

GUC-Secure Set-Intersection Computation

Yuan Tian1 Ying Wang2

Software School of Dalian University of Technology, Dalian, Liaoning, 116620
1 tianyuan_ca@sina.com 2 wangying@dlut.edu.cn

Abstract Secure set-intersection computation is one of important problems in secure multiparty
computation with various applications. We propose a general construction for secure 2-party
set-intersection computation based-on anonymous IBE (identity-based encryption) scheme and its
user private-keys blind generation techniques. Compared with related works, this construction is
provably GUC(generalized universally composable) secure in standard model with acceptable
efficiency. In addition, an efficient instantiation based-on the anonymous Boyen-Waters IBE
scheme is presented which user private-key’s blind generation protocol may be of independent
values.

Keywords: Secure Multiparty Computation; Secure Set-Intersection Computation; Anonymous
Identity-based Encryption; Generalized Universally Composable Security.

1 INTRODUCTION

Secure set-intersection computation is one of important problems in the field of secure multiparty
computation with valuable applications in, e.g., secure keyword searching, pattern matching,
private database processing, etc. In secure set-intersection computation, participants with their
own private datasets get the intersection of all their private sets and nothing more(except for each
private set’s cardinality). In this paper, like most recent works, we focus on the 2-party case and
make an efficient GUC-secure, standard model protocol for it.

Much work has been done in designing solutions to secure computation for different
cryptographic functions, but only few are about this special problem among which [8,11-12] are
most relevant to this paper. They are heuristic and valuable works on secure set-intersection
computation published most recently, each using different techniques and security concepts and
most of them(except [12]) mainly dealing with the 2-party case. However, none reaches Canetti’s
UC/GUC security[4-6]. In [8] Freedman et al present provably-secure and efficient protocols for
this problem against semi-honest and malicious adversaries respectively based-on polynomial
interpolation and homomorphic encryption schemes. The solution against malicious adversaries
assumes the random oracle model. [12] solves this problem (and more, e.g., union and element
reduction operations) via smartly exploiting mathematical properties of polynomials and has
fully-simulatable security [10] so that their solution is securely composable(but the concept of
fully-simulatable security is strictly weaker than Canetti’s UC/GUC security proposed in [4-5]).
In addition, as indicated by [11], [12] executes lots of zero-knowledge proofs of knowledge most
of which are known how to efficiently realize but not all. Most recently [11] proposes solutions to
this problem via oblivious pseudorandom function evaluation techniques. They work in two
relaxed adversary models to achieve security of “half-simulatability” and “full-simulatability

against covert adversaries”[1]. At the price of relaxation in security, the protocols in [11] are
highly efficient, so these solutions can be considered as practical and reasonable compromise
between security and efficiency.

In this paper we construct a protocol for secure set-intersection computation in standard model
which is efficient and GUC-secure. Like most previous works, we focus on the 2-party case, however,
there are substantial differences between our solution and the others. Technically, our construction is
based-on the anonymous IBE scheme and it’s user private-key’s blind generation techniques(i.e., to
generate the correct user private-key usk(a)=UKG(msk,a) for a user without leaking the user-id a to
the key-generator). The protocol’s high-level description is simple: let Π=(Setup,UKG,E,D) be an IBE
scheme, M0 be a publicly-known plaintext, P1 owns (for example) X1={x1,x2,x3,x4} and P2 owns
X2={x1,x2,x5,x6}. Let P1 generate IBE’s master public/secret-key (mpk,msk), send mpk and all
yi=E(mpk,xi,M0)(i=1,2,3,4) to P2. When P2 tries to decipher each yi by private-keys usk(x1), usk(x2),
usk(x5) and usk(x6)(obtained via Π’s user private-keys blind generation protocol), only usk(x1) and
usk(x2) can succeed in obtaining M0. As a result, X1∩X2={x1, x2}. In addition, Π’s anonymity prevents
P2 from knowing anything about X1\X2={x3,x4} through y3,y4.(Interestingly, this approach doesn’t
require IBE’s (IND_CPA) data-privacy so its efficiency may be further improved if we can get some
“anonymous(key-private) but not data-private” IBE scheme). The same approach can be even further
used to solve the conditional intersection computation problem via ABE(attribute-based encryption)
scheme recently proposed by Waters et al.

To be GUC-secure, the formal construction is more involved and presented in section 3. It is
constant-round in communications and linear-size in message-complexity(close to [8,11]). In
computation-complexity, one party is O(N1+N2)(close to [8,11]) and the other is O(N1N2)(close to
[12]) where N1, N2 are each party’s private set’s cardinality. It is well-modularized, only executing few
zero-knowledge proofs of knowledge which can be efficiently instantiated. Most importantly and
distinctively, our construction reaches Canetti’s GUC-security: it is GUC-secure against malicious
adversaries assuming static corruptions in the ACRS(augmented common reference string) model [5].
For this goal we introduce a notion of identity-augmented non-malleable zero-knowledge proofs of
knowledge which may be of independent values. In addition, our construction can be also enhanced to
be GUC-secure against malicious adversaries assuming adaptive corruptions in erasure model.

2 NOTATIONS, DEFINITIONS AND TOOLS

P.P.T. means “probabilistic polynomial-time”, x||y means string x and y in concatenation, |x| means
string x’s size(in bits) and |X|(X is a set) means X’s cardinality, x←$X means randomly selecting x
from the domain X. k denotes the complexity parameter. ≈PPT stands for computational
indistinguishability and ≈ for perfect indistinguishability.

2.1 Secure Set-Intersection Computation and Its GUC Security

Briefly speaking, GUC-security means that any adversary attacking the real-world protocol can be
efficiently simulated by an adversary attacking the ideal-world functionality, both have the outputs
indistinguishable by the (malicious) environment. For space limitations, we assume the reader’s

familiarity with the whole theory in [4-6] and only provide necessary descriptions with respect to the
secure set-intersection computation problem here.

Similar to most previous works, we only focus on the unidirectional 2-party scenario. Such ideal
cryptographic functionality for set-intersection computation is defined as

 FINT: (X1,X2) → (|X2|, |X1|||(X1∩X2))

The bi-directional functionality is defined as
 F*INT: (X1,X2) → (|X2|||(X1∩X2), |X1|||(X1∩X2))
It’s not hard to implement F*INT as a FINT-hybrid protocol. However, unidirectional set-intersection
computation per se is independently useful in practice.

Let P1*, P2* be parties in ideal model with private sets X1 and X2 respectively, N1=|X1|, N2=|X2|,
S be the adversary in ideal model. The ideal model works as follows:

On receiving message (sid,“input”,P1*,X1) from P1*, FINT records X1 and sends
message (sid,“input”,N1) to P2* and S; On receiving message (sid,“input”,P2*,X2)
from P2*, FINT records X2 and sends (sid,“input”,N2) to P1* and S.

On receiving message (sid,“intersection”, P2*) from P*2, FINT responses P2* with
message (sid,“intersection”, X1∩X2).

At last P1* outputs N2, P2* outputs N1||(X1∩X2).
Let ψ be the real-world protocol, each party Pi of ψ corresponds to an ideal-world party P i*. A is

the real-world adversary attacking ψ, Z is the environment in which the real protocol/ideal
functionality executes. According to [4-5], Z is a P.P.T. machine modeling all malicious behaviors
against the protocol’s execution. Z is empowered to provide inputs to parties and interacts with A and
S, e.g., Z gives special inputs or instructions to A/S, collects outputs from A/S to make some analysis,
etc. In UC theory[4], Z cannot access parties’ shared functionality(such shared functionality is
specified in specific protocol) while in the improved GUC theory[5] Z is enhanced to do this, i.e., to
provide inputs to and get outputs from the shared functionality. As a result, in GUC theory Z is strictly
stronger and more realistic than in UC theory.

Let outputZ(ψ,A) denote the outputs (as a joint stochastic variable)from ψ’s parties P1, P2 under Z
and A, outputZ(FINT,S) denote the similar thing under Z and S. During the real/ideal protocol’s
execution, Z (as an active distinguisher) interacts with A/S and raises its final output, w.l.o.g., 0 or 1.
Such output is denoted as Z(outputZ(ψ,A),u) and Z(outputZ(FINT,S),u) respectively, where u is the
auxiliary information.
Definition 2.1(GUC security[5]) If for any P.P.T. adversary A in real-world, there exists a P.P.T.
adversary S(called A’s simulator) in ideal-world, both corrupt the same set of parties, such that for any
environment Z the function |P[Z(outputZ(ψ,A),u)=1]-P[Z(outputZ(FINT,S),u)=1]| is negligible in
complexity parameter k (hereafter denote this fact as outputZ(ψ,A)≈PPT outputZ(FINT,S)), then we define
that ψ GUC-emulates FINT or say ψ is GUC-secure, denoted as ψ→GUCFINT.

The most significant property of GUC-security is the universal composition theorem. Briefly
speaking, given protocols φ2, φ1 and ψ(φ1) where ψ(φ1) is the so-called φ1-hybrid protocol, if
φ2→GUCφ1 then (under some technical conditions, e.g., subroutine-respecting) ψ(φ2/φ1)→GUCψ(φ1)
where ψ(φ2/φ1) is a protocol in which every call to the subprotocol φ1 is replaced with a call to φ2.
This guarantees that a GUC-secure protocol can be composed in any execution context while still

preserving its proved security. A similar consequence is also ture in UC theory but with some serious
constraints. All details are presented in [4-5](ACRS model is defined in [5]’s sec.4, or see Appendix A
in our paper).

2.2 IBE Scheme, Its Anonymity and Blind User-Private Key Generation Protocol

In addition to data-privacy, anonymity(key-privacy) is another valuable property for public-key
encryption schemes[2]. An IBE scheme П=(Setup, UKG, E, D) is a group of P.P.T. algorithms, where
Setup takes as input the complexity parameter k to generate master public/secret-key pair (mpk, msk),
UKG takes as input msk and user’s id a to generate a’s user private-key usk(a); E takes (mpk,a,M) as
input where M is the message plaintext to generate ciphertext y, D takes (mpk,usk(a),y) as input to do
decryption. Altogether these algorithms satisfy the consistency property: for any k, a and M

P[(mpk,msk)←Setup(k); usk(a)←UKG(msk,a); y←E(mpk, a, M): D(mpk,usk(a), y)=M]=1
Definition 2.2(IBE Scheme’s chosen plaintext anonymity[2]) Given an IBE scheme Π=(Setup,
UKG,E,D), for any P.P.T. attacker A=(A1,A2) consider the following experiment (k): CPAANO

AExp _
,Π

 (mpk, msk)←Setup(k);
 (M*, a0*, a1*, St)←A1

UKG(msk,.) (mpk), a0*≠a1*;
b←${0,1};

 y*←E(mpk, ab*, M*);
 d←A2

 UKG(msk,.)(St,y*);
 output(d b); ⊕

A is contrained not to query its oracle UKG(msk,.) with a0* and a1*. Define as

. If is negligible in k for any P.P.T. A then П is defined as
anonymous against chosen plaintext attack or ANO_CPA for short. In the above, if M*, a0*, a1* are
generated independent of mpk then П is called selective ANO_CPA .

CPAANO
AAdv _

,Π

|1]1)([2| _
, −=Π kExpP CPAANO
A

CPAANO
AAdv _

,Π

Denote as (k) or (t,q) where t is the
adversary’s maximum time-complexity and q is the maximum number of queries for the UKG-oracle.

)(max _
,... kAdv CPAANO
ATPPA Π∈

CPAANOAdv _
Π

CPAANOAdv _
Π

Now we present the ideal functionality FП
Blind-UKG for an IBE scheme П’s user private-key blind

generation(note: even IBE scheme is not anonymous such functionality still makes sense. However, in
this paper only anonymous IBE’s such protocol is needed). In the ideal model, one party generates(just
one time) П’s master public/secret-key pair (mpk,msk) and submits it to FП

Blind-UKG ; FП
Blind-UKG

generates usk(a)=UKG(msk,a) for another party who submits its private input a(this computation can
take place any times and each time for a new a), revealing nothing about a to the party who provides
(mpk,msk) except how many private-keys are generated. Formally, let S be the ideal adversary, P1*,
P2* the ideal party, sid and ssid the session-id and subsession-id respectively, the ideal model works as
follows:

P1* selects randomness ρ and computes (mpk,msk)←Setup(ρ), sends the message (sid,
mpk||msk||ρ) to FП

Blind-UKG; FП
Blind-UKG sends message (sid, mpk) to P2* and S;

On receiving a message (sid||ssid,a) from P2* (ssid and a are fresh everytime), in
response FП

Blind-UKG computes usk(a)←UKG(msk,a), sends the message (sid||ssid, usk(a))
to P2* and the message (sid||ssid, n) to P1* and S, where n is initialized to be 0 and

increased by 1 everytime the computation takes place.
At last, P1* outputs its last n, P2* outputs all its obtained usk(a)’s.

2.3 (Identity-Augmented) Non-Malleable Zero-Knowledge Proofs of Knowledge

This subsection presents the concept of zero-knowledge proofs of knowledge following [9,13] with
slight symbolic modifications. Let L be a NP language, R is its associated P-class binary relation. i.e.,
x∈L iff there exists w such that R(x,w)=1. Let A, B be two machines, then A(x;B)[σ] represents A’s
output due to its interactions with B under a public common input x and common reference string
(c.r.s.) σ, trA,B(x)[σ] represents the transcripts due to interactions between A and B under a common
input x and c.r.s. σ. When we emphasize A’s private input, say y, we also use the expression Ay(x;B)[σ]
and trA(y),B(x)[σ] respectively. Let A=(A1,A2), B and C be machines where A1 can coordinate with A2 by
transferring status information to it, then (<B,A1>,<A2,C>) represents the interaction between A1 and B,
(maybe concurrently) A2 and C. Due to such interactions, let tr be the transcripts between A2 and C, u
be the final output from A2 and v be the final output form C, then (<B,A1>,<A2,C>)’s output is denoted
as (u,tr,v).
 Two transcripts tr1 and tr2 are matched each other, if tr1 and tr2 are the same message
sequence(consisted of the same messages in the same order) and the only difference is that any
corresponding messages are in the opposite directions.
 Let A be a machine, the symbol A represents such a machine which accepts two kinds of
instructions: the first one is in the form of (“start”, i,x,w) and A in response starts a new instance of A,
associates it with a unique name i and provides it with public input x and private input w; the second is
in form of (“message”,i,m) and A in response sends message m to instance Ai and then returns Ai’s
response to m.
Definition 2.3(Zero-Knowldeg Proof and Non-Malleable Zero-Knowledge Proof Protocol[9,13])
ZPoKR=(Dcrs,P,V,Sim) where Sim=(Sim1,Sim2) is a group of P.P.T. algorithms, k is complexity
parameter, Dcrs takes k as input and generates c.r.s. σ; P is called prover, takes (σ,x,w) as input where
R(x,w)=1 and generates a proof π; V is called verifier, takes (σ,x) as input and generates 0 or 1;
Sim1(k) generates (σ,s), Sim2 takes x∈L and (σ,s) as input and generates the simulation. All
algorithms except Dcrs and Sim1 take the c.r.s. σ as one of their inputs, so σ is no longer explicitly
included in all the following expressions unless for emphasis. Now ZPoKR is defined as a
zero-knowledge proof protocol for relation R, if the following properties are all satisfied:
(1) For any x∈L and σ←Dcrs, it’s always true that P[V(x;P)[σ]=1]=1;
(2) For any P.P.T. algorithm A, x∉L and σ←Dcrs, it’s always true that P[V(x;A)[σ]=1]=01;
(3) For any P.P.T. algorithm A which outputs 0 or 1, let ε be empty string, the function

|P[σ←Dcrs; b←A(ε;P)[σ]: b=1] - P[(σ,s)←Sim1(k); b←A(ε;Sim2(s))[σ]: b=1]|
is always negligible in k, where we emphasize the fact by symbol Sim2(s) that all Sim2 instances have
the same s as one of their inputs.

The non-malleable zero-knowledge proof protocol for relation R is defined as NMZPoKR=
(Dcrs,P,V,Sim,Ext) where Sim=(Sim1,Sim2), Ext=(Ext1,Ext2) and (Dcrs,P,V,Sim) is a zero-knowledge

1 Strictly this protocol should be called “zero-knowledge argument”, however, such difference is not essential in this
paper so we harmlessly abuse the terminology.

proof protocol for relation R as above, P.P.T. algorithm Ext1(k) generates (σ,s,τ) and the interactive
P.P.T. machine Ext2(named as witness extractor) takes (σ,τ) and protocol’s transcripts as its input and
extracts w, and all the following properties hold:
(4) The distribution of the first output of Sim1 is identical to that of Ext1;
(5) For any τ, the distribution of the output of V is identical to that of Ext2’s restricted output which
does not include the extracted value (w);
(6) There exists a negligible function η(k) (named as knowledge-error function) such that for any P.P.T.
algorithm A=(A1,A2) it’s true that
P[(σ,s,τ)←Ext1(k); (x,tr,(b,w))←(<Sim2(s),A1>,<A2,Ext2(τ)>)[σ]: b=1∧ R(x,w)=1 tr doesn’t match ∧
any transcript generated by Sim2(s)]
> P[(σ,s)←Sim1(k); (x,tr,b)←(<Sim2(s),A1>,<A2,V>)[σ]: b=1 ∧ tr doesn’t match any transcript
generated by Sim2(s)] - η(k) .

It’s easy to see that NMZPoKR is a zero-knowledge proof of knowledge. [9,13] developed an
efficient method to derive non-malleable zero-knowledge proof protocols based-on simulation-sound
tag-based commitment schemes and the so-called Ω-protocols(proposed in [13]). In order to achieve
GUC-security in our construction, we need to further enhance NMZPoK to the concept of
identity-augmented non-malleable zero-knowldege proof protocol(IA-NMZPoK) as follows.
Definition 2.4(IA-NMZPoK Protocol for Relation R) The IA-NMZPoK Protocol for relation R,
IA-NMZPoKR=(D,Setup,UKG,P,V,Sim,Ext) where Sim=(Sim1,Sim2) and Ext=(Ext1,Ext2), is a group
of P.P.T. algorithms. Setup(k) generates master public/secret-key pair (mpk,msk), UKG(msk,id)
generates id’s private-key usk(id) where id∈{P,V}(the prover’s and verifier’s identity). Sim1 takes
usk(V) as input, Ext1 takes usk(P) as input. All algorithms except Setup take (mpk,σ) as one of its
inputs(so it no longer explicitly appears). The protocol has the same properties as R’s NMZPoK
protocol in definition 2.3.
 Note that by this definition an IA-NMZPoK protocol works in ACRS model[5] which ACRS is its
mpk. In addition, only the corrupt verifier can run Sim(Sim1 taking usk(V) as input) and only the
corrupt prover can run Ext (Ext1 taking usk(P) as input). This is exactly what is required in the ACRS
model. Given a relation R, a general and efficient construction of IA-NMZPoK protocol for R is
presented in Appendix D.

2.4 Commitment Scheme

We need the non-interactive identity-based trapdoor commitment sheme [5](IBTC for short) as
another important tool in our construction.
Definition 2.5(IBTC scheme[5]) Let k be complexity parameter, the non-interactive identity-based
trapdoor commitment sheme IBTC=(D, Setup, UKG, Cmt, Vf, FakeCmt, FakeDmt) is a group of P.P.T.
algorithms, where D(k) generates id, Setup(k) generates master public/secret-key pair (mpk, msk),
UKG(msk,id) generates id’s user private-key usk(id), Cmt(mpk,id,M) generates message M’s
commitment/decommitment pair (cmt,dmt), Vf(mpk, id, M, cmt, dmt) outputs 0 or 1, verifying whether
cmt is M’s commitment with respect to id. These algorithms are consistant, i.e., for any M:

P[(mpk, msk)←Setup(k); (cmt,dmt)←Cmt(mpk,id, M): Vf(mpk, id, M, cmt, dmt)=1]=1

FakeCmt(mpk, id, usk(id)) generates (cmt ,λ), FakeDmt(mpk, M, λ, cmt) generates d (w.l.o.g. λ
contains id||usk(id) as one of its components so FakeDmt doesn’t explicitly take id and usk(id) as its
input). A secure IBTC scheme has the following properties:
(1)Hiding: for any id and M0, M1, (cmti,dmti)←Cmt(mpk,id, Mi), i=0,1, then cmt0 ≈ P.P.T.cmt1;
(2)Binding: for any P.P.T. algorithm A, the function ≡P[(mpk, msk)←Setup(k); (id*,
cmt*, M0*, d0*, M1*, d1*)←AUKG(msk,.)(mpk): A doesn’t query oracle-U(msk,.) with id* M0*≠M1*

Vf(mpk, id*, M0*, cmt*, d0*)=Vf(mpk, id*, M1*, cmt*, d1*)=1] is always negligible in k.

)(, kAdvbinding
AIBTC

∧
∧
(3)Equivocability: For any P.P.T. algorithm A=(A1,A2) the following experiment always has
|P[b*=b]-1/2| upper-bounded by a negligible function in k:

 (mpk, msk)←Setup(k);
(St, id*, M*)←A1(mpk,msk);

 usk(id*)←UKG(msk,id*); (cmt ,λ)←FakeCmt(mpk,id*,usk(id*));
 d1←FakeDmt(mpk, M*, λ, cmt); d0←$ {0,1}|d1|;

b←$ {0,1};
 b*←A2(St, d b);

Note that equivocability implies P[Vf(mpk, id*, M*, cmt , d1*)=1]>1-γ(k) where γ(k) is a
negligible function in k. [5] presented an efficient IBTC construction and proved its security.

3 GENERAL CONSTRUCTION

Now we present the formal consctrution of the real-world private set-intersection computation
protocol Ψ. P1 and P2 denote two real-world parties with private set X1={x1,…,xN1} and X2={y1,…,yN2}

respectively. П=(ESetup,UKG,E,D) is a selective ANO_CPA anonymous IBE scheme, ∆ПBlind-UKG is
the real-world protocol for П’s user private-keys blind generation. IA-NMZPoK(w:R(x,w)=1) denotes
an IA-NMZPoK protocol for relation R where w is x’s witness. TC=(D,TSetup,UKG,Cmt,Vf,FakeCmt,
FakeDmt) is an IBTC scheme. M0 is a (fixed) public common plaintext. Ψ’s ACRS is mpkTC||mpk∆||
mpkZK||M0 where mpkTC, mpk∆, mpkZK are respectively TC’s, ∆ПBlind-UKG’s and an IA-NMZPoK
protocol(see below)’s master public key. Ψ works as follows:
(1) P1 computes П’s master public/secret-key (mpk,msk)←ESetup(k), for each xi∈X1(i=1,…,N1)
computes ciphertext ξi←E(mpk,xi, M0; ri) where ri is the independent randomness in each encryption,
then computes (cmt,dmt)←Cmt(mpkTC, P2, ξ1||…||ξN1) and sends mpk||cmt to P2.
(2) P1 and P2 run the protocol ∆ПBlind-UKG where P1(as the key-generater) inputs (mpk,msk) and P2(as
the key-receiver) inputs y1,…,yN2 to ∆ПBlind-UKG. On ∆ПBlind-UKG’s completion, P1 obtains N2 and P2
obtains usk(y1),…, usk(yN2) as the output.
(3) P1 sends ξ1||…||ξN1||dmt to P2.
(4) P2 verifies Vf(mpkTC, P2, ξ1||…||ξN1, cmt, dmt)=1.
(5) P1 runs the protocol IA-NMZPoK((xi,ri): ξi=E(mpk, xi, M0; ri), i=1,…,N1) as a prover with P2 as a
verifier. On this IA-NMZPoK ’s completion, P2 tries to decrypt each ξi by usk(yj)’s it obtained in step 2
and generates the set X0←{yj∈X2: there exists ξi s.t. D(mpk, usk(yj), ξi)=M0}.
(6) P1 outputs N2 and P2 outputs X0.

This general construction of Ψ is a ∆ПBlind-UKG-hybrid protocol and we require

∆ПBlind-UKG→GUCFП
Blind-UKG(definition 2.1). Since for each ξi=E(mpk, xi, M0; ri), D(mpk,usk(yj), ξi)=M0

if and only if xi=yj so X0=X1∩X2, i.e., P2 outputs the correct intersection. Regarding security, because
the IBE scheme П is (selective) anonymous, i.e., ciphertext ξi hides xi unless P2 has the correct user
private-key usk(xi), P2 knows nothing about X1 beyond X1∩X2. On the other hand, ∆ПBlind-UKG’s (GUC)
security prevents P1 from knowing anything about P2’s private set X2.

However, merely requiring ∆ПBlind-UKG→GUCFП
Blind-UKG cannot guarantee Ψ’s GUC-security but

only “half GUC-security” instead(i.e., the real adversary A corrupting P1 can be completely simulated
by an ideal adversary S but this is not true when A corrupts P2. Only data-privacy can be proved in the
latter case). In order to make the real adversary always completely simulatable in ideal-world, some
additional property is required for ∆ПBlind-UKG. This leads to definition 3.1 and it is not hard to verify
that our concrete construction of ∆ПBlind-UKG in next section really satisfies it.
Definition 3.1(IBE’s User Private-keys Blind Generation Protocol with Extractor) Given IBE scheme
П=(ESetup,UKG,E,D) and ∆ПBlind-UKG→GUCFП

Blind-UKG , let P1, P2 be ∆ПBlind-UKG’s parties where P2
provides user-id a and obtains usk(a), P1 owns msk and (blindly) gernates usk(a) for P2. This
∆ПBlind-UKG is defined as extractable, if there exists P.P.T. algorithm Setup∆, UKG∆, Ext∆=(Ext1,Ext2)
and a negligible function δ(k), called the error function, such that
(1) Setup∆(k) generates the master public/secret-key pair (mpk∆,msk∆).
(2) UKG∆(msk∆,id) outputs a trapdoor usk∆(P2) when id=P2(key-receiver’s identity) and outputs nothing
otherwise.
(3) for any user-id a, honest P1 and any P.P.T. algorithm A, it is true that(via notations in subsection 2.3)
Ext1(usk(P2)) outputs (σ,τ) such that
 P[Ext2(mpk||τ ; A(a))[σ]=a]>P[Aa(mpk; P1(mpk,msk))[σ]=UKG(msk,a)]-δ(k)
where (mpk,msk) is П’s master public/secret-key owned by P1(mpk is published).

We stress that all extractors in definition 2.3 and definition 3.1 are non-rewinding.
Combining all the instantiations of subprotocols in this general construction(some presented in

next section and Appendix D), it’s easy to see that we can get a O(1) and O(N1+N2)
message-complexity solution. Furthermore P1, P2 has computation-complexity of O(N1+N2) and
O(N1N2) encryptions/decryptions repectively. The exact efficiency analysis can only be done for
specific instantiation (e.g., that presented in next section) which is provided in the full version paper.
The formal security consequence is the following theorem which proof is in Appendix B.
Theorem 3.1 Suppose that П=(ESetup,UKG,E,D) is a selective ANO_CPA anonymous IBE scheme,
∆ПBlind-UKG→GUC FП

Blind-UKG with extractor ExtП=(ExtП,1,ExtП,2) and error function δ as in def.3.1,
IA-NMZPoK((xi,ri): ξi=E(mpk, xi, M0; ri),i=1,…,N1) is an IA-NMZPoK protocol, TC=(D,TSetup,UKG,
Cmt,Vf,FakeCmt,FakeDmt) is an IBTC scheme, then Ψ→GUC FINT assuming static corruptions.

4 AN INSTANTIATION VIA BOYEN-WATERS IBE SCHEME

Theorem 3.1 presents security conditions for the general construction Ψ, among which some are
available in existing works, e.g., the commitment scheme can be directly borrowed from [5]. The
subprotocols which require new efficient constructions are only IBE scheme’s user private-keys
generation protocol and the protocol IA-NMZPoK((a,r): ξ=E(mpk,a,M0;r)). In this section we present
an efficient instantiation of Ψ via Boyen-Waters IBE scheme. All related zero-knowledge protocols’

constructions are presented in Appendix D.

4.1 Boyen-Waters IBE[3]

Given an bilinear group pairing ensemble J={(p,G1,G2,e)}k where |G1|=|G2|=p, p is k-bit prime number,
P∈G1, e:G1×G1→G2 is a non-degenerate pairing, Boyen-Waters IBE consists of

ESetup(k):
 g, g0, g1←$G1; ω, t1, t2, t3, t4←$Zp; Ω← ; ω21),(ttgge

v1←gt1; v2←gt2; v3←gt3; v4←gt4;
 mpk←(G1,G2,p,e, Ω, g, g0, g1, v1, v2, v3, v4);
 msk←(ω, t1, t2, t3, t4);
 return(mpk,msk);

UKG(msk, a), a∈Zp:

 r1, r2←$Zp;

 usk(a)←(, ,); ,)(, 212432211
10

tratttrttr gggg −−+ ϖ 111)(10
trat ggg −−ϖ 42)(10

tragg − 32)(10
tragg −

 return(usk(a));
The encryption/decryption algorithm is omitted here and completely presented in Appendix D..

 [3] has proven that assuming the decisional bilinear Diffie-Hellman problem(D-BDHP)’s hardness
on J, this scheme is IND_CPA secure (data-private); assuming the decisional linear problem(D-LP)’s
hardness, this scheme is selective ANO_CPA anonymous. Notice that D-BDHP hardness implies
D-LP’s hardness, all the above consequences can be also obtained only under D-BDHP’s hardness.

4.2 User Private-Keys Blind Generation Protocol and Its GUC-Security WatersBoyen
UKGBlind
−
−∆

For simplicity we only present how to blindly generate usk(a) for a single user-id a. The generalization
to blindly generating usk(a1)||…||usk(aN) for multiple user-id’s a1||…||aN is trival and still
constant-round, though the total message-complexity is linearly increased.

The two parties are P1 (with private input msk) and P2 (with private input a). Both parties have the
common input mpk where (mpk,msk) are generated by IBE scheme’s ESetup(k) (usually msk per se is
the randomness in ESetup so we use a simplified notation mpk←ESetup(msk) hereafter).
has two IA-NMZPoK subprotocols (see below) which ACRS’s are denoted as mpkZK,II and mpkZK,III.

 is in ACRS model which ACRS is mpkZK,II||mpkZK,III. works as follows:

WatersBoyen
UKGBlind
−
−∆

WatersBoyen
UKGBlind
−
−∆ WatersBoyen

UKGBlind
−
−∆

(1) P1 runs a protocol IA-NMZPoK(msk: mpk=ESetup(msk)) as a prover with P2 as a verifier, where
the meaning of the notation IA-NMZPoK(msk: mpk=ESetup(msk)) follows section 3. Denote this
protocol as IA-NMZPoKII.
(2) P2 selects r1, r2, y1, y2, y3, y4 at random, computes Ui← , Vi← for i=1,2 and

hj← for j=1,2,3,4, sends U1||U2||V1||V2||h1||h2||h3||h4 to P1. Then P2 runs the protocol

irg iragg −)(10
ay gg j
1

IA-NMZPoK((a, r1, r2, y1, y2, y3, y4):∧ i=1,2Ui= irg ∧ i=1,2Vi= iragg −)(10 ∧ j=1,2,3,4hj=) ay gg j
1

as a prover with P1 as a verifier. Denote this protocol as IA-NMZPoKIII.
(3) P1 selects σ , r1', r2’ at random, computes d0← ; d1'← ;
d1"← ; d2'← ; d2"← ; d3'← ; d3"← ;

21
,

1)(1
ttr Ug σ 43

,
2)(2

ttr Ug σ 2tg ϖ− 221
1

'
01)(ttr Vgh σ−

2
'

1trg 1tg ϖ− 111
1

'
02)(ttr Vgh σ− 1

'
1trg 442

2
'

03)(ttr Vgh σ− 4
'
2trg

d4'← ; d4"← and sends d0||d1' ||d1"||d2' ||d2"||d3' ||d3"||d4' ||d4" to P2. 332
2

'
04)(ttr Vgh σ− 3

'
2trg

(4) P2 computes dj← , j=1,2,3,4 and outputs (d0, d1, d2, d3, d4). jy
jjdd '''

It’s easy to show by direct calculation that P2 outputs the correct usk(a)=(d0,d1,d2,d3,d4) where d0

= , d1 = , d2 = , d3 =
, d4 = . Regarding security, we have

43222111)'()'(ttrrttrrg σσ +++ 2112)'(
10)(trrat ggg σϖ +−− 1111)'(

10)(trrat ggg σϖ +−−

422)'(
10)(trragg σ+− 322)'(

10)(trragg σ+−

Theorem 4.1 Suppose the bilinear group pairing J has D-BDHP hardness, both IA-NMZPoKII and
IA-NMZPoKIII are identity-augmented non-malleable zero-knowledge proof protocols for specific
relations described in the above, then →GUC assuming static corruptions and

 satisfies def. 3.1.

WatersBoyen
UKGBlind
−
−∆ WatersBoyen

UKGBlindF −
−

WatersBoyen
UKGBlind
−
−∆

 Appendix C includes detailed proof and Appendix D contains all related IA-NMZPoK protocols’
constructions.

REFERENCES

[1] Y. Aumann, Y.Lindell, Security against Covert Adversaries: Efficient Protocols for Realistic

Adversaries, TCC’07, LNCS Vol.4392, 137-156, 2007.
[2] M.Abdalla, M.Bellare, D.Catalano et al. Searchable Encryption Revisited: Consistency

Properties, Relation to Anonymous IBE and Extensions. In Crypto’05, LNCS Vol. 3621,
205-222, 2005.

[3] X.Boyen, B.Waters, Anonymous Hierarchical Identity-based Encryption without Random
Oracles, Crypto’06, LNCS Vol.4117, 290-307, 2006.

[4] R.Canetti, Universally Composable Security: a New Paradgim for Cryptographic Protocols, 42nd
Annual Symposium on foundations of computer Science, IEEE Computer Society, 136-145,
2001.Updated in 2005, eArchive Cryptology 2001/067.

[5] R.Canetti, Y.Dodis, R.Pass et al Universally Composable Security with Global-Setup, TCC’07,
LCNS Vol.4392, 61-85, 2007. Full version available at eArchive Cryptology 2007.

[6] Y.Dodis, V.Shoup, S.Walfish Efficient Construction of Composable Commitment and
Zero-Knowledge Proofs, Proc. Crypt’08, 2008.

[7] M.Freedman, Y.Ishai, B.Pinkas et al Keyword Search and Oblivious Pseudorandom Functions,
TCC’05, LNCS Vol.3378, 303-324, 2005.

[8] M.Freedman, K.Nissim, B.Pinkas Efficient Private Matching and Set Intersection, Eurocryp’04,
LNCS Vol.3027, 1-19, 2004.

[9] J.Garay, P..MacKenzie, K.Yang Strengthening Zero-Knowledge Protocols using Signatures,
Proc. Eurocrypt, LNCS Vol.2656, 177-194, 2003.

[10] O.Goldreich Foundations of Cryptography, Vol 1&-Vol 2, Cambridge University Press, 2004.
[11] C.Hazay, Y.Lindell Efficient Protocols for Set Intersection and Pattern Matching with Security

against Malicious and Covert Adversaries, Proc. CT-RSA’08, 2008.
[12] L.Kissner, D.Song Private-Preserving Set Operations, Crypto’05, LNCS Vol.3621, 241-257,

2005.
[13] P..MacKenzie, K.Yang On Simulation-Sound Trapdoor Commitments, Proc. Eurocrypt’04,

LNCS Vol.3027, 382-400, 2004.

APPENDIX.A ACRS MODEL

Recently [5] improves and generalizes the early UC-theory proposed in [4] to make a more general,
realistic and strictly stronger security notion. The universal composition theorem is still true in this
paradigm, however, the pre-setup needs to be strictly enhanced. In GUC paradigm the CRS model is
insufficient to implement general cryptographic functionalities, instead we need a new pre-setup
model called ACRS(augmented common reference string) model. This pre-setup can be performed via
a shared functionality UKGSetup

acrsG , with two parameter functions Setup and UKG similar to IBE
scheme’s master public/secret-key generator and its user private-key generator. UKGSetup

acrsG , ’s program
is [5]:

Initialization Phase: compute (mpk, msk)←Setup(k) and store (mpk, msk);
Running Phase: on receiving message (“CRS request”,Pi) from any party Pi, response

(“ACRS”, mpk) to Pi and the adversary S;
On receiving message (“Retrieve”,sid,Pi) from a corrupt party Pi, compute

usk(Pi)←UKG(msk,Pi) and return the message (“Private-key”, sid, usk(Pi)) to Pi; if Pi is
not a corrupt party, response nothing.

APPENDIX.B PROOF OF THEOREM 3.1

For intuition the protocol Ψ is presented in a figure below. The IA-NMZPoK protocol’s arrow points from
the zero-knowledge proof’s prover to itsverifier.

P1(X1) ACRS=mpkTC||mpk∆||mpkZK||M0 P2(X2)

(mpk,msk)←ESetup(k);
for each xi∈X1 do

ξi←E(mpk, xi, M0; ri);
(cmt, dmt)←Cmt(mpkTC, P2, ξ1||…||ξN1);
 mpk || cmt
 input y1||…||yN2 where yj
input (mpk,msk) goes over all elements in X2

obtain N2 obtain usk(y1),…, usk(yN2)

∆ПBlind-UKG

 ξ1||…||ξN1||dmt
 verify Vf(mpkTC, P2, ξ1||…||ξN1, cmt, dmt)=1
 /*Vf is the IBTC-scheme TC’s verification function.*/
 IA-NMZPoK((xi,ri): ξi=E(mpk, xi, M0; ri),i=1,…,N1)
 X0←{yj∈X2: there exists ξi s.t.

D(mpk, usk(yj), ξi)=M0}

output(N2) output(N1||X0)

Now we present the proof sketch. At first it’s easy to verify that Ψ produces the correct intersection
X1∩X2 at P2. Now we prove its GUC-security in two cases that the real-world adversary A corrupts P1
or P2 respectively. Below P1* and P2* stand for P1 and P2’s respective counterparts in ideal-world.
 All parties are assumed to be initialized with a copy of the common reference string ACRS, i.e., the
concatenation of TC’s master public-key mpkTC, ∆ПBlind-UKG’s mpk∆, the IA-NMZPoK protocol’s mpkZK
and M0, generated by the pre-setup GACRS. For this ACRS, its msk=mskTC||msk∆||mskZK and
UKG(msk,id) responses with usk(id)=uskTC(id)||usk∆(id)||uskZK(id) where uskTC(id), usk∆(id) and
uskZK(id) are respectively TC’s, ∆ПBlind-UKG’s and the IA-NMZPoK protocol’s user private-keys
corresponding to id∈{P1,P2}.
(1) A corrupts P1: for simplicity we first make the proof in FП

Blind-UKG–hybrid model and then complete
the proof by generalized universal composition theorem. Let X1={x1*,…,x N1* } be A’s(i.e., P1’s) own
set, X2={y1*,…,y N2* } be P2*’s own set. We need to construct an ideal adversary S1 who corrupts P1*,
runs A as a black-box and simulates the real-world honest party P2 to interact with A:

On receiving the message (sid,“input”,N2) from FINT, S1 gets usk(P1) by querying the shared
functionality GACRS with (“retrieve”,sid,P1) where usk(P1)=uskTC(P1)||usk∆(P1)||uskZK(P1)), computes
(σ,s,τ)←IA-NMZPoK:: Ext1(uskZK(P1))(to avoid ambiguity, we use Γ::f to represent a protocol Γ’s
algorithm f), generates N2 data-items y1,…, yN2 at random and then starts A;

After A sends the first message (mpk||cmt), S1 interacts with A as an honest key-receiver in model
of FП

Blind-UKG and obtains usk(y1),…,usk(yN2);
S1 intercepts the message ξ1||…||ξN1||dmt sent from A,verifys whether Vf(mpkTC,P2, ξ1||…||ξN1,

cmt,dmt)=1 and then participates in protocol IA-NMZPoK((x*i,ri): ξi=E(mpk, xi*, M0;ri), i=1,…,N1 as
a verifier calling the knowledge extractor IA-NMZPoK::Ext2(τ) to extract the witness (xi*,ri),
i=1,…,N1(in fact only xi*’s are needed in this proof);

S1 sends the message (sid,“input”, {x1*,…,x*N1}) to FINT, then outputs whatever A outputs to the
environment.

Let tr(A,S1) denote the transcripts due to the interaction between S1 and A, trψ(A, P2(X2)) denote
the transcripts due to the interaction between A and P2(X2) in the real-world protocol Ψ(P2(X2) means
the real-world party possessing the same private set X2 as P2*). From A’s perspective, the difference
between tr(A,S1) and trψ(A, P2(X2)) is that the former provides FП

Blind-UKG with {y1,…,yN2} as the input,
the latter provides FП

Blind-UKG with {y*1,…,y*N2}, but according to FП
Blind-UKG’s specification A knows

nothing about what data-items are provided to FП
Blind-UKG by the other party except the number N2, as

a result, tr(A,S1)≈ trψ(A,P2(X2))(perfectly indistinguishable) from A’s perspective. In particular, the
distribution of A’s output due to interactions with S1 is the same as that (in real-world protocol Ψ) due
to interactions with P2(X2). Let η be IA-NMZPoK protocol’s error function, be attacker’s
advantage against TC’s binding property, all are negligible functions in k. It’s not hard to show(by
contradiction) that the probability with which S1 correctly extracts all A’s data-items x*1,…,x*N1 is
greater than P[P2(mpk||ξ1||…||ξN1;A)=1]-N1(η+)≥P[X0=X1∩X2]-N1(η+), therefore,
the difference between the probability with which P2*(X2) outputs X1∩X2 under the ideal-world
adversary S1’s attacks and the probability with which P2(X2) outputs X1∩X2 under the real-world
adversay A’s attacks against Ψ is upper-bounded by N1(η+), also a negligible function in k.
Combining all the above facts, for any P.P.T. environment Z we have outputZ(ψ, A)≈PPT outputZ (FINT,

binding
TCAdv

binding
TCAdv binding

TCAdv

binding
TCAdv

S1), i.e., Ψ→GUC FINT in FП
Blind-UKG–hybrid model.

Now replace the ideal functionality FП
Blind-UKG with ∆ПBlind-UKG in Ψ. By what is just proved, the

assumption ∆ПBlind-UKG→GUC FП
Blind-UKG and the GUC-theorem, we still have the GUC-emulation

consequence. In addition, it’s not hard to estimate S1’s time complexity TS1=TA+O(N2+N1Te) where TA
and Te are A’s and the knowledge extractor’s computation time.
(2) A corrupts P2: Denote A’s(i.e.,P2’s) own set as X2={y*1,…,y*N2}, P1*’s own set as X1=
{x*1,…,x*N1}, we need to construct an ideal adversary S2. S2 corrupts P2*, gets usk(P2) by querying the
pre-setup GACRS with (“retrieve”,sid,P2) where usk(P2)=uskTC(P2)||usk∆(P2)||uskZK(P2), generates
(σ,s)←IA-NMZPoK::Sim1(uskZK(P2)), runs A as a black-box and simulates the real-world honest party
P1 to interact with A:

On receiving message (sid,“input”,N1) from FINT, S2 generates x1,…,xN1 at random, computes
(mpk,msk)←Setup(k) and ξi←E(mpk, xi, M0; ri) for each xi where ri is the independent randomness in
each encryption, computes (cmt0,λ)←FakeCmt(mpkTC,P2,uskTC(P2)), starts A and sends the message
mpk||cmt0 to A;

S2 interacts with A as the user private-key generator in ∆ПBlind-UKG and calls the extractor
∆ПBlind-UKG::Ext∆(usk∆(P2)) to extract y*1,…,y*N2, sends the message (sid,“input”, P2*, {y*1,…,y*N2})
to FINT;

S2 sends the message (sid,“intersection”,P2*) to FINT and gets the response {y*j1,…,y*jt}(i.e., the
set-intersection). To simplify the symbol, denote this response set as {y*1,…,y*t}.

S2 computes ξ*i←E(mpk, y*i, M0; r*i)(r*i’s are selected at random)for i=1,…,t, replaces arbitrary
t ξi’s with ξi*’s and keeps other N1-t ξi’s unchanged, making a new sequence denoted as ξ’1||…||ξ’N1,
computes dmt0←FakeDmt(mpkTC, ξ‘1||…||ξ‘N1, λ, cmt0). S2 sends the message ξ‘1||…||ξ‘N1||dmt0 to A,
interacts with A by calling IA-NMZPoK::Sim2(ξ‘1||…||ξ‘N1, s) where ξ‘i=E(mpk, x0

i, M0; r‘i),
i=1,…,N1), x0

i = y*i for t of N1 i’s and x0
i=xi for other i’s.

Finally S2 outputs whatever A outputs to the environment.
Let tr(S2,A) denote the transcripts due to the interaction between A and S2, trΨ(P1(X1),A) denote

the transcripts due to the interaction between A and the real-world party P1(X1)(possessing the same
set X1={x1*,…,x*N1} as the ideal-world party P1*). From A’s perspective, the differences between
these two transcripts are: a)cmt in these two transcripts are respectively cmt0 output by FakeCmt and
cmt output by Cmt(mpkTC,P2,E(mpk,x1*,M0;r1)||…||E(mpk,x*N1,M0;rN1)); b) dmt in these two
transcripts are dmt0 output by FakeDmt and dmt output by Cmt(mpkTC,P2,E(mpk,x1*,M0;r1)
||…||E(mpk,x*N1,M0;rN1)) respectively c)Among the ciphertext sequence ξ1||…||ξN1 in these two
transcripts, there are t ciphertexts ξi having the same identity public-key(i.e., x*i) but the remaining
N1-t ciphertexts having different identity public-keys; d)there are t IA-NMZPoK-witness’ with the
same x0

i.
By TC’s equivocation property, (cmt,dmt)’s are P.P.T.-indistinguishable in both cases; because of

IBE scheme’s selective ANO_CPA anonymity, ξ1||…||ξN1||dmt in both cases are P.P.T.-indistinguishable
(otherwise suppose they are P.P.T.-distinguishable with the difference δ≥1/poly(k), it’s easy to
construct a selective ANO_CPA attacker against Π with an advantage at least δ/N1, contradicting with
Π’s selective ANO_CPA anonymity). Now denote the ciphertext sequence ξ1||…||ξN1 in two cases as
ξ1

(1)||…|| ξN1
(1) and ξ1

(2)||…||ξN1
(2) respectively, denote the transcripts in session of IA-NMZPoK as

IA-NMZPoK(1)(=trS2(x1,…,xN1),A(mpk||M0||ξ1
(1)||…||ξN1

(1))) and IA-NMZPoK(2)(=trP1(x*1,…,x*N1),A(mpk||M0

||ξ1
(2)||…||ξN1

(2)))) respectively, by the above analysis we have ξ1
(1)||…||ξN1

(1) ≈PPT ξ1
(2)||…||ξN1

(2);
furthermore, by IA-NMZPoK’s zero-knowledge property we have

IA-NMZPoK(2) ≈PPT IA-NMZPoK::Sim2(ξ1
(2)||…||ξN1

(2), s)
and by S2’s construction we also have

IA-NMZPoK(1) =IA-NMZPoK::Sim2(ξ1
(1)||…||ξN1

(1), s)
so IA-NMZPoK(1) ≈PPT IA-NMZPoK(2).

As a result, the transcripts received by A in both cases are P.P.T.-indistinguishable.
Let δ be ∆ПBlind-UKG’s extractor’s error function(negligible in k), then the probability with which

S2 correctly extracts A’s one data-item y*i is at least P[A(mpk;P1(mpk,msk))=UKG(msk,y*i)]-δ, so the
probability with which S2 correctly extracts A’s all data-items y*1,…,y*N2 is at least P[A(mpk;P1(mpk,
msk))=UKG(msk,y*i): i=1,…,N2]-N2δ≥P[X0=X1∩X2]-N2δ. As a result, S2’s output is P.P.T.-
indistinguishable from A’s output in Ψ with respect to the GUC-environment Z with an error
upper-bounded by N1(k) +N2δ, which is also negligible in k. Note that in both cases
the other party P1*(X1) and P1(X1) always output the same N2, so we have the consequence that
outputZ(ψ,A) ≈PPT outputZ(FINT,S2) and it’s easy to estimate S2’s time-complexity TS2=TA+O(N1+N2Text)
where TA and Text are A’s and the extractor’s computation-time.

)(_ kAdv CPAANO
Π

By all the facts, we have Ψ→GUC FINT.

APPENDIX.C PROOF OF THEOREM 4.1

For intuition the protocol is presented in the figure below, in which IA-NMZPoK’s
arrows point from zero-knowledge’s prover to its verifier.

WatersBoyen
UKGBlind
−
−∆

P1(mpk, msk) ACRS=mpkZK,II||mpkZK,III P2(mpk, a)

 IA-NMZPoKII(msk: mpk=Setup(msk)) select r1,r2,y1,y2,y3,y4 at random;

 Ui← , Vi← , i=1,2 irg iragg −)(10

 hj← , j=1,2,3,4
ay gg j
1

 U1||U2||V1||V2||h1||h2||h3||h4

IA-NMZPoKIII ((a, r1, r2, y1, y2, y3, y4):∧ i=1,2Ui= irg ∧ i=1,2Vi= iragg −)(10 ∧ j=1,2,3,4hj=) ay gg j
1

select σ, r1', r2’ at random;
d0← ; 21

,
1)(1

ttr Ug σ 43
,
2)(2

ttr Ug σ

d1'← ; d1"← ; 2tg ϖ− 221
1

'
01)(ttr Vgh σ− 2

'
1trg

d2'← ; d2"← ; 1tg ϖ− 111
1

'
02)(ttr Vgh σ− 1

'
1trg

d3'← ; d3"← ; 442
2

'
03)(ttr Vgh σ− 4

'
2trg

d4'← ; d4"← ; 332
2

'
04)(ttr Vgh σ− 3

'
2trg

 d0||d1' ||d1"||d2' ||d2"|| d3' ||d3"||d4' ||d4"

dj← , j=1,2,3,4 jy
jj dd '''

 output(d0, d1, d2, d3, d4)

By direct calculation it’s easy to show the protocol’s output’s correctness. Now we present the

GUC-security proof sketch. All parties are assumed to be initialized with a copy of the common
reference string ACRS, i.e., the concatenation of the two IA-NMZPoK protocol’s mpkZK,II and mpkZK,III.
For this ACRS, msk=mskZK,II||mskZK,III and UKG(msk,id) outputs usk(id)=uskZK,II(id)||uskZK,III(id) where
uskZK,II(id) and uskZK,III(id) are respectively two IA-NMZPoK protocol’s user private-keys
corresponding to id∈{P1,P2}.

At first it’s easy to show there exists an identity extractor for to satisfy definition 3.1.
In fact it is IA-NMZPoKIII((a, r1, r2, y1, y2, y3, y4):

WatersBoyen
UKGBlind
−
−∆

∧ i=1,2Ui= irg ∧ i=1,2Vi= j=1,2,3,4hj=
)’s knowledge extractor for which the to-be-extracted witness is a.

iragg −)(10 ∧
ay gg j
1

Now we prove ’s GUC-security in two cases that the real-world adversary A corrupts
P1 or P2 respectively. Below P1* and P2* stand for P1 and P2’s respective counterparts in ideal-world.

WatersBoyen
UKGBlind
−
−∆

(1) A corrupts P1: Suppose A’s(i.e., P1’s) private input is (mpk,msk), P2*’s private input is a*. we need
to construct an ideal adversary S1. S1 corrupts the ideal-world party P1*, gets usk(P1) by querying
GACRS with the message (“retrieve”,sid,P1) where usk(P1)=uskZK,II(P1)||uskZK,III(P1), computes
(σII,sII,,τ)←IA-NMZPoKII::Ext1(uskZK,II(P1))(notice that P1 is the prover in protocol IA-NMZPoKII),
runs A as a black-box. S1 simulates the real-world honest party P2 to interact with A:

In session of IA-NMZPoKII(msk: mpk=ESetup(msk)), S1 interacts with A as a verifier extracting
msk via running IA-NMZPoKII::Ext2(τ), sends message (sid, mpk||msk) to ; WatersBoyen

UKGBlindF −
−

S1 generates an user-id a at random, follows P2’s specification in section 4.2 to compute U1,U2,V1,
V2,h1,h2,h3,h4, sends U1||U2||V1||V2||h1||h2||h3||h4 to A, computes (σIII,sIII)←IA-NMZPoKIII::
Sim1(uskZK,III(P1))(notice that P1 is the verifier in protocol IA-NMZPoKIII) and sends IA-NMZPoKIII::
Sim2(U1||U2||V1||V2||h1||h2||h3||h4,sIII) to A.
 S1 outputs whatever A outputs to the environment.

Denote the second-round message in ’s specification (i.e., U1||U2||V1||V2||h1||h2||h3||h4)
as W. From A’s perspective, the transcripts due to its interactions with S1 and the transcripts due to its
interactions with the real-world party P2(a*)(P2(a*) stands for party P2 possessing a*, the same private
input as the ideal-world party P2*) differs in: a)W depends on a in the former case, denoted as W(a),
while it depends on a* in the latter case and denoted as W(a*); b)IA-NMZPoKIII’s witness depends on
a in the former case while it depends on a* in the latter. The messages of subprotocol IA-NMZPoKIII
in these two cases are respectively denoted as IA-NMZPoKIII(a) and IA-NMZPoKIII(a*).

WatersBoyen
UKGBlind
−
−∆

Let g0≡gα, g1≡gα*. Explicitly expand W(a)’s expression to || || ||
|| ||…|| and W(a*) to a similar expression where a, r1, r2, y1, y2, y3, y4, α and a*, r1*, r2*,
y1*, y2*, y3*, y4*, α* are probabilistically independent and all are unknown to A, so
W(a)≈W(a*)(perfectly indistinguishable). Furthuremore, by IA-NMZPoKIII’s zero-knowledge property
we have

1rg 2rg 1)(rag βα +− 2)(rag βα +−

βayg +1 βayg +4

IA-NMZPoKIII::Sim2(W(a*), sIII) ≈PPT IA-NMZPoKIII(a*)
and by S1’s construction we also have

IA-NMZPoKIII::Sim2(W(a), sIII) = IA-NMZPoKIII(a)
so IA-NMZPoKIII(a) = IA-NMZPoKIII::Sim2(W(a),sIII) ≈ IA-NMZPoKIII::Sim2(W(a*),sIII) ≈PPT

IA-NMZPoKIII(a*). As a result, from A’s perspective the transcripts due to its interactions with S1 is
P.P.T.-indistinguishable from that due to its interactions with P2(a*), in particular, the output of A due
to its interactions with S1 is P.P.T.-indistinguishable from its output due to its interactions with P2(a*)
in .

WatersBoyen
UKGBlind
−
−∆

 Let ηII denote IA-NMZPoKII’s knowledge extractor’s error function(a negligible function in k),
then the probability with which P*2(a*) outputs Π::UKG(msk,a*) under S1’s attacks is at least P[P2
accepts mpk as a valid master public-key]-ηII, i.e., except for an probability upper-bounded by ηII,
P*2(a*)’s output under S1’s attacks is the same as P2(a*)’s output under A’s attacks, in other words, for
any P.P.T. environment Z we have outputZ(,A1) ≈PPT outputZ(,S1) and it’s easy
to estimate S1’s time-complexity TS1=TA+TeII+O(1) where TA and TeII are A’s and ExtII,2’s
computation-time.

WatersBoyen
UKGBlind
−
−∆ WatersBoyen

UKGBlindF −
−

(2)A corrupts P2: Let a denote A’s (i.e., P2’s) private input, (mpk*,msk*) denote the ideal-world party
P1*’s input where mpk*=(G1,G2,p,e, Ω*, g, g0, g1, v1*, v2*, v3*, v4*) and msk*=(ω*, t1*, t2*, t3*, t4*).
We need to construct an ideal-world adversary S2 which corrupts P2*, gets usk(P2) by querying
GACRS with the message (“retrieve”,sid,P2) where usk(P2)=uskZK,II(P2)||uskZK,III(P2), runs A as a
black-box and simulates the honest real-world party P1 to interact with A:

On receiving the message (sid,mpk*) from , S2 generates ω, t1, t2, t3, t4 at random and
computes

WatersBoyen
UKGBlindF −
−

Ω← ; v1←gt1; v2←gt2; v3←gt3; v4←gt4; ω21),(ttgge
mpk←(G1, G2, p,e, Ω, g, g0, g1, v1, v2, v3, v4);
msk←(ω, t1, t2, t3, t4);
(σII,sII)←IA-NMZPoKII:Sim1(uskZK,II(P2));
(σIII,sIII,τ)←IA-NMZPoKIII::Ext1(uskZK,III(P2));
Note that P2 is the verifier in protocol IA-NMZPoKII and prover in IA-NMZPoKIII.
S2 starts A and interacts with it by running IA-NMZPoKII::Sim2(mpk,sII);
When A sends U1||U2||V1||V2||h1||h2||h3||h4 and then launches IA-NMZPoKIII ((a, r1, r2, y1, y2, y3,

y4):…), S2 participates the session as an verifier by running IA-NMZPoKIII::Ext2(τ) to extract (a, r1, r2,
y1, y2, y3, y4)(in fact only a is used below);

S2 sends the message (sid||1,a) to and gets the response (sid||1,UKG(msk*,a)) where
UKG(msk*,a)≡(d0*, d1*, d2*, d3*, d4*);

WatersBoyen
UKGBlindF −
−

S2 generates dj“ at random, computes dj‘← , j=1,2,3,4, sends d*0||d1'||d1"||d2'||d2"||d3'
||d3"||d4'||d4" to A.

jy
jj dd ''* /

Now we prove that from A’s perspective the transcripts due to its interactions with S2 and that due
to its interactions with P1(mpk*,msk*)(a real-world party possessing the same input as the ideal-world
party P1*) are P.P.T.-indistinguishable.

At first, consider the transcripts in IA-NMZPoKII’s session. Let IA-NMZPoKII(*) and
IA-NMZPoKII() denote the messages generated by P1(mpk*, msk*) and S2 in this session respectively.
By IA-NMZPoKII’s zero-knowledge property we have

IA-NMZPoKII::Sim2(mpk*, sII) ≈PPT IA-NM ZPoKII(*)
and by S2’s construction we have

 IA-NMZPoKII::Sim2(mpk, sII) = IA-NMZPoKII()
Let ΩR denote a random element on group G2. Since ω*,ω, ti*, ti (i=1,2,3,4) are probabilistically

independent and all are unknown to A, from A’s perspectiove we have
 mpk*≡(G1,G2,p,e, Ω*, g, g0, g1, v*1, v*2, v*3, v*4)
≈PPT (G1,G2,p,e, ΩR, g, g0, g1, v*1, v*2, v*3, v*4) (D-BDHP’s hardness)

 ≈ (G1,G2,p,e, ΩR, g, g0, g1, v1, v2, v3, v4) (trivial)
 ≈PPT (G1,G2,p,e, Ω, g, g0, g1, v1, v2, v3, v4) (D-BDHP’s hardness)

≡ mpk
So IA-NMZPoKII(*) ≈PPT IA-NMZPoKII::Sim2(mpk*,sII) ≈PPT IA-NMZPoKII::Sim2(mpk,sII) =
IA-NMZPoKII().

Now consider the last-round message, which are d*0||d1'||d1"||d2'||d2"||d3'||d3"||d4'||d4" and d*0||d*1'
||d*1"||d*2'||d*2"||d*3'||d*3"||d*4'||d*4" in these two cases(interacting with S2 and with P1(mpk*, msk*))
respectively. Both messages have the same component d*0, all other components are denoted as D and
D* respectively. Expanding D we get

D ≡ || || || || || || || 1''
1

*
1 / ydd ''

1d 2''
2

*
2 / ydd ''

2d 3''
3

*
3 / ydd ''

3d 4''
4

*
4 / ydd ''

4d
where d*1, d*2, d*3, d*4 come from UKG(msk*,a), i.e., d*1=

*~
10

** 212)(trat ggg −−ϖ ,
d*2=

*~
10

** 111)(trat ggg −−ϖ , d*3=
*~

10
42)(tragg − , d*4=

*~
10

32)(tragg − .
 Expanding D* we get

D* ≡ || || || || || ** 2tg ϖ− *
1

*'
01

221)(ttr Vgh σ− *2
'

1trg *1tg ϖ− *
1

*'
02

111)(ttr Vgh σ− *1
'

1trg *
2

*'
03

442)(ttr Vgh σ−

|| || || *4
'
2trg *

2
*'

04
332)(ttr Vgh σ− *3

'
2trg

where σ, , ri’ and dj” are probabilistically independent each other and unkown to A, σ, ri’ are
generated by P1, dj” by S2,

ir~

ir~ by . WatersBoyen
UKGBlindF −
−

Since r1’ and r2’ are probabilistically independent each other, D*’s 4 leftmost-components are
probabilistically independent of those 4 rightmost-ones; note that t*1, t*2, t*3, t*4 are also
probabilistically independent each other, we finally partition D* into 4 independent components Di*
as:

D1* ≡ || D2* ≡ || ** 2tg ϖ− *
1

*'
01

221)(ttr Vgh σ− *2
'

1trg *1tg ϖ− *
1

*'
02

111)(ttr Vgh σ− *1
'

1trg
D3* ≡ || D4* ≡ || *

2
*'

03
442)(ttr Vgh σ− *4

'
2trg *

2
*'

04
332)(ttr Vgh σ− *3

'
2trg

Similarly partition D into 4 independent components Di as:
 D1 ≡ || D2 ≡ || D3 ≡ || D4 ≡ || 1''

1
*
1 / ydd ''

1d 2''
2

*
2 / ydd ''

2d 3''
3

*
3 / ydd ''

3d 4''
4

*
4 / ydd ''

4d
The problem is now reduced to analysis on relationship between Di and D*i. Consider D3*

≡ || and D3 ≡ || : obviously D3≈
*

2
*'

03
442)(ttr Vgh σ− *4

'
2trg 3''

3
*
3 / ydd ''

3d *~
03

42)(trgh − / || so it’s
adequate to analyze the relationship between and

*4
'
23 tryg *4

'
2trg

*
2

*'
03

442)(ttr Vgh σ− *~
10

42)(tragg − / . Further
note that ≈

*4
'
23 tryg

*'
03

42)(trgh − *~
03

42)(trgh − , ≈ , *
2

4tVσ *4
'
23 tryg − *~

03
42)(trgh − and are independent each

other, so D3*≈D3. For the same reason D4*≈D4.

*4
'
2trg

Consider D1* ≡ || and D1 ≡ || : obviously
D1≈

** 2tg ϖ− *
1

*'
01

221)(ttr Vgh σ− *2
'

1trg 1''
1

*
1 / ydd ''

1d
*~

10
** 212)(trat ggg −−ϖ / || , by similar analysis as before we have D1*≈D1. For the same

reason D2*≈D2. Therefore:

12
'

1 *ytrg *2
'

1trg

d*0||d1'||d1"||d2'||d2"||d3'||d3"||d4'||d4" ≈ d*0||d*1'||d*1"||d*2'||d*2"||d*3'||d*3"||d*4'||d*4"
In consequence, under the assumption of D-BDHP’s hardness on J, from A’s perspective the

transcripts due to its interactions with S2 and that due to its interactions with P1(mpk*, msk*) are
P.P.T.-indistinguishable. In particular, A’s output in the former case is P.P.T.-indistinguishable from its
output in the latter, the error is (by some straightforward calculation) upper-bounded by ηIII

+2 where ηIII is IA-NMZPoKIII’s knowledge extractor’s error function. As a result,
for any P.P.T. environment Z we have outputZ(,A) ≈PPT outputZ(,S2) and it’s
easy to estimate S2’s time-complexity TS2=TA+TeIII+O(1) where TA and TeIII are A’s and
IA-NMZPoKIII’s extractor’s computation-time.

)(kAdv BDHPD
J
−

WatersBoyen
UKGBlind
−
−∆ WatersBoyen

UKGBlindF −
−

Combining all consequences in the above, the theorem is finally proved.

APPENDIX.D IA-NMZPoK PROTOCOL’S CONSTRUCTION AND INSTANTIATION

D.1 (Dense) Ω-Protocol[6,13]

A Ω-protocol for a given relation R is a 3-move protocol in CRS model consisted of P.P.T. algorithms

D, A, Z, Φ, Sim and Ext=(Ext1,Ext2). D is the CRS generating algorithm. All algorithms except D

takes a CRS ω as one of its inputs. For some (x,w) s.t.R(x,w)=1 the common input for both the prover

P and the verifier V is x and witness w is P’s private input. In the first move P generates a randomness

r, computes a←A(ω,x,w,r) and sends a to V; in the second move, V selects a challenge c at random

and sends it back to P; then P computes z←Z(ω,x,w,r,c) and sends z to V in the last move; on

receiving z, V outputs “accept” or “refuse” depending on whether Φ(ω,x,a,c,z)=1 or 0. In addition, a

Ω-protocol has the following properties [13]:

(1) For the honest P which behaves under the above specification, Φ(ω,x,a,c,z)=1 is always true.

(2) Given c and x∈LR the simulator Sim(ω,x,c) can generate accepting transcripts with a distribution

that is P.P.T.-indistinguishable from those when P and V execute the protocol on common input x

while V selects c as the challenge.

(3) (σ,τ)←Ext1(k) where σ is P.P.T.-indistinguishable from ω←D(k); in addition, if there exists two

accepting transcripts (a, c, z) and (a, c’, z’) where c≠c’ for some given x∈LR, then Ext2(x, τ, (a, c, z))

outputs w such that R(x,w)=1.

 A dense Ω-protocol has the additional property as follows [6]:

(4) The CRS-domain D is a subset of a larger domain, D*(named extended CRS-domain), which is an

Abelian group and its group operations are all efficient. Furthermore, the element of D and D* is

P.P.T.-indistinguishable from each other.

D.2 A General Construction of IA-NMZPoK Protocol

Now we present a general construction for IA-NMZPoK protocol(definition 2.3-2.4) for given relation
R. It uses a secure (strong existential-unforgeable) one-time signature scheme, a secure IBTC
sheme(definition 2.5) and a dense Ω-protocol as its components. Note that among these components
the secure one-time signature scheme and IBTC scheme can all be efficiently constructed, only the

Ω-protocol is related with the specific relation R, therefore the construction can be regarded as a
general transformation from the (comparatively weak) Ω-protocol to the (strong) IA-NMZPoK
protocol.

This construction is similar as that in [13] and borrows the coin-tossing technique used in [5-6].
Given a binary relation R and its dense Ω-protocol ΩR=(D,A,Z,Φ,Sim, Ext=(Ext1,Ext2)) with its CRS
denoted as ω; SIG=(KGen,Sign,Vf) is a strong existential-unforgeable one-time signature scheme;
IBTC=(DTC,Setup,UKG,Cmt,Vf,FakeCmt, FakeDmt) is a secure IBTC scheme with its master
public/secret-key pair denoted as (mpkTC,mskTC). The constructed protocol IA-NMZPoKR (see Figure
D.1) is in the ACRS model and its ACRS is the IBTC scheme’s master public-key mpkTC.
 For clearity, we use IBTC::Cmt to stand for IBTC scheme’s commitment algorithm Cmt,
SIG::Sign to stand for SIG scheme’s signing algorithm Sign, etc. P and V denote the prover(P)’s and
verifier(V)’s identities respectively. ξ denotes the protocol’s transcripts excluding the signature, i.e.,
ξ≡k1||ω2||ω1||d1||sig_vk||cmt||c||a||dmt||z. Actually the first 3-move session is an IBTC-based coin-tossing
[5-6] to generate a CRS ω for the following protocol ΩR and the second 3-move session is similar as
the construction of NMZPoK protocol in [13].

P(x,w): R(x,w)=1 ACRS=mpkTC V(x)
 ω1←

$D;
 k1 (k1,d1)←IBTC::Cmt(mpkTC, P, ω1);

 ω2←
$D; ω2

 ω1||d1 ω←ω1ω2
 (sig_vk, sig_sk)←SIG::KGen(k);

select r at random;
 a←ΩR::A(ω,x,w,r);

(cmt,dmt)←IBTC::Cmt(mpkTC,V, a||sig_vk);
 cmt

 c c←${0,1}k;
z←ΩR::Z(ω,x,w,r,c);
s←SIG::Sign(sig_sk,ξ); sig_vk||a||dmt||z||s

verify IBTC::Vf(mpkTC,V,a||sig_vk,cmt,dmt)=1
∧ΩR::Φ(ω,x,a,c,z)=1
∧SIG::Vf(sig_vk, ξ,s)=1

Figure D.1 IA-NMZPoK protocol IA-NMZPoKR for relation R.

Theorem D.1 IA-NMZPoKR is an IA-NMZPoK protocol for relation R.
Proof sketch The proof is similar as that of [13]’s theorem 4.1-4.2, the most difference is the
simulation algorithm Sim=(Sim1,Sim2) and the extraction algorithm Ext=(Ext1,Ext2) which are
presented here.

Let usk(P)≡IBTC::UKG(mskTC,P), usk(V)≡IBTC::UKG(mskTC,V). Sim1(usk(V)) normally
simulates the coin-tossing (the first 3-move session in IA-NMZPoKR) as specified in the constrcution

and its simulated transcript is denoted as k1||ω2||ω1||d1, then it outputs k1||ω2||ω1||d1||usk(V).
Sim2(mpkTC, x, ω, k1||ω2||ω1||d1||usk(V)) (where ω=ω1ω2) computes (cmt ,λ)←IBTC::FakeCmt(mpkTC,
V, usk(V)) and (sig_vk,sig_sk)←SIG::KGen(k), selects c at random, computes (a,z)←ΩR::Sim(ω,x,c),
d ←FakeDmt(mpkTC, a||sig_vk, λ, cmt), s←SIG::Sign(sig_sk,ξ) where ξ is the whole transcript (as
specified in the construction) excluding the signature s. Finally Sim2 outputs

k1||ω2||ω1||d1|| cmt ||c||sig_vk||a|| d ||z||s
For the extractor Ext=(Ext1,Ext2), Ext1(usk(P)) computes (ω,τ)←ΩR::Ext1(k) and outputs (ω,

usk(P)||τ). Ext2(mpkTC, ω, usk(P)||τ) computes (1k ,λ1)←IBTC::FakeCmt(mpkTC,P, usk(P)) and sends

1k out; on receiving ω2, it computes ω1←ω/ω2, 1d ←FakeDmt(mpkTC, ω1, λ1, 1k) and responses
with ω1|| 1d ; then it randomly generates a challenge c on receiving cmt. When it gets the last message
sig_vk||a||dmt||z||s, it checks all the required conditions and call ΩR::Ext2(ω, x, τ, a||c||z).
 Now it can be shown that Sim=(Sim1,Sim2) and Ext=(Ext1,Ext2) indeed satisfy the properties in
definition 2.3-2.4, the analysis is almost the same as in the proof of [13]’s theorem 4.1-4.2.

D.3 An Efficient Instantiation

Now we can present how to efficiently construct all the related IA-NMZPoK protocols in case of
Boyen-Waters scheme for our protocol Ψ and . By the construction in last subsection, it’s
adequate to construct the related dense Ω-protocols for those specific relations deduced from
Boyen-Waters IBE scheme [3]. So below we only focus on these Ω-protocols’ construction.

WatersBoyen
UKGBlind
−
−∆

 For reading convenience let’s completely present the Boyen-Waters IBE scheme here which is
truncated in sec.4.1 for space limitation: Given an bilinear group pairing ensemble J={(p,G1,G2,e)}k

where |G1|=|G2|=p, p is k-bit prime number, P∈G1, e:G1×G1→G2 is a non-degenerate pairing,
Boyen-Waters IBE consists of

ESetup(k):
 g, g0, g1←$G1; ω, t1, t2, t3, t4←$Zp; Ω← ; ω21),(ttgge

v1←gt1; v2←gt2; v3←gt3; v4←gt4;
 mpk←(G1,G2,p,e, Ω, g, g0, g1, v1, v2, v3, v4);
 msk←(ω, t1, t2, t3, t4);
 return(mpk,msk);
UKG(msk, a), a∈Zp:

 r1, r2←$Zp;

 usk(a)←(, ,); ,)(, 212432211
10

tratttrttr gggg −−+ ϖ 111)(10
trat ggg −−ϖ 42)(10

tragg − 32)(10
tragg −

 return(usk(a));

E(mpk, a, M), M∈G2:
 s, s1, s2←$Zp; ξ←(ΩsM, , v1

s-s1, v2
s1, v3

s-s2, v4
s2); return(ξ); sagg)(10

 D(mpk, usk(a), (ξ00, ξ0, ξ1, ξ2, ξ3, ξ4)) where usk(a)≡(d0, d1, d2, d3, d4):
 T←e(d0, ξ0)e(d1, ξ1)e(d2, ξ2)e(d3, ξ3)e(d4, ξ4); return(ξ00T).

At first, we note that the relationship in IA-NMZPoKII(msk: mpk=Setup(msk)) is
 (ω, t1, t2, t3, t4): Ω= ω21),(ttgge ∧ v1=gt1∧ v2=gt2∧ v3=gt3∧ v4=gt4

Note that Ω= = so the desired relation is equivalent to ω21),(ttgge ω),(21 vve
 (ω, t1, t2, t3, t4): Ω= ω),(21 vve ∧ v1=gt1∧ v2=gt2∧ v3=gt3∧ v4=gt4 (D.1)

Now we analyze how to construct
IA-NMZPoK III ((a, r1, r2, y1, y2, y3, y4):∧ i=1,2Ui= irg ∧ i=1,2Vi= iragg −)(10 ∧ j=1,2,3,4hj=) ay gg j

1

Observe that (the pairing e is non-degenerate and G1, G2 are both prime-order) Vi= iff
= = = , i.e.,

iragg −)(10

),(iVge 1
10),(−ar ggge i 1

10),(−a
i ggUe 1

0),(−gUe i
a

i gUe −),(1

),(iVge),(0gUe i = i=1,2 a
i gUe −),(1

hj= iff = = , i.e., ay gg j
1),(01 jhgUe),(101

aggUe jygUe),(1
1

1),(−Vge jygUe),(1

 = j=1,2,3,4),(01 jhgUe),(1Vge jygUe),(1

The above expression is also true if U2 replaces U1. Denote publicly-computable items
Fi≡ , f i≡ , Hj≡ , h≡ , then
IA-NMZPoKIII becomes an IA-NMZPoK protocol for the relation

),(iVge),(0gUe i
1

1),(−gUe i),(01 jhgUe),(1Vge),(1 gUe

 (a, r1, r2, y1, y2, y3, y4): ∧ i=1,2Ui= irg ∧ i=1,2Fi= fi
a∧ j=1,2,3,4Hj= jyh

A further observation tells that F1= f1
a and F2= f2

a are not independent: in fact, let F1= and
F2= then via bilinear pairing we have = and = , i.e.,

= iff a1=a2 so one statement of F1= f1
a or F2= f2

a can imply another one by
publicly checking = . Therefore the desired IA-NMZPoKIII is equivalent to an
IA-NMZPoK protocol for the relation

1
1

af
2

2
af),(21 Ffe 2),(21

affe),(21 fFe 1),(21
affe

),(21 Ffe),(21 fFe
),(21 Ffe),(21 fFe

 (a, r1, r2, y1, y2, y3, y4):∧ i=1,2Ui= irg ∧F1= f1
a∧ j=1,2,3,4Hj= (D-2) jyh

 Now analyze IA-NMZPoK((a,r): ξ=E(mpk, a, M0; r)). In case of Boyen-Waters scheme, denote the
public common plaintext as M0 and the scheme’s ciphertext as ξ≡(ξ00, ξ0, ξ1, ξ2, ξ3, ξ4), then
IA-NMZPoK((a,r): ξ=E(mpk, a, M0; r)) becomes IA-NMZPoK((a,s,s1,s2): ξ00=ΩsM0 ξ0=

ξ1=v1
s-s1∧ ξ2=v2

s1∧ ξ3=v3
s-s2 ξ4=v4

s2). Because in theorem 3.1’s proof what is needed is just the
witness a, with respect to protocol Ψ it’s adequate to construct IA-NMZPoK((a,s):
ξ00=ΩsM0 ξ0=).

∧ sagg)(10

∧ ∧

∧ sag1g)(0

In general G1 and G2 are not the same group, e.g., G1 is usually a prime-order subgroup on elliptic
curve while G2 is a multiplicative subgroup in some finite field. Denote χ00≡ξ00M0

-1, t≡as, then χ00=Ωs,
ξ0= = and it’s easy to see that IA-NMZPoK((a,s): ξ00=ΩsM0

sagg)(10
ts gg 10 ∧ ξ0=)(a = ts-1

mod q) is equivalent to an IA-NMZPoK protocol for relation

sagg)(10

 (s,t): χ00=Ωs∧ ξ0= (D-3) ts gg 10

 So far all desired IA-NMZPoK protocols’ relations are explicitly presented and can be unified to a
group of linear exponent equations on prime-order group G in (D-4)(more generally each equation in
(D-4) can be on a different group, but this case can be processed by a trivial generalization of the
uniform case in which all equations are on the same group, so we only deal with the latter):

 i=1,…,m (D-4) i

n

j

x
ij hB j =∏

=1

where Bij and hi are in G and xi’s are integer witness. [6](see its Appendix.I) presents an efficient
construction for relation (D-4)’s dense Ω-protocol which can be directly applied in our work.

