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Abstract

We consider the problem of probabilistic reliable communication (PRC) over synchronous
networks modeled as directed graphs in the presence of a Byzantine adversary when players’
knowledge of the network topology is not complete. We show that possibility of PRC is ex-
tremely sensitive to the changes in players’ knowledge of the topology. This is in complete
contrast with earlier known results on the possibility of perfectly reliable communication over
undirected graphs where the case of each player knowing only its neighbours gives the same
result as the case where players have complete knowledge of the network. Specifically, in either
case, (2t + 1)-vertex connectivity is necessary and sufficient, where t is the number of nodes
that can be corrupted by the adversary [DDWY93, SKR+05]. We introduce a novel model for
quantifying players’ knowledge of network topology, denoted by TK. Given a directed graph G,
influenced by a Byzantine adversary that can corrupt up to any t players, we give a necessary
and sufficient condition for possibility of PRC over G for any arbitrary topology knowledge TK.
It follows from our main characterization theorem that knowledge of up to d = bn−2t

3 c+1 levels
is sufficient for the solvability of honest player to honest player communication over any network
over which PRC is possible when each player has complete knowledge of the topology. We also
show the existence of networks where PRC is possible when players have complete topology
knowledge but it is not possible when the players do not have knowledge of up to d = bn−2t

3 c+1
levels.
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Byzantine adversary
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1 Introduction

Reliable Communication is one of the fundamental problems and one among the keenly studied
problems of distributed computing. The problem of reliably communicating between a Sender S
and a receiver R over a network N in the presence of an adversary that can corrupt up to t players
(denoted by a t-adversary) and make them behave arbitrarily is of great relevance in almost all
practical circumstances. In general, while studying the problem of reliable communication, one as-
sumes knowledge of complete topology for each player. We consider the problem of communicating
reliably (with negligible error) between S and R in the presence of a t-adversary over synchronous
directed networks when players possess only partial knowledge of the topology.

Reliable transmission of messages between two honest (not corrupted by t-adversary) players is
of utmost importance because several distributed computing problems will be rendered unsolvable
in the absence of reliable transmission between honest players. We focus on probabilistic reliable
communication (PRC) between two honest players and give the necessary and sufficient conditions
for the possibility of PRC over a synchronous directed network for any arbitrary topology knowl-
edge. By PRC, we mean, PRC in synchronous networks (modelled as a directed graph) in the
presence of a Byzantine adversary. In the problem of PRC over a synchronous network N = (P, E)
where P is the set of vertices and E denotes the set of arcs/edges in the network, the sender S
∈ P wishes to send a message m to the receiver R ∈ P in a robust manner such that the mes-
sage is correctly received by R with a very high probability, in spite of the presence of up to t
Byzantine-faulty nodes in N .

Generally knowledge of the topology is mentioned as players having knowledge of their neigh-
bors, or their neighbors’ neighbors, that is up to a level d. We consider knowledge of up to level 1
as knowledge of both in-neighbours and out-neighbours of the corresponding players.

In this paper, we refer to the notion of knowledge possessed by a node about the graph G by
Topology Knowledge T K at that node, which we define as a collection of possible graphs with
one of them being the actual graph. One can easily note that the notion of T K is relevant only
in the presence of a suitable adversary. In the absence of a suitable adversary, each node can
let the rest of the players (of course only as far as the connectivity permits!) know its view of
the network in order to end up with a global common picture of the topology for each of the
connected components respectively. Consequently, while the distributed complexity may increase,
the distributed computability is unaffected. However, in the presence of the adversary, any amount
of communication would entail only an (adversary controlled) approximation of the actual topology,
thereby perhaps affecting even the distributed computability. Intuitively though, the adversary can
at best completely hide the edges between two faulty players and if lucky, succeed in partially hiding
even the edges with one faulty end-node. However, useful messages are seldom transmitted via the
aforementioned edges. This gives a feeling that distributed computability may not be affected —
in fact, for the case of perfectly reliable communication it has been proved that the knowledge of
one’s neighbors alone is as sufficient as the knowledge of the global topology; specifically, (2t+ 1)-
connectivity is necessary and sufficient irrespective of T K, where up to t players are Byzantine faulty
(t-adversary)[SKR+05]. Counter-intuitively, for the case of probabilistic reliable communication,
we show that the optimal fault-tolerance heavily depends on T K.

In [VGG+09], Pranav et al. show that knowledge of partial topology knowledge affects the
possibility of PRC by giving a specific example. In this paper, we give the complete characterization
for the possibility of PRC over any given network modeled as directed graphs under the influence of
a (static) t-Byzantine adversary when the players have arbitrary topology knowledge T K. We use
our definition T K which is set, to arrive at the characterization. To appreciate the consequences
of our results, we also arrive at a distance measure, that R must see up to d = bn−2t

3 c + 1 levels
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in order to ensure the possibility of PRC protocol over those networks for which PRC is possible
given complete topology knowledge. That is to say, PRC between any two honest players over any
network is possible if the receiver amongst the players’ sees distance d = bn−2t

3 c+ 1 levels provided
PRC were solvable in the case where players have complete knowledge of the topology.
Related Work: The problem of perfectly reliable communication tolerating a t-adversary over
undirected graphs is introduced by Dolev et al. [DDWY93]. PRC over undirected graphs was intro-
duced by Franklin and Wright [FW98, FW00]. Desmedt and Wang [DW02] were the first to study
the problem of reliable communication over directed networks. (2t+1)-connectivity between S and
R is necessary and sufficient for all the problems given in the prequel. Shankar et al. [SGSR08]
show that the results for the case of possibility of PRC in directed graphs are markedly different
from the earlier results, which appear consistent. This difference is because their results show that
connectivity requirements on the graph for the possibility of PRC over directed graphs as being the
receiver R-specific (See Necessity proof of Theorem 4.1). However, they study PRC for the case
where every player has complete knowledge of the topology. In this sequence of study, we study
the problem of PRC in directed graphs for partial knowledge of the topology. The line of study
that we take originated in the paper by Srinathan and Pandurangan in [SR06], where the authors
show the conditions for the possibility of PRC over directed graphs for a non-threshold adversary.

Contributions: Our Contributions through this paper are manifold: (1) We completely charac-
terize the problem of PRC between S and R over arbitrary synchronous directed networks in the
presence of a t-adversary, when each player has partial knowledge of the topology. (See Theorem 4.1)
(2) It follows from our main characterization theorem that knowledge of up to d = bn−2t

3 c+1 levels
is sufficient for the solvability of honest player to honest player communication over any network
over which PRC is possible when each player has complete knowledge of the topology. (See Corol-
lary 4.1.1) (3) We also show the existence of networks where PRC is possible when players have
complete topology knowledge but it is not possible when the players do not have knowledge of up
to d = bn−2t

3 c+1 levels. (See Corollary 4.1.2) (4) We give a strong definition of topology knowledge
from which it is possible to extract information as to whether the players’ have a knowledge of up to
k levels. (See Definition 1). (5) Arriving at our main characterization require us to take a detour in
building tools which enable us to handle arbitrary topology knowledge. These tools make extensive
utilization of our Definition for Topolology Knowledge (See Definition 2). The tools in themselves
are for distributed computing problems with certain properties (See Table 1) and PRC satisfies the
relevant conditions. We give them as Bridge Theorems, Theorem 3.1 and Theorem B.1.

Our focus in this paper is on finding the possibility of PRC protocols, and we do not focus on
the complexity of the protocols. Our constructions to prove the possibility of PRC protocols lead us
to protocols with super-polynomial complexity. We remark that finding polynomial-time solutions
for the problem is quite challenging and we do not rule out the possibility of an exponential lower
bound.

2 Model and Definitions
The network is modeled as a directed graph N = (P, E) where P is the set of vertices and E denotes
the set of arcs/edges in the directed graph. We model the nodes/players (as well as the adversary)
as interactive Turing machines with unbounded computing power. The system is assumed to be
synchronous, that is, the protocol is executed in a sequence of rounds wherein in each round, a player
can perform some local computation, send new messages to his out-neighbors, receive the messages
sent in that round by his in-neighbors (and if necessary perform some more local computation), in
that order. In the graph, we assume that the channels are secure. In other words, if (u, v) ∈ E
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then the player u can securely send a message to player v in one round. During the execution, the
adversary may corrupt up to any t players. We work with a (static) Byzantine adversary that may
completely control up to t players (denoted by t-adversary) and make them behave in arbitrary
fashion. Every honest player that receives a message from its in-neighbor knows the sender as it
can identify the channel along which the message is received. All messages to be transmitted are
chosen from a finite field F.

2.1 Definitions
Definition 1 (Topology Knowledge of player i (T Ki)) In a given network N = (P, E), we
define Topology Knowledge of player i T Ki as the knowledge possessed by player i about the network
N . It is represented by a set of graphs,i.e. T Ki = {Giki}, with a condition that one of the graphs

from the set T Ki is the actual graph N where 1 ≤ ki < 2|P|
2

, that is, 1 ≤ |T Ki| < 2|P|
2

.

Notice that when you define topology knowledge of a player this way, the player is in possession
of adjacency matrices of each of the graphs, of which one of them is actual graph. So, if for any
player j (j could be i also), the entries of rows (out-edges) and columns (in-edges) are the same
across all the matrices, then we say that player i has knowledge of up to level 1 with respect to the
players j. If for every player j, the entries for rows and columns are the same across all adjacency
matrices, then it is as good as knowing the complete topology.

Definition 2 (Topology Knowledge T K) We define the notion Topology Knowledge T K as the
collection of all the individual T Ki’s (for all the players in P). Specifically, T K = {T Ki|i ∈ P}.

Definition 3 (k-sized T Ki and k-sized T K) A k-sized T Ki is defined as T Ki where |T Ki| = k.
If there exists an integer k such that every T Ki in the collection T K is `-sized for some ` ≤ k, then
the topology knowledge T K is defined as a k-sized T K.

At the outset, we assume each player i knows the following: (1) Set of vertices in N , i.e,P (2)
Topology Knowledge of player i, T Ki. We also assume the worst-case scenario where the adversary
knows all the T Ki’s for i ∈ P as well as is aware of the actual graph G.

Note 1 When each of the graphs is written in G = (V,E) form, we note that Gik = (P, E iki), and
only the edge-set keeps changing across the graphs for each of the players. Therefore, we can replace
every graph Giki in the set T Ki with the set of its edge-sets {E iki} for each player i to make matters
more convenient. We will be using T Ki synonymously with {E iki} from now on.

3 Bridge Theorems

As per the Definition 2, T K can be a set containing varying topology knowledge edge sets for each
player, thereby indicating that the extent of knowledge possessed by each player is different. This
is how arbitrary it can get. Working with this arbitrariness could bewilder more than clarify what
can be done with. But the use of set theoretic notation for T K has its own advantages which can
be seen from the two theorems in this section. These theorems act as the bridge theorems for our
main characterization theorem, Theorem 4.1.

In this section, we give a theorem in which we show that those problems π that satisfy certain
conditions have a property that, over a network N working with an N-sized T K is equivalent to
working with (several) 2-sized T K with respect to the solvability of π. This equivalence works only
for those problems that satisfy the conditions in the Table 1 (See Appendix A).These conditions
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are a prerequisite for the correctness of majority voting which we employ to show the equivalence.
Majority voting is applied to the outputs obtained on solving π for various different-sized T Ks.

We begin by giving followed by a definition which we use in our proof for the first bridge theorem
in our attempt to solve for the possibility of PRC in the setting that we work.

3.1 Bridge Theorem 1: N-sized T K to 2-sized T K

We begin with the following definition.
Definition 4 Given a graph G = (P, E) with N-sized T K = {T KP1 , T KP2 , . . . , T KP|P|}, N > 2,
where each T KPi = {EPi1 , EPi2 , . . . , EPik }, k ≤ N , and a 2-sized topology knowledge
Z = {ZP1 ,ZP2 , . . . ,ZP|P|} with each ZPi = {APi0 , A

Pi
1 }, 1 ≤ i ≤ |P|, such that one of the APij ’s is

exactly the edge-set E (the edge-set of G) while the other is an edge-set (different from E) that is
present in T KPi. In other words, there exists a j ∈ {0, 1} such that E = APij and APi

j
∈ T KPi for

every player Pi, we say that Z is derived from T K.

Note that an N-sized T K can have up to (N−1)|P| distinct 2-sized topology knowledge sets derived
from it.
Theorem 3.1 A protocol Π that solves a problem π, satisfying either IO Condition and Input
Honesty Condition or IO Condition and Output Agreement Condition in Table 1, over a network
N with N -sized T K (N > 2) influenced by an adversary A exists if and only if, for each of the
2-sized topology knowledge Zj (1 ≤ j ≤ (N − 1)|P|), that can be derived from T K, there exists a
protocol solving π with topology knowledge Zj.

Proof: Necessity: We need to prove that if π cannot be solved with one of the 2-sized topology
knowledge sets Zj derived from T K then π cannot be solved with T K. The proof follows from the
Definition 3. Notice that, all valid 2-sized topology knowledge sets derived from T K are included,
by definition, in an N -sized topology knowledge set. That is, Zj is also an N -sized topology
knowledge set. If a problem π cannot be solved with Zj derived from T K in the presence of an
adversary A, then the strategy of the adversary is to change the topology knowledge from T K to
Zj by suitably communicating to the nodes the information needed to eliminate the edge-sets at
which topology knowledge of each player in T K differs from the corresponding topology knowledge
in Zj . This naturally means that π cannot be solved with T K.
Sufficiency: We need to prove the statement: If there exists a protocol Πj that can solve the problem
π for the jth 2-sized topology knowledge Zj (1 ≤ j ≤ (N−1)|P|) derived from T K, then there exists
a protocol Π that can solve π with topology knowledge T K. We give a proof by induction on the
size of T KPi of player Pi (1 ≤ i ≤ |P|).
Base Case: In this case, N = 3. That means T KPi is a 3-sized set. Let T KPi = {EPi1 , EPi2 , EPi3 },
1 ≤ i ≤ |P|. We can partition T KPi into 3 sets, each of which is of size less than 3 such that every
element in T KPi occurs in two of the three sets. Since any one of the three elements of T KPi could
be the actual edge-set, two of the following three sets will be the 2-sized topology knowledge sets
derived from T KPi : Z

Pi
A = {EPi1 , EPi2 }, Z

Pi
B = {EPi1 , EPi3 }, Z

Pi
C = {EPi2 , EPi3 }.

A jth 2-sized topology knowledge Zj (1 ≤ j ≤ (N − 1)|P|) is a collection of the 2-sized topology
knowledge sets of all players Pi. In Zj , for player Pi, the 2-sized topology knowledge is one of ZPiA ,

ZPiB , ZPiC and is denoted by ZPijαi , where αi ∈ {A,B,C}. Therefore, Zj = {ZP1j
α1 ,Z

P2j
α2 , . . .Z

P|P|j
α|P| }.

We assume that there exists a protocol Πj that can solve the problem π for the jth 2-sized
topology knowledge Zj . This Πj can be considered to be a collection of protocols of each individual
player Pi. For each player Pi, let there be protocols ΠPi

A defined over ZPiA , ΠPi
B defined over ZPiB ,

ΠPi
C defined over ZPiC , such that each of the protocols is defined under the assumption that the

2-sized topology knowledge set over which it is defined is a valid 2-sized topology knowledge set
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(those sets in which one of the edge-set is the actual edge-set), and the collection of all valid
protocols for each player defined over valid 2-sized topology knowledge set solves the problem π.
Any collection of valid protocols defined over a valid 2-sized topology knowledge set (those sets in
which one of the edge-set is the actual edge-set) of each individual player forms a protocol like Πj .
Corresponding to the respective 2-sized topology knowledge for each player Pi in Zj , one could
write Πj = {ΠP1j

α1 ,Π
P2j
α2 , . . .Π

P|P|j
α|P| } for αi ∈ {A,B,C}. The subscript j is used to indicate that the

jth protocol Πj is running over the jth valid 2-size topology knowledge Zj .
Let (αiβ, αiγ) ∈ {(A,B), (B,C), (C,A)} indicate the pair of valid 2-sized topology knowledge

sets ZPiαiβ ,ZPiαiγ for a player Pi. For these two sets, a protocol for Pi is part of the collection of
protocols Πβ and Πγ over two 2-sized topology knowledge sets Zβ and Zγ . Therefore, protocols
like ΠPi

A , ΠPi
B , ΠPi

C exist.
Recall that the problem π satisfies IO Condition and Input Honesty Condition or IO

Condition and Output Agreement Condition in Table 1. IO Condition and Input Honesty
Condition together imply that there is a unique output for a given input for the problem π. IO
Condition and Output Agreement Condition force the inputs to be consistent so as to make the
outputs same.

Notice that using the three protocols, ΠPi
A , ΠPi

B and ΠPi
C , problem π can be solved even if

the player Pi is not aware of the actual topology. Let there be three protocols Πβ, Πγ , Πδ where
in each of them, the protocol for Pi is ΠPi

αiβ
, ΠPi

αiγ and ΠPi
κ where κ ∈ {{A,B,C} \ {αiβ, αiγ}}

respectively. Specifically, all the players run all the three protocols Πβ,Πγ and Πδ and obtain three
outputs O1, O2 and O3 respectively. Note that the actual graph is part of all the individual players’
topology knowledge in at least two of the three cases. That is, actual graph is the input to at least
two of the three protocols. Thus, at least two of the three outputs must be same and equal to
the output that a protocol solving π would produce. Thus, in a similar manner, every player can
take the majority of the three outputs and thereby solve π. Thus, a protocol for π with topology
knowledge T K exists if and only if a protocol for solving π exists with each of the two valid topology
knowledge sets (i.e. those that contain the actual edge-set) among ZPiA , ZPiB , ZPiC . Thus, we can
say that if some protocol solves a problem for each of its 2-sized T Ks derived from 3-sized T K,
then Π solves the problem with 3-sized T K.

Induction Hypothesis: Let us suppose that the statement is true for up to any m-sized T K. That
is to say, If π is solvable for each of its 2-sized T Ks derived from the m-sized T K, then π can be
solved with topology knowledge T K.

Induction: Let T Ki be m + 1-sized T Ki. Since m + 1 > 3, we can partition T Ki of every player
Pi into 3 sets, say X,Y, Z each of which is of size less than m + 1 such that every element in
T Ki occurs in two among X,Y and Z. Therefore two of X,Y and Z make a valid m-sized T K.
From our induction hypothesis, we know that π can be solved with an m-sized topology knowledge
M if it can be solved for each of the 2-sized topology knowledge sets derived from M . In the
proof for the Base Case condition, we replace 2-sized topology knowledge with m-sized topology
knowledge set, and the set {A,B,C} with {X,Y, Z} and (αiβ, αiγ) ∈ {(A,B), (B,C), (C,A)} with
(αiβ, αiγ) ∈ {(X,Y ), (Y,Z), (Z,X)}. We proceed along the same lines as in the proof for Base
Case. This way, we can show how a protocol that solves π for each of the m-sized T K derived from
m + 1-sized T K can solve π for m + 1-sized T K. Thus, the statement is true for an m + 1-sized
T K.Therefore, by induction, it is true ∀m ∈ N.
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3.2 Arbitrary to Uniform T K

From the prequel, it is enough to characterise the possibility of PRC for a 2-sized T K. For a set of
players P, a 2-sized T K = {T K1, T K2, . . . , T K|P|}, where each T Ki = {E i0, E i1}, ∀i ∈ P. Notice that
each player can have a different T Ki, and working with varying T Kis can become cumbersome. In
our characterization, we avoid working directly with 2-sized T K for this reason. In this section, we
show that for any problem π, working with a 2-sized T K can be brought down to working with a
modified T K, say, T K′ which is formed by the intersection of each of the T Kis in 2-sized T K and a
set denoted by 2-sized T KG which in all respects has the properties of a 2-sized T Ki and is known
globally to all the players. There are 2|P|

2

possibilities for 2-sized T KG. We show that solving π
using a 2-sized T K is possible if and only if π can be solved for all the 2|P|

2

possibilities for T K′.
Following this, we give a necessary and sufficient condition for the possibility of PRC given T K′.
Owing to space constraints, we are moving this to Appendix B

Given that we have these Bridge Theorems: Theorem 3.1 and Theorem B.1 and since the
problem of PRC satisfies the conditions under which the theorems are true, the task of solving
PRC can now be taken up on the 2-sized uniform T K. Following this, we construct back the
conditions for PRC for the case of an N-sized T K by following the path taken to reduction in the
reverse direction.

4 Main Characterization Theorem for PRC

We begin with a few definitions and lemmas. Our proofs use rigorous path analysis of paths between
the sender S and the receiver R.

Definition 5 (Strong Path) A sequence of vertices v1, v2, v3, . . . , vk is said to be a strong path
from v1 to vk in the network N = (P, E) if for each 1 ≤ i < k, (vi, vi+1) ∈ E. Furthermore, we
assume that there vacuously exists a strong path from a node to itself.

Definition 6 (t-(S,R,)-strong-connectivity) A digraph is said to be t-(S,R)-strong-connected
if the graph is such that there exists at least t vertex disjoint strong paths from S to R.

Definition 7 (Semi-Strong Path) A sequence of vertices v1, v2, v3, . . . , vk is said to be a semi-
strong path from v1 to vk in the network N = (P, E) if there exists a 1 ≤ j ≤ k such that the
sequence vj to v1 as well as vj to vk both are strong paths in the network. We call the vertex vj as
the head of the semi-strong path.

Definition 8 (Weak Path) A sequence of vertices v1, v2, v3, . . . , vk is said to be a weak path from
v1 to vk in the network N = (P, E) if for each 1 ≤ i < k, either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E .
Furthermore, we assume that there vacuously exists a weak path from a node to itself.

Definition 9 (PRC Protocol) Let N = (P, E) be a network, with topology knowledge T K, under
the influence of a Byzantine adversary that may corrupt up to any t players. We say that a
protocol for transmitting a message from S to R is (t, δ)-reliable if for any valid adversary strategy,
the probability that R outputs m given that S has sent m, is at least δ where the probability is over
the random inputs of all the players and random inputs of the adversary.

Whenever we refer to a PRC Protocol in the rest of the paper, it is assumed to be (t, δ)-reliable.
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Definition 11 (Critical Combination) Given the following: A network N = (P, E), where P is the
set of players, and E, the set of edges between the players in P. Two players identified as S (denoting
sender) and R (denoting receiver) such that {S,R} ∈ P. Two t-sized sets - B1 and B2, such that
B1 ⊂ P, B2 ⊂ P in the network N . A 2-sized T KG = {E0, E1} for the network N . A 2-sized T K
for the network N . A set X of players, X = {i|T K′i = N and i ∈ (P \ B1 ∪ B2 ∪ R-group)}; Let
C = (P \B1 ∪B2 ∪ R-group); X is a set of players in C which know the actual graph N after knowing
T KG. X ∩ R-group = ∅. A set Z ⊂ C of players that are part of all weak paths from S to R and
those players that have a semi-strong path from itself to R.
Network N is said to be in a Critical Combination if any of the following hold:

• Either B1 or B2 cut across all strong paths between S and Rs.

• B1 ∪B2 cut across all weak paths between S and R.

• ∃W such that every weak path p that avoids both B1 and B2 between S and R has a node, say w,
that has both its adjacent edges (along p) directed inwards and w ∈W and the following hold:

– Both B1 and B2 are vertex cut-sets between w and R. In other words, every strong path
from w to R passes through both B1 and B2.

– For α ∈ {0, 1}, B1 is a vertex cut-set between all nodes in (W ∪ (Z ∩ X)) and R in the
edge-set Eα ∈ T KG and B2 is a vertex cut-set between all nodes in (W ∪ (Z ∩X)) and R
in the edge-set Eα ∈ T KG.

Definition 10 ((Player p)-Group) (Player p)-group is defined with respect to two t-sized subsets
of P, say B1 and B2. A p-group in graph G is the set of all players q (including p) such that q has
a strong path from it to p not passing through any node in (B1 ∪ B2). It also contains any player
w that can reliably communicate even though the path from it to R passes through B1 or B2.

Note 2 Following Definition 11, network N can be divided into four components for a given two
t-sized sets, B1 and B2 as follows: R-group, B1, B2 and the rest of the players together as one,
say C = P \ (B1 ∪ B2∪ R-group). Since the sender S and the receiver R are honest, we consider
the case when S ∈ C. The only other possibility is S ∈ R-group, in which case the protocol for
PRC is obvious. R-group has no knowledge of the actual graph N , and each player in R-group has
the same topology knowledge as that of the globally declared 2-sized T KG, made of two edge-sets
{E0, E1}. Set X ⊂ C. Set Z ⊂ C. Players in P \ (X∪ R-group) all have the same topology
knowledge {E0, E1}.

Theorem 4.1 (Main Theorem) For δ > 1
2 , a (t,δ)-reliable PRC protocol between S and R

in the network N = (P, E) with a 2-sized T K tolerating a t-adversary exists if and only if for
every B1, B2 of size at most t, such that B1 ∈ P, B2 ∈ P in the network, Critical Combination
[Definition 11] does not occur in N .

Proof. Necessity: For Necessity,we must show that a network N that is in Critical Combination
guarantees that no PRC protocol from S to R exists in N . We now take each of the conditions
described for a network to be in Critical Combination (Definition 11) and show that no PRC
protocol can exist between S and R when the condition is true.

Note that if the T K′i of all the players, following the inputs given in the Definition 11, is a
singleton set, that is all the players have identified the actual graph N of the network, then the
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requirement for the PRC protocol is, as per the conditions in [SGSR08]. The results in [SGSR08]
have a strong receiver R-specificity. With our results we gain a better insight into this R-specificity.
In fact, we show that the knowledge of the actual graph or the absence of it for the receiver R is
the key for the existence or non-existence of the PRC protocol. The following four lemmas shall
capture the requirement of our necessity proof.

Lemma 4.1.1 Following Definition 11, if either B1 or B2 cut across all strong paths between S
and R in N , then a PRC protocol between S and R does not exist.

Proof: It is obvious to see that in this case, an adversary that can corrupt up to any t players can
corrupt the set B1 or B2 that cuts across all strong paths between S and R, and thereby disconnect
the two in which case no PRC protocol can ever exist.

Lemma 4.1.2 Following Definition 11,if B1 ∪B2 cut across all weak paths between S and R, then
a (t,δ)-reliable PRC protocol (δ > 1

2) between S and R does not exist.

Lemma 4.1.3 Following Definition 11, if ∃W such that every weak path p that avoids both B1 and
B2 between S and R has a node, say w, that has both its adjacent edges (along p) directed inwards
and w ∈W and both B1 and B2 are vertex cut-sets between w and R, then a PRC protocol between
S and R does not exist. In other words,if every strong path from w to R passes through both B1

and B2, then a (t,δ)-reliable PRC protocol (δ > 1
2) between S and R does not exist.

Proofs of Lemmas 4.1.2 and 4.1.3 are given in Appendix B.

Lemma 4.1.4 Following Definition 11, if ∃W such that every weak path p that avoids both B1 and
B2 between S and R has a node, say w, that has both its adjacent edges (along p) directed inwards
and w ∈W and for α ∈ {0, 1}, B1 is a vertex cut-set between all nodes in (W ∪ (Z ∩X)) and R in
the edge-set Eα ∈ T KG and B2 is a vertex cut-set between all nodes in (W ∪ (Z ∩X)) and R in the
edge-set Eα ∈ T KG. then a (t,δ)-reliable PRC protocol (δ > 1

2) between S and R does not exist.

Proof Outline: The proof of this lemma gives the topology knowledge effect on the possibility of
(t,δ)-reliable PRC protocol for a given network modeled as a directed graph. The proof is by
contradiction.

Assume that a protocol Π solves PRC (with error probability less than 1
2) from S to R in the

edge-set E0 tolerating t-adversary. If one considers Π as a collection of programs to be run by each
of the players in the graph G, then define another protocol Π′ such that in Π′, the players S, R,
and players in R-group run the same programs as they run in the protocol Π, the players in sets B1

and B2 swap the programs that they run in Π, and the players in the set (W ∪ (Z ∩X)) runs the
program in Π with one change: wherever it is to send its message to B1 in Π, it sends its message
to B2 in Π′. This protocol Π′ is clearly a protocol to solve PRC from S to R in the edge-set E1

tolerating t-adversary.
Consider two executions F1 of Π in the edge-set E0 and F2 of Π′ in edge-set E1. In both

executions the vertices in R-group hold the random inputs {ρu|u ∈ R-group }. In the execution
Fα ∈ {F1, F2}, the Byzantine set Bα is corrupt and the message mα is transmitted by S, the ran-
dom inputs of the vertices in (C ∪Bα)1 are {ρu|u ∈ (C ∪Bα)}. The behavior of the Byzantine set
Bα in the execution Fα is to send no message whatsoever to C∪Bα and to send to R-group exactly
the same messages that are sent to R-group by the honest Bα in the execution Fα. In order for the
Byzantine set Bα to behave as specified in the execution Fα, the adversary needs to simulate the

1We denote 1 = 2 and vice-versa;
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behavior of (C ∪Bα) in the execution Eα. To achieve this task,the adversary simulates round-by-
round the behavior of the vertices in (C ∪Bα) for the execution Fα using {ρu|u ∈ (C ∪Bα)} as the
random inputs for the vertices in (C ∪Bα). At the beginning of each round, each simulated player
has a history of messages that it got in the simulation of the previous rounds and its simulated local
random input. The simulated player sends during the simulation the same messages that the honest
player would send in the original protocol in the same state. The simulated messages that (players
in) Bα sends to R are really sent by the players. All other messages are used only to update the
history for the next round. The messages which are added to the history of each simulated vertex
are the real messages that are sent by players in R-group and the simulated messages that are sent
by the vertices in (C ∪ Bα). No messages from Bα are added to history. The history of messages
of each simulated vertex in execution Fα is the same as the history of the vertex in execution Fα.
Therefore, the messages sent by B1 and B2 to members of R-group in both executions are exactly
the same and the members of R-group and in particular the receiver R receive and send the same
messages in both executions. Thus, the receiver R cannot distinguish whether the set B1 is corrupt
and the message transmitted by S is m1 or the set B2 is corrupt and the message transmitted by
S is m2. Now, consider all the pairs of executions where the random inputs range over all possible
values. In each pair of executions, whenever R accepts the correct message in one execution it
commits an error in the other. Thus, for any strategy by R for choosing whether to receive m1 or
m2 there is some α such that when mα is transmitted, the receiver accepts mα with probability at
most 1

2 .
This completes the necessity part of the proof for Theorem 4.1.

Proof. Sufficiency: For Sufficiency, Network N that is not in Critical Combination guarantees the
existence of a PRC protocol from S to R in N . So, we prove by giving a protocol and its proof of
correctness. Owing to space constraints, we move the discussion of the protocol to Appendix C.

4.1 Corollaries
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Corollary 4.1.1 There exist networks over which, a PRC protocol between a Sender S and the
Receiver R in the network tolerating a t-adversary exists, if every player in the network has complete
knowledge of the topology but does not exist if in the network, each player does not have knowledge
of up to dmin-levels (hops) (both for in-edges as well as out-edges) where dmin = bn−2t

3 c+ 1, where
n is the total number of players in the network.

Proof: We give a proof by construction. The Figure 3 represents the state of a network N similar
to what is given in Note 2. The network N is constructed such that it satisfies the conditions for
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the possibility of PRC tolerating a t-adversary when each player has complete knowledge of the
topology. Let there be n nodes in the network. The number of nodes in the path between W and
M is l. Notice that the sets B1 and B2 cut across all strong paths between S and R. There are
k nodes in the path connecting M to a node in B1 and k nodes in a path from M to B2 which is
disconnected at node X1. Sets B1 and B2 are sets of t nodes each, of which the adversary corrupts
on of them. Both B1 and B2 are such that they contain nodes of the kind n1, n3 that form part
of disjoint weak paths from S to R. They also contains nodes of the kind n2, n4 that form part of
disjoint strong paths from S to R, totalling t+ 1. There is a weak path between S and R passing
through W . Notice that, in the network, R knows W , n1, n2, n3, n4 with knowledge of up to a
single hop. S knows W ,n1,n2,n3,n4 with a knowledge of up to a single hop. That is there are no
nodes in between the paths from S and R to these nodes. Clearly, for this network, PRC protocol
exists in the presence of a complete topology knowledge, because the underlying undirected graph
is (2t + 1)-S,R connected and it has (t + 1)-strong paths for any number of nodes l in the path
between W and M .

Let l >= k − 1 for the network. Clearly, for this network if we count the number of nodes and
equate it to n, we get: n = 4 + 2k + l + 2t, which, when you take for the minimum value of l,
n = 2t+ 3k + 3.

In such a network N , notice that the adversary can thwart the possibility of PRC in the
absence of knowledge of dmin levels, because, for knowledge of up to dmin − 1 hops, it can ensure
indistinguishable views for the receiver over two executions, Ea and Eb by constructing another
network similar to that of N - N ′ (see Figure 4). The adversarial strategy is exactly as described
in the proof of Lemma 4.1.4, and it is as good as saying that T KR contains both N and N ′. In the
construction, it is only when each player has knowledge of up to dmin levels that R distinguishes
between N and N ′.

Corollary 4.1.2 For any network, existence of a PRC protocol between S and R in the network
tolerating a t-adversary when each player has complete knowledge of the topology implies existence
of a PRC protocol between S and R in the network tolerating a t-adversary when each player
has knowledge of up to dmin-levels (hops) (both for in-edges as well as out-edges) where dmin =
bn−2t

3 c+ 1, where n is the total number of players in the network.

Proof: Proof for the Corollary 4.1.2 is given in Appendix E.

5 Conclusion

We have provided a complete characterization for the problem of Probabilistic Reliable Communi-
cation given topology knowledge as a parameter. The significance of our results can be understood
from the following implications: (a) Generalization: Our results are a strict generalization of the
existing results for probabilistic reliable communication [SGSR08]; (b) The “Randomization-effect”:
It is well known that for perfectly reliable communication, fault-tolerance is independent of nodes’
knowledge of the network topology [SKR+05]; we show that in the case of probabilistic reliable com-
munication, fault-tolerance is extremely sensitive to changes in the knowledge of network topology.
c) Optimization: Our results may be used to answer the question: what is the optimal fault-tolerance
that is achievable in reliable communication for a specified T K and vice-versa.
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A Size Reduction Conditions

The following are the conditions that the problems must satisfy for the equivalence of N-sized T K
to 2-sized T K to work:

The conditions and the corresponding equivalence between solvability of problems with N -sized
T K and the solvability of problems using some k-sized T K. where k <= N , are as follows:
• IO Condition: The problem should be such that its Input-Output relation must be a

function, that is, for a given input, there is only a unique output.

• Input Honesty Condition: Is there a requirement for the input givers to be honest?

– If yes, then there is an equivalence that can be shown from N -sized T K to 2-sized
T K.

– If not,Output Agreement Condition: Is there a requirement for agreement
amongst the outputs?

∗ If yes, Output Secrecy Condition:Is there a requirement for the secrecy of
outputs?
· If yes, then there is an equivalence that can be shown from N -sized T K to
k-sized T K, where k > 2. (This is our conjecture)
· If not, then there is an equivalence that can be shown from N -sized T K to

2-sized T K.
∗ If not,then the equivalence is dependent on the Input-Output relation. In other

words, it is sensitive to input-output relation and equivalence is not generically
obtained.

Table 1: Size Reduction Conditions

A.1 Reductions Conditions satisfied by PRC

For the problem of Probabilistic Reliable Communication, the input-output relation is a function.
The function is to output a yes/no depending on whether reliable message transmission takes place
between a sender S and a receiver R or not, where the inputs are a graph that models the network,
and the adversary that operates in the network. Since we have not yet given the condition in the
presence of partial topology knowledge, let every player in the network know the complete topology.
Shankar et al. in [SGSR08] have given the conditions that are required for the occurrence of PRC
between S and R, which is the function that operates on this problem. The function gives an
answer yes/no which is unique for the given input. So, PRC satisfies the IO Condition in the
Reduction Conditions mentioned in Table 1.

One may consider input giver, here S to be honest, or dishonest in PRC. If the input giver is
considered to be honest, then the Input Honesty Condition is satisfied by PRC.

Even if the input giver is dishonest, since the PRC protocol has only one output from the
receiver, the Output Agreement condition is satisfied. Rather, the IO Condition enforces Output
Agreement condition in the absence of Input Honest condition. For PRC, Output Secrecy is not a
requirement. So, it need not satisfy the secrecy requirement.

Thus PRC falls under both the categories that satisfy: (1) IO Condition and Input Honesty (2)
IO Condition and Output Agreement.
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B Bridge Theorem 2 : From 2-sized T K to T K′

We begin with the following definitions before we give the Bridge Theorem 2:

Definition 12 (Global T KG and k-sized T KG) For a given network N = (P, E), a global T KG
is defined as a globally published topology information accessible to all the players in the network
N . Its representation and properties are similar to that of T Ki. It is represented as a set of graphs,
i.e. T KG = {Gi} with the condition that one of the graphs in T KG is the actual graph N , where
1 ≤ |T KG| < 2|P|

2

. If |T KG| = k, then the T KG shall be called k-sized T KG. Similar to Note 1,
T KG can be represented using the corresponding edge-sets of the graphs in it.

Definition 13 (T K′i and T K′) Given a network N = (P, E), a T KG and a T K, then we define
T K′i as the updated topology knowledge of player i from knowing T KG. Collection of all such T K′is
forms T K′,i.e., T K′ = {T Ki ∩T KG} ∀i ∈ P. Similar to Note 1, T K′ can be represented using the
corresponding edge-sets of the graphs in it.

Theorem B.1 A protocol Π that solves a problem π over a network N with 2-sized T K influenced
by an adversary A exists if and only if, for each of the T K′ sets formed from the 2|P|

2

possibilities
for the 2-sized T KG, there exists a protocol solving π with T K′.

Proof: Only-If part: This is the easier part. It is evident that the topology knowledge T K′ is higher
than the topology knowledge T K, since every T Ki is a superset of T K′i = T Ki ∩ T KG. Therefore,
if a protocol Π works correctly over T K, it would vacuously be a correct protocol over T K′ too.
If part: Let there exist protocols for problem π for each of the valid 2-sized T KGs. We now show
that this implies that there exists protocols for π for any valid 3-sized T KG. Specifically, let a
3-sized T KG be T = {E1, E2, E3}. Consider the three 2-sized subsets, namely, X1 = {E1, E2},
X2 = {E2, E3} and X3 = {E1, E3}. Note that at least two of the above three Xi’s are valid global
T KG’s (that is they contain the actual edge set). Suppose the players execute the protocol for
solving π for each of these two T KGs, their outputs must exactly match since the problem is solved
over the same network with the same inputs! However, the players are unaware of which of the two
Xi’s are valid global T KGs. It turns out that this does not matter since the players could execute
protocols for all the three Xi’s and perform a majority voting on the outputs to obtain the correct
output for problem π for the 3-sized T KG, namely T .

By induction, one can now solve the problem π for any given 4-sized T KG (since any 4-sized
T KG can be split into three subsets of size ≤ 3 such that at least two of them valid and yield
exactly the same output). Continuing further, we find that solving π with any m-sized T KG
(where 2 < m ≤ 2|P|

2

) is possible if and only if π is solvable for each of its 2-sized subset T KGs.
Notice that the case of m = 2|P|

2

is nothing but the case where T K is exactly equal to T K′. Hence
the theorem.

C Proof of Lemma 4.1.2, Lemma 4.1.3, Lemma 4.1.4

Lemma C.0.1 Following Definition 11,if B1∪B2 cut across all weak paths between S and R, then
a PRC protocol between S and R does not exist.

Note 2 gives us the glimpse of the state of the network N following Definition 11.

It is evident from the definition of R-group that there do not exist vertices u ∈ C and v ∈ R-group,
such that the edge (u, v) is in N . When B1 ∪B2 cut across all weak paths between S and R, there
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do not exist vertices u ∈ C and v ∈ R-group, such that the edge (v, u) is in N .

We prove the impossibility even for the best case where every other edge (other than those between
C and R-group) exists and when every player knows the actual graph.

Define two executions E1 and E2 as follows. In both executions the vertices in R-group hold the
random inputs {ρu|u ∈ R-group }. In the execution Eα ∈ {E1,E2}, the Byzantine set Bα is
corrupt and the message mα is transmitted by S, the random inputs of the vertices in (C ∪ Bα)2

are {ρu|u ∈ (C ∪Bα)}. The behavior of the Byzantine set
Bα in the execution Eα is to send no message whatsoever to C ∪ Bα and to send to R-group

exactly the same messages that are sent to R-group by the honest Bα in the execution Eα. In
order for the Byzantine set Bα to behave as specified in the execution Eα, the adversary needs
to simulate the behavior of (C ∪ Bα) in the execution Eα. To achieve this task, the adversary
simulates round-by-round the behavior of the vertices in (C ∪ Bα) for the execution Eα using
{ρu|u ∈ (C ∪ Bα)} as the random inputs for the vertices in (C ∪ Bα). At the beginning of each
round, each simulated player has a history of messages that it got in the simulation of the previous
rounds and its simulated local random input. The simulated player sends during the simulation
the same messages that the honest player would send in the original protocol in the same state.
The simulated messages that (players in) Bα sends to R are really sent by the players. All other
messages are used only to update the history for the next round. The messages which are added
to the history of each simulated vertex are the real messages that are sent by players in R-group
and the simulated messages that are sent by the vertices in (C ∪ Bα). No messages from Bα are
added to history. The history of messages of each simulated vertex in execution Eα is the same as
the history of the vertex in execution Eα. Therefore, the messages sent by B1 and B2 to members
of R-group in both executions are exactly the same and the members of R-group and in particular
the receiver R receive and send the same messages in both executions. Thus, the receiver R cannot
distinguish whether the set B1 is corrupt and the message transmitted by S is m1 or the set B2 is
corrupt and the message transmitted by S is m2. Now, consider all the pairs of executions where
the random inputs range over all possible values. In each pair of executions, whenever R accepts
the correct message in one execution it commits an error in the other. Thus, for any strategy by R
for choosing whether to receive m1 or m2 there is some α such that when mα is transmitted, the
receiver accepts mα with probability at most 1

2 .

Lemma C.0.2 Following Definition 11, if ∃W such that every weak path p that avoids both B1

and B2 between S and R has a node, say w, that has both its adjacent edges (along p) directed
inwards and w ∈W and both B1 and B2 are vertex cut-sets between w and R, then a PRC protocol
between S and R does not exist. In other words,if every strong path from w to R passes through
both B1 and B2, then a PRC protocol between S and R does not exist.

Proof: Note 2 gives us a glimpse of the state of the network N following Definition 11.

In Lemma 4.1.2, we proved that when there are no weak paths between S and R that avoid B1

and B2, PRC protocol does not exist. We now show that in spite of the presence of multiple such
weak paths between S and R that avoid B1 and B2, if they have a node of the type w, with both
its edges inwards towards w along the path, PRC protocol does not exist when both B1 and B2

are vertex cut-sets between w and R. We take the case where every player complete knowledge of
2We denote 1 = 2 and vice-versa;
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the topology in spite of which PRC is shown to be impossible.

At least one edge from these weak paths must be from a node in R-group to another node in C
(since these are paths outside (B1 ∪B2) and from S to R). We will show that removing that edge
has no effect on the possibility of PRC thereby proving the required result.

Firstly, how can these edges be useful? The answer is that they can be used by players in R-group
to send some secret messages to the players in C such that the adversary, oblivious of these mes-
sages, cannot simulate the messages of C without being distinguished by R-group. However, if we
are able to show that no such secret information can help PRC from S to R, then we are through.
We do the same now.

A node x is said to have no influence on R if the output of R is independent of values sent by
x. Otherwise x is said to influence R. Consider an edge (y, x) in N such that y ∈ R-group and
x ∈ C. We need to know whether x can influence R by using the data received from y. Suppose
we manage to show that it cannot then we are through since what it means is that data sent along
the edge (y, x) has no effect on R and hence can be ignored. We now proceed to prove the same.

Suppose that the node R can be influenced by x. This (at least) means that there must be a path
x,w1, w2, . . . , wq,R in N such that x transmits some information to w1, then w1 transmits some
information to w2 that depends on the information it got from x and so on until some information
gets to R.3

Given that every path from x to R passes through some node(s) in Bα followed by some node(s) in
Bα for some α ∈ {1, 2}, the adversary if it corrupts the αth set in A = {B1, B2}, does the following:
let wj be the first vertex in Bα on a path from x to R. The corrupt wj ignores the real messages
that it gets from the players in C ∪Bα and thus the messages that it sends do not depend on the
message sent by x. Similarly, the messages sent by x when Bα simulates the players in C do not
influence the messages it sends to R since the path from x to R passes through at least one vertex
from Bα and no messages are sent by players in Bα during the simulation. Thus even if R may
know that the correct secret (that was exchanged using the edge (y, x)) was not used, he will not
know which set in A to blame. Thus the simulated messages of x have no influence on the messages
received by R and can be ignored. Hence, the impossibility of PRC proved in Lemma 4.1.2 is not
altered by using the edges from R-group to C.

D Sufficiency Proof of Theorem 4.1

D.1 Sufficiency Proof

For Sufficiency, Network N that is not in Critical Combination guarantees the existence of a PRC
protocol from S to R in N . So, we prove by giving a protocol and its proof of correctness.

Note 2 gives us the glimpse of the state of the network N following Definition 11.

3Since the network is synchronous, it may be possible to transmit information without actually sending message
bits. However, even such transmissions are possible only between nodes that can actually exchange some message-bits
as well. Thus, an information-path is necessarily a physical path too.
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Since there are n players, and t can be corrupted, there are
(|P|
t

)
options in front of the adver-

sary,that is there are exactly
(|P|
t

)
distinct ways of corrupting exactly t players. Let each of the

(|P|
t

)
distinct subsets of size t be represented as {B1, B2, B3, . . . , B(|P|t )} where Bi ⊂ P and |Bi| = t. First,
we show how to design a “PRC” sub-protocol assuming that the adversary is allowed to choose
only from two of the

(|P|
t

)
options that originally existed. In other words, we are only concerned

about an adversary that may corrupt the players in the set Bα or the set Bβ, where 1 ≤ α, β ≤
(|P|
t

)
and α 6= β. Let us denote the resulting sub-protocol as Παβ. In the sequel, we show how to use all

the sub-protocols Παβ (there are clearly
((|P|t )

2

)
of them) to design a grand protocol Π that can be

proved to be the required PRC protocol. In the Definition 11, the two t-sized sets B1 and B2 can be
understood as the sets of players that an adversary may corrupt in one of the instances of Bα and Bβ.

An honest player is the player not corrupted by the adversary. An honest path is understood as
the path that avoids the sets Bα and Bβ. An honest player in the network in possession of the
actual edge-set behaves differently from an honest player which has a doubleton set. When the
player knows E , all their communication, that is, sending and receiving messages is along the lines
of edges in E only. When the player has a doubleton set as its T Ki, it sends messages along both,
the edges in actual edge-set E and the other edge-set in its T Ki. It is never sure which of its
message is valid, because all communication along the false edges is lost, and the identity of the
false edges is not with the player. Now, an honest player with a doubleton set as its T Ki accepts
all messages that it receives which it identifies as valid, that is, those belonging to the edges in any
of the two edge-sets in its T Ki. All players corrupted by the adversary, w.l.o.g.,can be assumed to
know T K and the actual edge-set E . This is a modest assumption when dealing with an adversary.
An honest player drops all messages from a player if it identifies that it is corrupted by the adversary.

Designing the sub-protocol Παβ: Critical Combination does not occur in network N and this implies
all that all the conditions that cause critical combination are falsified. We see the consequences of
the same here, and use this to design our sub-protocol.

Neither of Bα or Bβ cut across all strong paths between S and R. Since Bα and Bβ are the sets
chosen by adversary one of which it can corrupt, there must be at least one honest strong path
from S and R that does not pass through either Bα or Bβ in N .

The deletion of both the sets Bα and Bβ from the network N does not cut across all weak paths
between S and R. There must exist at least one honest weak path from S to R in N that avoids
both the sets Bα and Bβ.

We start with this honest weak path, say p. We consider the following two cases in the design of
the sub-protocol Παβ:

Case (1) :The path p is such that w = S: In this case, the path p contains a player y (which may
be S or R too) such that p is the combination of the strong path from y to S and the strong path
from y to R. In other words, y ∈(S-group ∩R-group). We know that R-group has the edge-sets
{E0, E1} as its topology knowledge. If S-group∩X 6= ∅, then S would know the actual graph, else,
it would have the same topology knowledge as R-group, {E0, E1}. We give the protocol for the
case where both S and R do not have the actual graph N and are in possession of {E0, E1}, one of
which is known to be N , as per the Definition 12. The other case is similar and follows the same
approach. case (i): Notice that y ∈ R-group, so even y has {E0, E1} as its topology knowledge.
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Each of these edge-sets is such that each has a weak path that does not pass through the two sets
Bα and Bβ. Let the path along the actual edge-set (w.l.o.g, say E0) be p and along E1 be p′. In
p′, we have a y′ which has a strong path from it to S and R. The state as defined in Note 2 is the
same in both the edge-sets. Note that all players in p and p′ are honest. The protocol that is run
on one path p is correspondingly replicated on p′. We give the protocol for p: First, y sends to
both S and R,along its both edge-sets, a message with two parts: one, a set of random keys, two,
an array of signatures. Each player appends its signature to the second part of the message as it
forwards the message to the next player in the path p. The random keys K1,K2 and K3 (where
Ki are elements of a random field F, which in turn is also the message space), along with the list
of signatures of the players that the messages have seen, is sent to both S and R along the path p.
S, R receive two sets of the same three keys along the actual edge-set, and E1 from y in p. Along
p′, suppose the random keys sent by y′ be K ′1,K

′
2 and K ′3 (where K ′i are elements of a random

field F, which in turn is also the message space) . If S, R receive these three keys along both the
edge-sets E0 and E1, then they accept them as they cannot distinguish between the two edge-sets
as to which is the correct one. S,R end up with two distinct sets of keys - (K ′1,K

′
2 and K ′3) and

(K1,K2 and K3). Next,S computes two values: ψ, ψ1; two signatures: χ,χ1; where ψ = (M +K1),
χ = (K2(M + K1) + K3) and ψ1 = (M + K ′1), χ1 = (K ′2(M + K ′1) + K ′3), and M is the message
that needs to be reliably transmitted. S sends two messages in each edge-set E0 and E1

4 to R
along all the vertex-disjoint strong paths each containing: a value (ψ/ψ1), a signature(χ/χ1), and
an array of signatures. Each player appends its signature to the array of signatures as it forwards
the message to the next player in the path p or correspondingly in p′. Now, R receives two values
- two each of ψ′ and ψ′1; two signatures - two each of χ′ and χ′1 along two different paths as are
given in each of the edge-sets E0 and E1. Notice that, R has knowledge of (K1,K2 and K3) and
(K ′1,K

′
2 and K ′3). Hence it can easily verify if χ′ ?= K2 ∗ ψ′ + K3 (correspondingly it verifies for

χ′1). R reacts as follows: If the received value ψ′ has a valid signature (χ′ = K2 ∗ψ′+K3), then R
outputs (ψ′−K1) (correspondingly it outputs (ψ′1−K ′1) in the other edge-set); furthermore, among
all the received values, at least one of them is guaranteed to be valid (because at least one honest
strong path exists!). The probability that R outputs the same message in both the edge-sets is
high,namely 1− 1

|F| ,which can be made (1− δ) by suitably choosing F.

Case (2): The path p is such that there are k > 0 players like w (w 6= S ), say w1, . . . , wk along p:
We will first consider the case when k = 1. For each of the subsequent cases (k > 1), we repeat the
appropriate protocols given below on all wi’s (1 ≤ i ≤ k) and in the sequel succeed in establishing
reliable communication between S and R with a high probability.

Since we start with the assumption that conditions on Definition 11 are falsified, note that every
strong path from w to R does not pass through both Bα and Bβ for a w ∈W that is on the honest
weak path p from w1 to R. That is, there must exist a strong path Q from w1 to R that does not
pass through nodes in either the set Bα or the set Bβ.

Recall that p must contain a node y (which may be R) such that there is strong path from
y to w1 (along p) and there is a strong path from y to R (also along p). In other words,
y ∈ (w1 − group ∩R− group). We know that R-group has the edge-sets {E0, E1} as its topology
knowledge. If w1-group ∩ X 6= ∅, then w1 would know the actual graph, else, it would have the
same topology knowledge as R-group, {E0, E1}. The protocol we give below is in two parts. Part
I deals with the protocols to for communication between w1 and R for each of the four cases given

4Note that S can verify if it has at least one honest strong path from it to R or not, and distinguish it with E1
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above. Part II deal with how, from Part I, we move on to ensure reliable communication between
S and R with a very high probability.

Part I: Protocols for communication between w1 and R: case (i): We give the protocol for the
case where both w1 and R do not have the actual graph N and are in possession of {E0, E1},
one of which is known to be N , as per the Definition 12. The other case is similar and follows
the same approach. The protocol for w1, y,R is similar to the case (i) in Case 1 above till each of
w1, R end up with two distinct sets of keys - (K ′1,K

′
2 and K ′3) and (K1,K2 and K3) just as S, R do.

Next, w1 computes two values: ψ, ψ1; two signatures: χ,χ1; where ψ = (Mw1 + K1), χ =
(K2(Mw1 + K1) + K3) and ψ1 = (Mw1 + K ′1), χ1 = (K ′2(Mw1 + K ′1) + K ′3), and Mw1 is the
message from w1 that is to be reliably transmitted to R. Let the path along the E0 be Q and
along E1 be Q′. w1 sends two messages in each edge-set (E0 and E1) to R along Q and Q′ each
containing: a value (ψ/ψ1), a signature(χ/χ1), and an array of signatures. Each player appends
its signature to the array of signatures as it forwards the message to the next player in the path
Q or correspondingly in Q′. Now, R receives two values - two each of ψ′ and ψ′1; two signatures
- two each of χ′ and χ′1 along two different paths as are given in each of the edge-sets E0 and
E1. R verifies using both the set of keys in its possession. Using these, it can easily verify if
χ′

?= K2 ∗ ψ′ + K3. It verifies on all combinations of ψ′,ψ′1,χ′ and χ′1. R reacts as follows: If the
received value ψ′ has a valid signature on at least one of the combination (say χ′ = K2 ∗ ψ′ +K3),
then R outputs (ψ′ −K1); else (that is if either the signature is invalid(χ′ 6= K2 ∗ ψ′ +K3) or the
original message is not received), R knows the identity (among the two possibilities of α or β) of
the set that is the corrupt set.

Since we start with the assumption that conditions on Definition 11 are falsified, we note that ∀
nodes in (W ∪ (Z ∩X)), for i ∈ {0, 1}, B1 is not a vertex cut-set to R in the edge-set Ei ∈ T KG,
and B2 is not a vertex cut-set to R in the edge-set Ei ∈ T KG, the path Q completely avoids the
players from one of these sets say Bj , j ∈ {1, 2}; This clearly means that a faulty path Q (since a
wrong message was delivered) entails that set Bj is corrupt (where j = {1, 2} − {j}).

In Case (2) and its sub-cases above, if the set Bj , j ∈ {1, 2}, is not corrupt (which means that the
other set may be corrupt), then R receives the correct message with certainty while the adversary
has no information about the message.On the other hand, if the set Bj is corrupt, then though the
adversary still has no information about the transmitted message, he has complete control over R’s
output. R’s output could therefore either be a valid message or a null message with the knowledge
that (any subset of) Bj is corrupt. But, if R receives a valid message, it is the correct message
with a very high probability.

Protocols for the four cases in Part I aim at one of the following: (a) Simulating a direct edge (in
other sense, having a strong path that passes only through honest players) between w1 and R so
that message from w1 can be successfully communicated to R (or) (b) Simulation of the direct edge
fails, and R identifies which of the two sets in Bα, Bβ is corrupt.

Part II: If a protocol in Part I succeeds in (a) above, then depending on whether w1 (and thereby
all such wi’s) belongs to S-group or vice-versa, that is, w1 ∈ S-group or S ∈ w1-group we have two
cases. Note that, there will exist wi’s where neither wi ∈ S-group nor S ∈ wi-group. It is precisely
for this reason that we repeat the appropriate protocols given below on all wi’s (1 ≤ i ≤ k) so as
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to arrive at a case where one of these two cases occurs.

If w1 ∈ S-group, then, there exists a direct path from w1 to S. From the protocol in Part I, there is
a direct path from w1 to R. That is, w1 ∈ R-group, which implies that w1 ∈ (S-group ∩ R-group).
Notice that w1 is similar to the player y in path p in Case (1) of the sub-protocol Παβ. So, in this
case, we follow the protocol in Case (1) to establish reliable communication between S and R. If
S ∈ w1-group, then S sends the message that it wants to reliably communicate to R through the
path between w1 and R. Since the path is secure, and passes only through honest players, reliable
communication takes place.

If a protocol in Part I succeeds in (b) above, then we do the following: Since there exists at least
one honest strong path from S to R, it must avoid Bj . S sends the message along its both edge-sets
which has two parts: the message M and an array of player indices. Each player appends its index
to the array of player indices as it forwards the message to the next player along all these paths
to R. The knowledge that Bj is corrupt is sufficient for R to recover the correct message passing
through the honest path.

Note that this gives us the protocol for our uniform topology knowledge built with the help of
T KGs. To give the protocol for a given 2-sized T K, we use the means shown in the If part proof
of the Theorem B.1. This completes our exercise of constructing the sub-protocol Παβ that is
guaranteed to work correctly only if one of Bα or Bβ is chosen by the adversary.

Note that R can simulate the sub-protocol Παβγ which assumes that one among the three sets Bα
or Bβ or Bγ is chosen by the adversary. The simulation is done as follows: R takes the majority
among the outputs of the three protocols Παβ, Πβγ and Παγ . A majority is bound to exist since
any set chosen by the adversary is tolerated in two of the three protocols. Next, R can simulate
the sub-protocol which behaves like a PRC protocol as long as any one among a collection of four
sets is chosen by the adversary. Continuing further, R will be able to simulate the protocol that
behaves correctly if one among the collection of

(
n
t

)
sets is chosen by the adversary. This protocol

by definition is the PRC protocol from S to R! We conclude the sufficiency part of the proof.
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Corollary E.0.1 There exist networks over which, a PRC protocol between a Sender S and the
Receiver R in the network tolerating a t-adversary exists, if every player in the network has complete
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knowledge of the topology but does not exist if in the network, each player does not have knowledge
of up to dmin-levels (hops) (both for in-edges as well as out-edges) where dmin = bn−2t

3 c+ 1, where
n is the total number of players in the network.

Proof: We give a proof by construction. The Figure 3 represents the state of a network N similar
to what is given in Note 2. The network N is constructed such that it satisfies the conditions for
the possibility of PRC tolerating a t-adversary when each player has complete knowledge of the
topology. Let there be n nodes in the network. The number of nodes in the path between W and
M is l. Notice that the sets B1 and B2 cut across all strong paths between S and R. There are
k nodes in the path connecting M to a node in B1 and k nodes in a path from M to B2 which is
disconnected at node X1. Sets B1 and B2 are sets of t nodes each, of which the adversary corrupts
on of them. Both B1 and B2 are such that they contain nodes of the kind n1, n3 that form part
of disjoint weak paths from S to R. They also contains nodes of the kind n2, n4 that form part of
disjoint strong paths from S to R, totalling t+ 1. There is a weak path between S and R passing
through W . Notice that, in the network, R knows W , n1, n2, n3, n4 with knowledge of up to a
single hop. S knows W ,n1,n2,n3,n4 with a knowledge of up to a single hop. That is there are no
nodes in between the paths from S and R to these nodes. Clearly, for this network, PRC protocol
exists in the presence of a complete topology knowledge, because the underlying undirected graph
is (2t + 1)-S,R connected and it has (t + 1)-strong paths for any number of nodes l in the path
between W and M .

Let l >= k − 1 for the network. Clearly, for this network if we count the number of nodes and
equate it to n, we get: n = 4 + 2k + l + 2t, which, when you take for the minimum value of l,
n = 2t+ 3k + 3.

In such a network N , notice that the adversary can thwart the possibility of PRC in the
absence of knowledge of dmin levels, because, for knowledge of up to dmin − 1 hops, it can ensure
indistinguishable views for the receiver over two executions, Ea and Eb by constructing another
network similar to that of N - N ′ (see Figure 4). The adversarial strategy is exactly as described
in the proof of Lemma 4.1.4, and it is as good as saying that T KR contains both N and N ′. In the
construction, it is only when each player has knowledge of up to dmin levels that R distinguishes
between N and N ′.

Corollary E.0.2 For any network, existence of a PRC protocol between S and R in the network
tolerating a t-adversary when each player has complete knowledge of the topology implies existence
of a PRC protocol between S and R in the network tolerating a t-adversary when each player
has knowledge of up to dmin-levels (hops) (both for in-edges as well as out-edges) where dmin =
bn−2t

3 c+ 1, where n is the total number of players in the network.

Proof: We give an outline of how the proof proceeds. We first show that for the network constructed
in the proof of Corollary 4.1.1, for the knowledge of up to dmin-levels, a protocol exists for the
solvability of PRC. We have already noted that n = 2t+ 3k + 3, in the limiting case for l. Notice
that one needs to have knowledge d = k + 2 levels to know whether node X1 is connected to M
or X is connected to M . Further, R would require l + 2 hops along R, W , . . .M path to reach
M . Another hop is needed to know if M has an out-edge to X or X1. When R knows d levels,
it knows knowledge of both in-neighbours and out-neighbours up to level d, in the case when the
minimum distance required to know as to which edge M is connected to, l + 3 = k + 2 giving us
the limiting case for l. This gives us dmin = bn−2t

3 c+ 1.
We now show that for any network over which PRC protocol for complete topology knowledge

exists, knowledge of up to dmin-levels is sufficient. We give a proof by contradiction. Suppose
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dmin-levels is not sufficient. Then the minimum D for which it would be sufficient would be
D = dmin + 1.

Notice that the condition given in Lemma 4.1.4 must be satisfied to experience the effect of
topology knowledge on the possibility of PRC. The value of dmin is therefore dependent on the path-
length of the paths between W and R in which there exists a node M where the paths diverge, one
to B1 in the first edge-set and the other to B2 in the second edge-set in the topology knowledge of
R. Knowledge of up to that distance where the receiver R knows what this player M (which could
be W also) is connected to, is what constitutes our quest.

The underlying undirected graph of network N is (2t + 1)-S,R connected. In the directed
graph, there are (t+ 1)-S,R vertex disjoint strong paths. If any of the vertex-disjoint strong paths
is outside of B1 and B2, then S can reliably communicate to R using that honest strong path.
Therefore, all strong paths must pass through either B1 or B2. The construction has a single
directed edge from the sender S to a node in B1 or B2 for all the strong paths. Both B1 and B2

span across 2t weak paths between S and R, leaving one honest weak path outside of both B1 and
B2, as is required by the characterization. Such a weak path would have a blocked node w with a
strong path to R such that a node M where the paths diverge exists.

Supposing knowledge of up to dmin-levels were not sufficient, we will count the number of nodes
present in the network. If in a path between two nodes P and Q , there are k nodes, then the
number of hops needed to reach Q from P is k + 1. The path from R, W , . . .M must have dmin

nodes, because only then, under our assumption that knowledge of up to D-levels is sufficient would
hold because that would reveal whether M is connected to X or X1 for knowledge of up to distance
D. Notice that these dmin nodes include both M and W . Let there be l honest nodes in the weak
path from a node in B1 or B2 through which R would know as to whether X is connected to M or
X1 is connected to M . The receiver would see up to a distance k in both edge-sets in its possession
to reach B1 and B2. Further, we know that there are k nodes from M to B1 and B2. The number
of nodes to be covered to reach X or X1 through B1 and B2 respectively from R which includes the
nodes k and l should be dmin because D would make sure that R knows whether X is connected
to M or X1 is connected to M . Now, if the nodes are counted along each of these paths, notice
that along the paths through B1 and B2 to X and X1, we include one node each from B1 and B2

in our calculations. So, the total number of nodes, which is n in the network, turns out to be, on
assuming knowledge of up D levels 3 × dmin + 2t − 2 + 2. We have counted dmin nodes thrice in
three paths, we counted two nodes, one each from B1 and B2, which we subtract, when we add the
2t nodes of the sets B1 and B2. We know the value of dmin, substituting which we get, n = n+ 3,
which is a contradiction. Therefore, our assumption that knowledge of up to D levels is sufficient
is wrong.

22


