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Abstract Secure set-intersection computation is one of important problems in secure multiparty 
computation with various applications. We propose a general construction for secure 2-party 
set-intersection computation based-on anonymous IBE (identity-based encryption) scheme and its 
user private-keys blind generation techniques. Compared with related works, this construction is 
provably GUC(generalized universally composable) secure in standard model with acceptable 
efficiency. In addition, an efficient instantiation based-on the anonymous Boyen-Waters IBE 
scheme is presented which user private-key’s blind generation protocol may be of independent 
values.    
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1   INTRODUCTION   

Secure set-intersection computation is one of important problems in the field of secure multiparty 
computation with valuable applications in, e.g., secure keyword searching, pattern matching, 
private database processing, etc. In secure set-intersection computation, participants with their 
own private datasets get the intersection of all their private sets and nothing more(except for each 
private set’s cardinality). In this paper, like most recent works, we focus on the 2-party case and 
make an efficient GUC-secure, standard model protocol for it.  

Much work has been done in designing solutions to secure computation for different 
cryptographic functions, but only few are about this special problem among which [8,11-12] are 
most relevant to this paper. They are heuristic and valuable works on secure set-intersection 
computation published most recently, each using different techniques and security concepts and 
most of them(except [12]) mainly dealing with the 2-party case. However, none reaches Canetti’s 
UC/GUC security[4-6]. In [8] Freedman et al present provably-secure and efficient protocols for 
this problem against semi-honest and malicious adversaries respectively based-on polynomial 
interpolation and homomorphic encryption schemes. The solution against malicious adversaries 
assumes the random oracle model. [12] solves this problem (and more, e.g., union and element 
reduction operations) via smartly exploiting mathematical properties of polynomials and has 
fully-simulatable security [10] so that their solution is securely composable(but the concept of 
fully-simulatable security is strictly weaker than Canetti’s UC/GUC security proposed in [4-5]). 
In addition, as indicated by [11], [12] executes lots of zero-knowledge proofs of knowledge most 
of which are known how to efficiently realize but not all. Most recently [11] proposes solutions to 
this problem via oblivious pseudorandom function evaluation techniques. They work in two 
relaxed adversary models to achieve security of “half-simulatability” and “full-simulatability 



against covert adversaries”[1]. At the price of relaxation in security, the protocols in [11] are 
highly efficient, so these solutions can be considered as practical and reasonable compromise 
between security and efficiency.  

In this paper we construct a protocol for secure set-intersection computation in standard model 
which is efficient and GUC-secure. Like most previous works, we focus on the 2-party case, however, 
there are substantial differences between our solution and the others. Technically, our construction is 
based-on the anonymous IBE scheme and it’s user private-key’s blind generation techniques(i.e., to 
generate the correct user private-key usk(a)=UKG(msk,a) for a user without leaking the user-id a to 
the key-generator). The protocol’s high-level description is simple: let Π=(Setup,UKG,E,D) be an IBE 
scheme, M0 be a publicly-known plaintext, P1 owns (for example) X1={x1,x2,x3,x4} and P2 owns 
X2={x1,x2,x5,x6}. Let P1 generate IBE’s master public/secret-key (mpk,msk), send mpk and all 
yi=E(mpk,xi,M0)(i=1,2,3,4) to P2. When P2 tries to decipher each yi by private-keys usk(x1), usk(x2), 
usk(x5) and usk(x6)(obtained via Π’s user private-keys blind generation protocol), only usk(x1) and 
usk(x2) can succeed in obtaining M0. As a result, X1∩X2={x1, x2}. In addition, Π’s anonymity prevents 
P2 from knowing anything about X1\X2={x3,x4} through y3,y4.(Interestingly, this approach doesn’t 
require IBE’s (IND_CPA) data-privacy so its efficiency may be further improved if we can get some 
“anonymous(key-private) but not data-private” IBE scheme). The same approach can be even further 
used to solve the conditional intersection computation problem via ABE(attribute-based encryption)  
scheme recently proposed by Waters et al.  

To be GUC-secure, the formal construction is more involved and presented in section 3. It is 
constant-round in communications and linear-size in message-complexity(close to [8,11]). In 
computation-complexity, one party is O(N1+N2)(close to [8,11]) and the other is O(N1N2)( close to 
[12]) where N1, N2 are each party’s private set’s cardinality. It is well-modularized, only executing few 
zero-knowledge proofs of knowledge which can be efficiently instantiated. Most importantly and 
distinctively, our construction reaches Canetti’s GUC-security: it is GUC-secure against malicious 
adversaries assuming static corruptions in the ACRS(augmented common reference string) model [5]. 
For this goal we introduce a notion of identity-augmented non-malleable zero-knowledge proofs of 
knowledge which may be of independent values. In addition, our construction can be also enhanced to 
be GUC-secure against malicious adversaries assuming adaptive corruptions in erasure model.  

 
2  NOTATIONS, DEFINITIONS AND TOOLS   
 
P.P.T. means “probabilistic polynomial-time”, x||y means string x and y in concatenation, |x| means 
string x’s size(in bits) and |X|(X is a set) means X’s cardinality, x←$X means randomly selecting x  
from the domain X. k denotes the complexity parameter. ≈PPT stands for computational 
indistinguishability and ≈ for perfect indistinguishability.  
 
2.1  Secure Set-Intersection Computation and Its GUC Security   
 
Briefly speaking, GUC-security means that any adversary attacking the real-world protocol can be 
efficiently simulated by an adversary attacking the ideal-world functionality, both have the outputs 
indistinguishable by the (malicious) environment. For space limitations, we assume the reader’s 



familiarity with the whole theory in [4-6] and only provide necessary descriptions with respect to the 
secure set-intersection computation problem here. 

Similar to most previous works, we only focus on the unidirectional 2-party scenario. Such ideal 
cryptographic functionality for set-intersection computation is defined as  

                   FINT: (X1,X2) → (|X2|, |X1|||(X1∩X2))    

The bi-directional functionality is defined as  
                 F*INT: (X1,X2) → (|X2|||(X1∩X2), |X1|||(X1∩X2)) 
It’s not hard to implement F*INT as a FINT-hybrid protocol. However, unidirectional set-intersection 
computation per se is independently useful in practice.   

Let P1*, P2* be parties in ideal model with private sets X1 and X2 respectively, N1=|X1|, N2=|X2|, 
S be the adversary in ideal model. The ideal model works as follows:  

On receiving message (sid,“input”,P1*,X1) from P1*,  FINT  records X1 and sends 
message (sid,“input”,N1) to P2*  and S; On receiving message (sid,“input”,P2*,X2) 
from P2*, FINT  records X2 and sends (sid,“input”,N2) to P1* and S.  

On receiving message (sid,“intersection”, P2*) from P*2, FINT responses P2* with 
message (sid,“intersection”, X1∩X2).  

At last P1* outputs N2, P2* outputs N1||(X1∩X2).  
Let ψ be the real-world protocol, each party Pi of ψ corresponds to an ideal-world party P i*. A is 

the real-world adversary attacking ψ, Z is the environment in which the real protocol/ideal 
functionality executes. According to [4-5], Z is a P.P.T. machine modeling all malicious behaviors 
against the protocol’s execution. Z is empowered to provide inputs to parties and interacts with A and 
S, e.g., Z gives special inputs or instructions to A/S, collects outputs from A/S to make some analysis, 
etc. In UC theory[4], Z cannot access parties’ shared functionality(such shared functionality is 
specified in specific protocol) while in the improved GUC theory[5] Z is enhanced to do this, i.e., to 
provide inputs to and get outputs from the shared functionality. As a result, in GUC theory Z is strictly 
stronger and more realistic than in UC theory.   

Let outputZ(ψ,A) denote the outputs (as a joint stochastic variable)from ψ’s parties P1, P2 under Z 
and A, outputZ(FINT,S) denote the similar thing under Z and S. During the real/ideal protocol’s 
execution, Z (as an active distinguisher) interacts with A/S and raises its final output, w.l.o.g., 0 or 1. 
Such output is denoted as Z(outputZ(ψ,A),u) and Z(outputZ(FINT,S),u) respectively, where u is the 
auxiliary information. 
Definition 2.1(GUC security[5]) If for any P.P.T. adversary A in real-world, there exists a P.P.T. 
adversary S(called A’s simulator) in ideal-world, both corrupt the same set of parties, such that for any 
environment Z the function |P[Z(outputZ(ψ,A),u)=1]-P[Z(outputZ(FINT,S),u)=1]| is negligible in 
complexity parameter k (hereafter denote this fact as outputZ(ψ,A)≈PPT outputZ(FINT,S)), then we define 
that ψ GUC-emulates FINT or say ψ is GUC-secure, denoted as ψ→GUCFINT.  

The most significant property of GUC-security is the universal composition theorem. Briefly 
speaking, given protocols φ2, φ1 and ψ(φ1) where ψ(φ1) is the so-called φ1-hybrid protocol, if 
φ2→GUCφ1 then (under some technical conditions, e.g., subroutine-respecting) ψ(φ2/φ1)→GUCψ(φ1) 
where ψ(φ2/φ1) is a protocol in which every call to the subprotocol φ1 is replaced with a call to φ2. 
This guarantees that a GUC-secure protocol can be composed in any execution context while still 



preserving its proved security. A similar consequence is also ture in UC theory but with some serious 
constraints. All details are presented in [4-5](ACRS model is defined in [5]’s sec.4, or see Appendix A 
in our paper).   
 
2.2  IBE Scheme, Its Anonymity and Blind User-Private Key Generation Protocol       
 
In addition to data-privacy, anonymity(key-privacy) is another valuable property for public-key 
encryption schemes[2]. An IBE scheme П=(Setup, UKG, E, D) is a group of P.P.T. algorithms, where 
Setup takes as input the complexity parameter k to generate master public/secret-key pair (mpk, msk), 
UKG takes as input msk and user’s id a to generate a’s user private-key usk(a); E takes (mpk,a,M) as 
input where M is the message plaintext to generate ciphertext y, D takes (mpk,usk(a),y) as input to do 
decryption. Altogether these algorithms satisfy the consistency property: for any k, a and M  

P[(mpk,msk)←Setup(k); usk(a)←UKG(msk,a); y←E(mpk, a, M): D(mpk,usk(a), y)=M]=1  
Definition 2.2(IBE Scheme’s chosen plaintext anonymity[2]) Given an IBE scheme Π=(Setup, 
UKG,E,D), for any P.P.T. attacker A=(A1,A2) consider the following experiment (k):  CPAANO

AExp _
,Π

  (mpk, msk)←Setup(k);  
      (M*, a0*, a1*, St)←A1

UKG(msk,.) (mpk), a0*≠a1*;  
b←${0,1};  

      y*←E(mpk, ab*, M*);     
      d←A2

 UKG(msk,.)(St,y*);     
      output(d b); ⊕
          
A is contrained not to query its oracle UKG(msk,.) with a0* and a1*. Define  as 

. If  is negligible in k for any P.P.T. A then П is defined as 
anonymous against chosen plaintext attack or ANO_CPA for short. In the above, if M*, a0*, a1* are 
generated independent of mpk then П is called selective ANO_CPA . 
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Denote as (k) or (t,q) where t is the 
adversary’s maximum time-complexity and q is the maximum number of queries for the UKG-oracle.  
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Now we present the ideal functionality FП
Blind-UKG  for an IBE scheme П’s user private-key blind 

generation(note: even IBE scheme is not anonymous such functionality still makes sense. However, in 
this paper only anonymous IBE’s such protocol is needed). In the ideal model, one party generates(just 
one time) П’s master public/secret-key pair (mpk,msk) and submits it to FП

Blind-UKG ;  FП
Blind-UKG  

generates usk(a)=UKG(msk,a) for another party who submits its private input a(this computation can 
take place any times and each time for a new a), revealing nothing about a to the party who provides 
(mpk,msk) except how many private-keys are generated. Formally, let S be the ideal adversary, P1*, 
P2* the ideal party, sid and ssid the session-id and subsession-id respectively, the ideal model works as 
follows:  

P1* selects randomness ρ and computes (mpk,msk)←Setup(ρ), sends the message (sid, 
mpk||msk||ρ) to FП

Blind-UKG; FП
Blind-UKG sends message (sid, mpk) to P2* and S;  

On receiving a message (sid||ssid,a) from P2* (ssid and a are fresh everytime), in 
response FП

Blind-UKG computes usk(a)←UKG(msk,a), sends the message (sid||ssid, usk(a)) 
to P2*  and the message (sid||ssid, n) to P1* and S, where n is initialized to be 0 and 



increased by 1 everytime the computation takes place.  
At last, P1* outputs its last n, P2* outputs all its obtained usk(a)’s. 

 
2.3 (Identity-Augmented) Non-Malleable Zero-Knowledge Proofs of Knowledge  
 
This subsection presents the concept of zero-knowledge proofs of knowledge following [9,13] with 
slight symbolic modifications. Let L be a NP language, R is its associated P-class binary relation. i.e., 
x∈L iff there exists w such that R(x,w)=1. Let A, B be two machines, then A(x;B)[σ] represents A’s 
output due to its interactions with B under a public common input x and common reference string 
(c.r.s.) σ, trA,B(x)[σ]  represents the transcripts due to interactions between A and B under a common 
input x and c.r.s. σ. When we emphasize A’s private input, say y, we also use the expression Ay(x;B)[σ] 
and trA(y),B(x)[σ] respectively. Let A=(A1,A2), B and C be machines where A1 can coordinate with A2 by 
transferring status information to it, then (<B,A1>,<A2,C>) represents the interaction between A1 and B, 
(maybe concurrently) A2 and C. Due to such interactions, let tr be the transcripts between A2 and C, u 
be the final output from A2 and v be the final output form C, then (<B,A1>,<A2,C>)’s output is denoted 
as (u,tr,v).  
    Two transcripts tr1 and tr2 are matched each other, if tr1 and tr2 are the same message 
sequence(consisted of the same messages in the same order) and the only difference is that any 
corresponding messages are in the opposite directions.  
    Let A be a machine, the symbol A represents such a machine which accepts two kinds of 
instructions: the first one is in the form of (“start”, i,x,w) and A in response starts a new instance of A, 
associates it with a unique name i and provides it with public input x and private input w; the second is 
in form of (“message”,i,m) and A in response sends message m to instance Ai and then returns Ai’s 
response to m.  
Definition 2.3(Zero-Knowldeg Proof and Non-Malleable Zero-Knowledge Proof Protocol[9,13]) 
ZPoKR=(Dcrs,P,V,Sim) where Sim=(Sim1,Sim2) is a group of P.P.T. algorithms, k is complexity 
parameter, Dcrs takes k as input and generates c.r.s. σ; P is called prover, takes (σ,x,w) as input where 
R(x,w)=1 and generates a proof π; V is called verifier, takes (σ,x) as input and generates 0 or 1;  
Sim1(k) generates (σ,s), Sim2 takes x∈L and (σ,s) as input and generates the simulation. All 
algorithms except Dcrs and Sim1 take the c.r.s. σ as one of their inputs, so σ is no longer explicitly 
included in all the following expressions unless for emphasis. Now ZPoKR is defined as a 
zero-knowledge proof protocol for relation R, if the following properties are all satisfied:  
(1) For any x∈L and σ←Dcrs, it’s always true that P[V(x;P)[σ]=1]=1;  
(2) For any P.P.T. algorithm A, x∉L and σ←Dcrs, it’s always true that P[V(x;A)[σ]=1]=01;   
(3) For any P.P.T. algorithm A which outputs 0 or 1, let ε be empty string, the function  

|P[σ←Dcrs; b←A(ε;P)[σ]: b=1] - P[(σ,s)←Sim1(k); b←A(ε;Sim2(s))[σ]: b=1]|  
is always negligible in k, where we emphasize the fact by symbol Sim2(s) that all Sim2 instances have 
the same s as one of their inputs.  

The non-malleable zero-knowledge proof protocol for relation R is defined as NMZPoKR= 
(Dcrs,P,V,Sim,Ext) where Sim=(Sim1,Sim2), Ext=(Ext1,Ext2) and (Dcrs,P,V,Sim) is a zero-knowledge 
                                                        
1 Strictly this protocol should be called “zero-knowledge argument”, however, such difference is not essential in this 
paper so we harmlessly abuse the terminology.  



proof protocol for relation R as above, P.P.T. algorithm Ext1(k) generates (σ,s,τ) and the interactive 
P.P.T. machine Ext2(named as witness extractor) takes (σ,τ) and protocol’s transcripts as its input and 
extracts w, and all the following properties hold:  
(4) The distribution of the first output of Sim1 is identical to that of Ext1;  
(5) For any τ, the distribution of the output of V is identical to that of Ext2’s restricted output which 
does not include the extracted value (w);  
(6) There exists a negligible function η(k) (named as knowledge-error function) such that for any P.P.T. 
algorithm A=(A1,A2) it’s true that  
P[(σ,s,τ)←Ext1(k); (x,tr,(b,w))←(<Sim2(s),A1>,<A2,Ext2(τ)>)[σ]: b=1∧ R(x,w)=1 tr doesn’t match ∧
any transcript generated by Sim2(s)]  
> P[(σ,s)←Sim1(k); (x,tr,b)←(<Sim2(s),A1>,<A2,V>)[σ]: b=1 ∧ tr doesn’t match any transcript 
generated by Sim2(s)] - η(k) .  
 

It’s easy to see that NMZPoKR is a zero-knowledge proof of knowledge. [9,13] developed an 
efficient method to derive non-malleable zero-knowledge proof protocols based-on simulation-sound 
tag-based commitment schemes and the so-called Ω-protocols(proposed in [13]). In order to achieve 
GUC-security in our construction, we need to further enhance NMZPoK to the concept of 
identity-augmented non-malleable zero-knowldege proof protocol(IA-NMZPoK) as follows.  
Definition 2.4(IA-NMZPoK Protocol for Relation R) The IA-NMZPoK Protocol for relation R, 
IA-NMZPoKR=(D,Setup,UKG,P,V,Sim,Ext) where Sim=(Sim1,Sim2) and Ext=(Ext1,Ext2), is a group 
of P.P.T. algorithms. Setup(k) generates master public/secret-key pair (mpk,msk), UKG(msk,id) 
generates id’s private-key usk(id) where id∈{P,V}(the prover’s and verifier’s identity). Sim1 takes 
usk(V) as input, Ext1 takes usk(P) as input. All algorithms except Setup take (mpk,σ) as one of its 
inputs(so it no longer explicitly appears). The protocol has the same properties as R’s NMZPoK 
protocol in definition 2.3.  
   Note that by this definition an IA-NMZPoK protocol works in ACRS model[5] which ACRS is its 
mpk. In addition, only the corrupt verifier can run Sim(Sim1 taking usk(V) as input) and only the 
corrupt prover can run Ext (Ext1 taking usk(P) as input). This is exactly what is required in the ACRS 
model. Given a relation R, a general and efficient construction of IA-NMZPoK protocol for R is 
presented in Appendix D.  
 
2.4  Commitment Scheme  
 
We need the non-interactive identity-based trapdoor commitment sheme [5](IBTC for short) as 
another important tool in our construction. 
Definition 2.5(IBTC scheme[5]) Let k be complexity parameter, the non-interactive identity-based 
trapdoor commitment sheme IBTC=(D, Setup, UKG, Cmt, Vf, FakeCmt, FakeDmt) is a group of P.P.T. 
algorithms, where D(k) generates id, Setup(k) generates master public/secret-key pair (mpk, msk), 
UKG(msk,id) generates id’s user private-key usk(id), Cmt(mpk,id,M) generates message M’s 
commitment/decommitment pair (cmt,dmt), Vf(mpk, id, M, cmt, dmt) outputs 0 or 1, verifying whether 
cmt is M’s commitment with respect to id. These algorithms are consistant, i.e., for any M:  

P[(mpk, msk)←Setup(k); (cmt,dmt)←Cmt(mpk,id, M): Vf(mpk, id, M, cmt, dmt)=1]=1  



FakeCmt(mpk, id, usk(id)) generates ( cmt ,λ), FakeDmt(mpk, M, λ, cmt ) generates d (w.l.o.g. λ 
contains id||usk(id) as one of its components so FakeDmt doesn’t explicitly take id and usk(id) as its 
input). A secure IBTC scheme has the following properties:  
(1)Hiding: for any id and M0, M1, (cmti,dmti)←Cmt(mpk,id, Mi), i=0,1, then cmt0 ≈ P.P.T.cmt1;   
(2)Binding: for any P.P.T. algorithm A, the function ≡P[(mpk, msk)←Setup(k); (id*, 
cmt*, M0*, d0*, M1*, d1*)←AUKG(msk,.)(mpk): A doesn’t query oracle-U(msk,.) with id* M0*≠M1* 

Vf(mpk, id*, M0*, cmt*, d0*)=Vf(mpk, id*, M1*, cmt*, d1*)=1] is always negligible in k.  

)(, kAdvbinding
AIBTC

∧
∧
(3)Equivocability: For any P.P.T. algorithm A=(A1,A2) the following experiment always has  
|P[b*=b]-1/2| upper-bounded by a negligible function in k:  

  (mpk, msk)←Setup(k);  
(St, id*, M*)←A1(mpk,msk);  

      usk(id*)←UKG(msk,id*); ( cmt ,λ)←FakeCmt(mpk,id*,usk(id*));  
      d1←FakeDmt(mpk, M*, λ, cmt ); d0←$ {0,1}|d1|;  

b←$ {0,1};  
      b*←A2(St, d b);  

Note that equivocability implies P[Vf(mpk, id*, M*, cmt , d1*)=1]>1-γ(k) where γ(k) is a 
negligible function in k. [5] presented an efficient IBTC construction and proved its security.  
     

3  GENERAL CONSTRUCTION  
 

Now we present the formal consctrution of the real-world private set-intersection computation 
protocol Ψ. P1 and P2 denote two real-world parties with private set X1={x1,…,xN1} and X2={y1,…,yN2} 

respectively. П=(ESetup,UKG,E,D) is a selective ANO_CPA anonymous IBE scheme, ∆ПBlind-UKG is 
the real-world protocol for П’s user private-keys blind generation. IA-NMZPoK(w:R(x,w)=1) denotes 
an IA-NMZPoK protocol for relation R where w is x’s witness. TC=(D,TSetup,UKG,Cmt,Vf,FakeCmt, 
FakeDmt) is an IBTC scheme. M0 is a (fixed) public common plaintext. Ψ’s ACRS is mpkTC||mpk∆|| 
mpkZK||M0 where mpkTC, mpk∆, mpkZK are respectively TC’s, ∆ПBlind-UKG’s and an IA-NMZPoK 
protocol(see below)’s master public key. Ψ works as follows:  
(1) P1 computes П’s master public/secret-key (mpk,msk)←ESetup(k), for each xi∈X1(i=1,…,N1) 
computes ciphertext ξi←E(mpk,xi, M0; ri) where ri is the independent randomness in each encryption, 
then computes (cmt,dmt)←Cmt(mpkTC, P2, ξ1||…||ξN1) and sends mpk||cmt to P2.  
(2) P1 and P2 run the protocol ∆ПBlind-UKG where P1(as the key-generater) inputs (mpk,msk) and P2(as 
the key-receiver) inputs y1,…,yN2 to ∆ПBlind-UKG. On ∆ПBlind-UKG’s completion, P1 obtains N2 and P2 
obtains usk(y1),…, usk(yN2) as the output. 
(3) P1 sends ξ1||…||ξN1||dmt to P2.   
(4) P2 verifies Vf(mpkTC, P2, ξ1||…||ξN1, cmt, dmt)=1.  
(5) P1 runs the protocol IA-NMZPoK((xi,ri): ξi=E(mpk, xi, M0; ri), i=1,…,N1) as a prover with P2 as a 
verifier. On this IA-NMZPoK ’s completion, P2 tries to decrypt each ξi by usk(yj)’s it obtained in step 2 
and generates the set X0←{yj∈X2: there exists ξi s.t. D(mpk, usk(yj), ξi)=M0}.  
(6) P1 outputs N2 and P2 outputs X0.  

This general construction of Ψ is a ∆ПBlind-UKG-hybrid protocol and we require 



∆ПBlind-UKG→GUCFП
Blind-UKG(definition 2.1). Since for each ξi=E(mpk, xi, M0; ri), D(mpk,usk(yj), ξi)=M0 

if and only if xi=yj so X0=X1∩X2, i.e., P2 outputs the correct intersection. Regarding security, because 
the IBE scheme П is (selective) anonymous, i.e., ciphertext ξi hides xi unless P2 has the correct user 
private-key usk(xi), P2 knows nothing about X1 beyond X1∩X2. On the other hand, ∆ПBlind-UKG’s (GUC) 
security prevents P1 from knowing anything about P2’s private set X2.   

However, merely requiring ∆ПBlind-UKG→GUCFП
Blind-UKG cannot guarantee Ψ’s GUC-security but 

only “half GUC-security” instead(i.e., the real adversary A corrupting P1 can be completely simulated 
by an ideal adversary S but this is not true when A corrupts P2. Only data-privacy can be proved in the 
latter case). In order to make the real adversary always completely simulatable in ideal-world, some 
additional property is required for ∆ПBlind-UKG. This leads to definition 3.1 and it is not hard to verify 
that our concrete construction of ∆ПBlind-UKG in next section really satisfies it. 
Definition 3.1(IBE’s User Private-keys Blind Generation Protocol with Extractor) Given IBE scheme 
П=(ESetup,UKG,E,D) and ∆ПBlind-UKG→GUCFП

Blind-UKG , let P1, P2 be ∆ПBlind-UKG’s parties where P2 
provides user-id a and obtains usk(a), P1 owns msk and (blindly) gernates usk(a) for P2. This 
∆ПBlind-UKG is defined as extractable, if there exists P.P.T. algorithm Setup∆, UKG∆, Ext∆=(Ext1,Ext2) 
and a negligible function δ(k), called the error function, such that  
(1) Setup∆(k) generates the master public/secret-key pair (mpk∆,msk∆). 
(2) UKG∆(msk∆,id) outputs a trapdoor usk∆(P2) when id=P2(key-receiver’s identity) and outputs nothing 
otherwise. 
(3) for any user-id a, honest P1 and any P.P.T. algorithm A, it is true that(via notations in subsection 2.3) 
Ext1(usk(P2)) outputs (σ,τ) such that  
           P[Ext2(mpk||τ ; A(a))[σ]=a]>P[Aa(mpk; P1(mpk,msk))[σ]=UKG(msk,a)]-δ(k)  
where (mpk,msk) is П’s master public/secret-key owned by P1(mpk is published).  

We stress that all extractors in definition 2.3 and definition 3.1 are non-rewinding. 
Combining all the instantiations of subprotocols in this general construction(some presented in 

next section and Appendix D), it’s easy to see that we can get a O(1) and O(N1+N2) 
message-complexity solution. Furthermore P1, P2 has computation-complexity of O(N1+N2) and 
O(N1N2) encryptions/decryptions repectively. The exact efficiency analysis can only be done for 
specific instantiation (e.g., that presented in next section) which is provided in the full version paper. 
The formal security consequence is the following theorem which proof is in Appendix B.  
Theorem 3.1  Suppose that П=(ESetup,UKG,E,D) is a selective ANO_CPA anonymous IBE scheme, 
∆ПBlind-UKG→GUC FП

Blind-UKG  with extractor ExtП=(ExtП,1,ExtП,2) and error function δ as in def.3.1, 
IA-NMZPoK((xi,ri): ξi=E(mpk, xi, M0; ri),i=1,…,N1) is an IA-NMZPoK protocol, TC=(D,TSetup,UKG, 
Cmt,Vf,FakeCmt,FakeDmt) is an IBTC scheme, then Ψ→GUC FINT assuming static corruptions.  

 
4  AN INSTANTIATION VIA BOYEN-WATERS IBE SCHEME   
 
Theorem 3.1 presents security conditions for the general construction Ψ, among which some are 
available in existing works, e.g., the commitment scheme can be directly borrowed from [5]. The 
subprotocols which require new efficient constructions are only IBE scheme’s user private-keys 
generation protocol and the protocol IA-NMZPoK((a,r): ξ=E(mpk,a,M0;r)). In this section we present 
an efficient instantiation of Ψ via Boyen-Waters IBE scheme. All related zero-knowledge protocols’ 



constructions are presented in Appendix D.  
 
4.1  Boyen-Waters IBE[3]              
 
Given an bilinear group pairing ensemble J={(p,G1,G2,e)}k where |G1|=|G2|=p, p is k-bit prime number, 
P∈G1, e:G1×G1→G2  is a non-degenerate pairing, Boyen-Waters IBE consists of 

ESetup(k):  
      g, g0, g1←$G1; ω, t1, t2, t3, t4←$Zp; Ω← ;   ω21),( ttgge

v1←gt1; v2←gt2; v3←gt3; v4←gt4;    
      mpk←(G1,G2,p,e, Ω, g, g0, g1, v1, v2, v3, v4); 
      msk←(ω, t1, t2, t3, t4); 
      return(mpk,msk); 

UKG(msk, a), a∈Zp:  

      r1, r2←$Zp;   

      usk(a)←( , , ); ,)(, 212432211
10
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tragg − 32)( 10
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      return(usk(a));  
The encryption/decryption algorithm is omitted here and completely presented in Appendix D..  

   [3] has proven that assuming the decisional bilinear Diffie-Hellman problem(D-BDHP)’s hardness 
on J, this scheme is IND_CPA secure (data-private); assuming the decisional linear problem(D-LP)’s 
hardness, this scheme is selective ANO_CPA anonymous. Notice that D-BDHP hardness implies 
D-LP’s hardness, all the above consequences can be also obtained only under D-BDHP’s hardness. 
 

4.2  User Private-Keys Blind Generation Protocol  and Its GUC-Security   WatersBoyen
UKGBlind
−
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For simplicity we only present how to blindly generate usk(a) for a single user-id a. The generalization 
to blindly generating usk(a1)||…||usk(aN) for multiple user-id’s a1||…||aN is trival and still 
constant-round, though the total message-complexity is linearly increased.  

The two parties are P1 (with private input msk) and P2 (with private input a). Both parties have the 
common input mpk where (mpk,msk) are generated by IBE scheme’s ESetup(k) (usually msk per se is 
the randomness in ESetup so we use a simplified notation mpk←ESetup(msk) hereafter).  
has two IA-NMZPoK subprotocols (see below) which ACRS’s are denoted as mpkZK,II and mpkZK,III. 

 is in ACRS model which ACRS is mpkZK,II||mpkZK,III.  works as follows: 

WatersBoyen
UKGBlind
−
−∆

WatersBoyen
UKGBlind
−
−∆ WatersBoyen

UKGBlind
−
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(1) P1 runs a protocol IA-NMZPoK(msk: mpk=ESetup(msk)) as a prover with P2 as a verifier, where 
the meaning of the notation IA-NMZPoK(msk: mpk=ESetup(msk)) follows section 3. Denote this 
protocol as IA-NMZPoKII.  
(2) P2 selects r1, r2, y1, y2, y3, y4 at random, computes Ui← , Vi← for i=1,2 and  

hj← for j=1,2,3,4, sends U1||U2||V1||V2||h1||h2||h3||h4 to P1. Then P2 runs the protocol  

irg iragg −)( 10
ay gg j
1

IA-NMZPoK((a, r1, r2, y1, y2, y3, y4):∧ i=1,2Ui= irg ∧ i=1,2Vi= iragg −)( 10 ∧ j=1,2,3,4hj= )  ay gg j
1

as a prover with P1 as a verifier. Denote this protocol as IA-NMZPoKIII.  
(3) P1 selects σ , r1', r2’ at random, computes d0← ; d1'← ; 
d1"← ; d2'← ; d2"← ; d3'← ; d3"← ; 

21
,

1 )( 1
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d4'← ; d4"← and sends d0||d1' ||d1"||d2' ||d2"||d3' ||d3"||d4' ||d4" to P2. 332
2

'
04 )( ttr Vgh σ− 3

'
2trg

(4) P2 computes dj← , j=1,2,3,4 and outputs (d0, d1, d2, d3, d4).  jy
jjdd '''

It’s easy to show by direct calculation that P2 outputs the correct usk(a)=(d0,d1,d2,d3,d4) where d0 

= , d1 = , d2 = , d3 = 
, d4 = . Regarding security, we have  

43222111 )'()'( ttrrttrrg σσ +++ 2112 )'(
10 )( trrat ggg σϖ +−− 1111 )'(

10 )( trrat ggg σϖ +−−

422 )'(
10 )( trragg σ+− 322 )'(

10 )( trragg σ+−

 
Theorem 4.1 Suppose the bilinear group pairing J has D-BDHP hardness, both IA-NMZPoKII and 
IA-NMZPoKIII are identity-augmented non-malleable zero-knowledge proof protocols for specific 
relations described in the above, then →GUC  assuming static corruptions and 

 satisfies def. 3.1. 
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   Appendix C includes detailed proof and Appendix D contains all related IA-NMZPoK protocols’ 
constructions. 
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APPENDIX.A  ACRS MODEL   
 
Recently [5] improves and generalizes the early UC-theory proposed in [4] to make a more general, 
realistic and strictly stronger security notion. The universal composition theorem is still true in this 
paradigm, however, the pre-setup needs to be strictly enhanced. In GUC paradigm the CRS model is 
insufficient to implement general cryptographic functionalities, instead we need a new pre-setup 
model called ACRS(augmented common reference string) model. This pre-setup can be performed via 
a shared functionality UKGSetup

acrsG , with two parameter functions Setup and UKG similar to IBE 
scheme’s master public/secret-key generator and its user private-key generator. UKGSetup

acrsG , ’s program 
is [5]: 

Initialization Phase: compute (mpk, msk)←Setup(k) and store (mpk, msk);   
Running Phase: on receiving message (“CRS request”,Pi) from any party Pi, response 

(“ACRS”, mpk) to Pi and the adversary S;  
On receiving message (“Retrieve”,sid,Pi) from a corrupt party Pi, compute  

usk(Pi)←UKG(msk,Pi) and return the message (“Private-key”, sid, usk(Pi)) to Pi; if Pi is 
not a corrupt party, response nothing. 

 
APPENDIX.B  PROOF OF THEOREM 3.1 

For intuition the protocol Ψ is presented in a figure below. The IA-NMZPoK protocol’s arrow points from 
the zero-knowledge proof’s prover to itsverifier. 
 
 

P1(X1)             ACRS=mpkTC||mpk∆||mpkZK||M0         P2(X2)  
 

(mpk,msk)←ESetup(k);  
for each xi∈X1 do   

ξi←E(mpk, xi, M0; ri);                       
(cmt, dmt)←Cmt(mpkTC, P2, ξ1||…||ξN1);   
                            mpk || cmt  
                                                    input y1||…||yN2 where yj  
input (mpk,msk)                                       goes over all elements in X2 
                                        
obtain N2                                            obtain usk(y1),…, usk(yN2)  

∆ПBlind-UKG   

                          ξ1||…||ξN1||dmt   
                                           verify Vf(mpkTC, P2, ξ1||…||ξN1, cmt, dmt)=1 
                                  /*Vf is the IBTC-scheme TC’s verification function.*/ 
          IA-NMZPoK((xi,ri): ξi=E(mpk, xi, M0; ri),i=1,…,N1)  
                                               X0←{yj∈X2: there exists ξi s.t.  

D(mpk, usk(yj), ξi)=M0}  

output(N2)                                           output(N1||X0)  
 



Now we present the proof sketch. At first it’s easy to verify that Ψ produces the correct intersection 
X1∩X2 at P2. Now we prove its GUC-security in two cases that the real-world adversary A corrupts P1 
or P2 respectively. Below P1* and P2* stand for P1 and P2’s respective counterparts in ideal-world.   
   All parties are assumed to be initialized with a copy of the common reference string ACRS, i.e., the 
concatenation of TC’s master public-key mpkTC, ∆ПBlind-UKG’s mpk∆, the IA-NMZPoK protocol’s mpkZK 
and M0, generated by the pre-setup GACRS. For this ACRS, its msk=mskTC||msk∆||mskZK and 
UKG(msk,id) responses with usk(id)=uskTC(id)||usk∆(id)||uskZK(id) where uskTC(id), usk∆(id) and 
uskZK(id) are respectively TC’s, ∆ПBlind-UKG’s and the IA-NMZPoK protocol’s user private-keys 
corresponding to id∈{P1,P2}.  
(1) A corrupts P1: for simplicity we first make the proof in FП

Blind-UKG–hybrid model and then complete 
the proof by generalized universal composition theorem. Let X1={x1*,…,x N1* } be A’s(i.e., P1’s) own 
set, X2={y1*,…,y N2* } be P2*’s own set. We need to construct an ideal adversary S1 who corrupts P1*, 
runs A as a black-box and simulates the real-world honest party P2 to interact with A:   

On receiving the message (sid,“input”,N2) from FINT, S1 gets usk(P1) by querying the shared 
functionality GACRS with (“retrieve”,sid,P1) where usk(P1)=uskTC(P1)||usk∆(P1)||uskZK(P1)), computes 
(σ,s,τ)←IA-NMZPoK:: Ext1(uskZK(P1))( to avoid ambiguity, we use Γ::f to represent a protocol Γ’s 
algorithm f), generates N2 data-items y1,…, yN2 at random and then starts A;  

After A sends the first message (mpk||cmt), S1 interacts with A as an honest key-receiver in model 
of FП

Blind-UKG and obtains usk(y1),…,usk(yN2);  
S1 intercepts the message ξ1||…||ξN1||dmt sent from A,verifys whether Vf(mpkTC,P2, ξ1||…||ξN1, 

cmt,dmt)=1 and then participates in protocol IA-NMZPoK((x*i,ri): ξi=E(mpk, xi*, M0;ri), i=1,…,N1 as 
a verifier calling the knowledge extractor IA-NMZPoK::Ext2(τ) to extract the witness (xi*,ri), 
i=1,…,N1(in fact only xi*’s are needed in this proof);  

S1 sends the message (sid,“input”, {x1*,…,x*N1}) to FINT, then outputs whatever A outputs to the 
environment.  

Let tr(A,S1) denote the transcripts due to the interaction between S1 and A, trψ(A, P2(X2)) denote 
the transcripts due to the interaction between A and P2(X2) in the real-world protocol Ψ( P2(X2) means 
the real-world party possessing the same private set X2 as P2*). From A’s perspective, the difference 
between tr(A,S1) and trψ(A, P2(X2)) is that the former provides FП

Blind-UKG with {y1,…,yN2} as the input, 
the latter provides FП

Blind-UKG with {y*1,…,y*N2}, but according to FП
Blind-UKG’s specification A knows 

nothing about what data-items are provided to FП
Blind-UKG by the other party except the number N2, as 

a result, tr(A,S1)≈ trψ(A,P2(X2))(perfectly indistinguishable) from A’s perspective. In particular, the 
distribution of A’s output due to interactions with S1 is the same as that (in real-world protocol Ψ) due 
to interactions with P2(X2). Let η be IA-NMZPoK protocol’s error function,  be attacker’s 
advantage against TC’s binding property, all are negligible functions in k. It’s not hard to show(by 
contradiction) that the probability with which S1 correctly extracts all A’s data-items x*1,…,x*N1 is 
greater than P[P2(mpk||ξ1||…||ξN1;A)=1]-N1(η+ )≥P[X0=X1∩X2]-N1(η+ ), therefore, 
the difference between the probability with which P2*(X2) outputs X1∩X2 under the ideal-world 
adversary S1’s attacks  and the probability with which P2(X2) outputs X1∩X2 under the real-world 
adversay A’s attacks against Ψ is upper-bounded by N1(η+ ), also a negligible function in k. 
Combining all the above facts, for any P.P.T. environment Z we have outputZ(ψ, A)≈PPT outputZ (FINT, 
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S1), i.e., Ψ→GUC FINT in FП
Blind-UKG–hybrid model.   

Now replace the ideal functionality FП
Blind-UKG with ∆ПBlind-UKG  in Ψ. By what is just proved, the 

assumption ∆ПBlind-UKG→GUC FП
Blind-UKG  and the GUC-theorem, we still have the GUC-emulation 

consequence. In addition, it’s not hard to estimate S1’s time complexity TS1=TA+O(N2+N1Te) where TA 
and Te are A’s and the knowledge extractor’s computation time.  
(2) A corrupts P2: Denote A’s(i.e.,P2’s) own set as X2={y*1,…,y*N2}, P1*’s own set as X1= 
{x*1,…,x*N1}, we need to construct an ideal adversary S2. S2 corrupts P2*, gets usk(P2) by querying the 
pre-setup GACRS with (“retrieve”,sid,P2) where usk(P2)=uskTC(P2)||usk∆(P2)||uskZK(P2), generates 
(σ,s)←IA-NMZPoK::Sim1(uskZK(P2)), runs A as a black-box and simulates the real-world honest party 
P1 to interact with A:  

On receiving message (sid,“input”,N1) from FINT, S2 generates x1,…,xN1 at random, computes 
(mpk,msk)←Setup(k) and ξi←E(mpk, xi, M0; ri) for each xi where ri is the independent randomness in 
each encryption, computes (cmt0,λ)←FakeCmt(mpkTC,P2,uskTC(P2)), starts A and sends the message 
mpk||cmt0 to A;  

S2 interacts with A as the user private-key generator in ∆ПBlind-UKG and calls the extractor 
∆ПBlind-UKG::Ext∆(usk∆(P2)) to extract y*1,…,y*N2, sends the message (sid,“input”, P2*, {y*1,…,y*N2}) 
to FINT;    

S2 sends the message (sid,“intersection”,P2*) to FINT and gets the response {y*j1,…,y*jt}(i.e., the 
set-intersection). To simplify the symbol, denote this response set as {y*1,…,y*t}.  

S2 computes ξ*i←E(mpk, y*i, M0; r*i)(r*i’s are selected at random)for i=1,…,t, replaces arbitrary 
t ξi’s with ξi*’s and keeps other N1-t ξi’s unchanged, making a new sequence denoted as ξ’1||…||ξ’N1, 
computes dmt0←FakeDmt(mpkTC, ξ‘1||…||ξ‘N1, λ, cmt0). S2 sends the message ξ‘1||…||ξ‘N1||dmt0 to A, 
interacts with A by calling IA-NMZPoK::Sim2(ξ‘1||…||ξ‘N1, s) where ξ‘i=E(mpk, x0

i, M0; r‘i), 
i=1,…,N1), x0

i = y*i for t of N1 i’s and x0
i=xi for other i’s.  

Finally S2 outputs whatever A outputs to the environment.  
Let tr(S2,A) denote the transcripts due to the interaction between A and S2, trΨ(P1(X1),A) denote 

the transcripts due to the interaction between A and the real-world party P1(X1)(possessing the same 
set X1={x1*,…,x*N1} as the ideal-world party P1*). From A’s perspective, the differences between 
these two transcripts are: a)cmt in these two transcripts are respectively cmt0 output by FakeCmt and 
cmt output by Cmt(mpkTC,P2,E(mpk,x1*,M0;r1)||…||E(mpk,x*N1,M0;rN1)); b) dmt in these two 
transcripts are dmt0 output by FakeDmt and dmt output by Cmt(mpkTC,P2,E(mpk,x1*,M0;r1) 
||…||E(mpk,x*N1,M0;rN1)) respectively c)Among the ciphertext sequence ξ1||…||ξN1 in these two 
transcripts, there are t ciphertexts ξi having the same identity public-key(i.e., x*i ) but the remaining 
N1-t ciphertexts having different identity public-keys; d)there are t IA-NMZPoK-witness’ with the 
same x0

i.  
By TC’s equivocation property, (cmt,dmt)’s are P.P.T.-indistinguishable in both cases; because of 

IBE scheme’s selective ANO_CPA anonymity, ξ1||…||ξN1||dmt in both cases are P.P.T.-indistinguishable 
(otherwise suppose they are P.P.T.-distinguishable with the difference δ≥1/poly(k), it’s easy to 
construct a selective ANO_CPA attacker against Π with an advantage at least δ/N1, contradicting with 
Π’s selective ANO_CPA anonymity). Now denote the ciphertext sequence ξ1||…||ξN1 in two cases as 
ξ1

(1)||…|| ξN1
(1) and ξ1

(2)||…||ξN1
(2) respectively, denote the transcripts in session of IA-NMZPoK as 



IA-NMZPoK(1)(=trS2(x1,…,xN1),A(mpk||M0||ξ1
(1)||…||ξN1

(1))) and IA-NMZPoK(2)(=trP1(x*1,…,x*N1),A(mpk||M0 

||ξ1
(2)||…||ξN1

(2)))) respectively, by the above analysis we have ξ1
(1)||…||ξN1

(1) ≈PPT ξ1
(2)||…||ξN1

(2); 
furthermore, by IA-NMZPoK’s zero-knowledge property we have  

IA-NMZPoK(2) ≈PPT IA-NMZPoK::Sim2(ξ1
(2)||…||ξN1

(2), s)  
and by S2’s construction we also have  

IA-NMZPoK(1) =IA-NMZPoK::Sim2(ξ1
(1)||…||ξN1

(1), s)   
so IA-NMZPoK(1) ≈PPT IA-NMZPoK(2).    

As a result, the transcripts received by A in both cases are P.P.T.-indistinguishable.  
Let δ be ∆ПBlind-UKG’s extractor’s error function(negligible in k), then the probability with which 

S2 correctly extracts A’s one data-item y*i is at least P[A(mpk;P1(mpk,msk))=UKG(msk,y*i)]-δ, so the 
probability with which S2 correctly extracts A’s all data-items y*1,…,y*N2 is at least P[A(mpk;P1(mpk, 
msk))=UKG(msk,y*i): i=1,…,N2]-N2δ≥P[X0=X1∩X2]-N2δ. As a result, S2’s output is P.P.T.- 
indistinguishable from A’s output in Ψ with respect to the GUC-environment Z with an error 
upper-bounded by N1(k) +N2δ, which is also negligible in k. Note that in both cases 
the other party P1*(X1) and P1(X1) always output the same N2, so we have the consequence that 
outputZ(ψ,A) ≈PPT outputZ(FINT,S2) and it’s easy to estimate S2’s time-complexity TS2=TA+O(N1+N2Text) 
where TA and Text are A’s and the extractor’s computation-time. 
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By all the facts, we have Ψ→GUC FINT.  
 
APPENDIX.C  PROOF OF THEOREM 4.1 
 
For intuition the protocol  is presented in the figure below, in which IA-NMZPoK’s 
arrows point from zero-knowledge’s prover to its verifier. 
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P1(mpk, msk)             ACRS=mpkZK,II||mpkZK,III                 P2(mpk, a)  

 
    IA-NMZPoKII(msk: mpk=Setup(msk))      select r1,r2,y1,y2,y3,y4 at random;  

                                                                     Ui← , Vi← , i=1,2  irg iragg −)( 10

                                                                         hj← , j=1,2,3,4 
ay gg j
1

                               U1||U2||V1||V2||h1||h2||h3||h4 

IA-NMZPoKIII ((a, r1, r2, y1, y2, y3, y4):∧ i=1,2Ui= irg ∧ i=1,2Vi= iragg −)( 10 ∧ j=1,2,3,4hj= )  ay gg j
1

select σ, r1', r2’ at random;  
d0← ;  21

,
1 )( 1

ttr Ug σ 43
,
2 )( 2

ttr Ug σ

d1'← ; d1"← ;   2tg ϖ− 221
1

'
01 )( ttr Vgh σ− 2

'
1trg

d2'← ; d2"← ;      1tg ϖ− 111
1

'
02 )( ttr Vgh σ− 1

'
1trg

d3'← ; d3"← ;    442
2

'
03 )( ttr Vgh σ− 4

'
2trg

d4'← ; d4"← ; 332
2

'
04 )( ttr Vgh σ− 3

'
2trg

                  d0||d1' ||d1"||d2' ||d2"|| d3' ||d3"||d4' ||d4"   

dj← , j=1,2,3,4  jy
jj dd '''

                                                output(d0, d1, d2, d3, d4)  
 



 
By direct calculation it’s easy to show the protocol’s output’s correctness. Now we present the 

GUC-security proof sketch. All parties are assumed to be initialized with a copy of the common 
reference string ACRS, i.e., the concatenation of the two IA-NMZPoK protocol’s mpkZK,II and mpkZK,III. 
For this ACRS, msk=mskZK,II||mskZK,III and UKG(msk,id) outputs usk(id)=uskZK,II(id)||uskZK,III(id) where 
uskZK,II(id) and uskZK,III(id) are respectively two IA-NMZPoK protocol’s user private-keys 
corresponding to id∈{P1,P2}. 

At first it’s easy to show there exists an identity extractor for  to satisfy definition 3.1. 
In fact it is IA-NMZPoKIII((a, r1, r2, y1, y2, y3, y4): 

WatersBoyen
UKGBlind
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∧ i=1,2Ui= irg ∧ i=1,2Vi= j=1,2,3,4hj= 
)’s knowledge extractor for which the to-be-extracted witness is a.  

iragg −)( 10 ∧
ay gg j
1

Now we prove ’s GUC-security in two cases that the real-world adversary A corrupts 
P1 or P2 respectively. Below P1* and P2* stand for P1 and P2’s respective counterparts in ideal-world. 

WatersBoyen
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(1) A corrupts P1: Suppose A’s(i.e., P1’s) private input is (mpk,msk), P2*’s private input is a*. we need 
to construct an ideal adversary S1. S1 corrupts the ideal-world party P1*, gets usk(P1) by querying 
GACRS with the message (“retrieve”,sid,P1) where usk(P1)=uskZK,II(P1)||uskZK,III(P1), computes 
(σII,sII,,τ)←IA-NMZPoKII::Ext1(uskZK,II(P1))(notice that P1 is the prover in protocol IA-NMZPoKII), 
runs A as a black-box. S1 simulates the real-world honest party P2 to interact with A:   

In session of IA-NMZPoKII(msk: mpk=ESetup(msk)), S1 interacts with A as a verifier extracting 
msk via running IA-NMZPoKII::Ext2(τ), sends message (sid, mpk||msk) to ;    WatersBoyen

UKGBlindF −
−

S1 generates an user-id a at random, follows P2’s specification in section 4.2 to compute U1,U2,V1, 
V2,h1,h2,h3,h4, sends U1||U2||V1||V2||h1||h2||h3||h4 to A, computes (σIII,sIII)←IA-NMZPoKIII:: 
Sim1(uskZK,III(P1))(notice that P1 is the verifier in protocol IA-NMZPoKIII) and sends IA-NMZPoKIII:: 
Sim2(U1||U2||V1||V2||h1||h2||h3||h4,sIII) to A. 
   S1 outputs whatever A outputs to the environment.  

Denote the second-round message in ’s specification (i.e., U1||U2||V1||V2||h1||h2||h3||h4) 
as W. From A’s perspective, the transcripts due to its interactions with S1 and the transcripts due to its 
interactions with the real-world party P2(a*)(P2(a*) stands for party P2 possessing a*, the same private 
input as the ideal-world party P2*) differs in: a)W depends on a in the former case, denoted as W(a), 
while it depends on a* in the latter case and denoted as W(a*); b)IA-NMZPoKIII’s witness depends on 
a in the former case while it depends on a* in the latter. The messages of subprotocol IA-NMZPoKIII 
in these two cases are respectively denoted as IA-NMZPoKIII(a) and IA-NMZPoKIII(a*).  

WatersBoyen
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Let g0≡gα, g1≡gα*. Explicitly expand W(a)’s expression to || || ||  
|| ||…||  and W(a*) to a similar expression where a, r1, r2, y1, y2, y3, y4, α and a*, r1*, r2*, 
y1*, y2*, y3*, y4*, α* are probabilistically independent and all are unknown to A, so 
W(a)≈W(a*)(perfectly indistinguishable). Furthuremore, by IA-NMZPoKIII’s zero-knowledge property 
we have                 

1rg 2rg 1)( rag βα +− 2)( rag βα +−

βayg +1 βayg +4

IA-NMZPoKIII::Sim2(W(a*), sIII) ≈PPT IA-NMZPoKIII(a*)  
and by S1’s construction we also have  

IA-NMZPoKIII::Sim2(W(a), sIII) = IA-NMZPoKIII(a)  
so IA-NMZPoKIII(a) = IA-NMZPoKIII::Sim2(W(a),sIII) ≈ IA-NMZPoKIII::Sim2(W(a*),sIII) ≈PPT  



IA-NMZPoKIII(a*). As a result, from A’s perspective the transcripts due to its interactions with S1 is 
P.P.T.-indistinguishable from that due to its interactions with P2(a*), in particular, the output of A due 
to its interactions with S1 is P.P.T.-indistinguishable from its output due to its interactions with P2(a*) 
in .  

WatersBoyen
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   Let ηII denote IA-NMZPoKII’s knowledge extractor’s error function(a negligible function in k), 
then the probability with which P*2(a*) outputs Π::UKG(msk,a*) under S1’s attacks is at least P[P2 
accepts mpk as a valid master public-key]-ηII, i.e., except for an probability upper-bounded by ηII, 
P*2(a*)’s output under S1’s attacks is the same as P2(a*)’s output under A’s attacks, in other words, for 
any P.P.T. environment Z we have outputZ( ,A1) ≈PPT outputZ( ,S1) and it’s easy 
to estimate S1’s time-complexity TS1=TA+TeII+O(1) where TA and TeII are A’s and ExtII,2’s 
computation-time.  

WatersBoyen
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(2)A corrupts P2: Let a denote A’s (i.e., P2’s) private input, (mpk*,msk*) denote the ideal-world party 
P1*’s input where mpk*=(G1,G2,p,e, Ω*, g, g0, g1, v1*, v2*, v3*, v4*) and msk*=(ω*, t1*, t2*, t3*, t4*). 
We need to construct an ideal-world adversary S2 which  corrupts P2*, gets usk(P2) by querying 
GACRS with the message (“retrieve”,sid,P2) where usk(P2)=uskZK,II(P2)||uskZK,III(P2), runs A as a 
black-box and simulates the honest real-world party P1 to interact with A:  

On receiving the message (sid,mpk*) from , S2 generates ω, t1, t2, t3, t4 at random and 
computes  

WatersBoyen
UKGBlindF −
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Ω← ; v1←gt1; v2←gt2; v3←gt3; v4←gt4;  ω21),( ttgge
mpk←(G1, G2, p,e, Ω, g, g0, g1, v1, v2, v3, v4);   
msk←(ω, t1, t2, t3, t4);  
(σII,sII)←IA-NMZPoKII:Sim1(uskZK,II(P2));  
(σIII,sIII,τ)←IA-NMZPoKIII::Ext1(uskZK,III(P2));  
Note that P2 is the verifier in protocol IA-NMZPoKII and prover in IA-NMZPoKIII.  
S2 starts A and interacts with it by running IA-NMZPoKII::Sim2(mpk,sII);  
When A sends U1||U2||V1||V2||h1||h2||h3||h4 and then launches IA-NMZPoKIII ((a, r1, r2, y1, y2, y3, 

y4):…), S2 participates the session as an verifier by running IA-NMZPoKIII::Ext2(τ) to extract (a, r1, r2, 
y1, y2, y3, y4)(in fact only a is used below);  

S2 sends the message (sid||1,a) to  and gets the response (sid||1,UKG(msk*,a)) where 
UKG(msk*,a)≡(d0*, d1*, d2*, d3*, d4*);    

WatersBoyen
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S2 generates dj“ at random, computes dj‘← , j=1,2,3,4, sends d*0||d1'||d1"||d2'||d2"||d3' 
||d3"||d4'||d4" to A.   

jy
jj dd ''* /

Now we prove that from A’s perspective the transcripts due to its interactions with S2 and that due 
to its interactions with P1(mpk*,msk*)(a real-world party possessing the same input as the ideal-world 
party P1*) are P.P.T.-indistinguishable.  

At first, consider the transcripts in IA-NMZPoKII’s session. Let IA-NMZPoKII(*) and 
IA-NMZPoKII() denote the messages generated by P1(mpk*, msk*) and S2 in this session respectively. 
By IA-NMZPoKII’s zero-knowledge property we have  

IA-NMZPoKII::Sim2(mpk*, sII) ≈PPT IA-NM ZPoKII(*)  
and by S2’s construction we have  



                 IA-NMZPoKII::Sim2(mpk, sII) = IA-NMZPoKII()  
Let ΩR denote a random element on group G2. Since ω*,ω, ti*, ti (i=1,2,3,4) are probabilistically 

independent and all are unknown to A, from A’s perspectiove we have 
  mpk*≡(G1,G2,p,e, Ω*, g, g0, g1, v*1, v*2, v*3, v*4)  
≈PPT  (G1,G2,p,e, ΩR, g, g0, g1, v*1, v*2, v*3, v*4)  (D-BDHP’s hardness)  

    ≈  (G1,G2,p,e, ΩR, g, g0, g1, v1, v2, v3, v4)  (trivial)  
    ≈PPT  (G1,G2,p,e, Ω, g, g0, g1, v1, v2, v3, v4)  (D-BDHP’s hardness) 

≡ mpk  
So IA-NMZPoKII(*) ≈PPT IA-NMZPoKII::Sim2(mpk*,sII) ≈PPT IA-NMZPoKII::Sim2(mpk,sII) = 
IA-NMZPoKII().  

Now consider the last-round message, which are d*0||d1'||d1"||d2'||d2"||d3'||d3"||d4'||d4" and d*0||d*1' 
||d*1"||d*2'||d*2"||d*3'||d*3"||d*4'||d*4" in these two cases( interacting with S2 and with P1(mpk*, msk*)) 
respectively. Both messages have the same component d*0, all other components are denoted as D and 
D* respectively. Expanding D we get  

D ≡ || || || || || || ||    1''
1

*
1 / ydd ''

1d 2''
2

*
2 / ydd ''

2d 3''
3

*
3 / ydd ''

3d 4''
4

*
4 / ydd ''

4d
where d*1, d*2, d*3, d*4 come from UKG(msk*,a), i.e., d*1=
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    Expanding D* we get   

D* ≡ || || || || || ** 2tg ϖ− *
1

*'
01
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1
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where σ, , ri’ and dj” are probabilistically independent each other and unkown to A, σ, ri’ are 
generated by P1, dj” by S2, 

ir~

ir~ by .  WatersBoyen
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Since r1’ and r2’ are probabilistically independent each other, D*’s 4 leftmost-components are 
probabilistically independent of those 4 rightmost-ones; note that t*1, t*2, t*3, t*4 are also 
probabilistically independent each other, we finally partition D* into 4 independent components Di* 
as:  

D1* ≡ ||    D2* ≡ ||  ** 2tg ϖ− *
1

*'
01

221)( ttr Vgh σ− *2
'

1trg *1tg ϖ− *
1

*'
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111)( ttr Vgh σ− *1
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D3* ≡ ||          D4* ≡ ||  *

2
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03
442)( ttr Vgh σ− *4

'
2trg *

2
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'
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Similarly partition D into 4 independent components Di as:  
    D1 ≡ ||   D2 ≡ ||   D3 ≡ ||   D4 ≡ ||   1''

1
*
1 / ydd ''

1d 2''
2

*
2 / ydd ''

2d 3''
3

*
3 / ydd ''

3d 4''
4

*
4 / ydd ''

4d
The problem is now reduced to analysis on relationship between Di and D*i. Consider D3* 

≡ || and D3 ≡ || : obviously D3≈
*

2
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adequate to analyze the relationship between  and 
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other, so D3*≈D3. For the same reason D4*≈D4.    
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Consider D1* ≡ ||  and D1 ≡ || : obviously 
D1≈

** 2tg ϖ− *
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01
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1trg 1''
1

*
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1d
*~
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** 212 )( trat ggg −−ϖ / || , by similar analysis as before we have D1*≈D1. For the same 

reason D2*≈D2. Therefore:   
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'
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d*0||d1'||d1"||d2'||d2"||d3'||d3"||d4'||d4" ≈ d*0||d*1'||d*1"||d*2'||d*2"||d*3'||d*3"||d*4'||d*4"  
In consequence, under the assumption of D-BDHP’s hardness on J, from A’s perspective the 



transcripts due to its interactions with S2 and that due to its interactions with P1(mpk*, msk*) are 
P.P.T.-indistinguishable. In particular, A’s output in the former case is P.P.T.-indistinguishable from its 
output in the latter, the error is (by some straightforward calculation) upper-bounded by ηIII 

+2  where ηIII is IA-NMZPoKIII’s knowledge extractor’s error function. As a result, 
for any P.P.T. environment Z we have outputZ( ,A) ≈PPT outputZ( ,S2) and it’s 
easy to estimate S2’s time-complexity TS2=TA+TeIII+O(1) where TA and TeIII are A’s and 
IA-NMZPoKIII’s extractor’s computation-time.  

)(kAdv BDHPD
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Combining all consequences in the above, the theorem is finally proved.  
 
APPENDIX.D IA-NMZPoK PROTOCOL’S CONSTRUCTION AND INSTANTIATION 
 
D.1 (Dense) Ω-Protocol[6,13]  
 
A Ω-protocol for a given relation R is a 3-move protocol in CRS model consisted of P.P.T. algorithms 

D, A, Z, Φ, Sim and Ext=(Ext1,Ext2). D is the CRS generating algorithm. All algorithms except D 

takes a CRS ω as one of its inputs. For some (x,w) s.t.R(x,w)=1 the common input for both the prover 

P and the verifier V is x and witness w is P’s private input. In the first move P generates a randomness 

r, computes a←A(ω,x,w,r) and sends a to V; in the second move, V selects a challenge c at random 

and sends it back to P; then P computes z←Z(ω,x,w,r,c) and sends z to V in the last move; on 

receiving z, V outputs “accept” or “refuse” depending on whether Φ(ω,x,a,c,z)=1 or 0. In addition, a 

Ω-protocol has the following properties [13]:  

(1) For the honest P which behaves under the above specification, Φ(ω,x,a,c,z)=1 is always true.  

(2) Given c and x∈LR the simulator Sim(ω,x,c) can generate accepting transcripts with a distribution 

that is P.P.T.-indistinguishable from those when P and V execute the protocol on common input x 

while V selects c as the challenge.  

(3) (σ,τ)←Ext1(k) where σ is P.P.T.-indistinguishable from ω←D(k); in addition, if there exists two 

accepting transcripts (a, c, z) and (a, c’, z’) where c≠c’ for some given x∈LR, then Ext2(x, τ, (a, c, z)) 

outputs w such that R(x,w)=1.   

   A dense Ω-protocol has the additional property as follows [6]: 

(4) The CRS-domain D is a subset of a larger domain, D*(named extended CRS-domain), which is an 

Abelian group and its group operations are all efficient. Furthermore, the element of D and D* is 

P.P.T.-indistinguishable from each other.  
 
D.2 A General Construction of IA-NMZPoK Protocol  
 
Now we present a general construction for IA-NMZPoK protocol(definition 2.3-2.4) for given relation 
R. It uses a secure (strong existential-unforgeable) one-time signature scheme, a secure IBTC 
sheme(definition 2.5) and a dense Ω-protocol as its components. Note that among these components 
the secure one-time signature scheme and IBTC scheme can all be efficiently constructed, only the 



Ω-protocol is related with the specific relation R, therefore the construction can be regarded as a 
general transformation from the (comparatively weak) Ω-protocol to the (strong) IA-NMZPoK 
protocol.  

This construction is similar as that in [13] and borrows the coin-tossing technique used in [5-6]. 
Given a binary relation R and its dense Ω-protocol ΩR=(D,A,Z,Φ,Sim, Ext=(Ext1,Ext2)) with its CRS 
denoted as ω; SIG=(KGen,Sign,Vf) is a strong existential-unforgeable one-time signature scheme; 
IBTC=(DTC,Setup,UKG,Cmt,Vf,FakeCmt, FakeDmt) is a secure IBTC scheme with its master 
public/secret-key pair denoted as (mpkTC,mskTC). The constructed protocol IA-NMZPoKR (see Figure 
D.1) is in the ACRS model and its ACRS is the IBTC scheme’s master public-key mpkTC.   
   For clearity, we use IBTC::Cmt to stand for IBTC scheme’s commitment algorithm Cmt, 
SIG::Sign to stand for SIG scheme’s signing algorithm Sign, etc. P and V denote the prover(P)’s and 
verifier(V)’s identities respectively. ξ denotes the protocol’s transcripts excluding the signature, i.e., 
ξ≡k1||ω2||ω1||d1||sig_vk||cmt||c||a||dmt||z. Actually the first 3-move session is an IBTC-based coin-tossing 
[5-6] to generate a CRS ω for the following protocol ΩR and the second 3-move session is similar as 
the construction of NMZPoK protocol in [13].  

 
   

P(x,w): R(x,w)=1            ACRS=mpkTC                   V(x)  
                                                      ω1← 

$D;  
                            k1                     (k1,d1)←IBTC::Cmt(mpkTC, P, ω1); 

         ω2← 
$D;                     ω2 

                                    ω1||d1                      ω←ω1ω2 
    (sig_vk, sig_sk)←SIG::KGen(k);   

select r at random;  
    a←ΩR::A(ω,x,w,r);  

(cmt,dmt)←IBTC::Cmt(mpkTC,V, a||sig_vk);     
    cmt  

                                 c                     c←${0,1}k;   
z←ΩR::Z(ω,x,w,r,c);  
s←SIG::Sign(sig_sk,ξ);        sig_vk||a||dmt||z||s     

verify IBTC::Vf(mpkTC,V,a||sig_vk,cmt,dmt)=1 
∧ΩR::Φ(ω,x,a,c,z)=1 
∧SIG::Vf(sig_vk, ξ,s)=1  

Figure D.1 IA-NMZPoK protocol IA-NMZPoKR for relation R. 
                         
Theorem D.1  IA-NMZPoKR is an IA-NMZPoK protocol for relation R.  
Proof sketch  The proof is similar as that of [13]’s theorem 4.1-4.2, the most difference is the 
simulation algorithm Sim=(Sim1,Sim2) and the extraction algorithm Ext=(Ext1,Ext2) which are 
presented here. 

Let usk(P)≡IBTC::UKG(mskTC,P), usk(V)≡IBTC::UKG(mskTC,V). Sim1(usk(V)) normally 
simulates the coin-tossing (the first 3-move session in IA-NMZPoKR ) as specified in the constrcution 



and its simulated transcript is denoted as k1||ω2||ω1||d1, then it outputs k1||ω2||ω1||d1||usk(V).  
Sim2(mpkTC, x, ω, k1||ω2||ω1||d1||usk(V)) (where ω=ω1ω2) computes ( cmt ,λ)←IBTC::FakeCmt(mpkTC, 
V, usk(V)) and (sig_vk,sig_sk)←SIG::KGen(k), selects c at random, computes (a,z)←ΩR::Sim(ω,x,c), 
d ←FakeDmt(mpkTC, a||sig_vk, λ, cmt ), s←SIG::Sign(sig_sk,ξ) where ξ is the whole transcript (as 
specified in the construction) excluding the signature s. Finally Sim2 outputs  

k1||ω2||ω1||d1|| cmt ||c||sig_vk||a|| d ||z||s  
For the extractor Ext=(Ext1,Ext2), Ext1(usk(P)) computes (ω,τ)←ΩR::Ext1(k) and outputs (ω, 

usk(P)||τ). Ext2(mpkTC, ω, usk(P)||τ) computes ( 1k ,λ1)←IBTC::FakeCmt(mpkTC,P, usk(P)) and sends 

1k  out; on receiving ω2, it computes ω1←ω/ω2, 1d ←FakeDmt(mpkTC, ω1, λ1, 1k ) and responses 
with ω1|| 1d ; then it randomly generates a challenge c on receiving cmt. When it gets the last message 
sig_vk||a||dmt||z||s, it checks all the required conditions and call ΩR::Ext2(ω, x, τ, a||c||z).   
   Now it can be shown that Sim=(Sim1,Sim2) and Ext=(Ext1,Ext2) indeed satisfy the properties in 
definition 2.3-2.4, the analysis is almost the same as in the proof of [13]’s theorem 4.1-4.2.  
 
D.3 An Efficient Instantiation  
 
Now we can present how to efficiently construct all the related IA-NMZPoK protocols in case of 
Boyen-Waters scheme for our protocol Ψ and . By the construction in last subsection, it’s 
adequate to construct the related dense Ω-protocols for those specific relations deduced from 
Boyen-Waters IBE scheme [3]. So below we only focus on these Ω-protocols’ construction. 
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    For reading convenience let’s completely present the Boyen-Waters IBE scheme here which is 
truncated in sec.4.1 for space limitation: Given an bilinear group pairing ensemble J={(p,G1,G2,e)}k 

where |G1|=|G2|=p, p is k-bit prime number, P∈G1, e:G1×G1→G2  is a non-degenerate pairing, 
Boyen-Waters IBE consists of 

ESetup(k):  
      g, g0, g1←$G1; ω, t1, t2, t3, t4←$Zp; Ω← ;   ω21),( ttgge

v1←gt1; v2←gt2; v3←gt3; v4←gt4;    
      mpk←(G1,G2,p,e, Ω, g, g0, g1, v1, v2, v3, v4); 
      msk←(ω, t1, t2, t3, t4); 
      return(mpk,msk); 
UKG(msk, a), a∈Zp:  

      r1, r2←$Zp;   

      usk(a)←( , , ); ,)(, 212432211
10

tratttrttr gggg −−+ ϖ 111 )( 10
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      return(usk(a));  

E(mpk, a, M), M∈G2:  
      s, s1, s2←$Zp; ξ←(ΩsM, , v1

s-s1, v2
s1, v3

s-s2, v4
s2); return(ξ);  sagg )( 10

    D(mpk, usk(a), (ξ00, ξ0, ξ1, ξ2, ξ3, ξ4)) where usk(a)≡(d0, d1, d2, d3, d4):   
       T←e(d0, ξ0)e(d1, ξ1)e(d2, ξ2)e(d3, ξ3)e(d4, ξ4); return(ξ00T). 

At first, we note that the relationship in IA-NMZPoKII(msk: mpk=Setup(msk)) is  
 (ω, t1, t2, t3, t4): Ω= ω21),( ttgge ∧ v1=gt1∧ v2=gt2∧ v3=gt3∧ v4=gt4    



Note that Ω= = so the desired relation is equivalent to  ω21),( ttgge ω),( 21 vve
 (ω, t1, t2, t3, t4): Ω= ω),( 21 vve ∧ v1=gt1∧ v2=gt2∧ v3=gt3∧ v4=gt4           (D.1) 

Now we analyze how to construct  
IA-NMZPoK III ((a, r1, r2, y1, y2, y3, y4):∧ i=1,2Ui= irg ∧ i=1,2Vi= iragg −)( 10 ∧ j=1,2,3,4hj= ) ay gg j

1

Observe that (the pairing e is non-degenerate and G1, G2 are both prime-order) Vi= iff 
= = = , i.e.,  

iragg −)( 10

),( iVge 1
10 ),( −ar ggge i 1

10 ),( −a
i ggUe 1

0 ),( −gUe i
a

i gUe −),( 1

),( iVge ),( 0gUe i =   i=1,2 a
i gUe −),( 1

hj= iff = = , i.e.,   ay gg j
1 ),( 01 jhgUe ),( 101

aggUe jygUe ),( 1
1

1 ),( −Vge jygUe ),( 1

                     =   j=1,2,3,4   ),( 01 jhgUe ),( 1Vge jygUe ),( 1

The above expression is also true if U2 replaces U1. Denote publicly-computable items 
Fi≡ , f i≡ , Hj≡ , h≡ , then 
IA-NMZPoKIII  becomes an IA-NMZPoK protocol for the relation  

),( iVge ),( 0gUe i
1

1 ),( −gUe i ),( 01 jhgUe ),( 1Vge ),( 1 gUe

   (a, r1, r2, y1, y2, y3, y4): ∧ i=1,2Ui= irg ∧ i=1,2Fi= fi 
a∧ j=1,2,3,4Hj=  jyh

A further observation tells that F1= f1 
a and F2= f2

a are not independent: in fact, let F1= and 
F2=  then via bilinear pairing we have = and = , i.e., 

= iff a1=a2 so one statement of F1= f1 
a or F2= f2

a can imply another one by 
publicly checking = . Therefore the desired IA-NMZPoKIII is equivalent to an 
IA-NMZPoK protocol for the relation  

1
1

af
2

2
af ),( 21 Ffe 2),( 21

affe ),( 21 fFe 1),( 21
affe

),( 21 Ffe ),( 21 fFe
),( 21 Ffe ),( 21 fFe

        (a, r1, r2, y1, y2, y3, y4):∧ i=1,2Ui= irg ∧F1= f1 
a∧ j=1,2,3,4Hj=             (D-2) jyh

   Now analyze IA-NMZPoK((a,r): ξ=E(mpk, a, M0; r)). In case of Boyen-Waters scheme, denote the 
public common plaintext as M0 and the scheme’s ciphertext as ξ≡(ξ00, ξ0, ξ1, ξ2, ξ3, ξ4), then 
IA-NMZPoK((a,r): ξ=E(mpk, a, M0; r)) becomes IA-NMZPoK((a,s,s1,s2): ξ00=ΩsM0 ξ0=  

ξ1=v1
s-s1∧ ξ2=v2

s1∧ ξ3=v3
s-s2 ξ4=v4

s2). Because in theorem 3.1’s proof what is needed is just the 
witness a, with respect to protocol Ψ it’s adequate to construct IA-NMZPoK((a,s): 
ξ00=ΩsM0 ξ0= ).  

∧ sagg )( 10

∧ ∧

∧ sag1g )( 0

In general G1 and G2 are not the same group, e.g., G1 is usually a prime-order subgroup on elliptic 
curve while G2 is a multiplicative subgroup in some finite field. Denote χ00≡ξ00M0

-1, t≡as, then χ00=Ωs, 
ξ0= =  and it’s easy to see that IA-NMZPoK((a,s): ξ00=ΩsM0

sagg )( 10
ts gg 10 ∧ ξ0= )(a = ts-1 

mod q) is equivalent to an IA-NMZPoK protocol for relation  

sagg )( 10

 (s,t): χ00=Ωs∧ ξ0=                              (D-3) ts gg 10

   So far all desired IA-NMZPoK protocols’ relations are explicitly presented and can be unified to a 
group of linear exponent equations on prime-order group G in (D-4)(more generally each equation in 
(D-4) can be on a different group, but this case can be processed by a trivial generalization of the 
uniform case in which all equations are on the same group, so we only deal with the latter):  

                              i=1,…,m                             (D-4) i

n

j

x
ij hB j =∏

=1

where Bij and hi are in G and xi’s are integer witness. [6](see its Appendix.I) presents an efficient 
construction for relation (D-4)’s dense Ω-protocol which can be directly applied in our work.  
 


