets slower as the free rider quota to be placed in-
creases. Noting the different advantages and drawbacks of the two procedures,
we offered a third heuristic, HybridAssign, that combines the advantages of
the two approaches.

The experimental results show that the optimal placement algorithm and
the three heuristics proposed provide significant reductions in the transmission
cost of the SD scheme.

Besides the basic SD scheme, these algorithms can also be applied to its
variants such as LSD [7] and SSD [6]. These variants differ from the basic SD
in the way key generation is done, but they are exactly the same as far as cover
finding is concerned. Hence, the systems based on these SD variants can benefit
equally from the proposed algorithms.
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