

 1-MSB 输入差分可否成为 MD5 算法
最 快 碰 撞 攻 击 差 分 ?

谢 涛 刘凡保 冯登国

中国科学院 信息安全国家重点实验室 北京

国防科学技术大学 软计算与密码学研究中心 长沙

摘 要
 迄今为止，已经发现 MD5 算法的两个不同的 3-bit 碰撞差分，其中一个由王小

云于 2004 年发现并被最终改进至采用普通 PC 机一分钟内可生成一对碰撞数据；另

一个由谢涛于 2007 年发现，稍后被改进至半个小时之内即可产生一对碰撞数据。是

否存在更多的可行 MD5 碰撞差分？是否存在更高效的 MD5 碰撞搜索算法？

本文在抽象出 MD5 算法可行碰撞差分路径性质的基础上，列出了所有构成可行

碰撞差分的 1~3-bit 输入差分共 95 组，对其中一个 1-MSB 输入差分进行了详细的分

析，并将该 1-MSB 输入差分的碰撞性能与两个已经发布的 3-bit 碰撞差分做了比较，

比较分析是在本文给出的 7 项碰撞差分性能评价准则基础上进行的。

本文所提出的 1-MSB 输入差分碰撞技术中，仍然采用两个消息分组，但其中第

一个分组仅第九个消息字的最高位需要差分（ 31
8 2=Δ+m ），而第二个消息分组可无

需差分（但也可以有差分），即第二个消息分组碰撞是一个伪碰撞（Pseudo-collision）。

虽然由 1-MSB 输入差分所设计的差分路径表面上似乎不可行，但碰撞差分路径

必须满足的大多数条件位都可通过修改满足，并且碰撞搜索算法效率还可通过本文

专门为 MD5 算法设计的“分而治之”的条件满足方法得到显剧提高。“分而治之”

方法通过对差分路径条件位的适当分组可将原乘性复杂度变换成加性复杂度。特别

地，本文通过引入附加条件位利用类似隧道技术（tunneling technique）来进一步提

高算法的效率。

最后，我们基于 1-MSB 输入差分开发了目前国际上最快的 MD5 碰撞搜索算法，

计算复杂度等价于 96.202 MD5 压缩函数计算，在主频 2.66Ghz 的 PC 机上采用标准

IV0 平均 0.45 秒可生成一对碰撞数据，采用随机 IV0 平均 0.48 秒可生成一对碰撞数

据。并且，该碰撞搜索算法能以一定概率毫秒级时间内生成碰撞对数据，这为对基

于 MD5 算法的实际协议的实时攻击提供了可靠的技术支撑！

关键词：MD5, 碰撞攻击, 碰撞差分, 差分路径.

2

Could The 1-MSB Input Difference Be The Fastest
Collision Attack For MD5 ?

Tao Xie Fanbao Liu Dengguo Feng

The State Key Laboratory on Information Security, Chinese Academy of Science, Beijing

The Center for Soft-Computing and Cryptology, NUDT, Changsha, China

(hamishxie@vip.sina.com)

Abstract

 So far, two different 2-block collision differentials, both with 3-bit input differences for
MD5, have been found by Wang etc in 2005 and Xie etc in 2008 respectively, and those
differentials have been improved later on to generate a collision respectively within
around one minute and half an hour on a desktop PC. Are there more collision
differentials for MD5? Can a more efficient algorithm be developed to find MD5
collisions? In this paper, we list the whole set of 1-bit to 3-bit input difference patterns
that are possibly qualified to construct a feasible collision differential, and from which a
new collision differential with only 1-MSB input difference is then analyzed in detail,
finally the performances are compared with the prior two 3-bit collision attacks according
to seven criteria proposed in this paper. In our approach, a two-block message is still
needed to produce a collision, the first block being only one MSB different while the
second block remains the same. Although the differential path appears to be
computationally infeasible, most of the conditions that a collision differential path must
satisfy can be fulfilled by multi-step modifications, and the collision searching efficiency
can be much improved further by a specific divide-and-conquer technique, which
transforms a multiplicative accumulation of the computational complexities into an
addition by properly grouping of the conditional bits. In particular, a tunneling-like
technique is applied to enhance the attack algorithm by introducing some additional
conditions. As a result, the fastest attack algorithm is obtained with an averaged
computational complexity of 96.202 MD5 compressions, which implies that it is able to
search a collision within a second on a common PC for arbitrary random initial values.
With a reasonable probability a collision can be found within milliseconds, allowing for
instancing an attack during the execution of a practical protocol.

Key Words: MD5, Collision Attack, Collision Differentials, Differential Path.

3

1 Introduction

A hash function is a cryptographic primitive which outputs a fixed size message digest given a
message of arbitrary size. The output value is used usually as the digital digest of the input message,
so ideally a single bit flip in the input would cause averagely a half of the digest bits to change.
Therefore, a cryptographic hash function is essentially a type of irreversible one-way function built
with nonlinear operations. MD2, MD4 and MD5 are such hash functions that were developed in the
early1990’s by Ron Rivest at MIT for RSA Data Security. A description of these hash functions can be
found in RSA Laboratories Technical Report TR-101 .

 This paper mainly focuses on collision attacks on MD5. While it is postulated in RFC [1]that the
difficulty of coming up with two messages having the same message digest is on the order of

642 operations, research on collision attacks have never stopped since the publication of MD5. In
1992, Berson[2] showed that using differential cryptanalysis, it is possible in reasonable time to find
two messages that produce the same digest for a single-round MD5. In 1993, Den Boer and
Bosselaer[3] found pseudo-collisions for the compression function of MD5 with different initial
values and common input. In 1996, Dobbertin [4] constructed collisions of the MD5 compression
function, that is, MD5 collisions with a wrong initial value. In 2004, Wang et al. [5,6] succeeded in
producing real collisions for the full MD5 hash function as well as collisions in a number of other hash
functions including MD4, RIPEMD, and HAVAL-128.This new idea in their approach was to look for
a collision after processing not one but two blocks of the message. Again at 2005 CRYPTO
conference, Wang et al. [7] detailed the applications of their methods to the hash functions SHA0 and
SHA1, with a generated collision for SHA0, and a description on how to obtain collisions in SHA1.
Given the variety of hash functions efficiently attacked by Wang et al, it therefore seems worthwhile
to seek a complete understanding of how this approach works, how much can it be improved, and
whether it can be generalized.

Basically, Wang’s differential collision attack is a hybrid differential cryptanalysis which takes
advantages of both the modular difference and the XOR difference together. Wang et al have found a
full two-block collision differential with its full differential path, which is computationally feasible,
and for the first time constructed a real collision for MD5. Wang ’s attack on MD5 has called its
security especially in digital signature into question. Since the publication of [6], quite a number of
researchers have worked on the optimization of the differential path and the set of sufficient conditions
and hence the collision searching algorithms, resulted in a great improvement on the collision
searching efficiency to 8.242 MD5 compressions as declared in [8], implying that a collision can be
found in around one minute on a desktop PC. Practical attacks on real protocols and applications
based on MD4 family functions have continuously been developed by different applications of
Wang’s collision. By using an if-then-else programming structure, two different Postscript files were
created with the same MD5 digest to result in different texts when screening [9], and this attack was
extended to other file formats in [10] . By Using Wang’s approach to find a near-collision for different
IVs and further using different differential paths to absorb the remaining difference, a pair of colliding
X.509 certificates for two different distinguished name was found with the same MD5 digest [11].
Other applications of Wang’s collision have been proposed to attack HMAC with several hash
functions in [12,13].

To date, however, the method used by Wang et al. has been fairly difficult to grasp, and
furthermore, the lack of some technical details and some small perhaps deliberately made errors (bugs)
in the literature [6], might have constituted the appeal to have frustrated other cryptanalysts to grasp
their technique. What is really inexplicable consists in that, no new two-block collision differentials
have been found to be more efficient since Wang’s paper [6], and it seems to remain a supernatural
work to find a feasible collision differential and widely considered to be rely on one’s experience and
intuition. In 2007, a 1-bit input difference was used to construct a new collision attack [14], with the
computational complexity of 422 MD5 compressions, but no details are known. In the same year,
however, we have found another second 3-bit collision differential, which resulted in an initial

4

collision searching algorithm with the computational complexity of 362 MD5 compressions [15] and
an improvement has been made later on to reduce the computational complexity to 302 MD5
compressions [16]. The authors of this paper believe that there must exist other collision differentials
that are more efficient than Wang’s. In this paper, a whole set of 1-bit to 3-bit input differences is
provided for the first time, one of the 1-MSB input differences is then analyzed in detail by presenting
its full differential path and sufficient conditions. Based on these sufficient conditions, finally a
collision searching algorithm is developed with an averaged computational complexity of 96.202 MD5
compressions, which is currently the fastest, implying that a collision can be found within a second on
a common desktop PC.

The rest of this paper is organized as follows: In section 2, the definitions for the XOR difference,
the modular difference as well as the signed difference are given, some properties especially with
respect to the differential path design and extra condition derivation are presented. In section 3, the
basic principle on how to find collision differentials is described, and a whole set of 1-bit to 3-bit input
difference patterns is presented for the first time, in which the two published MD5 collision
differentials are included. In section 4, some general and basic principles for differential path design
are described, the basic condition derivation rules implicit in the auxiliary functions are presented, a
new 2-block collision differential with only 1-MSB input difference is presented with the design of its
full differential path, some extra conditions for preventing unexpected modular differences are also
derived, and a specific divide-and-conquer technique is proposed to greatly reduce the computational
complexity. In section 5, a divide-and-conquer based collision searching algorithm is specialized for
the 1-MSB collision differential, and a tunnel-like technique is applied to enhance the algorithm by
introducing some additional conditions. Finally, in section 6, some evaluation criteria on collision
differentials are given, and based on these criteria a comparison is made among the three collision
differentials, and some suggestions for future research on hash collision attacks are given. In
Appendix A, a concise description of the MD5 algorithm is given to help understand this paper.

2 Some Properties of the Signed Difference

In this paper, let s<<< denote a left rotation of a word by s bits, ‘+’ denote an addition modulo
322 , ||denote a concatenation operation, LSB and MSB denote the least and the most significant bit

of a word respectively.

Let 2F be the binary field, nF2 be an n-dimensional vector space over 2F . Let nF2, ∈•XX ,

X⊕Δ denote the bitwise XOR difference between X and •X , and is called the XOR difference,
X+Δ denote the modular integer subtraction between X and •X , and is called the modular difference,

and X±Δ denote the bitwise difference between X and •X , and is called the signed difference. For
example, let =n 10, X =1001000101, •X =0000111010, then X⊕Δ , X+Δ and X±Δ are
computed as follows:

•⊕ ⊕=Δ XXX = •
−

=

⊕ ii

n

i

XX||
1

0

=1001111111;

() () ()n
n

i

i
i

n

i

i
i

n 2mod222mod
1

0

1

0
⎟
⎠

⎞
⎜
⎝

⎛
−=−=Δ ∑∑

−

=

•
−

=

•+ XXXXX =1000001011;

X±Δ = ()•
−

=

− ii

n

i

XX||
1

0

=1001-1-1-11-11.

For the sake of simplicity, we omit those 0’s in the signed difference X±Δ , and index the signed
difference bits (+1 or -1) with their position identity instead, starting from 0 (the LSB) in X . Using a

5

10-bit word as an example, the signed difference (1001-1-1-11-11) can be indexed as
[9,6,-5,-4,-3,2,-1,0] (hope this notation is not confused with the reference citation).

Theorem 1 [17]. Let nF2, ∈•XX with some fixed signed difference X±Δ , then their XOR

difference X⊕Δ and modular difference X+Δ are uniquely determined.

Proof：A more intuitive proof than that in [17] is given here. By the definitions of XOR difference
X⊕Δ and the signed difference X±Δ between nF2, ∈•XX , we have

() i

n

i
ii

n

i
ii

n

i
XXXXXX ±

−

=

•
−

=

•
−

=

⊕ Δ=−=⊕=Δ
1

0

1

0

1

0
|||||| , i.e. the XOR difference X⊕Δ is uniquely

determined by X±Δ . For each iX±Δ = •− ii XX , iX±Δ has three possible values 0, 1 and -1.

When iX±Δ =0, we have •= ii XX , which contributes nothing to the modular difference X+Δ .

When iX±Δ =1, we have 1=iX and 0=•
iX , which contributes i2 to X+Δ .

When iX±Δ =-1, we have 0=iX and 1=•
iX , which contributes - i2 to X+Δ .

Therefore, we have

() () () XXXXXX +
−

=

±±
−

=

•
−

=

± Δ=Δ≡Δ=−=Δ ∑
1

0

2mod 1

0

1

0

2mod2
n

||||
n

i

ni
ii

n

i
ii

n

i

.

That means, X+Δ is uniquely determined by X±Δ . □

Theorem 2. Let nF2, ∈•XX , then the modular difference X+Δ is equivalent to the signed

difference X±Δ in modulo n2 , i.e. the X±Δ is the signed difference representation of the X+Δ

with the corresponding XOR difference X⊕Δ . More precisely, we have

() ()n2mod•+ −=Δ XXX = () ()n
n

i

i
ii 2mod2

1

0
∑
−

=

•− XX
()n2mod
≡ ()•

−

=

− ii

n

i

XX||
1

0

= X±Δ .

Proof: It is easy to verify the following deduction:

() () () 2mod22 2mod
1

0

1

0

n
n

i

i
i

n

i

i
i

n ⎟
⎠

⎞
⎜
⎝

⎛
−=−=Δ ∑∑

−

=

•
−

=

•+ XXXXX

() () () ()
 2mod2 2mod2

2mod 1

0

1

0

XXXX ±
−

=

±
−

=

• Δ≡Δ=−= ∑∑
n

n
n

i

i
i

n
n

i

i
ii

 Thus, theorem 2 is proved! □
Theorem 1 and 2 reveal that a bijective mapping does exist between the signed difference X±Δ

and the XOR difference X⊕Δ plus the modular difference X+Δ , for any nF2, ∈•XX .

Proposition 3. Given a modular difference k2 between nF2, ∈•XX , there exist 1+− kn signed

differences that match it; similarly, given the modular difference k2− between nF2, ∈•XX , there
also exist 1+− kn signed differences that match it.
Proof：Consecutively, we can simply have the equivalent transformations as follows:

() ()nknnknnkkkkkk 2mod222222222222 2121121 +⋅⋅⋅++−=−⋅⋅⋅−−=⋅⋅⋅=−−=−= −−−−+++

() ()nknnknnkkkkkk 2mod222222222222 2121121 +⋅⋅⋅++=+⋅⋅⋅++−=⋅⋅⋅=++−=+−=− −−−−+++

In particular, we always have ()nnn 2mod22 11 −− −= . Thus, proposition 3 is proved. □

6

 Directly by proposition 3, the following scaling rules for the signed difference notation hold in
terms of equivalent modular difference:
[] [] ()[] ()[] ()[]knknnkkkkkk −⋅⋅⋅−−=−⋅⋅⋅−−−=⋅⋅⋅=−+−+=−+= ,,1,,2,1,1,2,1 ,
[] ()[] () ()[] ()[] []knknnkkkkkk ,,1,,2,1,1,2,1 ⋅⋅⋅−=⋅⋅⋅−−−=⋅⋅⋅=++−=+−=− .

For example: [3]=[4,-3] = [5, -4,-3] =[9,-8,-7,-6,-5,-4,-3]= [-9,-8,-7,-6,-5,-4,-3],
[-7,6,-5,-3,-2,-1,0] = [9,8,7,6,-5,-3,-2,-1,0] =[-6,-5,-4,1,0] = [-7,4,1,0].

Theorem 4. Let k2=Δ+X , ()[]klklk −⋅⋅⋅−+−+=Δ± ,,1,X , 11 −−≤≤ knl . Then, we

have ()
()

() ()
()⎪

⎩

⎪
⎨

⎧

−>+
−≤+−>+++
−≤++

=Δ
−+

+

+

<<<+

.1 if 2mod2
;1,1 if 2mod12
;1 if 2mod2

nsk
nsknslk
nslk

nnsk

nsk

nsk

sX

Similarly, let k2−=Δ+X , ()[]klklk ,,1, ⋅⋅⋅−++−=Δ±X , 11 −−≤≤ knl . Then, we

have ()
()

() ()
()⎪

⎩

⎪
⎨

⎧

−>+−
−≤+−>+++−
−≤++−

=Δ
−+

+

+

<<<+

.1 if 2mod2
;1,1 if 2mod12
;1 if 2mod2

nsk
nsknslk
nslk

nnsk

nsk

nsk

sX

Proof: For the first half of this proof, if 1−≤++ nslk , then we have

() ()[]
() ()[]

().2mod2
,,1,

,,1,

nsk

ss

skslkslk
klklk

+

<<<<<<+

=

+−⋅⋅⋅−++−++=
−⋅⋅⋅−+−+=Δ X

If 1−>++ nslk and 1−≤+ nsk , then we have

() ()[]
() () ()[]

() ().2mod12
0,,1,,,,1

,,1,

nsk

ss

nslknslkskn
klklk

+=

−⋅⋅⋅−−++−−+++−⋅⋅⋅−−=
−⋅⋅⋅−+−+=Δ

+

<<<<<<+X

If 1−>+ nsk , then we have

() ()[]
() ()[]

().2mod2
,,1,

,,1,

nnsk

ss

nsknslknslk
klklk

−+

<<<<<<+

=

−+−⋅⋅⋅−−++−−++=
−⋅⋅⋅−+−+=Δ X

.Thus, the first half of theorem 4 is proved. The second half can be proved similarly. □

Theorem 5. Let k2=Δ+X , ()[]kn −⋅⋅⋅−−=Δ± ,,1X .Then, if 1−≤+ nsk ,

() () ()nssks 2mod122 +−=Δ +<<<+X ; otherwise, () () ()nnskss 2mod22 −+<<<+ +−=Δ X .

Similarly, let k2−=Δ+X , () () ()nssks 2mod122 −+−=Δ +<<<+X ; otherwise,

() () ()nnskss 2mod22 −+<<<+ −=Δ X .
Proof: Actually, theorem 5 complements one extreme case of theorem 4.
When 1−≤+ nsk , we have consecutive deduction as

() ()[] () () ()[] () ().2mod122 0,,1,,,1 ,,1 nsskss ssknkn +−=−⋅⋅⋅−−+−⋅⋅⋅−−=−⋅⋅⋅−−=Δ +<<<<<<+X
When 1−>+ nsk , we have consecutive deduction as

() ()[] () () ()[] () ().2mod22 ,,2,1 ,,1 nnsksss nsksskn −+<<<<<<+ +−=−+−⋅⋅⋅−−−−=−⋅⋅⋅−−=Δ X

7

The second half of theorem 5 can be proved similarly. □

Theorem 4 and 5 reveal how the carries due to modular addition or subtraction bring some
unexpected modular differences when bit rotations are applied in the differential path, and from which
some extra conditions can be derived to prevent the occurrence of unexpected modular differences.

3 Collision Differential Selection For MD5

3.1 General Principles

Single block or multi-block collision differentials always exist for any iterated hash function based
on Merkle-Damgard theory, and the number of collision differentials may be numerous, but finite
given the fact that MD5 puts a limit on the length of the message. To carry out a successful collision
attack, the first and crucial step is to find an input difference pattern which can be controlled in the
differential propagation process, so that the input differences can be eliminated by a single or multiple
iterations in the final steps (four steps for MD5).

Given an input message difference, if a differential path exists that leads to a collision, then it is
called a feasible collision differential, hence leading to a feasible differential path, otherwise an
infeasible collision differential and differential path. If it is computationally feasible to fulfill the set of
necessary conditions that maintain the differential path, then we call it a computationally feasible
collision differential, hence a computationally feasible differential path, otherwise a computationally
infeasible collision differential and differential path. In general, firstly a good collision differential
should result in smaller and smaller differences beginning from round 2, so that an elimination of all
differentials or most differentials can be achieved in the final round; secondly, the start differences in
round 1 should be as far away as possible from the first step to ensure enough free message words in
round 1, so that some states in round 2 can also be directly satisfied by these free message words
through multi-step modifications. Wang et al have given the first collision differential [6] which
properly meets the principles described above.

3.2 Input Difference Patterns

The first successful attack on the compression function of MD5 was proposed by Dobbertin [4].
The basic idea of Dobbertin’s attack is to describe the whole compression function as a system of
equations. These equations include the contents of the registers after various steps and the message
words as variables, while the equations are mainly derived from the step operation and the message
expansion. Using the concepts of inner collision and inner almost collision, the system of equations
can be significantly simplified such that it becomes solvable with some special techniques including
evolutionary approaches. Dobbertin’s method can be used to produce real collisions for MD4 and
collisions for the compression function of MD5, which is a pseudo collision attack for MD5. Inspired
by Dobbertin’s attack, Wang [6] developed her new technique to attack MD4-like hash functions,
which can produce real collisions for MD5 and other MD4-like hash functions efficiently. The success
of both Dobbertin’s and Wang’s attacks depends on selecting an appropriate input difference pattern
so that the number of equations or the avalanche effects of the step operation can be minimized. In
Dobbertin’s attacks, only 1-bit input difference patterns are considered, while in Wang’s attack, only a
3-bit input difference pattern is used.

By Dobbertin’s attack, the system of equations consists of two inner collisions, one starting from
step 0p in the first round and ending at step 1p in the second round, and the other starting from step

2p in the third round and ending at step 3p in the fourth round, both inner collisions are connected by

a non-differential chain starting from step 11 +p and ending at step 12 −p . The selection of 1-bit
input difference patterns is to minimize the number of equations which depends significantly on the
two inner collisions and thus on the choice of the initial bit difference step 0p . Considering the

8

round-wise permutations ()ikσ , a complete list of 1-bit difference patterns is given in [17], which

shows that 150 =p would be the best choice in terms of the number of equations to solve, but

Dobbertin’s choice was actually 9,14m with 140 =p instead, taking into account the inner almost
collision.

 Figure1: Overview Of The Differential Collision Attack On MD5

Wang’s attack on MD5 completely differs from Dobbertin’s approach in that, it uses the first block
to produce a near collision which can be further eliminated by the second block to generate a real
collision. An input difference pattern should be selected such that in the first block there exist four
differential sections, denoted as I,II,III and IV as demonstrated in Figure 1. Section I is a
non-differential area without input differences, section II is a near (almost) collision area spanning
across the first and second rounds, section III is a non-differential area plus MSB-only differential
chain starting from the first input difference of the third round if section II is an inner collision, or a
MSB-only differential chain directly derived from section II if section II is an inner almost collision.
Section IV is a near collision area consisting of only a few of the last consecutive steps, better no more
than 4 steps, which are then modulo 232 added with the initial value to produce the chain input
differences of the second block. Due to the chain input differences, section I does not exist in the
second block, the chain input differences propagate all the way to the beginning of section II and
constitute a lengthened section II starting from step 0, and the section III and IV in the second block
correspond to the section III and IV in the first block, except that the differences in the last four
consecutive steps are eliminated, i.e. turning a near collision into a full collision. This can be
illustrated in Figure 1 by an overview of the differential scheme of the collision attack on MD5.

If only 1-bit to 3-bit input difference patterns are considered, we can thus make a list of all
possible input difference patterns that are probably qualified to construct a feasible collision
differential.

1-Bit Input Difference: If only 1-bit input difference is considered, the beginning MSB difference in
section III must be derived from section II such that the differential can propagate along all the MSBs
in section III to the beginning of section IV. By this specific requirement and some principles in
section 3.1, a group of MSB-differences including 31,5m , 31,8m , 31,11m , 31,14m , and a group of

I: Non-differential

II: Inner Almost Collision

III: MSB Differential

15

31

47

IV: Near Collision 63

0

31

47

III: MSB Differential

0
-4

63

15

IV: Full Collision

II: Inner Almost Collision

The First Block The Second Block

9

non-MSB differences including 7,2m , 20,4m , 10,5m , 8,6m , 25.8m 27,9m , 15,11m , 21,11m and 16,14m are
probably qualified to construct a feasible collision differential.

2-Bit Input Difference: Since 2-bit input differences cannot themselves produce a section III (MSB
differential chain) in the third round, at least one MSB difference at the beginning steps in section III
must be derived from section II so that 3-MSB differences (1-bit plus 2-bit) can be combined in the
third round to form an area of section III. By this specific requirement and some principles in section
3.1, an appropriate composition of two 1-bit input differences can be a 2-bit input difference that is
probably qualified to construct a feasible collision differential. Basically, there are three ways to select
the two 1-bit input differences, i.e., to select both from the MSB-difference group, or from the
non-MSB difference group, or one from each group. Therefore, many 2-bit input differences can be
selected by the above three ways. For example, a couple of two MSB-differences 31,5m and 31,11m or

31,8m and 31,14m , a couple of two non-MSB differences 10,5m and 27,9m , and a couple of

MSB-difference 31,8m and non-MSB difference 10,5m can all be qualified to construct a feasible
collision differential. For the sake of limited space, we only give three different 2-bit input differences
in Table 1.

3-Bit Input Difference: Since 3-bit input differences can themselves produce a section III (a MSB
differential chain) in the third round, no derivation of differences from section II is needed. The 3-bit
input differences should be arranged in such a way that, after left rotations, the first bit difference in
the third round must be a MSB, and this MSB difference is combined with the second and third MSB
input differences within four steps to build a consecutive MSB differential chain, which will propagate
along the way to the beginning of section IV. By this specific requirement and some principles in
section 3.1, only the corresponding bit differences of 2m , 4m , 6m , 9m , 11m , 13m and 15m in the end of
the fourth round can be used to produce the beginning MSB difference in the third round. Due to the
round-wise message permutation in the third round, 2m and 15m cannot be the beginning MSB

difference, while the corresponding bit differences in 4m , 6m , 9m , 11m and 13m are qualified as the

first input difference, namely, 20,4m , 8,6m , 27,9m , 15,11m and 27,13m . Therefore, we have five groups of
3-bit input difference patterns, each consisting of 3 words, each word having 1-bit difference. More
specifically, 20,4m , 31,7m and 31,13m constitute the first group, 8,6m , 31,9m and 31,15m the second

group, 27,9m , 31,12m and 31,2m the third group, 15,11m , 31,14m and 31,4m the fourth group, and

27,13m , 31,0m and 31,6m the fifth group. Being required of enough free message words in the first round,
the fifth group cannot be a good collision differential.

For the sake of clarity, we make a list of the whole set of input difference patterns in Table 1, that
are most probably qualified to construct a feasible collision attack on MD5. It is interesting to note
that, all the collision differentials that have already been published are included in Table 1. From Table
1, we can see that Wang’s choice is perhaps the best one in the four groups of 3-bit input differences,
the 2-bit input differences are derived from the 1-bit input differences, and can be regarded as
compositions of them. So at this stage, we only need to pay attention to those 1-bit input differences.
However, it is not a trivial task to tell which 1-bit input difference is more appropriate for collision
differential, unless a comprehensive step-by-step analysis is performed.

10

Table 1.The Most Probable Input Difference Patterns For Collision Attacks On MD5
Bit Differences Number Section I Section II Section III Section IV

20,4m , 31,7m , 31,13m 3-bit 1-4 5-31 32-60 61-64

8,6m , 31,9m , 31,15m 3-bit 1-6 7-25 26-58 59-64

31,2m , 27,9m , 31,12m 3-bit 1-2 3-32 33-63 64-64

31,4m , 15,11m , 31,14m 3-bit 1-4 5-26 27-61 62-64

7,2m 1-bit 1-2 3-30 31-62 63-64

20,4m 1-bit 1-4 5-24 25-60 61-64

8,6m 1-bit 1-6 7-18 19-58 59-64

27,9m 1-bit 1-9 10-25 26-63 64-64

15,11m 1-bit 1-11 12-19 20-61 62-64

10,5m , 27,9m 2-bit 1-5 6-25 26-63 64-64

31,5m , 31,11m 2-bit 1-5 6-21 22-64

31,8m , 21,11m 2-bit 1-8 9-31 32-64

 III + IV = MSB Diff. Chain

31,5m 1-bit 1-5 6-21 22-64

31,8m 1-bit 1-8 9-28 29-64

31,11m 1-bit 1-11 12-19 20-64

31,14m 1-bit 1-14 15-26 27-64

10,5m 1-bit 1-5 6-29 30-64

25.8m 1-bit 1-8 9-30 31-64

21,11m 1-bit 1-11 12-31 32-64

16,14m 1-bit 1-14 15-32 33-64

3.3 Three Feasible Collision Differentials

For a comparison, in Table 2 we make a list of all the collision differentials that have been
published, with their chain output differentials 1H+Δ and 2H+Δ together.

Table 2. The Three 2-Block Collision Differentials Published For MD5
+Δ No.1 Collision Differential[6] No.2 Collision Differential[15] No.3 Collision Differential

0M+Δ 0,0,0,0,231,0,0,0,0,0,0,215,0,0,231,0 0,0,0,0,0,0,-28,0,0, 231,0,0,0,0,0, 231 0,0,0,0,0,0,0,0,231,0,0,0,0,0,0,0

1M+Δ 0,0,0,0,231,0,0,0,0,0,0,-215,0,0,231,0 0,0,0,0,0,0,28,0,0, 231,0,0,0,0,0, 231 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

1H+Δ 231, 231+225, 231+225, 231+225 231-223, 231-223, 231-223, 231-223 231, 231, 231, 231

2H+Δ 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

4 Design of Differential Paths

4.1 General Principles

When an input difference pattern is found to be probably qualified to construct a feasible collision
differential, the next task is to design a feasible differential path which leads to a collision. The basic

11

design criterion is to minimize the Hamming weight of the differential path, which counts the number
of bit differences in the differential path, especially the differential section III and IV. In addition,
section II is the most critical part of the differential path, a successful design of the differential path
usually depends on it. When designing a differential path, a smart trial-and-error method is necessary
in the backward-and-forward construction process. To design a good differential path with as small
Hamming weight as possible, the following principles would be benefited from if observed.

1) Deduce a differential path bottom-up in a backward way, starting from the first inner collision in
section II (in the second round), up to four or five steps away from the first input difference step in
the first round;

2) Deduce the differential up-down from the first input difference step in the first round so that it can
link-up with the bottom-up differential;

3) In general, the start input difference in section II is applied in the step operation in such a way that,
all differences that are needed by the bottom-up differential can be generated within five steps;

4) Employ the properties implicit in the signed difference to extend the signed differences as required
in each backward or forward step, and this is the basic rule suitable for any hash functions;

5) Use the generation and elimination rules implicit in the auxiliary functions in each backward or
forward step, and these are the special rules derived from the particular hash function.

4.2 MD5 Differential Propagation

An MD5 differential path is composed of 64 consecutive steps of state differences.

Four consecutive signed differences (in order of a±Δ , d±Δ , c±Δ and b±Δ) are employed as
input to the step operation function to generate the next signed difference •±Δ a , we call this
computation a step of MD5 differential iteration.

In an MD5 step of differential iteration, the modular differences in the next step can be :
1) Directly derived from the modular difference of a±Δ in state variable a ;
2) Directly derived from the modular difference of b±Δ in state variable b ;
3) Indirectly generated by the auxiliary function, provided that at least one signed difference exists at

the same bit position in the last three state variables b , c and d :
i) A modular difference can be generated in quite a few ways;
ii) Actually, modular differences can be generated from the last three state variables b , c and d

in a variety of ways, by utilizing both the properties implicit in the signed difference and the
rules implicit in the auxiliary functions;

iii) Almost all intelligence of differential path designing is focused here, and for the basic
differential propagation rules with respect to the four auxiliary functions, please refer to [15].

4) The modular differences generated by the auxiliary function can be used to cancel out those
modular differences derived directly from the top or last state variables a and b .

With the properties implicit in the signed difference, in each forward or backward differential
iteration step, the critical technique will most probably be, on the one hand, to employ the auxiliary
functions to generate those modular differences, required by the next output signed
differences •±Δ a but not directly derived from the top or last signed differences a±Δ and b±Δ ; on the
other hand, to employ the auxiliary functions to generate the complementary modular differences for
those directly derived from the top and last signed differences a±Δ and b±Δ , but not required by the
next output signed differences •±Δ a , so that two complementary signed differences be eliminated
together.

4.3 Basic Conditions Due To Signed Differences

A bit that a value must be specified to keep control of the differential path, is called a conditional

12

bit, a set of bit specifications on all the conditional bits is called sufficient if it will definitely lead to a
collision when all are imposed on. In particular, two bits may be relatively specified to include two
situations, for example, jiji da ,, = or jiji da ,, ≠ .

All the bit specifications due to the signed difference bits in the state variables are called basic
conditions. Every basic condition is incidental to a signed difference bit in a state variable within two
steps, in other words, a bit cannot become a basic condition if there exists no signed difference bit on
the same position in a state variable within two steps. Each state variable works as different
component in three consecutive step operations, consequently a bit difference in a state variable will
produce at most five basic conditions, which are uniquely determined by the auxiliary function applied.
As for the ITE function ()ZYXF ,, used in the first round, one condition is the difference bit itself,
one or two conditions depend on if there are modular differences derived from when it works as the
selection component, two conditions are defined by the bit of being selected or not in the ITE function.
For the three different auxiliary functions of MD5, we give the basic condition derivation rules in
Table 3.

Table 3. Basic Condition Derivation Rules For Auxiliary Functions In MD5
() () ()iiiiiii dbcbdcbF ∧∨∧=,, , 320 <≤ i

iF±Δ 0 -1 +1 iF±Δ 0 1± iF±Δ 0 1±

id 0 1 0 1 1 0 id ﹡ ﹡ id±Δ 1± 1±

ic 0 1 1 0 0 1 ic±Δ 1± 1± ic ﹡ ﹡

ib±Δ 1± -1 +1 -1 +1 ib 0 1 ib 1 0

() iiiiii dcbdcbH ⊕⊕=,, , 320 <≤ i

iH±Δ 1± 1m iH±Δ 1± 1m iH±Δ 1± 1m

id 0 1 0 1 id 0 1 0 1 id±Δ 1±

ic 0 1 1 0 ic±Δ 1± ic 0 1 0 1

ib±Δ 1± ib 0 1 1 0 ib 0 1 1 0

() ()iiiiii dbcdcbI ∨⊕=,, , 320 <≤ i

iI±Δ 0 -1 +1 iI±Δ 1m 1± iI±Δ 0 1± 1m

id 0 1 1 id 0 0 1 1 id±Δ 1±

ic ﹡ 0 1 1 0 ic±Δ 1± ic ﹡ 0 1

ib±Δ 1± -1 +1 -1 +1 ib 0 1 1 0 ib 1 0

In Table 3, each auxiliary function has one bit signed difference at one of the three components,
denoted in order as ii cb , and id . When the component b has signed difference ib±Δ , the other two

component bits ic and id must be (or relatively) specified according to the output bit signed

difference iF±Δ , iH±Δ or iI±Δ as required by the differential path. The condition derivation rules
are listed in the columns of every auxiliary function, each having three situations. The ‘0’s in the

iF±Δ , iH±Δ and iI±Δ rows represent non-difference output, while the ‘0’s in other rows represent the
conditional bit value. The asterisk “﹡”denotes an arbitrarily specified bit. In a similar way, a
condition derivation table can be easily obtained (but omitted here for the limited space) for the
situation, where there are signed differences at the same bit position of two components in the
auxiliary functions.

13

By the principles and rules in section 4.1 to 4.3, we give the basic differential paths with respect
to the described 1-MSB input difference 31

8 2=Δ+m for two blocks in Table 6 and Table 7.

4.4 Extra Conditions Due to Carries and Rotations

Besides the basic conditions that must be fulfilled, some extra conditions must be satisfied to
prevent the occurrence of some possible unexpected modular differences due to the carries or overflow.
By Theorems 4 and 5 in section 2, unexpected carries and even overflows are always possible when
the part ∑ ia of step operation is implemented, since ∑ ia will probably have a much lengthened
signed difference representation of a equal modular difference, and probably again the rotation
operation will just break it off. Therefore, the set of sufficient conditions must include both the basic
conditions and the extra conditions, and fortunately, most of the extra conditions are fulfilled with
much high probabilities.

By Theorems 4 and 5, no extra conditions are needed for the differential path of the second block,
and the extra conditions for the first block are included with the following groups of equations:

09~6,3 =∑b , 031,5 =∑a , 031~29,5 =∑d , 117~15,5 =∑c , 131~28,5 =∑b , 126~24,6 =∑a ,

022~17,6 =∑d , 031~22,6 =∑c , 10111~9,6 ≠∑b , 126,7 =∑a , 017~3,7 =∑c , 131~29,7 =∑b ,

017,8 =∑c .

 As an example, 09~6,3 =∑b means that at least one equation of 06,3 =∑b , 07,3 =∑b ,

08,3 =∑b and 09,3 =∑b must hold.

4.5 Condition Fulfillment: Divide-and-Conquer

There always exist conditions that can hardly be satisfied by direct modifications, these
conditions have to be probabilistically fulfilled through random or brute force search, which compose
the computational complexity of collision attack algorithm. For example, if there exist k conditions
that can only be probabilistically fulfilled in the round 2, 3 and 4, then the computational complexity
will be around k2 hash operations, which is a multiplicative accumulation on the conditions. One
idea is to change the multiplicative accumulation of computational complexities into an additional
accumulation by properly grouping the conditional bits that cannot be directly modified, so that the
previously fulfilled groups of conditions will not be violated by later searches. This will result in a
specific divide-and-conquer technique for hash collision attack, which will greatly reduce the
computational complexity to be determined actually by the maximal group of conditions.

To be more precise, if the k conditions can be divided into p groups, namely 1G , 2G … and pG ,

and we have kG
p

i
i =∑

=1

. Let { }pGGGG ,,,max 21max ⋅⋅⋅= be the largest group with the most

conditions. If groups 1G to iG are not violated by the search of group 1+iG ’s satisfaction and so on,
then the computational complexity for the k conditions will be reduced to an additive accumulation
of the complexities for groups 1G , 2G … and pG instead, and the group maxG will be representative of
the whole computational complexity, provided that there exist enough free message bits to be searched
for each group.

According to the principle that the previously used message words or bits must not be further

14

modified later, these probabilistically satisfied conditions can be grouped mainly by the step orders. In
this way, the conditions in round 2,3 and 4 can be divided into four groups, more specifically,

5a , 5d and 5c constitute the first group, 5b , 6a , 6d and 6c the second group, 6b independently the

third group, finally the state variables from 7a to the end 16b constitute the fourth group. The first

group relies on the brute force search directly on the free bits of 5a , but indirectly on 1m to fulfill

the conditions that cannot be satisfied by direct modification in 5d and 5c . The second group relies on

the brute force search directly on the free bits of 5b , but indirectly on 0m to fulfill the conditions

in 6a , 6d and 6c , which are all probabilistically satisfied. The third group relies on the brute force

search directly on the free bits of 1b through the tunneling technique, but indirectly on 4m to fulfill
the conditions in 6b , or on modifications of the corresponding free bits of 1b to boost the

computational efficiency. The conditions in the fourth group including 7a and 7d are satisfied by a

brute force search directly on the free bits of 3a through the tunneling technique, but indirectly on

8m , 9m and 12m , while the conditions in 7a and 7d relies mainly on the modifications directly on the

corresponding free bits of 3a so that the computational cost can be much greatly reduced.

4.6 Additional Conditions: Change Absorption

Take the first block as an example. In the third group, the brute-force search on the free bits of

1b will certainly make changes on 2d and 2c , and indirectly on 5m and 6m if the 2d and 2c

remain the same, this will result in a conflict with the previously used message words 5m and 6m ,

since 5m and 6m are used respectively in state variables 5d (in the first group) and 6a (in the

second group). To avoid this type of conflicts, as components of the choose function ()ZYXF ,, the
corresponding bits in state variables 2a and 2d need to be specified in 0s and 1s respectively, so that
the brute force search on the state variable 1b will be absorbed in the re-computation of 2d and 2c .
For the same reason, the corresponding bits in the state variables 3d and 3c need to be 0s and 1s,

respectively, so that the brute force search on the free bits of 3a can be absorbed in the

re-computation of 3d and 3c , resulting in no changes on the previously used 10m and 11m . This
technique is called the tunneling and was proposed firstly in [8]. The second block is treated in a
similar way.

Table 8 and Table 9 are obtained by respectively modifying Table 6 and Table 7 as described
above, additional conditions are appended for absorbing the changes due to the random or brute-force
searches.

5 Collision Searching Algorithms

In general, a collision searching algorithm is fundamentally determined by the corresponding
differential path, a good differential path corresponds to an intrinsically efficient algorithm. The
objective of designing an algorithm for a collision differential path is to reduce the number of
probabilistically fulfilled conditions as much as possible, this can be achieved by some methods such
as single-step modification, multi-step modification and the tunneling-like techniques. In this paper,
by properly grouping of conditional bits, we particularly transform the multiplicative computational
complexities into additional accumulation, which is the divide-and-conquer technique introduced in
Sections 4.5 and 4.6. As a result, the actual computational complexity is dramatically reduced. The
collision searching algorithm has been implemented which is available from the website

15

http://www.is.iscas.ac.cn/gnomon. As a result of our computation, a collision pair is given in Table 4
with its MD5 digest.

5.1 An Algorithm For The First Block

Step 1: Randomly initialize the state variables from 1c to 3b but with all the conditions in Table 8

directly satisfied, check by the extra conditions in Section 4.4 if there exist invalid carries in 3b , if so,

repeat the random initialization again; otherwise, randomly initialize the state variables from 4a to

5a but with all the relevant conditions in Table 8 directly satisfied, and store the conditional bits

value of 5a . Compute the message words from 6m to 15m according to their corresponding step

equations from 2c to 4b .
Step 2: Do the random search on the free bits of 5a , check by the extra conditions in Section 4.4 if

there exist invalid carries in 5a , if so, repeat step 2. For each of the random search, execute the
following steps. If the prescribed limit on the number of random search tries is over, then return to step
1.
Step 3: Randomly initialize 5d but with all the relevant conditional bits in Table 8 directly satisfied,

check by the extra conditions in Section 4.4 if there exist invalid carries in 5d , if so, repeat step 3;

otherwise, compute 6m according to the 5d step equation, then make an update of 2c . Check by

Table 8 if there exist conditional bits unsatisfied in 2c , then return to step 2.
Step 4: Compute 5c , check if there exist conditional bits unsatisfied for 5c , then modify 2b or 3b

to change 11m , so that the conditional bits for 5c can be satisfied from the less significant bit to more

significant bits. If the conditional bits 6,5c , 9,5c or 20,5c are not satisfied, return to step 2, since no
modifications can be applied; otherwise, check by the extra conditions in Section 4.4 if there exist
invalid carries in 5c , if so, return to step 2. Randomly initialize 5b but with all the relevant

conditions in Table 8 directly satisfied, compute 1m according to the 5a step equation and store the

conditional bits value of 5b .

Step 5: Do the random search on the free bits of 5b , check by the extra conditions in Section 4.4 if

there exist invalid carries in 5b , if so, repeat step 5. For each random search, execute the following

steps. Compute 0m according to the 5b step equation, then make an update of 1a and 1d , and

compute 5m according to the 2d step equation. If the prescribed limit on the number of random
search tries is over, then return to step 2.
Step 6: Compute 6a , check if there exist any conditional bits unsatisfied for 6a , then modify 2a to

change 5m , so that the conditional bits for 6a can be satisfied from the less significant bit to more

significant bits. Check by the extra conditions in Section 4.4 if there exist invalid carries in 6a , if so,
return to step 5.
Step 7: Compute 6d , check if there exist any conditional bits unsatisfied for 6d , then modify 3d to

change 10m , so that the conditional bits for 6d can be satisfied from the less significant bit to more

significant bits. If the conditional bits 29,6d or 30,6d are not satisfied, return to step 5, since no
modifications can be applied; otherwise, check by the extra conditions in Section 4.4 if there exist
invalid carries in 6d , if so, return to step 5.

16

Step 8: Compute 6c , check by Table 8 and the extra conditions in Section 4.4 if there exist any

conditions unsatisfied for 6c , then return to step 5; otherwise, compute 2m , 3m , 4m , 7m , 8m , 9m ,

12m and 13m according to their corresponding step equations.

Step 9: Do the brute force search on the free bits of 1b . For each binary combination of the free bits
of 1b , compute 4m according to the 2a step equation to make an update of 6b . Check by Table 8

if any relevant conditional bits for 6b are not satisfied, then modify the corresponding bits in 1b so

that the conditional bits in 1b satisfied. Check by the extra conditions in Section 4.4 if there exist
invalid carries in 6b , if so, repeat step 9. When the brute force search on the free bits of 1b is over,
return to step 5.
Step 10: Do the brute force search on the free bits of 3a . For each binary combination of the free bits

of 3a , compute 9m according to the 3d step equation to make an update of 7a and 7d . Check in

sequence by Table 8 and Section 4.4 if any relevant (extra) conditions for 7a and 7d are not satisfied,

then modify the corresponding bits in 3a so that the conditional bits in 7a and 7d satisfied. Compute

8m and 12m . If the brute force search on the free bits of 3a is over, return to step 9.
Step 11: Compute the next step operation till the last one, check by Table 8 and the extra conditions in
Section 4.4 at each condition if unsatisfied, then return to step 10 (called early stop); otherwise, if all
conditions are satisfied, then a near collision is verified, output the chain variables 016 aa + , 016 bb + ,

016 cc + and 016 dd + to the algorithm for the second block.

5.2 An Algorithm For The Second Block

Step 1: Randomly initialize the state variables from 1a to 4b but with all the corresponding
conditions in Table 9 directly satisfied.
Step 2: Compute the state variables from 5a to 6b , check by Table 9 if there exist any conditional bits

unsatisfied for the state variables from 5a to 6b , then return to step 1.

Step 3: Do the brute force search on the free bits of 3a . For each binary combination of the free bits

of 3a , compute 9m to make an update of 7a , 7d and 7c , check by Table 9 if there exist any

conditional bits for 7a , 7d and 7c unsatisfied, then modify the corresponding bits in 3a to make all the

conditions in 7a , 7d and 7c satisfied, then compute 8m and 12m . If the brute force search on the free

bits of 3a is over, then return to step 1.
Step 4: Compute the next step operation till the last one, check by Table 9 and Sections 4.4 at each bit
condition if unsatisfied, then return to step 3; otherwise output the collision blocks.

17

Table 4. A Collision Example With The MD5 Digest (Underlined Bits With Difference）

0M 0x68106ac6, 0x2094ed6b, 0xa3ec34eb, 0xf4383dff, 0x157fe4d, 0xeff04e4e, 0x1119f00b, 0x22172e32,

0xc55102b0, 0x99355658, 0x97874ee2, 0x2c408161, 0xf55b1a3f, 0x31e6ad3c, 0x6ed9a43b, 0x4116f7b6

1M 0xec434329, 0xccab7e9a, 0x32b86260, 0x82c53b56, 0xad5ff512, 0xedeab6b5, 0x3e2c15ea, 0x4a564948,

0x292cf96c, 0x684ad345, 0x63cb649d, 0xc2b7e49e, 0xa7cfd089, 0x127c0548, 0xc2906aa4, 0x66e94d25
∗
0M 0x68106ac6, 0x2094ed6b, 0xa3ec34eb, 0xf4383dff, 0x157fe4d, 0xeff04e4e, 0x1119f00b, 0x22172e32,

0x455102b0, 0x99355658, 0x97874ee2, 0x2c408161, 0xf55b1a3f, 0x31e6ad3c, 0x6ed9a43b, 0x4116f7b6
∗
1M 0xec434329, 0xccab7e9a, 0x32b86260, 0x82c53b56, 0xad5ff512, 0xedeab6b5, 0x3e2c15ea, 0x4a564948,

0x292cf96c, 0x684ad345, 0x63cb649d, 0xc2b7e49e, 0xa7cfd089, 0x127c0548, 0xc2906aa4, 0x66e94d25

 MD5 value: 0xa6c8489d 0xddce2a29 0x7ae49ec2 0x7464879f

5.3 Computational Complexity Analysis

There totally exist 39 and 28 conditions respectively in the first block and the second block
starting from the second round, which must be probabilistically fulfilled, the computational
complexity would be around 392 and 282 MD5 compressions if only multi-step modifications are
applied. When the divide-and-conquer technique is applied, these conditions are divided into four
groups, each group of conditions are independently and probabilistically fulfilled without violating
each other, resulting in a great decrease in the computational complexity. In details, the condition
fulfillment in the first block can be divided into five phases as follows:
Phase 1: Phase 1 includes step 1. Since in this phase only direct modifications are needed, the
computational complexity is a constant denoted as 1C ;

Phase 2: Phase 2 includes step 2 to step 4. Direct modifications coexist with probabilistic condition
fulfillment in this phase, and only 5 conditions (one for step 5a , one for step 5d and three for

step 5c) are probabilistically fulfilled without violating the previously satisfied conditions in phase 1,

resulting in a computational complexity of less than 52 MD5 compressions;

Phase 3: Phase 3 includes step 5 to step 8. In this phase, totally 12 conditions are probabilistically
fulfilled without violating the previously satisfied conditions in phase 1 and phase 2, resulting in a
computational complexity of less than 122 MD5 compressions;

Phase 4: Phase 4 includes only step 9, no conditional bit is probabilistically fulfilled, resulting in a
computational complexity of a constant denoted as 2C ;

Phase 5: Phase 5 includes step 10 to step 11. There totally exist 22 conditions that can only be
probabilistically fulfilled without violating the previously satisfied conditions in phase 1, 2, 3 and 4.
Since a single try involves at least 11.5 steps of operation, it results in a computational complexity of

58.202 MD5 compressions (In Appendix B, a detailed calculation of the computational complexity is
described).

Due to the separation of the five phases above, the total computational complexity for the first
block is an additive accumulation of that in all the five phases, which means that the computational
complexity is 58.20

2
125

1 222 ++++ CC ≈
58.202 , instead of a multiplicative accumulation, which

would be 3922
2

125
1 2222 ≈×××+ CC . A similar analysis on the second block shows that the

averaged computational complexity for the second block is 846.182 MD5 compressions. Hence, the total
computational cost for the searching algorithm is 58.202 + 846.182 ≈ 96.202 MD5 compressions.

18

6 Summary, Comparison and Suggestions

In this paper, firstly, a whole list of 1-bit to 3-bit eligible input differences is presented, and the
supernatural appearance of collision differential selection is thus revealed. Secondly, a new 1-MSB
input difference pattern is developed to be the currently fastest collision attack algorithm for MD5,
with an averaged computational complexity of 96.202 MD5 compressions, implying that a common
desktop PC can produce MD5 collisions vastly fast. Thirdly, a divide-and-conquer technique specific
for hash collision attacks is proposed with a concrete application of it. Finally, some technical details
related to the derivation of the basic conditions and the extra conditions are presented. This paper will
help the cryptology community to further grasp the recent techniques on hash cryptanalysis.

A collision differential can be evaluated according to the following seven criteria:
1) Whether or not the differential path depends on the fixed IVs of hash function;
2) The number of message blocks constituting a collision differential;
3) The number of free words in the message;
4) The number of bit differences in the messages;
5) The number of the conditional bits which must be satisfied to yield a collision;
6) The number of the conditional bits that can only be probabilistically fulfilled;
7) The averaged computational complexity of finding a collision.

Considering the real-world cryptanalytic attacks, a differential path which does not rely on the
fixed initial IVs will obviously be better than those must rely on it, a collision differential which has
more free words, less input differences and sufficient conditions will be more easily used to construct
meaningful attacks, a collision differential with less message blocks and probabilistically fulfilled
conditions will be more efficient for practical attacks. The less the conditional bits necessary to
maintain a full differential path, the higher the density of collision message will be; the less the
average computational complexity of finding a collision, the more feasible an attack on practical
protocols based on hash function will be. For the three collision differentials on MD5 that have been
published, we make a comparison in Table 5 based on the above criteria. From Table 5, the 1-MSB
input difference exceeds the other two 3-bit input differences, in terms of free message words, bit
differences, sufficient conditional bits and especially the computational complexity.

Table 5. Performance Comparison For The Three Collision Differentials
 No.1 [6] No.2 [16] No.3 Notes
depend on fixed IVs no no no IVs are free
number of blocks 2 2 2 2-block collision
number of free words 1~2 1~4 1~6 Steps indexed by 1~64
number of diff. bits 3-bit/3-bit 3-bit/3-bit 1-bit/0-bit No.3 is specific
number of all conditions 290 / 309 205 / 306 251 / 49 exclude extra conditions
number of prob. conditions 43 / 36 38 / 35 39 / 28 exclude extra conditions
computational complexity 8.242 302 96.202 averaged
time / a collision (averaged.) 1 min. 30 min. 0.45 sec. 2.66 GHZ PC

By the seven criteria above, in this paper the 1-MSB input difference 31,8m may not be the best
choice for the MD5 collision differential, probably there exist better choices from the other input
differences in Table 1, as the 31,8m -based collision differential was developed before the whole set of
input differences being found. Hence, an open problem is whether other collision differentials from
Table 1 have better performances than the 1-MSB collision differential developed in this paper.

 Another problem that remains open is that, given a collision differential, how to efficiently design
a differential path so that the computation of real collision is mostly efficient. Despite of some initial
work in this direction [14, 18], it is worth to perform a further study on how to intelligently and
automatically design a good differential path.

19

References

1. Ron Rivest. The MD5 message-digest algorithm. Internet Request for Comment RFC 1321,
Internet Engineering Task Force, April 1992.

2. T. A. Berson. Differential Cryptanalysis Mod 232 with application to MD5. In Advances in
Cryptology, Proceedings of EUROCRYPT’92, pages71~80, 1992.

3. B. den. Boer, A. Bosselaers. Collisions for the compression function of MD5, Advances in
Cryptology, Eurocrypt’93 Proceedings, Springer-Verlag, 1994.

4. H. Dobbertin. Cryptanalysis of MD5 compress, presented at the rump session of Eurocrypt’96.
5. X.Y. Wang, F.D. Guo, X.J. Lai, H.B. Yu, Collisions for hash functions MD4, MD5,

HAVAL-128 and RIPEMD, rump session of Crypto’04, E-print, 2004.
6. X.Y. Wang, Hongbo Yu, How to Break MD5 and Other Hash Functions, EUROCRYPT 2005,

LNCS 3494, pp.19-35, Springer-Verlag, 2005.
7. X.Y Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1, Crypt’2005,

LNCS 3621, pp17~36.
8. Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptology

ePrint Archive, Report 2006/105, 2006. http://eprint.iacr.org/.
9. Magnus Daum and Stefan Lucks. Hash Collisions (The Poisoned Message Attack) “The Story of

Alice and her Boss”. Presented at the rump session of Eurocrypt ’05.
10. Max Gebhardt, Georg Illies, and Werner Schindler. A Note on the Practical Value of Single Hash

Collisions for Special File Formats. In Jana Dittmann, editor, Sicherheit, volume 77 of LNI,
pages 333–344. GI, 2006.

11. Marc Stevens, Arjen Lenstra, and Benne de Weger. Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities, EUROCRYPT 2007 (Moni Naor, ed.), LNCS,
vol. 4515, Springer, 2007, pp. 1–22.

12. Scott Contini and Yiqun Lisa Yin. Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions. In Xuejia Lai and Kefei Chen, editors, ASIACYPT, volume 4284
of LNCS. Springer, 2006.

13. Jongsung Kim, Alex Biryukov, Bart Preneel, and Seokhie Hong. On the Security of HMAC and
NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In Roberto De Prisco and Moti Yung,
editors, SCN, volume 4116 of LNCS, pages 242–256. Springer, 2006.

14. Y. Sasaki, L. Wang, N. Kunihiro, and K. Ohta. New Message Differences for Collision Attacks on
MD4 and MD5. IEICE Transactions, 91-A(1):55-63, 2008.

15. Tao Xie, Dengguo Feng, Fanbao Liu. A New Collision Differential For MD5 With Its Full
Differential Path, Cryptology ePrint Archive (2008/230), http://eprint.iacr.org/.

16. Tao Xie, Dengguo Feng, Fanbao Liu. An Improved Path for Xie’s first Collision Differential of
MD5, technical paper, 2008.6.

17. M. Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-University of
Bochum, 2005.

18. C. De Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Results and
Applications. In X. Lai and K. Chen, editors, Advances in Cryptology - ASIACRYPT 2006,
Proceedings, volume 4284 of LNCS, pages 1-20. Springer, 2006.

20

Appendix A MD5 Function

Practically, a Merkle-Damgard structure-based hash function is iterated by a compression function
()XfY = , which compresses l -bit message block X to an s -bit hash valueY , where sl > . For

MD5, 512=l , 128=s . For a padded message M with multiple (t) of l -bit blocks, the iteration
process can be described as: ()iii MHfH ,1 =+ , 10 −≤≤ ti , where ()110 ,...,, −= tMMMM ,

iH is the 128-bit chaining variable (including four 32-bit words) which is updated during the

processing of each block, 0H is the prescribed initial value IVs in MD5 algorithm, and the final tH is
the digest that we expect to obtain. The concrete padding rule is omitted here, since it has no influence
on our attack.

The whole process of the i-th block ()ii MHf , can be defined as follows:

() ()()()()iiiiiiiii HMFFMGGMHHMIIHMHfH ,,,,,1 +==+ , where four round functions
FF , GG , HH and II are involved. All round functions are similar to one another in structure. The
chaining variable iH is treated as a four-element shift register, with each element being one 32-bit

word, referred to as 0a , 0b , 0c and 0d , respectively. Each 512-bit block iM is divided into 16 32-bit

words, denoted as ()1510 ,...,, mmmM i = , each round consists of 16 steps of operations, in each step

of operation, the register is updated with one word from iM . The 64 step operations form a system of

equations: ()()()js
jjiiijiii twdcbaba <<<

+ ++Φ++= ,,1 , 160 ≤≤ i , 641 ≤≤ j , where

iii cba ,, and ib (161 ≤≤ i) are the internal state variables, ()ZYXj ,,Φ is an auxiliary function

which varies from round to round, jw is a word chosen from ()1510 ,...,, mmm by a round-wise

message permutation ()ikσ , 3,2,1,0=k , 15,...,1,0=i , jt and js are constant parameters associated

with step j . Note that each step operation involves four modular additions (322mod), one auxiliary
function and one <<< operation. As the step operation of MD5 is reversible, the compression
function ()ii MHf , uses a feed-forward operation which adds the initial value iH of the register to

their final values, so that ()ii MHf , cannot be inverted.

For the sake of understanding how and where some extra conditions are derived from late in
section 5, which are used to prevent the possible unexpected modular differences due to the joint
effect of both modular addition and left rotation, we define part of the step operation
as () jjiiijii twdcbaa ++Φ+=∑ + ,,1 .

For a detailed description of MD5 algorithm, please refer to [1].

The auxiliary function and the round-wise permutation ()ikσ for each round are given as follows:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤
<≤

<≤

=
+

+
+

.6448,
;4832,
;3216,

 16;j0 ,

16mod7

16mod35

16mod51
1

jm
jm
jm

m

w

j

j

j

j

j

Where ZYX ,, are 32-bit words. The auxiliary functions ()ZYXj ,,Φ each takes three

consecutive 32-bit words from the register of chaining variables as input and produces one 32-bit

() () () ()ZXYXZYXFZYXj ∧∨∧==Φ ,,,, , 161 ≤≤ j ;

() () () ()ZYZXZYXGZYXj ∧∨∧==Φ ,,,, , 3217 ≤≤ j ;

() () ZYXZYXHZYXj ⊕⊕==Φ ,,,, , 4833 ≤≤ j ;

() () ()ZXYZYXIZYXj ∨⊕==Φ ,,,, , 6449 ≤≤ j .

21

word as output. The four words in the chaining variable register are initialized as:
=a 0x67452301, =b 0xefcdab89, =c 0x98badcfe, =d 0x10325476.

Appendix B Estimation of The Averaged Computational Cost

No concrete method of estimating the averaged computational cost has been described in
literature related to MD5 collision attacks. Assume a bit condition being fulfilled with probability 1/2,
the computational complexity of obtaining a MD5 collision is usually presumed to be k2 MD5
operations if there exist k conditional bits that can only be probabilistically imposed on. Actually,
the practically averaged computational cost should be calculated step by step by the distribution of
conditional bits in MD5 steps. To be more precisely, assume there are ik conditional bits for MD5

step i , kk
v

ui
i =∑

=

 and viu ≤≤ , and ir steps of operation are needed for the probabilistically

fulfillment of conditions in step i , then a precise estimation of the averaged computational
complexity or cost in MD5 operations can be given for the collision searching algorithm as

∑
=

−

=

−

=
∑

1

2
64
1

i

uj
jkkv

ui
iC rN , where 0

1

=∑
−

=

u

uj
jk , provided that there are enough free message bits (no less

than the number of conditional bits) to be searched.

Generally in MD5, the computational complexity is determined by the maximal group maxG of

conditional bits which is usually the final group being composed of the MD5 steps from 6b or 7a

to the final 16b , i.e. 6bu = or 7a (MD5 step 24 or 25) , 16bv = (MD5 step 64). By this deduction

and further assume there are 0r steps of operation for the search of free message bits before the

computation of the step 7a , the steps of operation for step)(ui ≥ will be 10 +−+= uirri and

so on. Then, we have ()
∑

+−+=

−

=

−

=
∑

1

21
64
1 64

0

i

uj
jkk

ui
C uirN , where u = 24 or 25. For the

searching algorithm in this paper, the final group is composed of the MD5 steps from 7a to the final

16b , and a 4-step modification is applied for each conditional bit in 7a and 7d in sequence if not
satisfied, which amounts to 11.5 MD5 step operations for one search of the final group, i.e.

5.112142242342442542644 123456
0 =××+××+××+××+××+××+= −−−−−−r .

Hence, for the first block, we have the computational cost calculated as

() 58.201202122
1 225.50...25.1625.1425.12

64
1

≈×++×+×+×=CN MD5 compressions, for

the second block, we have the computational cost calculated as

() 846.18117181920
2 22875.51...2875.192875.172875.152875.13

64
1

≈×++×+×+×+×=CN

MD5 compressions, and the total computational cost is calculated as 96.20846.1858.20 222 ≈+=CN
MD5 compressions.

22

Appendix C The Differential Paths

Notes: In Tables 6,7,8 and 9, '+' denote a positive flip(0→1), '-' a negative flip(1→0), 0(1) the
conditional bit value, '^' the bit equal to the up bit, '! ' the bit not equal to the up bit, '*' the free
bit, 't' the MD5 step, '#' the number of conditions for each step.

t Bits Qt: a0…a31 #
 1~6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31~47
48~55
56

57

58

59

60

61

62

63

64

******** ******** ******** ********

******1* ******** ******** ********

******1* ******** ******** ********

******+* ******** ******** ********

******+* ******** ******** ****1***

******+* ******0* ******** ****1^**

******+0 0*010*00 **111**0 *1**-+0*

***1*0+1 1^001^+0 ^^010^^1 ^0**+11^

*111*1-+ -----+-- --+----- -+*0---+

*01-0-1+ 00+-01+- 100-+111 01*01000

*+-*1011 10-+0101 100+1101 01*+-001

***^-+-1 **-1**11 *1*-+101 00**11**

*^^***** *001***0 *+*0*011 +1*^-+**

****^^^* *111***0 ***1^--- -+001***

******** *-*+***- *^****** 11111^**

0* ******** *****^^^ +0++-***

1* *^*^***^ ******** *****00*

+* ******** ******** ^*^^^11*

******** ******** ******** *****++*

^* ******** *0****** ********

******** ******** *1****** *****^^*

******** ******** *+****** ********

******** ******** ******** ********

******** ******** *^****** *******0

******** ******** ******** ********

******** ******** ******** *******-

******** ******** ******** *******-

******** ******** ******** *******+

******** ******** ******** *******-

******** ******** ******** *******+

******** ******** ******** *******-

******** ******** ******** *******+

******** ******** ******** *******-

******** ******** ******** *******+

******** ******** ******** *******-

******** ******** ******** *******+

0

1

1

1

2

4

16

26

29

30

29

19

16

17

10

9

6

7

2

2

3

1

0

2

0

0

8

1

1

1

1

1

1

1

1

0

t Bits Qt: a0…a31 #
1~3
4

5_t

6_t

7

8

9

10_t

11_t

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31~47
48~55
56

57

58

59

60

61

62

63

64

******** ******** ******** ********

^^^^**** **^***** ******** ****^^^^

****0000 00*00000 00000000 0000****

00001111 11011111 11111111 11110000

******1* ******** ******** ********

*****11* **^****^ !******* ^*!^****

*****0+* ***^**** *^*^***^ ********

00000*+0 000*00*0 0*0*000* 00001*00

11111*+1 11101101 10101110 11111^11

******+0 0*010*00 **111**0 *1**-+0*

***1*0+1 1^001^+0 ^^010^^1 ^0**+11^

*111*1-+ -----+-- --+----- -+*0---+

*01-0-1+ 00+-01+- 100-+111 01*01000

*+-*1011 10-+0101 100+1101 01*+-001

***^-+-1 **-1**11 *1*-+101 00**11**

*^^***** *001***0 *+*0*011 +1*^-+**

****^^^* *111***0 ***1^--- -+001***

******** *-*+***- *^****** 11111^**

0* ******** *****^^^ +0++-***

1* *^*^***^ ******** *****00*

+* 1******* ****11** ^*^^^11*

******** ******** ******** *****++*

^* ******** *0****** ********

******** ******** *1****** *****^^*

******** ******** *+****** ********

******** ******** ******** ********

******** ******** *^****** *******0

******** ******** ******** ********

******** ******** ******** *******-

******** ******** ******** *******-

******** ******** ******** *******+

******** ******** ******** *******-

******** ******** ******** *******+

******** ******** ******** *******-

******** ******** ******** *******+

******** ******** ******** *******-

******** ******** ******** *******+

******** ******** ******** *******-

******** ******** ******** *******+

0

9

23

32

1

9

6

25

31

16

26

29

30

29

19

16

17

10

9

6

10

2

2

3

1

0

2

0

0

1

1

1

1

1

1

1

1

1

0

t Bits Qt: a0…a31 #
-3

-2

-1

0

******** ******** ******** *******+

******** ******** ******** *******+

******** ******** ******** *******+

******** ******** ******** *******+

1~31
32~47
48~63

******** ******** ******** *******+

******** ******** ******** *******+

******** ******** ******** *******+

0

0

1

1

31

0

16

t

Bits Qt: a0…a31 #

-3

-2

-1

0

******** ******** ******** *******+

******** ******** ******** *******+

******** ******** ******** *******+

******** ******** ******** *******+

1~7
8

9

10_t

11_t

12~31
32~47
48~63

******** ******** ******** *******+

******^* ******** ******** ^****^*+

******** ******** ******** *******+

00000000 00000000 00000000 0000000+

11111111 11111111 11111111 1111111+

******** ******** ******** *******+

******** ******** ******** *******+

******** ******** ******** *******+

0

0

1

1

7

4

1

32

32

20

0

16

Table 6: The Basic Differential Path Using
31

8 2=Δ+m (Block1).
Table 8: The Modified Differential Path With
Additional Absorbing Bits (Block1).

Table 7: The Basic Differential Path Using
160 ,0 <≤=Δ+ imi (Block2).

Table 9: The Modified Differential Path With
Additional Absorbing Bits (Block2).

